CINXE.COM

Search results for: porous materials

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: porous materials</title> <meta name="description" content="Search results for: porous materials"> <meta name="keywords" content="porous materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="porous materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="porous materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1856</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: porous materials</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1856</span> Finite Element Modeling of Heat and Moisture Transfer in Porous Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20D.%20Thi">V. D. Thi</a>, <a href="https://publications.waset.org/search?q=M.%20Li"> M. Li</a>, <a href="https://publications.waset.org/search?q=M.%20Khelifa"> M. Khelifa</a>, <a href="https://publications.waset.org/search?q=M.%20El%20Ganaoui"> M. El Ganaoui</a>, <a href="https://publications.waset.org/search?q=Y.%20Rogaume"> Y. Rogaume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Finite%20element%20method" title="Finite element method">Finite element method</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=moisture%20transfer" title=" moisture transfer"> moisture transfer</a>, <a href="https://publications.waset.org/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/search?q=wood." title=" wood."> wood.</a> </p> <a href="https://publications.waset.org/10007060/finite-element-modeling-of-heat-and-moisture-transfer-in-porous-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007060/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007060/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007060/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007060/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007060/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007060/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007060/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007060/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007060/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007060/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1296</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1855</span> Experimental Study of Flow Effects of Solid Particles’ Size in Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Akridiss">S. Akridiss</a>, <a href="https://publications.waset.org/search?q=E.%20El%20Tabach"> E. El Tabach</a>, <a href="https://publications.waset.org/search?q=K.%20Chetehouna"> K. Chetehouna</a>, <a href="https://publications.waset.org/search?q=N.%20Gascoin"> N. Gascoin</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20Kadiri"> M. S. Kadiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Transpiration cooling combined to regenerative cooling is a technique that could be used to cool the porous walls of the future ramjet combustion chambers; it consists of using fuel that will flow through the pores of the porous material consisting of the chamber walls, as coolant. However, at high temperature, the fuel is pyrolysed and generates solid coke particles inside the porous materials. This phenomenon can lead to a significant decrease of the material permeability and can affect the efficiency of the cooling system. In order to better understand this phenomenon, an experimental laboratory study was undertaken to determine the transport and deposition of particles in a sintered porous material subjected to steady state flow. The test bench composed of a high-pressure autoclave is used to study the transport of different particle size (35 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Experimental%20study" title="Experimental study">Experimental study</a>, <a href="https://publications.waset.org/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/search?q=porous%20material" title=" porous material"> porous material</a>, <a href="https://publications.waset.org/search?q=suspended%20particles." title=" suspended particles. "> suspended particles. </a> </p> <a href="https://publications.waset.org/10009235/experimental-study-of-flow-effects-of-solid-particles-size-in-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009235/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009235/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009235/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009235/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009235/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009235/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009235/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009235/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009235/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009235/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">844</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1854</span> Numerical Investigation of Hygrothermal Behavior on Porous Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Faiza%20Mnasri">Faiza Mnasri</a>, <a href="https://publications.waset.org/search?q=Kamilia%20Abahri"> Kamilia Abahri</a>, <a href="https://publications.waset.org/search?q=Mohammed%20El%20Ganaoui"> Mohammed El Ganaoui</a>, <a href="https://publications.waset.org/search?q=Slimane%20Gabsi"> Slimane Gabsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Building%20materials" title="Building materials">Building materials</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=moisture%20diffusion" title=" moisture diffusion"> moisture diffusion</a>, <a href="https://publications.waset.org/search?q=numerical%20solution." title=" numerical solution."> numerical solution.</a> </p> <a href="https://publications.waset.org/10004801/numerical-investigation-of-hygrothermal-behavior-on-porous-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004801/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004801/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004801/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004801/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004801/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004801/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004801/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004801/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004801/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004801/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1571</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1853</span> The Pack-Bed Sphere Liquid Porous Burner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Krittacom">B. Krittacom</a>, <a href="https://publications.waset.org/search?q=P.%20Amatachaya"> P. Amatachaya</a>, <a href="https://publications.waset.org/search?q=W.%20Srimuang"> W. Srimuang</a>, <a href="https://publications.waset.org/search?q=K.%20Inla"> K. Inla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PE <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Liquid%20fuel" title="Liquid fuel">Liquid fuel</a>, <a href="https://publications.waset.org/search?q=Porous%20burner" title=" Porous burner"> Porous burner</a>, <a href="https://publications.waset.org/search?q=Temperature%20profile." title=" Temperature profile."> Temperature profile.</a> </p> <a href="https://publications.waset.org/4240/the-pack-bed-sphere-liquid-porous-burner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4240/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4240/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4240/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4240/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4240/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4240/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4240/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4240/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4240/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4240/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1773</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1852</span> Mathematical Modeling of a Sub-Wet Bulb Temperature Evaporative Cooling Using Porous Ceramic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Meryem%20Kanzari">Meryem Kanzari</a>, <a href="https://publications.waset.org/search?q=Rabah%20Boukhanouf"> Rabah Boukhanouf</a>, <a href="https://publications.waset.org/search?q=Hatem%20G.%20Ibrahim"> Hatem G. