CINXE.COM

Search results for: neural network models

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neural network models</title> <meta name="description" content="Search results for: neural network models"> <meta name="keywords" content="neural network models"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neural network models" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neural network models"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5216</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neural network models</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5216</span> Optimum Neural Network Architecture for Precipitation Prediction of Myanmar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khaing%20Win%20Mar">Khaing Win Mar</a>, <a href="https://publications.waset.org/search?q=Thinn%20Thu%20Naing"> Thinn Thu Naing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a suitable neural network model for monthly precipitation mapping of Myanmar. Using 3-layerd neural network models, 100 cases are tested by changing the number of input and hidden nodes from 1 to 10 nodes, respectively, and only one outputnode used. The optimum model with the suitable number of nodes is selected in accordance with the minimum forecast error. In measuring network performance using Root Mean Square Error (RMSE), experimental results significantly show that 3 inputs-10 hiddens-1 output architecture model gives the best prediction result for monthly precipitation in Myanmar.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Precipitation%20prediction" title="Precipitation prediction">Precipitation prediction</a>, <a href="https://publications.waset.org/search?q=monthly%20precipitation" title=" monthly precipitation"> monthly precipitation</a>, <a href="https://publications.waset.org/search?q=neural%20network%20models" title="neural network models">neural network models</a>, <a href="https://publications.waset.org/search?q=Myanmar." title=" Myanmar."> Myanmar.</a> </p> <a href="https://publications.waset.org/13861/optimum-neural-network-architecture-for-precipitation-prediction-of-myanmar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13861/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13861/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13861/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13861/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13861/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13861/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13861/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13861/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13861/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13861/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1748</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5215</span> A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rehab%20Abdulmajed">Rehab Abdulmajed</a>, <a href="https://publications.waset.org/search?q=Amr%20Hamada"> Amr Hamada</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Elsaid"> Ahmed Elsaid</a>, <a href="https://publications.waset.org/search?q=Hisashi%20Hayakawa"> Hisashi Hayakawa</a>, <a href="https://publications.waset.org/search?q=Ayman%20Mahrous"> Ayman Mahrous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Solar emissions have a high impact on the Earth鈥檚 magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/search?q=Coronal%20Hole%20Area%0D%0AFeed-Forward%20neural%20network%20models" title=" Coronal Hole Area Feed-Forward neural network models"> Coronal Hole Area Feed-Forward neural network models</a>, <a href="https://publications.waset.org/search?q=solar%20High-Speed%20Streams" title=" solar High-Speed Streams"> solar High-Speed Streams</a>, <a href="https://publications.waset.org/search?q=HSSs." title=" HSSs."> HSSs.</a> </p> <a href="https://publications.waset.org/10013630/a-comparison-between-artificial-neural-network-prediction-models-for-coronal-hole-related-high-speed-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013630/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013630/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013630/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013630/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013630/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013630/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013630/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013630/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013630/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013630/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5214</span> Applications of Cascade Correlation Neural Networks for Cipher System Identification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Chandra">B. Chandra</a>, <a href="https://publications.waset.org/search?q=P.%20Paul%20Varghese"> P. Paul Varghese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Back%20Propagation%20Neural%20Networks" title="Back Propagation Neural Networks">Back Propagation Neural Networks</a>, <a href="https://publications.waset.org/search?q=CascadeCorrelation%20Neural%20Network" title=" CascadeCorrelation Neural Network"> CascadeCorrelation Neural Network</a>, <a href="https://publications.waset.org/search?q=Crypto%20systems" title=" Crypto systems"> Crypto systems</a>, <a href="https://publications.waset.org/search?q=Block%20Cipher" title=" Block Cipher"> Block Cipher</a>, <a href="https://publications.waset.org/search?q=StreamCipher." title=" StreamCipher."> StreamCipher.</a> </p> <a href="https://publications.waset.org/11895/applications-of-cascade-correlation-neural-networks-for-cipher-system-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11895/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11895/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11895/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11895/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11895/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11895/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11895/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11895/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11895/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11895/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2444</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5213</span> A Combined Neural Network Approach to Soccer Player Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wenbin%20Zhang">Wenbin Zhang</a>, <a href="https://publications.waset.org/search?q=Hantian%20Wu"> Hantian Wu</a>, <a href="https://publications.waset.org/search?q=Jian%20Tang"> Jian Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=General%20Regression%20Neural%20Network" title="General Regression Neural Network">General Regression Neural Network</a>, <a href="https://publications.waset.org/search?q=Probabilistic%20Neural%20Networks" title=" Probabilistic Neural Networks"> Probabilistic Neural Networks</a>, <a href="https://publications.waset.org/search?q=Neural%20function." title=" Neural function."