CINXE.COM
Search results for: shear tests
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shear tests</title> <meta name="description" content="Search results for: shear tests"> <meta name="keywords" content="shear tests"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shear tests" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shear tests"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5516</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shear tests</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5396</span> Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minsu%20Kim">Minsu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae-Chang%20Cho"> Hae-Chang Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Hoon%20Chung"> Jae Hoon Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Inwook%20Heo"> Inwook Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Su%20Kim"> Kang Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-high-performance%20concrete" title="ultra-high-performance concrete">ultra-high-performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title=" ANFIS"> ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20member" title=" flexural member"> flexural member</a> </p> <a href="https://publications.waset.org/abstracts/75871/shear-strength-evaluation-of-ultra-high-performance-concrete-flexural-members-using-adaptive-neuro-fuzzy-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5395</span> Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jipeng%20Yan">Jipeng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingchen%20Yang"> Xingchen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaowei%20Zhou"> Xiaowei Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxing%20Tang"> Mengxing Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Honghai%20Liu"> Honghai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20elastic%20modulus" title="shear elastic modulus">shear elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle" title=" skeletal muscle"> skeletal muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20human-machine%20interface" title=" wearable human-machine interface"> wearable human-machine interface</a> </p> <a href="https://publications.waset.org/abstracts/127469/achieving-shear-wave-elastography-by-a-three-element-probe-for-wearable-human-machine-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5394</span> Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonie%20Bradfield">Leonie Bradfield</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Fityus"> Stephen Fityus</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Simmons"> John Simmons</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20mine" title="coal mine">coal mine</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear%20test" title=" direct shear test"> direct shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20dump" title=" high dump"> high dump</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale" title=" large scale"> large scale</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20spoil" title=" mine spoil"> mine spoil</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=spoil%20dump" title=" spoil dump"> spoil dump</a> </p> <a href="https://publications.waset.org/abstracts/103400/shear-strength-characterization-of-coal-mine-spoil-in-very-high-dumps-with-large-scale-direct-shear-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5393</span> Effective Width of Reinforced Concrete U-Shaped Walls Due to Shear Lag Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20D.%20Hoult">Ryan D. Hoult</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent assumption in the elementary theory of bending that plane sections remain plane is commonly used in the design of reinforced concrete members. However, in reality, a shear flow would develop in non-rectangular sections, where the longitudinal strains in between the web and flanges of the element would lag behind those at the boundary ends. This phenomenon, known as shear lag, can significantly reduce the expected moment capacity of non-rectangular reinforced concrete walls. This study focuses on shear lag effects in reinforced concrete U-shaped walls, which are commonly used as lateral load resisting elements in reinforced concrete buildings. An extensive number of finite element modelling analyses are conducted to estimate the vertical strain distributions across the web and flanges of a U-shaped wall with different axial load ratios and longitudinal reinforcement detailing. The results show that shear lag effects are prominent and sometimes significant in U-shaped walls, particularly for the wall sections perpendicular to the direction of loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20lag" title="shear lag">shear lag</a>, <a href="https://publications.waset.org/abstracts/search?q=walls" title=" walls"> walls</a>, <a href="https://publications.waset.org/abstracts/search?q=U-shaped" title=" U-shaped"> U-shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-curvature" title=" moment-curvature"> moment-curvature</a> </p> <a href="https://publications.waset.org/abstracts/92183/effective-width-of-reinforced-concrete-u-shaped-walls-due-to-shear-lag-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5392</span> Effect of Plastic Fines on Undrained Behavior of Clayey Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Talamkhani">Saeed Talamkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini"> Seyed Abolhassan Naeini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the occurrence of several liquefactions in sandy soils containing various values of clay content has shown that in addition to silty sands, clayey sands are also susceptible to liquefaction. Therefore, it is necessary to investigate the properties of these soil compositions and their behavioral characteristics. This paper presents the effect of clay fines on the undrained shear strength of sands at various confining pressures. For this purpose, a series of unconsolidated undrained triaxial