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Indirect Evaporative Cooling process has the advantage of supplying cool air at constant moisture content. However, such system can only supply air at temperatures above wet bulb temperature. This paper presents a mathematical model for a Sub-wet bulb temperature indirect evaporative cooling arrangement that can overcome this limitation and supply cool air at temperatures approaching dew point and without increasing its moisture content. In addition, the use of porous ceramics as wet media materials offers the advantage of integration into building elements. Results of the computer show the proposed design is capable of cooling air to temperatures lower than the ambient wet bulb temperature and achieving wet bulb effectiveness of about 1.17.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Indirect%20evaporative%20cooling" title="Indirect evaporative cooling">Indirect evaporative cooling</a>, <a href="https://publications.waset.org/search?q=porous%20ceramic" title=" porous ceramic"> porous ceramic</a>, <a href="https://publications.waset.org/search?q=sub-wet%20bulb%20temperature." title=" sub-wet bulb temperature."> sub-wet bulb temperature.</a> </p> <a href="https://publications.waset.org/9996634/mathematical-modeling-of-a-sub-wet-bulb-temperature-evaporative-cooling-using-porous-ceramic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996634/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996634/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996634/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996634/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996634/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996634/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996634/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996634/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996634/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996634/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4521</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1851</span> Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jaibir%20Sharma">Jaibir Sharma</a>, <a href="https://publications.waset.org/search?q=Lee%20JaeWung"> Lee JaeWung</a>, <a href="https://publications.waset.org/search?q=Merugu%20Srinivas"> Merugu Srinivas</a>, <a href="https://publications.waset.org/search?q=Navab%20Singh"> Navab Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents thermal annealing de-wetting technique for the preparation of porous metal membrane for Thin Film Encapsulation (TFE) application. Thermal annealing de-wetting experimental results reveal that pore size formation in porous metal membrane depend upon i.e. 1. The substrate at which metal is deposited, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for formation of porous metal membrane. In order to demonstrate this technique, Silver (Ag) was used as a metal for preparation of porous metal membrane on amorphous silicon (a-Si) and silicon oxide. The annealing of the silver thin film of various thicknesses was performed at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for TFE application, the porous silver film prepared on amorphous silicon (a- Si) and silicon oxide was released using XeF2 and VHF, respectively. Finally, guide line and structures are suggested to use this porous membrane for robust TFE application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=De-wetting" title="De-wetting">De-wetting</a>, <a href="https://publications.waset.org/search?q=thermal%20annealing" title=" thermal annealing"> thermal annealing</a>, <a href="https://publications.waset.org/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/search?q=porous." title=" porous."> porous.</a> </p> <a href="https://publications.waset.org/10002143/preparation-of-porous-metal-membrane-by-thermal-annealing-for-thin-film-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002143/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002143/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002143/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002143/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002143/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002143/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002143/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002143/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002143/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002143/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2076</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1850</span> A Study on Characteristics and Geometric Parameters of the Flat Porous Aerostatic Bearing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Y.%20Huang">T. Y. Huang</a>, <a href="https://publications.waset.org/search?q=B.%20Z.%20Wang"> B. Z. Wang</a>, <a href="https://publications.waset.org/search?q=S.%20C.%20Lin"> S. C. Lin</a>, <a href="https://publications.waset.org/search?q=S.%20Y.%20Hsu"> S. Y. Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A CFD software was employed to analyze the characteristics of the flat round porous aerostatic bearings. The effects of gap between the bearing and the guide way and the porosity of the porous material on the load capacity of the bearing were studied. The adequacy of the simulation model and the approach was verified. From the parametric study, it is found that the depth of the flow path does not influence the load capacity of the bearing; the load capacity of the bearing will decrease if the thickness of the porous material increases or the porous material protrudes above the bearing housing; the variation of the chamfer at the edge of the bearing does not affect the bearing load capacity. For a bearing with an air gap of 5&mu;m and a porosity of 0.1, the average load capacity and the pressure distribution of the bearing are nearly unchanged no matter the bearing moves at a constant or a varying speed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerostatic%20bearing" title="Aerostatic bearing">Aerostatic bearing</a>, <a href="https://publications.waset.org/search?q=Load%20capacity" title=" Load capacity"> Load capacity</a>, <a href="https://publications.waset.org/search?q=Porosity" title=" Porosity"> Porosity</a>, <a href="https://publications.waset.org/search?q=Porous%0D%0Amaterial." title=" Porous material."> Porous material.</a> </p> <a href="https://publications.waset.org/16415/a-study-on-characteristics-and-geometric-parameters-of-the-flat-porous-aerostatic-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16415/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16415/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16415/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16415/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16415/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16415/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16415/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16415/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16415/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16415/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2625</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1849</span> Numerical and Experimental Study of Flow from a Leaking Buried Pipe in an Unsaturated Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.M.Hosseinalipour">S.M.Hosseinalipour</a>, <a href="https://publications.waset.org/search?q=H.Aghakhani"> H.Aghakhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the numerous applications of the study of the flow due to leakage in a buried pipe in unsaturated porous media, finding a proper model to explain the influence of the effective factors is of great importance.There are various important factors involved in this type of flow such as: pipe leakage size and location, burial depth, the degree of the saturation of the surrounding porous medium, characteristics of the porous medium, fluid type and pressure of the upstream.In this study, the flow through unsaturated porous media due to leakage of a buried pipe for up and down leakage location is studied experimentally and numerically and their results are compared. Study results show that Darcy equation together with BCM method (for calculating the relative permeability) have suitable ability for predicting the flow due to leakage of buried pipes in unsaturated porous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Buried" title="Buried">Buried</a>, <a href="https://publications.waset.org/search?q=Leaking%20pipe" title=" Leaking pipe"> Leaking pipe</a>, <a href="https://publications.waset.org/search?q=Porous%20media" title=" Porous media"> Porous media</a>, <a href="https://publications.waset.org/search?q=Unsaturated" title=" Unsaturated"> Unsaturated</a> </p> <a href="https://publications.waset.org/15210/numerical-and-experimental-study-of-flow-from-a-leaking-buried-pipe-in-an-unsaturated-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15210/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15210/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15210/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15210/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15210/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15210/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15210/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15210/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15210/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15210/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2391</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1848</span> Surface Morphology and Formation of Nanostructured Porous GaN by UV-assisted Electrochemical Etching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20S.