> Neural function.</a> </p> <a href="https://publications.waset.org/10001122/a-combined-neural-network-approach-to-soccer-player-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001122/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001122/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001122/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001122/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001122/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001122/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001122/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001122/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001122/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001122/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3763</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5212</span> Comparison of Artificial Neural Network Architectures in the Task of Tourism Time Series Forecast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jo%C3%A3o%20Paulo%20Teixeira">Jo茫o Paulo Teixeira</a>, <a href="https://publications.waset.org/search?q=Paula%20Odete%20Fernandes"> Paula Odete Fernandes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The authors have been developing several models based on artificial neural networks, linear regression models, Box- Jenkins methodology and ARIMA models to predict the time series of tourism. The time series consist in the 鈥淢onthly Number of Guest Nights in the Hotels" of one region. Several comparisons between the different type models have been experimented as well as the features used at the entrance of the models. The Artificial Neural Network (ANN) models have always had their performance at the top of the best models. Usually the feed-forward architecture was used due to their huge application and results. In this paper the author made a comparison between different architectures of the ANNs using simply the same input. Therefore, the traditional feed-forward architecture, the cascade forwards, a recurrent Elman architecture and a radial based architecture were discussed and compared based on the task of predicting the mentioned time series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network%20Architectures" title="Artificial Neural Network Architectures">Artificial Neural Network Architectures</a>, <a href="https://publications.waset.org/search?q=time%20series%0Aforecast" title=" time series forecast"> time series forecast</a>, <a href="https://publications.waset.org/search?q=tourism." title=" tourism."> tourism.</a> </p> <a href="https://publications.waset.org/9503/comparison-of-artificial-neural-network-architectures-in-the-task-of-tourism-time-series-forecast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9503/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9503/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9503/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9503/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9503/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9503/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9503/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9503/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9503/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9503/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1885</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5211</span> Application of Functional Network to Solving Classification Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yong-Quan%20Zhou">Yong-Quan Zhou</a>, <a href="https://publications.waset.org/search?q=Deng-Xu%20He"> Deng-Xu He</a>, <a href="https://publications.waset.org/search?q=Zheng%20Nong"> Zheng Nong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Functional%20network" title="Functional network">Functional network</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=XOR%20problem" title=" XOR problem"> XOR problem</a>, <a href="https://publications.waset.org/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/search?q=numerical%20analysis%20method." title=" numerical analysis method."> numerical analysis method.</a> </p> <a href="https://publications.waset.org/8860/application-of-functional-network-to-solving-classification-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8860/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8860/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8860/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8860/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8860/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8860/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8860/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8860/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8860/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8860/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1310</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5210</span> Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hajir%20Karimi">Hajir Karimi</a>, <a href="https://publications.waset.org/search?q=Fakheri%20Yousefi"> Fakheri Yousefi</a>, <a href="https://publications.waset.org/search?q=Mahmood%20Reza%20Rahimi"> Mahmood Reza Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/604/correlation-of-viscosity-in-nanofluids-using-genetic-algorithm-neural-network-ga-nn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/604/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/604/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/604/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/604/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/604/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/604/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/604/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/604/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/604/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/604/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2083</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5209</span> Comparative Analysis of the Software Effort Estimation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jaswinder%20Kaur">Jaswinder Kaur</a>, <a href="https://publications.waset.org/search?q=Satwinder%20Singh"> Satwinder Singh</a>, <a href="https://publications.waset.org/search?q=Karanjeet%20Singh%20Kahlon"> Karanjeet Singh Kahlon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate software cost estimates are critical to both developers and customers. They can be used for generating request for proposals, contract negotiations, scheduling, monitoring and control. The exact relationship between the attributes of the effort estimation is difficult to establish. A neural network is good at discovering relationships and pattern in the data. So, in this paper a comparative analysis among existing Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model and Neural Network Based Model is performed. Neural Network has outperformed the other considered models. Hence, we proposed Neural Network system as a soft computing approach to model the effort estimation of the software systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Effort%20Estimation" title="Effort Estimation">Effort Estimation</a>, <a href="https://publications.waset.org/search?q=Neural%20Network" title=" Neural Network"> Neural Network</a>, <a href="https://publications.waset.org/search?q=Halstead%20Model" title=" Halstead Model"> Halstead Model</a>, <a href="https://publications.waset.org/search?q=Walston-Felix%20Model" title="Walston-Felix Model">Walston-Felix Model</a>, <a href="https://publications.waset.org/search?q=Bailey-Basili%20Model" title=" Bailey-Basili Model"> Bailey-Basili Model</a>, <a href="https://publications.waset.org/search?q=Doty%20Model." title=" Doty Model."