shear tests were carried out on clean sand and sand mixed with 5, 10, 15, 20, and 30 percent of clay fines. It was found that the presence of clay particle in sandy specimens change the dilative behavior to contraction. The result also showed that increasing the clay fines up to 10 percent causes to increase the potential for liquefaction, and decreases it at higher values fine content. These results reveal the important role of clay particles in changing the undrained strength of the sandy soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clayey%20sand" title="clayey sand">clayey sand</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20test" title=" triaxial test"> triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength" title=" undrained shear strength "> undrained shear strength </a> </p> <a href="https://publications.waset.org/abstracts/93873/effect-of-plastic-fines-on-undrained-behavior-of-clayey-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5391</span> A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Mehryaar">Ehsan Mehryaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Armin%20Motahari%20Tabari"> Seyed Armin Motahari Tabari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20tree" title="model tree">model tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART" title=" CART"> CART</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20shear%20strength" title=" soil shear strength"> soil shear strength</a> </p> <a href="https://publications.waset.org/abstracts/141471/a-hybrid-model-tree-and-logistic-regression-model-for-prediction-of-soil-shear-strength-in-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5390</span> Probabilistic Models to Evaluate Seismic Liquefaction In Gravelly Soil Using Dynamic Penetration Test and Shear Wave Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Pirhadi">Nima Pirhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao%20Yong%20Bo"> Shao Yong Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xusheng%20Wan"> Xusheng Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Lu"> Jianguo Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jilei%20Hu"> Jilei Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although gravels and gravelly soils are assumed to be non-liquefiable because of high conductivity and small modulus; however, the occurrence of this phenomenon in some historical earthquakes, especially recently earthquakes during 2008 Wenchuan, Mw= 7.9, 2014 Cephalonia, Greece, Mw= 6.1 and 2016, Kaikoura, New Zealand, Mw = 7.8, has been promoted the essential consideration to evaluate risk assessment and hazard analysis of seismic gravelly soil liquefaction. Due to the limitation in sampling and laboratory testing of this type of soil, in situ tests and site exploration of case histories are the most accepted procedures. Of all in situ tests, dynamic penetration test (DPT), Which is well known as the Chinese dynamic penetration test, and shear wave velocity (Vs) test, have been demonstrated high performance to evaluate seismic gravelly soil liquefaction. However, the lack of a sufficient number of case histories provides an essential limitation for developing new models. This study at first investigates recent earthquakes that caused liquefaction in gravelly soils to collect new data. Then, it adds these data to the available literature’s dataset to extend them and finally develops new models to assess seismic gravelly soil liquefaction. To validate the presented models, their results are compared to extra available models. The results show the reasonable performance of the proposed models and the critical effect of gravel content (GC)% on the assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=gravel" title=" gravel"> gravel</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20penetration%20test" title=" dynamic penetration test"> dynamic penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a> </p> <a href="https://publications.waset.org/abstracts/130545/probabilistic-models-to-evaluate-seismic-liquefaction-in-gravelly-soil-using-dynamic-penetration-test-and-shear-wave-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5389</span> Influence of Thermal History on the Undrained Shear Strength of the Bentonite-Sand Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ravi">K. Ravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabu%20Subhash"> Sabu Subhash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Densely compacted bentonite or bentonite–sand mixture has been identified as a suitable buffer in the deep geological repository (DGR) for the safe disposal of high-level nuclear waste (HLW) due to its favourable physicochemical and hydro-mechanical properties. The addition of sand to the bentonite enhances the thermal conductivity and compaction properties and reduces the drying shrinkage of the buffer material. The buffer material may undergo cyclic wetting and drying upon ingress of groundwater from the surrounding rock mass and from evaporation due to high temperature (50–210 °C) derived from the waste canister. The cycles of changes in temperature may result in thermal history, and the hydro-mechanical properties of the buffer material may be affected. This paper examines the influence of thermal history on the undrained shear strength of bentonite and bentonite-sand mixture. Bentonite from Rajasthan state and sand from the Assam state of India are used in this study. The undrained shear strength values are obtained by conducting unconfined compressive strength (UCS) tests on cylindrical specimens (dry densities 1.30 and 1.5 Mg/m3) of bentonite and bentonite-sand mixture consisting of 30 % bentonite+ 70 % sand. The specimens are preheated at temperatures varying from 50-150 °C for one, two and four hours in hot air oven. The results indicate that the undrained shear strength is increased by the thermal history of the buffer material. The specimens of bentonite-sand mixture exhibited more increase in strength compared to the pure bentonite specimens. This indicates