%20Chuah">L. S. Chuah</a>, <a href="https://publications.waset.org/search?q=Z.%20Hassan"> Z. Hassan</a>, <a href="https://publications.waset.org/search?q=C.%20W.%20Chin"> C. W. Chin</a>, <a href="https://publications.waset.org/search?q=H.%20Abu%20Hassan"> H. Abu Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This article reports on the studies of porous GaN prepared by ultra-violet (UV) assisted electrochemical etching in a solution of 4:1:1 HF: CH3OH:H2O2 under illumination of an UV lamp with 500 W power for 10, 25 and 35 minutes. The optical properties of porous GaN sample were compared to the corresponding as grown GaN. Porosity induced photoluminescence (PL) intensity enhancement was found in these samples. The resulting porous GaN displays blue shifted PL spectra compared to the as-grown GaN. Appearance of the blue shifted emission is correlated with the development of highly anisotropic structures in the morphology. An estimate of the size of the GaN nanostructure can be obtained with the help of a quantized state effective mass theory.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photoluminescence" title="Photoluminescence">Photoluminescence</a>, <a href="https://publications.waset.org/search?q=porous%20GaN" title=" porous GaN"> porous GaN</a>, <a href="https://publications.waset.org/search?q=electrochemical%20etching" title=" electrochemical etching"> electrochemical etching</a>, <a href="https://publications.waset.org/search?q=Si" title=" Si"> Si</a>, <a href="https://publications.waset.org/search?q=RF-MBE." title=" RF-MBE."> RF-MBE.</a> </p> <a href="https://publications.waset.org/15776/surface-morphology-and-formation-of-nanostructured-porous-gan-by-uv-assisted-electrochemical-etching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15776/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15776/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15776/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15776/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15776/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15776/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15776/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15776/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15776/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15776/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1947</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1847</span> Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20J.%20Shivaram">M. J. Shivaram</a>, <a href="https://publications.waset.org/search?q=Shashi%20Bhushan%20Arya"> Shashi Bhushan Arya</a>, <a href="https://publications.waset.org/search?q=Jagannath%20Nayak"> Jagannath Nayak</a>, <a href="https://publications.waset.org/search?q=Bharat%20Bhooshan%20Panigrahi"> Bharat Bhooshan Panigrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method. &nbsp;In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH<sub>4</sub>HCO<sub>3</sub>). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ball%20Milling" title="Ball Milling">Ball Milling</a>, <a href="https://publications.waset.org/search?q=compressive%20strengths" title=" compressive strengths"> compressive strengths</a>, <a href="https://publications.waset.org/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/search?q=porous%20Titanium%20alloy." title=" porous Titanium alloy. "> porous Titanium alloy. </a> </p> <a href="https://publications.waset.org/10008501/influence-of-ball-milling-time-on-mechanical-properties-of-porous-ti-20nb-5ag-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008501/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008501/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008501/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008501/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008501/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008501/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008501/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008501/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008501/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008501/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">890</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1846</span> Examination of the Effect of Air Viscosity on Narrow Acoustic Tubes Using FEM Involving Complex Effective Density and Complex Bulk Modulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Watanabe">M. Watanabe</a>, <a href="https://publications.waset.org/search?q=T.%20Yamaguchi"> T. Yamaguchi</a>, <a href="https://publications.waset.org/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/search?q=Y.%20Kurosawa"> Y. Kurosawa</a>, <a href="https://publications.waset.org/search?q=Y.%20Koike"> Y. Koike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Earphones and headphones, which are compact electro-acoustic transducers, tend to have a lot of acoustic absorption materials and porous materials known as dampers, which often have a large number of extremely small holes and narrow slits to inhibit the resonance of the vibrating system, because the air viscosity significantly affects the acoustic characteristics in such acoustic paths. In order to perform simulations using the finite element method (FEM), it is necessary to be aware of material characteristics such as the impedance and propagation constants of sound absorbing materials and porous materials. The transfer function is widely known as a measurement method for an acoustic tube with such physical properties, but literature describing the measurements at the upper limits of the audible range is yet to be found. The acoustic tube, which is a measurement instrument, must be made narrow, and the distance between the two sets of microphones must be shortened in order to take measurements of acoustic characteristics at higher frequencies. When such a tube is made narrow, however, the characteristic impedance has been observed to become lower than the impedance of air. This paper considers the cause of this phenomenon to be the effect of the air viscosity and describes an FEM analysis of an acoustic tube considering air viscosity to compare to the theoretical formula by including the effect of air viscosity in the theoretical formula for an acoustic tube.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Acoustic%20tube" title="Acoustic tube">Acoustic tube</a>, <a href="https://publications.waset.org/search?q=air%20viscosity" title=" air viscosity"> air viscosity</a>, <a href="https://publications.waset.org/search?q=earphones" title=" earphones"> earphones</a>, <a href="https://publications.waset.org/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/search?q=sound%20absorbing%20materials" title=" sound absorbing materials"> sound absorbing materials</a>, <a href="https://publications.waset.org/search?q=transfer%20function%20method." title=" transfer function method."> transfer function method.</a> </p> <a href="https://publications.waset.org/9996570/examination-of-the-effect-of-air-viscosity-on-narrow-acoustic-tubes-using-fem-involving-complex-effective-density-and-complex-bulk-modulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996570/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996570/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996570/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996570/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996570/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996570/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996570/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996570/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996570/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996570/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1793</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1845</span> Metal-Semiconductor-Metal Photodetector Based On Porous In0.08Ga0.92N</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Saleh%20H.