> Doty Model.</a> </p> <a href="https://publications.waset.org/15566/comparative-analysis-of-the-software-effort-estimation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15566/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15566/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15566/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15566/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15566/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15566/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15566/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15566/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15566/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15566/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2221</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5208</span> Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Baeza%20S.%20Roberto">Baeza S. Roberto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes is included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=dry%20relaxation" title=" dry relaxation"> dry relaxation</a>, <a href="https://publications.waset.org/search?q=knitting" title=" knitting"> knitting</a>, <a href="https://publications.waset.org/search?q=linear%0D%0Aregression." title=" linear regression."> linear regression.</a> </p> <a href="https://publications.waset.org/10002624/dry-relaxation-shrinkage-prediction-of-bordeaux-fiber-using-a-feed-forward-neural" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002624/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002624/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002624/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002624/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002624/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002624/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002624/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002624/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002624/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002624/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1758</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5207</span> Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Motonobu%20Hattori">Motonobu Hattori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=catastrophic%20forgetting" title="catastrophic forgetting">catastrophic forgetting</a>, <a href="https://publications.waset.org/search?q=chaotic%20neural%20network" title=" chaotic neural network"> chaotic neural network</a>, <a href="https://publications.waset.org/search?q=complementary%20learning%20systems" title=" complementary learning systems"> complementary learning systems</a>, <a href="https://publications.waset.org/search?q=dual-network" title=" dual-network"> dual-network</a> </p> <a href="https://publications.waset.org/15270/avoiding-catastrophic-forgetting-by-a-dual-network-memory-model-using-a-chaotic-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15270/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15270/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15270/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15270/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15270/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15270/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15270/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15270/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15270/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15270/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2102</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5206</span> Sociological Impact on Education An Analytical Approach Through Artificial Neural network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20R.%20Jayathilaka">P. R. Jayathilaka</a>, <a href="https://publications.waset.org/search?q=K.L.%20Jayaratne"> K.L. Jayaratne</a>, <a href="https://publications.waset.org/search?q=H.L.%20Premaratne"> H.L. Premaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presented in this paper is an on-going project of an application of neural network and fuzzy models to evaluate the sociological factors which affect the educational performance of the students in Sri Lanka. One of its major goals is to prepare the grounds to device a counseling tool which helps these students for a better performance at their examinations, especially at their G.C.E O/L (General Certificate of Education-Ordinary Level) examination. Closely related sociological factors are collected as raw data and the noise of these data are filtered through the fuzzy interface and the supervised neural network is being utilized to recognize the performance patterns against the chosen social factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Education" title="Education">Education</a>, <a href="https://publications.waset.org/search?q=Fuzzy" title=" Fuzzy"> Fuzzy</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=Sociology" title="Sociology">Sociology</a> </p> <a href="https://publications.waset.org/7445/sociological-impact-on-education-an-analytical-approach-through-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7445/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7445/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7445/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7445/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7445/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7445/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7445/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7445/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7445/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7445/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1639</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5205</span> Identification of Nonlinear Systems Using Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Pislaru">C. Pislaru</a>, <a href="https://publications.waset.org/search?q=A.