that the sand content of the mixture plays a vital role in taking the thermal stresses of the bentonite buffer in DGR conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20geological%20repository" title=" deep geological repository"> deep geological repository</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20history" title=" thermal history"> thermal history</a>, <a href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength" title=" undrained shear strength"> undrained shear strength</a> </p> <a href="https://publications.waset.org/abstracts/65498/influence-of-thermal-history-on-the-undrained-shear-strength-of-the-bentonite-sand-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5388</span> Influence of Shear Deformation on Carbon Onions Stability under High Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Evdokimov">D. P. Evdokimov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Kirichenko"> A. N. Kirichenko</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20Blank"> V. D. Blank</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Denisov"> V. N. Denisov</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Kulnitskiy"> B. A. Kulnitskiy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study we investigated the stability of polyhedral carbon onions under influence of shear deformation and high pressures above 43 GPa by means of by transmission electron microscopy (TEM) and Raman spectroscopy (RS). It was found that at pressures up to 29 GPa and shear deformations of 40 degrees the onions are stable. At shear deformation applying at pressures above 30 GPa carbon onions collapsed with formation of amorphous carbon. At pressures above 43 GPa diamond-like carbon (DLC) was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20onions" title="carbon onions">carbon onions</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20spectroscopy" title=" transmission electron spectroscopy"> transmission electron spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/19208/influence-of-shear-deformation-on-carbon-onions-stability-under-high-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5387</span> Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%81kos%20Wolf">Ákos Wolf</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20P.%20Ray"> Richard P. Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (<em>G</em>) and shear wave velocity (<em>v<sub>s</sub></em>), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CPT%20correlation" title="CPT correlation">CPT correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20soil%20properties" title=" dynamic soil properties"> dynamic soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20CPT" title=" seismic CPT"> seismic CPT</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a> </p> <a href="https://publications.waset.org/abstracts/67782/comparison-and-improvement-of-the-existing-cone-penetration-test-results-shear-wave-velocity-correlations-for-hungarian-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5386</span> Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanat%20K.%20Dash">Sanat K. Dash</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20S.%20Verma"> Rama S. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarit%20K.%20Das"> Sarit K. Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanotransduction" title=" mechanotransduction"> mechanotransduction</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20shear%20stress" title=" fluid shear stress"> fluid shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20shear" title=" physiological shear"> physiological shear</a> </p> <a href="https://publications.waset.org/abstracts/103189/microfluidic-fluid-shear-mechanotransduction-device-using-linear-optimization-of-hydraulic-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5385</span> The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulia%20Hastuti">Yulia Hastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dewi"> Ratna Dewi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sandi"> Muhammad Sandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title="expansive soil">expansive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20binder" title=" soil binder"> soil binder</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/58657/the-effect-of-soil-binder-and-gypsum-to-the-changes-of-the-expansive-soil-shear-strength-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5384</span> Evaluation of Critical State Behavior of Granular Soil in Confined Compression Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Chaudhry">Rabia Chaudhry</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Dawson"> Andrew Dawson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identification of steady/critical state of coarse granular soil is challenging at conventional pressures. This study examines the drained and undrained triaxial tests for large strains on loose to dense, uniformly graded, Leighton Buzzard Fraction A sand. The triaxial tests are conducted under controlled test conditions. The comparison of soil behavior on shear strength characteristics at different effective stresses has been studied at the medium to large strains levels and the uniqueness of the critical state was discussed. The test results showed that there were two steady/critical state lines for drained and undrained conditions at confining pressures less than 1000 kPa. A critical state friction angle is not constant and the overall scatter in the steady/critical state line for the tested sand is ±0.01 in terms of void ratio at stress levels less than 1000 kPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20state" title="critical state">critical state</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20strain%20behavior" title=" stress strain behavior"> stress strain behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%2Fstructure" title=" fabric/structure"> fabric/structure</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20tests" title=" triaxial tests"> triaxial tests</a> </p> <a href="https://publications.waset.org/abstracts/77568/evaluation-of-critical-state-behavior-of-granular-soil-in-confined-compression-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5383</span> An Efficient Approach for Shear Behavior Definition of Plant Stalk </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Kamandar">M. R. Kamandar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Massah"> J. Massah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s<sup>-1</sup> and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s<sup>-1</sup> and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s<sup>-1</sup>. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s<sup>-1</sup> and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s<sup>-1</sup>. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buxus" title="Buxus">Buxus</a>, <a href="https://publications.waset.org/abstracts/search?q=Privet" title=" Privet"> Privet</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20cutting" title=" impact cutting"> impact cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20energy" title=" shear energy"> shear energy</a> </p> <a href="https://publications.waset.org/abstracts/109634/an-efficient-approach-for-shear-behavior-definition-of-plant-stalk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5382</span> Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouaz%20Idriss">Rouaz Idriss</a>, <a href="https://publications.waset.org/abstracts/search?q=Bourahla%20Nour-Eddine"> Bourahla Nour-Eddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahlouche%20Farah"> Kahlouche Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%20Sid%20Ali"> Rafa Sid Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20formed%20steel%20%27CFS%27" title="cold formed steel 'CFS'">cold formed steel 'CFS'</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall%20panel" title=" shear wall panel"> shear wall panel</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20method" title=" strip method"> strip method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a> </p> <a href="https://publications.waset.org/abstracts/46456/numerical-evaluation-of-shear-strength-for-cold-formed-steel-shear-wall-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5381</span> Anisotropic Behavior of Sand Stabilized with Colloidal Silica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Maria%20Pavlopoulou">Eleni Maria Pavlopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasiliki%20N.%20Georgiannou"> Vasiliki N. Georgiannou</a>, <a href="https://publications.waset.org/abstracts/search?q=Filippos%20C.%20Chortis"> Filippos C. Chortis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The response of M31 sand stabilized with colloidal silica (CS) aqueous gel is investigated in the laboratory. CS is introduced in the water regime, forming a hydrosol. The low viscosity hydrosol thickens in a controllable manner to form a stable, non-toxic gel; the gel fills the pore space, retains the pore water, and supports the grain structure. The role of colloidal silica on subsequent sand behavior is examined with the aid of direct shear, triaxial, and normal compression tests. Under the examined loading modes, while the strength of the treated sand is enhanced, its stiffness may reduce, and its compressibility increase. However, in most geotechnical problems, the loading conditions are complex, involving changes in both stress magnitude and direction. Rotation of principal stresses (σ1, σ2, σ3) in varying amounts expressed as angle α, (from α=0° to 90°) in concurrence with increasing shear stress loading is commonly encountered in soil structures such as foundations, embankments, underwater slopes. To assess the influence of anisotropy on the response of sands before and after their stabilization, hollow cylinder tests were performed. The behavior of stabilized sand is compared with the characteristic sand behavior, i.e., a reduction in peak stress ratio associated with a softer stress-strain response with the increasing angle a. The influence of the magnitude of the intermediate principal stress (σ2) on the mechanical response of treated and untreated sand is also examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20silica" title=" colloidal silica"> colloidal silica</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20tests" title=" laboratory tests"> laboratory tests</a>, <a href="https://publications.waset.org/abstracts/search?q=sands" title=" sands"> sands</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a> </p> <a href="https://publications.waset.org/abstracts/133107/anisotropic-behavior-of-sand-stabilized-with-colloidal-silica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5380</span> The Influence of Shear Wall Position on Seismic Performance in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khelaifia">Akram Khelaifia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreddine%20Djafar%20Henni"> Nesreddine Djafar Henni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete shear walls are essential components in protecting buildings from seismic forces by providing both strength and stiffness. This study focuses on optimizing the placement of shear walls in a high seismic zone. Through nonlinear analyses conducted on an eight-story building, various scenarios of shear wall positions are investigated to evaluate their impact on seismic performance. Employing a performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria related to inter-story drift ratio and damage levels. The findings emphasize the importance of concentrating shear walls in the central area of the building during the design phase. This strategic placement proves more effective compared to peripheral distributions, resulting in reduced inter-story drift and mitigated potential damage during seismic events. Additionally, the research explores the use of shear walls that completely infill the frame, forming compound shapes like Box configurations. It is discovered that incorporating such complete shear walls significantly enhances the structure's reliability concerning inter-story drift. Conversely, the absence of complete shear walls within the frame leads to reduced stiffness and the potential deterioration of short beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20level" title="performance level">performance level</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall" title=" shear wall"> shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20hinge" title=" plastic hinge"> plastic hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analyses" title=" nonlinear analyses"> nonlinear analyses</a> </p> <a href="https://publications.waset.org/abstracts/182467/the-influence-of-shear-wall-position-on-seismic-performance-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5379</span> The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20P.