%20Abud">Saleh H. Abud</a>, <a href="https://publications.waset.org/search?q=Z.%20Hassan"> Z. Hassan</a>, <a href="https://publications.waset.org/search?q=F.%20K.%20Yam"> F. K. Yam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Characteristics of MSM photodetector based on a porous In<sub>0.08</sub>Ga<sub>0.92</sub>N thin film were reported. Nanoporous structures of n-type In<sub>0.08</sub>Ga<sub>0.92</sub>N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C<sub>2</sub>H<sub>5</sub>OH solution for 15min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Porous%20InGaN" title="Porous InGaN">Porous InGaN</a>, <a href="https://publications.waset.org/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/search?q=SMS%20photodetector." title=" SMS photodetector. "> SMS photodetector. </a> </p> <a href="https://publications.waset.org/9996801/metal-semiconductor-metal-photodetector-based-on-porous-in008ga092n" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996801/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996801/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996801/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996801/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996801/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996801/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996801/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996801/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996801/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996801/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2053</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1844</span> Numerical Simulation of Bio-Chemical Diffusion in Bone Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Masoud%20Madadelahi">Masoud Madadelahi</a>, <a href="https://publications.waset.org/search?q=Amir%20Shamloo"> Amir Shamloo</a>, <a href="https://publications.waset.org/search?q=Seyedeh%20Sara%20Salehi"> Seyedeh Sara Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Previously, some materials like solid metals and their alloys have been used as implants in human&rsquo;s body. In order to amend fixation of these artificial hard human tissues, some porous structures have been introduced. In this way, tissues in vicinity of the porous structure can be attached more easily to the inserted implant. In particular, the porous bone scaffolds are useful since they can deliver important biomolecules like growth factors and proteins. This study focuses on the properties of the degradable porous hard tissues using a three-dimensional numerical Finite Element Method (FEM). The most important studied properties of these structures are diffusivity flux and concentration of different species like glucose, oxygen, and lactate. The process of cells migration into the scaffold is considered as a diffusion process, and related parameters are studied for different values of production/consumption rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bone%20scaffolds" title="Bone scaffolds">Bone scaffolds</a>, <a href="https://publications.waset.org/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/search?q=tissue%20engineering." title=" tissue engineering."> tissue engineering.</a> </p> <a href="https://publications.waset.org/10006975/numerical-simulation-of-bio-chemical-diffusion-in-bone-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006975/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006975/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006975/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006975/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006975/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006975/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006975/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006975/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006975/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006975/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1800</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1843</span> Generation of Highly Ordered Porous Antimony-Doped Tin Oxide Film by A Simple Coating Method with Colloidal Template</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Asep%20Bayu%20Dani%20Nandiyanto">Asep Bayu Dani Nandiyanto</a>, <a href="https://publications.waset.org/search?q=Asep%20Suhendi"> Asep Suhendi</a>, <a href="https://publications.waset.org/search?q=Yutaka%20Kisakibaru"> Yutaka Kisakibaru</a>, <a href="https://publications.waset.org/search?q=Takashi%20Ogi"> Takashi Ogi</a>, <a href="https://publications.waset.org/search?q=Kikuo%20Okuyama"> Kikuo Okuyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An ordered porous antimony-doped tin oxide (ATO) film was successfully prepared using a simple coating process with colloidal templates. The facile production was effective when a combination of 16-nm ATO (as a model of an inorganic nanoparticle) and polystyrene (PS) spheres (as a model of the template) weresimply coated to produce a composite ATO/PS film. Heat treatment was then used to remove the PS and produce the porous film. The porous film with a spherical pore shape and a highly ordered porous structure could be obtained. A potential way for the control of pore size could be also achieved by changing initial template size. The theoretical explanation and mechanism of porous formation were also added, which would be important for the scaling-up prediction and estimation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Porous%20structure%20film%3B%20ATO%20particle%3B%20Ultra-low%20refractive%20index%3B%20vertical%20drop%20method%3B%20Low-density%20material%3B" title="Porous structure film; ATO particle; Ultra-low refractive index; vertical drop method; Low-density material;">Porous structure film; ATO particle; Ultra-low refractive index; vertical drop method; Low-density material;</a> </p> <a href="https://publications.waset.org/12002/generation-of-highly-ordered-porous-antimony-doped-tin-oxide-film-by-a-simple-coating-method-with-colloidal-template" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12002/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12002/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12002/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12002/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12002/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12002/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12002/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12002/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12002/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12002/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1580</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1842</span> Effect of Preheating Temperature and Chamber Pressure on the Properties of Porous NiTi Alloy Prepared by SHS Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wisutmethangoon%20S.">Wisutmethangoon S.</a>, <a href="https://publications.waset.org/search?q=Denmud%20N."> Denmud N.</a>, <a href="https://publications.waset.org/search?q=Sikong%20L."> Sikong L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The fabrication of porous NiTi shape memory alloys (SMAs) from elemental powder compacts was conducted by selfpropagating high temperature synthesis (SHS). Effects of the preheating temperature and the chamber pressure on the combustion characteristics as well as the final morphology and the composition of products were studied. The samples with porosity between 56.4 and 59.0% under preheating temperature in the range of 200-300&deg;C and Ar-gas chamber pressure of 138 and 201 kPa were obtained. The pore structures were found to be dissimilar only in the samples processed with different preheating temperature. The major phase in the porous product is NiTi with small amounts of secondary phases, NiTi2 and Ni4Ti3. The preheating temperature and the chamber pressure have very little effect on the phase constituent. While the combustion temperature of the sample was notably increased by increasing the preheating temperature, they were slightly changed by varying the chamber pressure.