%20Shebani"> A. Shebani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=System%20identification" title="System identification">System identification</a>, <a href="https://publications.waset.org/search?q=Nonlinear%20system" title=" Nonlinear system"> Nonlinear system</a>, <a href="https://publications.waset.org/search?q=Neural%0D%0Anetworks" title=" Neural networks"> Neural networks</a>, <a href="https://publications.waset.org/search?q=RBF%20neural%20network." title=" RBF neural network."> RBF neural network.</a> </p> <a href="https://publications.waset.org/9999894/identification-of-nonlinear-systems-using-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999894/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999894/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999894/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999894/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999894/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999894/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999894/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999894/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999894/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999894/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2864</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5204</span> Prediction of Natural Gas Viscosity using Artificial Neural Network Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=E.%20Nemati%20Lay">E. Nemati Lay</a>, <a href="https://publications.waset.org/search?q=M.%20Peymani"> M. Peymani</a>, <a href="https://publications.waset.org/search?q=E.%20Sanjari"> E. Sanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20neural%20network" title="Artificial neural network">Artificial neural network</a>, <a href="https://publications.waset.org/search?q=Empirical%20correlation" title=" Empirical correlation"> Empirical correlation</a>, <a href="https://publications.waset.org/search?q=Natural%20gas" title=" Natural gas"> Natural gas</a>, <a href="https://publications.waset.org/search?q=Viscosity" title=" Viscosity"> Viscosity</a> </p> <a href="https://publications.waset.org/7460/prediction-of-natural-gas-viscosity-using-artificial-neural-network-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7460/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7460/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7460/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7460/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7460/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7460/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7460/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7460/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7460/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7460/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3245</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5203</span> Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pei-Ju%20Chao">Pei-Ju Chao</a>, <a href="https://publications.waset.org/search?q=Tsair-Fwu%20Lee"> Tsair-Fwu Lee</a>, <a href="https://publications.waset.org/search?q=Wei-Luen%20Huang"> Wei-Luen Huang</a>, <a href="https://publications.waset.org/search?q=Long-Chang%20Chen"> Long-Chang Chen</a>, <a href="https://publications.waset.org/search?q=Te-Jen%20Su"> Te-Jen Su</a>, <a href="https://publications.waset.org/search?q=Wen-Ping%20Chen"> Wen-Ping Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/search?q=dosimetric%20index" title=" dosimetric index"> dosimetric index</a>, <a href="https://publications.waset.org/search?q=radiation%20treatment" title=" radiation treatment"> radiation treatment</a>, <a href="https://publications.waset.org/search?q=tumor" title=" tumor"> tumor</a> </p> <a href="https://publications.waset.org/2329/applications-of-artificial-neural-network-to-building-statistical-models-for-qualifying-and-indexing-radiation-treatment-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2329/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2329/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2329/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2329/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2329/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2329/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2329/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2329/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2329/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2329/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1690</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5202</span> Person Re-Identification Using Siamese Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sello%20Mokwena">Sello Mokwena</a>, <a href="https://publications.waset.org/search?q=Monyepao%20Thabang"> Monyepao Thabang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis of benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Camera%20network" title="Camera network">Camera network</a>, <a href="https://publications.waset.org/search?q=convolutional%20neural%20network%20topology" title=" convolutional neural network topology"> convolutional neural network topology</a>, <a href="https://publications.waset.org/search?q=person%20tracking" title=" person tracking"> person tracking</a>, <a href="https://publications.waset.org/search?q=person%20re-identification" title=" person re-identification"> person re-identification</a>, <a href="https://publications.waset.org/search?q=Siamese." title=" Siamese."> Siamese.</a> </p> <a href="https://publications.waset.org/10013681/person-re-identification-using-siamese-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013681/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013681/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013681/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013681/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013681/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013681/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013681/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013681/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013681/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013681/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5201</span> Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Hassani">M. Hassani</a>, <a href="https://publications.waset.org/search?q=Y.%20Hassani"> Y. Hassani</a>, <a href="https://publications.waset.org/search?q=N.%20Ajudanioskooei"> N. Ajudanioskooei</a>, <a href="https://publications.waset.org/search?q=N.%20N.