%20Roper">Thomas P. Roper</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Forbes"> Brad Forbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurij%20Karlov%C5%A1ek"> Jurij Karlovšek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20optical%20strain%20sensing" title="distributed optical strain sensing">distributed optical strain sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20bolt" title=" rock bolt"> rock bolt</a>, <a href="https://publications.waset.org/abstracts/search?q=bedding%20shear" title=" bedding shear"> bedding shear</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstone%20tunnel" title=" sandstone tunnel"> sandstone tunnel</a> </p> <a href="https://publications.waset.org/abstracts/112478/the-application-of-distributed-optical-strain-sensing-to-measure-rock-bolt-deformation-subject-to-bedding-shear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5378</span> A Study on Shear Field Test Method in Timber Shear Modulus Determination Using Stereo Vision System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niaz%20Gharavi">Niaz Gharavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hexin%20Zhang"> Hexin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the structural timber design, the shear modulus of the timber beam is an important factor that needs to be determined accurately. According to BS EN 408, shear modulus can be determined using torsion test or shear field test method. Although torsion test creates pure shear status in the beam, it does not represent the real-life situation when the beam is in the service. On the other hand, shear field test method creates similar loading situation as in reality. The latter method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test as indicated in BS EN 408. Current testing practice code advised using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. Timber is not a homogenous material, but a heterogeneous and this characteristic makes timber to undergo a non-uniform deformation. Therefore, the dimensions and the location of the constructing square in the area with the constant transverse force might alter the shear modulus determination. This study aimed to investigate the impact of the shape, size, and location of the square in the shear field test method. A binocular stereo vision system was developed to capture the 3D displacement of a grid of target points. This approach is an accurate and non-contact method to extract the 3D coordination of targeted object using two cameras. Two group of three glue laminated beams were produced and tested by the mean of four-point bending test according to BS EN 408. Group one constructed using two materials, laminated bamboo lumber and structurally graded C24 timber and group two consisted only structurally graded C24 timber. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of size and location of the square in the determination of shear modulus of the beam. The results have shown that the size of the square is an affecting factor in shear modulus determination. However, the location of the square in the area with the constant shear force does not affect the shear modulus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20field%20test%20method" title="shear field test method">shear field test method</a>, <a href="https://publications.waset.org/abstracts/search?q=BS%20EN%20408" title=" BS EN 408"> BS EN 408</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20shear%20modulus" title=" timber shear modulus"> timber shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry%20approach" title=" photogrammetry approach "> photogrammetry approach </a> </p> <a href="https://publications.waset.org/abstracts/85208/a-study-on-shear-field-test-method-in-timber-shear-modulus-determination-using-stereo-vision-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5377</span> Shear Strengthening of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%27%20Al-Ghanim">Hana' Al-Ghanim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%27tasim%20Abdel-Jaber"> Mu'tasim Abdel-Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Alqam"> Maha Alqam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental investigation deals with shear strengthening of reinforced concrete (RC) deep beams using the externally bonded carbon fiber-reinforced polymer (CFRP) composites. The current study, therefore, evaluates the effectiveness of four various configurations for shear strengthening of deep beams with two different types of CFRP materials including sheets and laminates. For this purpose, a total of 10 specimens of deep beams were cast and tested. The shear performance of the strengthened beams is assessed with respect to the cracks’ formation, modes of failure, ultimate strength and the overall stiffness. The obtained results demonstrate the effectiveness of using the CFRP technique on enhancing the shear capacity of deep beams; however, the efficiency varies depending on the material used and the strengthening scheme adopted. Among the four investigated schemes, the highest increase in the ultimate strength is recorded by using the continuous wrap of two layers of CFRP sheets, exceeding a value of 86%, whereas an enhancement of about 36% is achieved by the inclined CFRP laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20beams" title="deep beams">deep beams</a>, <a href="https://publications.waset.org/abstracts/search?q=laminates" title=" laminates"> laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strengthening" title=" shear strengthening"> shear strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=sheets" title=" sheets"> sheets</a> </p> <a href="https://publications.waset.org/abstracts/55807/shear-strengthening-of-reinforced-concrete-deep-beams-using-carbon-fiber-reinforced-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5376</span> Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Youm">H. S. Youm</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Hong"> S. G. Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=punching%20shear%20strength" title="punching shear strength">punching shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofit" title=" retrofit"> retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=slab-column%20connection" title=" slab-column connection"> slab-column connection</a>, <a href="https://publications.waset.org/abstracts/search?q=UHPFRC" title=" UHPFRC"> UHPFRC</a>, <a href="https://publications.waset.org/abstracts/search?q=UHPFRC%20overlay" title=" UHPFRC overlay"> UHPFRC overlay</a> </p> <a href="https://publications.waset.org/abstracts/80648/evaluation-for-punching-shear-strength-of-slab-column-connections-with-ultra-high-performance-fiber-reinforced-concrete-overlay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5375</span> An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang">Win-Jin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee"> Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang"> Yu-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous" title=" nanoporous"> nanoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young's modulus"> Young's modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a> </p> <a href="https://publications.waset.org/abstracts/65038/an-atomic-finite-element-model-for-mechanical-properties-of-graphene-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5374</span> Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Zhang">Zhi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liling%20Cao"> Liling Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedbabak%20Momenzadeh"> Seyedbabak Momenzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Davey"> Lisa Davey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20settlement" title="differential settlement">differential settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressed%20reinforced%20concrete%20slab" title=" prestressed reinforced concrete slab"> prestressed reinforced concrete slab</a>, <a href="https://publications.waset.org/abstracts/search?q=punching%20shear" title=" punching shear"> punching shear</a> </p> <a href="https://publications.waset.org/abstracts/110344/evaluation-of-prestressed-reinforced-concrete-slab-punching-shear-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5373</span> Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Izian%20Abd.%20Karim">Izian Abd. Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kachalla%20Mohammed"> Kachalla Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Farah%20Abd%20Aznieta%20Aziz"> Nora Farah Abd Aznieta Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Law%20Teik%20Hua"> Law Teik Hua </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20slab" title="composite slab">composite slab</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order%20reliability%20method" title=" first order reliability method"> first order reliability method</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20shear" title=" longitudinal shear"> longitudinal shear</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20shear%20connection" title=" partial shear connection"> partial shear connection</a>, <a href="https://publications.waset.org/abstracts/search?q=slope-intercept" title=" slope-intercept"> slope-intercept</a> </p> <a href="https://publications.waset.org/abstracts/29262/comparative-safety-performance-evaluation-of-profiled-deck-composite-slab-from-the-use-of-slope-intercept-and-partial-shear-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5372</span> Improving the Method for Characterizing Structural Fabrics for Shear Resistance and Formability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Karanatsis">Dimitrios Karanatsis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-crimp fabrics (NCFs) allow for high mechanical performance of a manufacture composite component by maintaining the fibre reinforcements parallel to each other. The handling of NCFs is enabled by the stitching of the tows. Although the stitching material has negligible influence to the performance of the manufactured part, it can affect the ability of the structural fabric to shear and drape over the part’s geometry. High resistance to shearing is attributed to the high tensile strain of the stitching yarn and can cause defects in the fabric. In the current study, a correlation based on the stitch tension and shear behaviour is examined. The purpose of the research is to investigate the upper and lower limits of non-crimp fabrics manufacture and how these affect the shear behaviour of the fabrics. Experimental observations show that shear behaviour of the fabrics is significantly affected by the stitch tension, and there is a linear effect to the degree of shear they experience. It was found that the lowest possible stitch tension on the manufacturing line settings produces an NCF that exhibits very low tensile strain on it’s yarns and that has shear properties similar to a woven fabric. Moreover, the highest allowable stitch tension results in reduced formability of the fabric, as the stitch thread rearranges the fibre filaments where these become packed in a tight formation with constricted movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fibres" title="carbon fibres">carbon fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20manufacture" title=" composite manufacture"> composite manufacture</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20testing" title=" shear testing"> shear testing</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a> </p> <a href="https://publications.waset.org/abstracts/145016/improving-the-method-for-characterizing-structural-fabrics-for-shear-resistance-and-formability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5371</span> Experimental and Numerical Studies on Earthquake Shear Rupture Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Louis%20N.