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Combustion%20synthesis" title="Combustion synthesis">Combustion synthesis</a>, <a href="https://publications.waset.org/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/search?q=self%20propagating%20high%20temperature%20synthesis" title=" self propagating high temperature synthesis"> self propagating high temperature synthesis</a>, <a href="https://publications.waset.org/search?q=shape%20memory%20alloy." title=" shape memory alloy."> shape memory alloy.</a> </p> <a href="https://publications.waset.org/10385/effect-of-preheating-temperature-and-chamber-pressure-on-the-properties-of-porous-niti-alloy-prepared-by-shs-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10385/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10385/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10385/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10385/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10385/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10385/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10385/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10385/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10385/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10385/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1758</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1841</span> Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Thomas%20Paris">Thomas Paris</a>, <a href="https://publications.waset.org/search?q=Vincent%20Bruyere"> Vincent Bruyere</a>, <a href="https://publications.waset.org/search?q=Patrick%20Namy"> Patrick Namy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fluid%20mechanics" title="Fluid mechanics">Fluid mechanics</a>, <a href="https://publications.waset.org/search?q=compressible%20flow" title=" compressible flow"> compressible flow</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=porous%20media." title=" porous media."> porous media.</a> </p> <a href="https://publications.waset.org/10009104/compressible-flow-modeling-in-pipes-and-porous-media-during-blowdown-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009104/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009104/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009104/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009104/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009104/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009104/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009104/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009104/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009104/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009104/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1155</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1840</span> The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Siming%20Wang">Siming Wang</a>, <a href="https://publications.waset.org/search?q=Qing%20Ni"> Qing Ni</a>, <a href="https://publications.waset.org/search?q=Yu%20Wu"> Yu Wu</a>, <a href="https://publications.waset.org/search?q=Ruihai%20Xu"> Ruihai Xu</a>, <a href="https://publications.waset.org/search?q=Hong%20Ye"> Hong Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500 °C but degrades beyond 600 °C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high-volume power density, demonstrating great potential in the fluid heating field.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conductive%20coating" title="Conductive coating">Conductive coating</a>, <a href="https://publications.waset.org/search?q=honeycomb%20ceramic%20electric%20heater" title=" honeycomb ceramic electric heater"> honeycomb ceramic electric heater</a>, <a href="https://publications.waset.org/search?q=high%20specific%20surface%20area" title=" high specific surface area"> high specific surface area</a>, <a href="https://publications.waset.org/search?q=high%20volume%20power%20density." title=" high volume power density."> high volume power density.</a> </p> <a href="https://publications.waset.org/10012748/the-fabrication-and-characterization-of-a-honeycomb-ceramic-electric-heater-with-a-conductive-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012748/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012748/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012748/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012748/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012748/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012748/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012748/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012748/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012748/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012748/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1839</span> Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=E.%20Gnapowski">E. Gnapowski</a>, <a href="https://publications.waset.org/search?q=S.%20Gnapowski"> S. Gnapowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is <em>&Delta;</em><em>V</em> between ignition voltage <em>V<sub>i</sub></em> and operating voltage reactor <em>V<sub>m</sub></em> for porous dielectric it was 11%, while <em>&Delta;</em><em>V</em> for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Input%20power" title="Input power">Input power</a>, <a href="https://publications.waset.org/search?q=mesh%20electrodes" title=" mesh electrodes"> mesh electrodes</a>, <a href="https://publications.waset.org/search?q=onset%20voltage" title=" onset voltage"> onset voltage</a>, <a href="https://publications.waset.org/search?q=porous%20dielectric." title=" porous dielectric. "> porous dielectric. </a> </p> <a href="https://publications.waset.org/9997987/impact-porous-dielectric-silica-gel-for-operating-voltage-and-power-discharge-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997987/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997987/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997987/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997987/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997987/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997987/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997987/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997987/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997987/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997987/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1955</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1838</span> Finite Element Analysis for Damped Vibration Properties of Panels Laminated Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.%20Kurosawa">Y. Kurosawa</a>, <a href="https://publications.waset.org/search?q=T.%20Yamaguchi"> T. Yamaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical method is proposed to calculate damping properties for sound-proof structures involving elastic body, viscoelastic body, and porous media. For elastic and viscoelastic body displacement is modeled using conventional finite elements including complex modulus of elasticity. Both effective density and bulk modulus have complex quantities to represent damped sound fields in the porous media. Particle displacement in the porous media is discretised using finite element method. Displacement vectors as common unknown variables are solved under coupled condition between elastic body, viscoelastic body and porous media. Further, explicit expressions of modal loss factor for the mixed structures are derived using asymptotic method. Eigenvalue analysis and frequency responded were calculated for automotive test panel laminated viscoelastic and porous structures using this technique, the results almost agreed with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Damping" title="Damping">Damping</a>, <a href="https://publications.waset.org/search?q=Porous%20Media" title=" Porous Media"> Porous Media</a>, <a href="https://publications.waset.org/search?q=Finite%20Element%20Method" title=" Finite Element Method"> Finite Element Method</a>, <a href="https://publications.waset.org/search?q=Computer%20Aided%20Engineering." title=" Computer Aided Engineering."> Computer Aided Engineering.