%20Benvid"> N. N. Benvid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20neural%20network" title="Artificial neural network">Artificial neural network</a>, <a href="https://publications.waset.org/search?q=bending%20angle" title=" bending angle"> bending angle</a>, <a href="https://publications.waset.org/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/search?q=laser%20forming." title=" laser forming. "> laser forming. </a> </p> <a href="https://publications.waset.org/10006791/comparative-study-of-bending-angle-in-laser-forming-process-using-artificial-neural-network-and-fuzzy-logic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006791/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006791/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006791/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006791/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006791/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006791/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006791/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006791/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006791/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006791/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">961</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5200</span> Binary Mixture of Copper-Cobalt Ions Uptake by Zeolite using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=John%20Kabuba">John Kabuba</a>, <a href="https://publications.waset.org/search?q=Antoine%20Mulaba-Bafubiandi"> Antoine Mulaba-Bafubiandi</a>, <a href="https://publications.waset.org/search?q=Kim%20Battle"> Kim Battle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study a neural network (NN) was proposed to predict the sorption of binary mixture of copper-cobalt ions into clinoptilolite as ion-exchanger. The configuration of the backpropagation neural network giving the smallest mean square error was three-layer NN with tangent sigmoid transfer function at hidden layer with 10 neurons, linear transfer function at output layer and Levenberg-Marquardt backpropagation training algorithm. Experiments have been carried out in the batch reactor to obtain equilibrium data of the individual sorption and the mixture of coppercobalt ions. The obtained modeling results have shown that the used of neural network has better adjusted the equilibrium data of the binary system when compared with the conventional sorption isotherm models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adsorption%20isotherm" title="Adsorption isotherm">Adsorption isotherm</a>, <a href="https://publications.waset.org/search?q=binary%20system" title=" binary system"> binary system</a>, <a href="https://publications.waset.org/search?q=neural%20network%3B%0Asorption" title=" neural network; sorption"> neural network; sorption</a> </p> <a href="https://publications.waset.org/3648/binary-mixture-of-copper-cobalt-ions-uptake-by-zeolite-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3648/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3648/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3648/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3648/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3648/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3648/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3648/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3648/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3648/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3648/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2043</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5199</span> Using Artificial Neural Network to Predict Collisions on Horizontal Tangents of 3D Two-Lane Highways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Omer%20F.%20Cansiz">Omer F. Cansiz</a>, <a href="https://publications.waset.org/search?q=Said%20M.%20Easa"> Said M. Easa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is mainly to predict collision frequency on the horizontal tangents combined with vertical curves using artificial neural network methods. The proposed ANN models are compared with existing regression models. First, the variables that affect collision frequency were investigated. It was found that only the annual average daily traffic, section length, access density, the rate of vertical curvature, smaller curve radius before and after the tangent were statistically significant according to related combinations. Second, three statistical models (negative binomial, zero inflated Poisson and zero inflated negative binomial) were developed using the significant variables for three alignment combinations. Third, ANN models are developed by applying the same variables for each combination. The results clearly show that the ANN models have the lowest mean square error value than those of the statistical models. Similarly, the AIC values of the ANN models are smaller to those of the regression models for all the combinations. Consequently, the ANN models have better statistical performances than statistical models for estimating collision frequency. The ANN models presented in this paper are recommended for evaluating the safety impacts 3D alignment elements on horizontal tangents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Collision%20frequency" title="Collision frequency">Collision frequency</a>, <a href="https://publications.waset.org/search?q=horizontal%20tangent" title=" horizontal tangent"> horizontal tangent</a>, <a href="https://publications.waset.org/search?q=3D%20two-lane%0Ahighway" title=" 3D two-lane highway"> 3D two-lane highway</a>, <a href="https://publications.waset.org/search?q=negative%20binomial" title=" negative binomial"> negative binomial</a>, <a href="https://publications.waset.org/search?q=zero%20inflated%20Poisson" title=" zero inflated Poisson"> zero inflated Poisson</a>, <a href="https://publications.waset.org/search?q=artificial%20neural%0Anetwork." title=" artificial neural network."> artificial neural network.</a> </p> <a href="https://publications.waset.org/2458/using-artificial-neural-network-to-predict-collisions-on-horizontal-tangents-of-3d-two-lane-highways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2458/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2458/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2458/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2458/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2458/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2458/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2458/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2458/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2458/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2458/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1636</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5198</span> A Literature Survey of Neural Network Applications for Shunt Active Power Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Janpong">S. Janpong</a>, <a href="https://publications.waset.org/search?q=K-L.%20Areerak"> K-L. Areerak</a>, <a href="https://publications.waset.org/search?q=K-N.