</a> </p> <a href="https://publications.waset.org/13971/finite-element-analysis-for-damped-vibration-properties-of-panels-laminated-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13971/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13971/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13971/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13971/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13971/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13971/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13971/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13971/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13971/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13971/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2141</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1837</span> Marangoni Convection in a Fluid Saturated Porous Layer with a Deformable Free Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nor%20Fadzillah%20Mohd%20Mokhtar">Nor Fadzillah Mohd Mokhtar</a>, <a href="https://publications.waset.org/search?q=Norihan%20Md%20Arifin"> Norihan Md Arifin</a>, <a href="https://publications.waset.org/search?q=Roslinda%20Nazar"> Roslinda Nazar</a>, <a href="https://publications.waset.org/search?q=Fudziah%20Ismail"> Fudziah Ismail</a>, <a href="https://publications.waset.org/search?q=MohamedSuleiman"> MohamedSuleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The stability analysis of Marangoni convection in porous media with a deformable upper free surface is investigated. The linear stability theory and the normal mode analysis are applied and the resulting eigenvalue problem is solved exactly. The Darcy law and the Brinkman model are used to describe the flow in the porous medium heated from below. The effect of the Crispation number, Bond number and the Biot number are analyzed for the stability of the system. It is found that a decrease in the Crispation number and an increase in the Bond number delay the onset of convection in porous media. In addition, the system becomes more stable when the Biot number is increases and the Daeff number is decreases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Deformable" title="Deformable">Deformable</a>, <a href="https://publications.waset.org/search?q=Marangoni" title=" Marangoni"> Marangoni</a>, <a href="https://publications.waset.org/search?q=Porous" title=" Porous"> Porous</a>, <a href="https://publications.waset.org/search?q=Stability." title=" Stability."> Stability.</a> </p> <a href="https://publications.waset.org/5860/marangoni-convection-in-a-fluid-saturated-porous-layer-with-a-deformable-free-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5860/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5860/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5860/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5860/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5860/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5860/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5860/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5860/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5860/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5860/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2207</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1836</span> Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Z.%20Neffah">Z. Neffah</a>, <a href="https://publications.waset.org/search?q=H.%20Kahalerras"> H. Kahalerras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chemical%20reaction" title="Chemical reaction">Chemical reaction</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/search?q=oscillating%20flow" title=" oscillating flow"> oscillating flow</a>, <a href="https://publications.waset.org/search?q=porous%20channel." title=" porous channel."> porous channel.</a> </p> <a href="https://publications.waset.org/10002773/heat-and-mass-transfer-of-an-oscillating-flow-in-a-porous-channel-with-chemical-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002773/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002773/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002773/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002773/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002773/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002773/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002773/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002773/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002773/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002773/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2024</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1835</span> Electrical Effects during the Wetting-Drying Cycle of Porous Brickwork: Electrical Aspects of Rising Damp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sandor%20Levai">Sandor Levai</a>, <a href="https://publications.waset.org/search?q=Valentin%20Juhasz"> Valentin Juhasz</a>, <a href="https://publications.waset.org/search?q=Miklos%20Gasz"> Miklos Gasz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Rising damp is an extremely complex phenomenon that is of great practical interest to the field of building conservation due to the irreversible damages it can make to old and historic structures. The electrical effects occurring in damp masonry have been scarcely researched and are a largely unknown aspect of rising damp. Present paper describes the typical electrical patterns occurring in porous brickwork during a wetting and drying cycle. It has been found that in contrast with dry masonry, where electrical phenomena are virtually non-existent, damp masonry exhibits a wide array of electrical effects. Long-term real-time measurements performed in the lab on small-scale brick structures, using an array of embedded micro-sensors, revealed significant voltage, current, capacitance and resistance variations which can be linked to the movement of moisture inside porous materials. The same measurements performed on actual old buildings revealed a similar behaviour, the electrical effects being more significant in areas of the brickwork affected by rising damp. Understanding these electrical phenomena contributes to a better understanding of the driving mechanisms of rising damp, potentially opening new avenues of dealing with it in a less invasive manner.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Brick%20masonry" title="Brick masonry">Brick masonry</a>, <a href="https://publications.waset.org/search?q=electrical%20phenomena%20in%20damp%20brickwork" title=" electrical phenomena in damp brickwork"> electrical phenomena in damp brickwork</a>, <a href="https://publications.waset.org/search?q=porous%20building%20materials" title=" porous building materials"> porous building materials</a>, <a href="https://publications.waset.org/search?q=rising%20damp" title=" rising damp"> rising damp</a>, <a href="https://publications.waset.org/search?q=spontaneous%20electrical%20potential" title=" spontaneous electrical potential"> spontaneous electrical potential</a>, <a href="https://publications.waset.org/search?q=wetting-drying%20cycle." title=" wetting-drying cycle."> wetting-drying cycle.</a> </p> <a href="https://publications.waset.org/10012059/electrical-effects-during-the-wetting-drying-cycle-of-porous-brickwork-electrical-aspects-of-rising-damp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012059/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012059/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012059/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012059/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012059/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012059/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012059/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012059/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012059/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012059/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1834</span> Effect of Conjugate Heat and Mass Transfer on MHD Mixed Convective Flow past Inclined Porous Plate in Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Md.%20Nasir%20Uddin">Md. Nasir Uddin</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Alim"> M. A. Alim</a>, <a href="https://publications.waset.org/search?q=M.%20M.%20K.%20Chowdhury"> M. M. K. Chowdhury </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This analysis is performed to study the momentum, heat and mass transfer characteristics of MHD mixed convective flow past inclined porous plate in porous medium, including the effect of fluid suction. The fluid is assumed to be steady, incompressible and dense. Similarity solution is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically by using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. Numerical results for the various types of parameters entering into the problem for velocity, temperature and concentration distributions are presented graphically and analyzed thereafter. Moreover, expressions for the skin-friction, heat transfer co-efficient and mass transfer co-efficient are discussed with graphs against streamwise distance for various governing parameters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fluid%20suction" title="Fluid suction">Fluid suction</a>, <a href="https://publications.waset.org/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/search?q=inclined%20porous%20plate" title=" inclined porous plate"> inclined porous plate</a>, <a href="https://publications.waset.org/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=porous%20medium." title=" porous medium. "> porous medium. </a> </p> <a href="https://publications.waset.org/9997849/effect-of-conjugate-heat-and-mass-transfer-on-mhd-mixed-convective-flow-past-inclined-porous-plate-in-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997849/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997849/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997849/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997849/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997849/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997849/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997849/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997849/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997849/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997849/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2289</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1833</span> Lightweight Materials Obtained by Utilization of Agricultural Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bogdan%20Bogdanov">Bogdan Bogdanov</a>, <a href="https://publications.waset.org/search?q=Irena%20Markovska"> Irena Markovska</a>, <a href="https://publications.waset.org/search?q=Yancho%20Hristov"> Yancho Hristov</a>, <a href="https://publications.waset.org/search?q=Dimitar%20Georgiev"> Dimitar Georgiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight ceramic materials in the form of bricks and blocks are widely used in modern construction. They may be obtained by adding of rice husk, rye straw, etc, as porous forming materials. Rice husk is a major by-product of the rice milling industry. Its utilization as a valuable product has always been a problem. Various technologies for utilization of rice husk through biological and thermochemical conversion are being developed. The purpose of this work is to develop lightweight ceramic materials with clay matrix and filler of rice husk and examine their main physicomechanical properties. The results obtained allow to suppose that the materials synthesized on the basis of waste materials can be used as lightweight materials for construction purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=lightweight%20ceramic%20materials" title="lightweight ceramic materials">lightweight ceramic materials</a>, <a href="https://publications.waset.org/search?q=properties" title=" properties"> properties</a>, <a href="https://publications.waset.org/search?q=agro-waste" title=" agro-waste"> agro-waste</a> </p> <a href="https://publications.waset.org/12413/lightweight-materials-obtained-by-utilization-of-agricultural-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12413/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12413/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12413/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12413/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12413/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12413/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12413/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12413/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12413/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12413/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2041</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1832</span> Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D%20Bhargavi">D Bhargavi</a>, <a href="https://publications.waset.org/search?q=J.%20Sharath%20Kumar%20Reddy"> J. Sharath Kumar Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, <em>Da</em>, Peclet number, <em>Pe</em>, Brinkman number, <em>Br</em> and a porous fraction <em>&gamma;<sub>p</sub></em> on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Porous%20material" title="Porous material">Porous material</a>, <a href="https://publications.waset.org/search?q=channel%20partially%20filled%20with%20a%20porous%20material" title=" channel partially filled with a porous material"> channel partially filled with a porous material</a>, <a href="https://publications.waset.org/search?q=axial%20conduction" title=" axial conduction"> axial conduction</a>, <a href="https://publications.waset.org/search?q=viscous%20dissipation." title=" viscous dissipation."> viscous dissipation.</a> </p> <a href="https://publications.waset.org/10010933/effect-of-viscous-dissipation-and-axial-conduction-in-thermally-developing-region-of-the-channel-partially-filled-with-a-porous-material-subjected-to-constant-wall-heat-flux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010933/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010933/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010933/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010933/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010933/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010933/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010933/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010933/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010933/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010933/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">650</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1831</span> Dynamic Analysis of Porous Media Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Pasbani%20Khiavi">M. Pasbani Khiavi</a>, <a href="https://publications.waset.org/search?q=A.%20R.%20M.%20Gharabaghi"> A. R. M. Gharabaghi</a>, <a href="https://publications.waset.org/search?q=K.%20Abedi"> K. Abedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The mechanical behavior of porous media is governed by the interaction between its solid skeleton and the fluid existing inside its pores. The interaction occurs through the interface of gains and fluid. The traditional analysis methods of porous media, based on the effective stress and Darcy&#39;s law, are unable to account for these interactions. For an accurate analysis, the porous media is represented in a fluid-filled porous solid on the basis of the Biot theory of wave propagation in poroelastic media. In Biot formulation, the equations of motion of the soil mixture are coupled with the global mass balance equations to describe the realistic behavior of porous media. Because of irregular geometry, the domain is generally treated as an assemblage of fmite elements. In this investigation, the numerical formulation for the field equations governing the dynamic response of fluid-saturated porous media is analyzed and employed for the study of transient wave motion. A finite element model is developed and implemented into a computer code called DYNAPM for dynamic analysis of porous media. The weighted residual method with 8-node elements is used for developing of a finite element model and the analysis is carried out in the time domain considering the dynamic excitation and gravity loading. Newmark time integration scheme is developed to solve the time-discretized equations which are an unconditionally stable implicit method Finally, some numerical examples are presented to show the accuracy and capability of developed model for a wide variety of behaviors of porous media.