%20Areerak"> K-N. Areerak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to present the reviews of the application of neural network in shunt active power filter (SAPF). From the review, three out of four components of SAPF structure, which are harmonic detection component, compensating current control, and DC bus voltage control, have been adopted some of neural network architecture as part of its component or even substitution. The objectives of most papers in using neural network in SAPF are to increase the efficiency, stability, accuracy, robustness, tracking ability of the systems of each component. Moreover, minimizing unneeded signal due to the distortion is the ultimate goal in applying neural network to the SAPF. The most famous architecture of neural network in SAPF applications are ADALINE and Backpropagation (BP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Active%20power%20filter" title="Active power filter">Active power filter</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=harmonic%0Adistortion" title=" harmonic distortion"> harmonic distortion</a>, <a href="https://publications.waset.org/search?q=harmonic%20detection%20and%20compensation" title=" harmonic detection and compensation"> harmonic detection and compensation</a>, <a href="https://publications.waset.org/search?q=non-linear%20load." title=" non-linear load."> non-linear load.</a> </p> <a href="https://publications.waset.org/2035/a-literature-survey-of-neural-network-applications-for-shunt-active-power-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2035/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2035/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2035/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2035/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2035/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2035/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2035/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2035/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2035/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2035/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3065</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5197</span> Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Panagiotis%20Karadimos">Panagiotis Karadimos</a>, <a href="https://publications.waset.org/search?q=Leonidas%20Anthopoulos"> Leonidas Anthopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project&rsquo;s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Actual%20cost%20and%20duration" title="Actual cost and duration">Actual cost and duration</a>, <a href="https://publications.waset.org/search?q=attribute%20selection" title=" attribute selection"> attribute selection</a>, <a href="https://publications.waset.org/search?q=bridge%20projects" title=" bridge projects"> bridge projects</a>, <a href="https://publications.waset.org/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/search?q=predicting%20models" title=" predicting models"> predicting models</a>, <a href="https://publications.waset.org/search?q=FANN%20TOOL" title=" FANN TOOL"> FANN TOOL</a>, <a href="https://publications.waset.org/search?q=WEKA." title=" WEKA. "> WEKA. </a> </p> <a href="https://publications.waset.org/10012023/neural-network-models-for-actual-cost-and-actual-duration-estimation-in-construction-projects-findings-from-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012023/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012023/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012023/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012023/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012023/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012023/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012023/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012023/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012023/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012023/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1229</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5196</span> Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hui-Min%20Ting">Hui-Min Ting</a>, <a href="https://publications.waset.org/search?q=Tsair-Fwu%20Lee"> Tsair-Fwu Lee</a>, <a href="https://publications.waset.org/search?q=Ming-Yuan%20Cho"> Ming-Yuan Cho</a>, <a href="https://publications.waset.org/search?q=Pei-Ju%20Chao"> Pei-Ju Chao</a>, <a href="https://publications.waset.org/search?q=Chun-Ming%20Chang"> Chun-Ming Chang</a>, <a href="https://publications.waset.org/search?q=Long-Chang%20Chen"> Long-Chang Chen</a>, <a href="https://publications.waset.org/search?q=Fu-Min%20Fang"> Fu-Min Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients&rsquo; salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer&rsquo;s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=NPC" title="NPC">NPC</a>, <a href="https://publications.waset.org/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/search?q=xerostomia." title=" xerostomia."> xerostomia.</a> </p> <a href="https://publications.waset.org/16509/comparison-of-neural-network-and-logistic-regression-methods-to-predict-xerostomia-after-radiotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16509/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16509/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16509/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16509/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16509/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16509/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16509/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16509/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16509/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16509/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1636</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5195</span> Development of Neural Network Prediction Model of Energy Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Maryam%20Jamela%20Ismail">Maryam Jamela Ismail</a>, <a href="https://publications.waset.org/search?q=Rosdiazli%20Ibrahim"> Rosdiazli Ibrahim</a>, <a href="https://publications.waset.org/search?q=Idris%20Ismail"> Idris Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Energy%20Prediction" title="Energy Prediction">Energy Prediction</a>, <a href="https://publications.waset.org/search?q=Multilayer%20Feedforward" title=" Multilayer Feedforward"> Multilayer Feedforward</a>, <a href="https://publications.waset.org/search?q=Levenberg-Marquardt" title=" Levenberg-Marquardt"> Levenberg-Marquardt</a>, <a href="https://publications.waset.org/search?q=Root%20Mean%20Square%20Error%20%28RMSE%29" title=" Root Mean Square Error (RMSE)"> Root Mean Square Error (RMSE)</a> </p> <a href="https://publications.waset.org/12881/development-of-neural-network-prediction-model-of-energy-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12881/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12881/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12881/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12881/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12881/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12881/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12881/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12881/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12881/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12881/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2643</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5194</span> MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Svitov%20David">Svitov David</a>, <a href="https://publications.waset.org/search?q=Alyamkin%20Sergey"> Alyamkin Sergey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ArcFace" title="ArcFace">ArcFace</a>, <a href="https://publications.waset.org/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/search?q=margin-based%0D%0Asoftmax." title=" margin-based softmax."