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20analysis" title="Dynamic analysis">Dynamic analysis</a>, <a href="https://publications.waset.org/search?q=Interaction" title=" Interaction"> Interaction</a>, <a href="https://publications.waset.org/search?q=Porous%20media" title=" Porous media"> Porous media</a>, <a href="https://publications.waset.org/search?q=time%20domain" title=" time domain"> time domain</a> </p> <a href="https://publications.waset.org/6468/dynamic-analysis-of-porous-media-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6468/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6468/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6468/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6468/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6468/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6468/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6468/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6468/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6468/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6468/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1884</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1830</span> Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ali%20Mchirgui">Ali Mchirgui</a>, <a href="https://publications.waset.org/search?q=Nejib%20Hidouri"> Nejib Hidouri</a>, <a href="https://publications.waset.org/search?q=Mourad%20Magherbi"> Mourad Magherbi</a>, <a href="https://publications.waset.org/search?q=Ammar%20Ben%20Brahim"> Ammar Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the Darcy number and the porous thermal Raleigh number values, the entropy generation could be mainly due to heat transfer or to fluid friction irreversibility and that entropy generation reaches extremum values for specific inclination angles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Porous%20media" title="Porous media">Porous media</a>, <a href="https://publications.waset.org/search?q=entropy%20generation" title=" entropy generation"> entropy generation</a>, <a href="https://publications.waset.org/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/search?q=numerical%20method." title=" numerical method."> numerical method.</a> </p> <a href="https://publications.waset.org/8320/entropy-generation-for-natural-convection-in-a-darcy-brinkman-porous-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8320/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8320/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8320/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8320/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8320/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8320/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8320/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8320/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8320/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8320/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2618</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1829</span> Porous Ni and Ni-Co Electrodeposits for Alkaline Water Electrolysis – Energy Saving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=I.%20Herraiz-Cardona">I. Herraiz-Cardona</a>, <a href="https://publications.waset.org/search?q=C.%20Gonz%C3%A1lez-Buch"> C. González-Buch</a>, <a href="https://publications.waset.org/search?q=E.%20Ortega"> E. Ortega</a>, <a href="https://publications.waset.org/search?q=V.%20P%C3%A9rez-Herranz"> V. Pérez-Herranz</a>, <a href="https://publications.waset.org/search?q=J.%20Garc%C3%ADa-Ant%C3%B3n"> J. García-Antón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is considered to be the most promising candidate as a future energy carrier. One of the most used technologies for the electrolytic hydrogen production is alkaline water electrolysis. However, due to the high energy requirements, the cost of hydrogen produced in such a way is high. In continuous search to improve this process using advanced electrocatalytic materials for the hydrogen evolution reaction (HER), Ni type Raney and macro-porous Ni-Co electrodes were prepared on AISI 304 stainless steel substrates by electrodeposition. The developed electrodes were characterized by SEM and confocal laser scanning microscopy. HER on these electrodes was evaluated in 30 wt.% KOH solution by means of hydrogen discharge curves and galvanostatic tests. Results show that the developed electrodes present a most efficient behaviour for HER when comparing with the smooth Ni cathode. It has been reported a reduction in the energy consumption of the electrolysis cell of about 25% by using the developed coatings as cathodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Alkaline%20water%20electrolysis" title="Alkaline water electrolysis">Alkaline water electrolysis</a>, <a href="https://publications.waset.org/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/search?q=porous%20nickel%20electrodes" title=" porous nickel electrodes"> porous nickel electrodes</a> </p> <a href="https://publications.waset.org/11649/porous-ni-and-ni-co-electrodeposits-for-alkaline-water-electrolysis-energy-saving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11649/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11649/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11649/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11649/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11649/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11649/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11649/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11649/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11649/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11649/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3258</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1828</span> Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Makhlouf%20Mourad">Makhlouf Mourad</a>, <a href="https://publications.waset.org/search?q=Medkour%20Mihoub"> Medkour Mihoub</a>, <a href="https://publications.waset.org/search?q=Bouchher%20Omar"> Bouchher Omar</a>, <a href="https://publications.waset.org/search?q=Messabih%20Sidi%20Mohamed"> Messabih Sidi Mohamed</a>, <a href="https://publications.waset.org/search?q=Benrachedi%20Khaled"> Benrachedi Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy&#39;s law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton&#39;s method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Darcy%20equation" title="Darcy equation">Darcy equation</a>, <a href="https://publications.waset.org/search?q=middle%20porous" title=" middle porous"> middle porous</a>, <a href="https://publications.waset.org/search?q=continuity%20equation" title=" continuity equation"> continuity equation</a>, <a href="https://publications.waset.org/search?q=Peng%20Robinson%20equation" title=" Peng Robinson equation"> Peng Robinson equation</a>, <a href="https://publications.waset.org/search?q=mobility." title=" mobility."> mobility.</a> </p> <a href="https://publications.waset.org/10010167/performances-analysis-of-the-pressure-and-production-of-an-oil-zone-by-simulation-of-the-flow-of-a-fluid-through-the-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010167/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010167/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010167/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010167/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010167/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010167/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010167/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010167/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010167/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010167/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">795</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1827</span> Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20J.%20Pillewan">V. J. Pillewan</a>, <a href="https://publications.waset.org/search?q=D.%20N.%20Raut"> D. N. Raut</a>, <a href="https://publications.waset.org/search?q=K.%20N.%20Patil"> K. N. Patil</a>, <a href="https://publications.waset.org/search?q=D.%20K.%20Shinde"> D. K. Shinde </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Grinding%20waste" title="Grinding waste">Grinding waste</a>, <a href="https://publications.waset.org/search?q=powder%20injection%20molding" title=" powder injection molding"> powder injection molding</a>, <a href="https://publications.waset.org/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=metal%20matrix%20composites." title=" metal matrix composites."> metal matrix composites.</a> </p> <a href="https://publications.waset.org/10006932/carbon-nanotubes-based-porous-framework-for-filtration-applications-using-industrial-grinding-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006932/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006932/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006932/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006932/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006932/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006932/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006932/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006932/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006932/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006932/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1143</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=porous%20materials&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10