> margin-based softmax.</a> </p> <a href="https://publications.waset.org/10011902/margindistillation-distillation-for-face-recognition-neural-networks-with-margin-based-softmax" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011902/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011902/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011902/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011902/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011902/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011902/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011902/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011902/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011902/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011902/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">629</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5193</span> Definition of Foot Size Model using Kohonen Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khawla%20Ben%20Abderrahim">Khawla Ben Abderrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to define a new model of Tunisian foot sizes and for building the most comfortable shoes, Tunisian industrialists must be able to offer for their customers products able to put on and adjust the majority of the target population concerned. Moreover, the use of models of shoes, mainly from others country, causes a mismatch between the foot and comfort of the Tunisian shoes. But every foot is unique; these models become uncomfortable for the Tunisian foot. We have a set of measures produced from a 3D scan of the feet of a diverse population (women, men ...) and we try to analyze this data to define a model of foot specific to the Tunisian footwear design. In this paper we propose tow new approaches to modeling a new foot sizes model. We used, indeed, the neural networks, and specially the Kohonen network. Next, we combine neural networks with the concept of half-foot size to improve the models already found. Finally, it was necessary to compare the results obtained by applying each approach and we decide what-s the best approach that give us the most model of foot improving more comfortable shoes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Morphology%20of%20the%20foot" title="Morphology of the foot">Morphology of the foot</a>, <a href="https://publications.waset.org/search?q=foot%20size" title=" foot size"> foot size</a>, <a href="https://publications.waset.org/search?q=half%20foot%0Asize" title=" half foot size"> half foot size</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=Kohonen%20network" title=" Kohonen network"> Kohonen network</a>, <a href="https://publications.waset.org/search?q=model%20of%20foot%20size." title=" model of foot size."> model of foot size.</a> </p> <a href="https://publications.waset.org/2208/definition-of-foot-size-model-using-kohonen-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2208/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2208/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2208/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2208/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2208/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2208/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2208/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2208/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2208/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2208/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1555</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5192</span> Spline Basis Neural Network Algorithm for Numerical Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lina%20Yan">Lina Yan</a>, <a href="https://publications.waset.org/search?q=Jingjing%20Di"> Jingjing Di</a>, <a href="https://publications.waset.org/search?q=Ke%20Wang"> Ke Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A new basis function neural network algorithm is&nbsp;proposed for numerical integration. The main idea is to construct&nbsp;neural network model based on spline basis functions, which is used&nbsp;to approximate the integrand by training neural network weights. The&nbsp;convergence theorem of the neural network algorithm, the theorem&nbsp;for numerical integration and one corollary are presented and proved.&nbsp;The numerical examples, compared with other methods, show that&nbsp;the algorithm is effective and has the characteristics such as high&nbsp;precision and the integrand not required known. Thus, the algorithm&nbsp;presented in this paper can be widely applied in many engineering&nbsp;fields.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20integration" title="Numerical integration">Numerical integration</a>, <a href="https://publications.waset.org/search?q=Spline%20basis%20function" title=" Spline basis function"> Spline basis function</a>, <a href="https://publications.waset.org/search?q=Neural%0D%0Anetwork%20algorithm" title=" Neural network algorithm"> Neural network algorithm</a> </p> <a href="https://publications.waset.org/16991/spline-basis-neural-network-algorithm-for-numerical-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16991/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16991/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16991/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16991/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16991/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16991/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16991/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16991/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16991/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16991/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2928</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5191</span> Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fengxia%20Zheng">Fengxia Zheng</a>, <a href="https://publications.waset.org/search?q=Shouming%20Zhong"> Shouming Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model&ndash;BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Binomial%20smoothing%20%28BS%29" title="Binomial smoothing (BS)">Binomial smoothing (BS)</a>, <a href="https://publications.waset.org/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/search?q=Canadian%20Lynx%20data" title=" Canadian Lynx data"> Canadian Lynx data</a>, <a href="https://publications.waset.org/search?q=forecasting%20accuracy." title=" forecasting accuracy."> forecasting accuracy.</a> </p> <a href="https://publications.waset.org/9356/time-series-forecasting-using-a-hybrid-rbf-neural-network-and-ar-model-based-on-binomial-smoothing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3686</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5190</span> Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hao-Hsiang%20Ku">Hao-Hsiang Ku</a>, <a href="https://publications.waset.org/search?q=Ching-Ho%20Chi"> Ching-Ho Chi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hadoop" title="Hadoop">Hadoop</a>, <a href="https://publications.waset.org/search?q=NoSQL" title=" NoSQL"> NoSQL</a>, <a href="https://publications.waset.org/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/search?q=backpropagation%20neural%20network" title=" backpropagation neural network"> backpropagation neural network</a>, <a href="https://publications.waset.org/search?q=and%20high%20distributed%20file%20system." title=" and high distributed file system."> and high distributed file system.</a> </p> <a href="https://publications.waset.org/10008127/ontology-based-backpropagation-neural-network-classification-and-reasoning-strategy-for-nosql-and-sql-databases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008127/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008127/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008127/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008127/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008127/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008127/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008127/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008127/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008127/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008127/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">999</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5189</span> Investigation of Artificial Neural Networks Performance to Predict Net Heating Value of Crude Oil by Its Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mousavian">Mousavian</a>, <a href="https://publications.waset.org/search?q=M.%20Moghimi%20Mofrad"> M. Moghimi Mofrad</a>, <a href="https://publications.waset.org/search?q=M.%20H.%20Vakili"> M. H. Vakili</a>, <a href="https://publications.waset.org/search?q=D.%20Ashouri"> D. Ashouri</a>, <a href="https://publications.waset.org/search?q=R.%20Alizadeh"> R. Alizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected and prediction of this network has been good agreement with experimental data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20Network" title="Neural Network">Neural Network</a>, <a href="https://publications.waset.org/search?q=Net%20Heating%20Value" title=" Net Heating Value"> Net Heating Value</a>, <a href="https://publications.waset.org/search?q=Crude%20Oil" title=" Crude Oil"> Crude Oil</a>, <a href="https://publications.waset.org/search?q=Experimental" title=" Experimental"> Experimental</a>, <a href="https://publications.waset.org/search?q=Modeling." title=" Modeling."> Modeling.</a> </p> <a href="https://publications.waset.org/518/investigation-of-artificial-neural-networks-performance-to-predict-net-heating-value-of-crude-oil-by-its-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/518/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/518/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/518/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/518/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/518/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/518/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/518/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/518/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/518/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/518/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1588</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5188</span> Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rajoo%20Pandey">Rajoo Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Blind%20Equalization" title="Blind Equalization">Blind Equalization</a>, <a href="https://publications.waset.org/search?q=Neural%20Networks" title=" Neural Networks"> Neural Networks</a>, <a href="https://publications.waset.org/search?q=Constant%0D%0AModulus%20Algorithm" title=" Constant Modulus Algorithm"> Constant Modulus Algorithm</a>, <a href="https://publications.waset.org/search?q=Time-varying%20channels." title=" Time-varying channels."> Time-varying channels.</a> </p> <a href="https://publications.waset.org/3859/complex-valued-neural-networks-for-blind-equalization-of-time-varying-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3859/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3859/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3859/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3859/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3859/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3859/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3859/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3859/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3859/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3859/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1891</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5187</span> Word Recognition and Learning based on Associative Memories and Hidden Markov Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Z%C3%B6hre%20Kara%20Kayikci">Z枚hre Kara Kayikci</a>, <a href="https://publications.waset.org/search?q=G%C3%BCnther%20Palm"> G眉nther Palm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like 鈥渂ot show apple". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hebbian%20learning" title="Hebbian learning">Hebbian learning</a>, <a href="https://publications.waset.org/search?q=hidden%20Markov%20models" title=" hidden Markov models"> hidden Markov models</a>, <a href="https://publications.waset.org/search?q=neuralassociative%20memories" title=" neuralassociative memories"> neuralassociative memories</a>, <a href="https://publications.waset.org/search?q=word%20recognition." title=" word recognition."> word recognition.</a> </p> <a href="https://publications.waset.org/1700/word-recognition-and-learning-based-on-associative-memories-and-hidden-markov-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1700/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1700/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1700/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1700/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1700/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1700/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1700/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1700/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1700/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1700/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1524</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=173">173</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=174">174</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=neural%20network%20models&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10