%20Y.%20Wong">Louis N. Y. Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> En-echelon fractures are commonly found in rocks, which appear as a special set of regularly oriented and spaced fractures. By using both experimental and numerical approaches, this study investigates the interaction among them, and how this interaction finally contributes to the development of a shear rupture (fault), especially in brittle natural rocks. Firstly, uniaxial compression tests are conducted on marble specimens containing en-echelon flaws. The latter is cut by using the water abrasive jet into the rock specimens. The fracturing processes of these specimens leading to the formation of a fault are observed in detail by the use of a high speed camera. The influences of the flaw geometry on the production of tensile cracks and shear cracks, which in turn dictate the coalescence patterns of the entire set of en-echelon flaws are comprehensively studied. Secondly, a numerical study based on a recently developed contact model, flat-joint contact model using the discrete element method (DEM) is carried out to model the present laboratory experiments. The numerical results provide a quantitative assessment of the interaction of en-echelon flaws. Particularly, the evolution of the stress field, as well as the characteristics of new crack initiation, propagation and coalescence associated with the generation of an eventual shear rupture are studied in detail. The numerical results are found to agree well with the experimental results obtained in both microscopic and macroscopic observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title="discrete element method">discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=en-echelon%20flaws" title=" en-echelon flaws"> en-echelon flaws</a>, <a href="https://publications.waset.org/abstracts/search?q=fault" title=" fault"> fault</a>, <a href="https://publications.waset.org/abstracts/search?q=marble" title=" marble"> marble</a> </p> <a href="https://publications.waset.org/abstracts/52013/experimental-and-numerical-studies-on-earthquake-shear-rupture-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5370</span> Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morgan%20Johansson">Morgan Johansson</a>, <a href="https://publications.waset.org/abstracts/search?q=Joosef%20Leppanen"> Joosef Leppanen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Flansbjer"> Mathias Flansbjer</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Lozano"> Fabio Lozano</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Makdesi"> Josef Makdesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation%20%28DIC%29" title="digital image correlation (DIC)">digital image correlation (DIC)</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20weight%20impact" title=" drop weight impact"> drop weight impact</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20deformation%20capacity" title=" plastic deformation capacity"> plastic deformation capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/93717/residual-plastic-deformation-capacity-in-reinforced-concrete-beams-subjected-to-drop-weight-impact-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5369</span> Experimental Investigation on the Mechanical Behaviour of Three-Leaf Masonry Walls under In-Plane Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Amer">Osama Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Abdel-Aty"> Yaser Abdel-Aty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abd%20El%20Hady"> Mohamed Abd El Hady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper illustrates an experimental approach to provide understanding of the mechanical behavior and failure mechanisms of different typologies of unreinforced three-leaf masonry walls of historical Islamic architectural heritage in Egypt. The main objective of this study is to investigate the propagation of possible cracking, ultimate load, deformations and failure mechanisms. Experimental data on interface-shear and compression tests on large scale three-leaf masonry wallets are provided. The wallets were built basically of Egyptian limestone and modified lime mortar. External wallets were built of stone blocks while the inner leaf was built of rubble limestone. Different loading conditions and dimensions of core layer for two types of collar joints (with and without shear keys) are considered in the tests. Mechanical properties of the constituent materials of masonry were tested and a database of characteristic properties was created. The results of the experiments will highlight the properties, force-displacement curves, stress distribution of multiple-leaf masonry walls contributing to the derivation of rational design rules and validation of numerical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry" title="masonry">masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=three-leaf%20walls" title=" three-leaf walls"> three-leaf walls</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20heritage" title=" architectural heritage"> architectural heritage</a> </p> <a href="https://publications.waset.org/abstracts/48229/experimental-investigation-on-the-mechanical-behaviour-of-three-leaf-masonry-walls-under-in-plane-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5368</span> Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sadeghzadegan">R. Sadeghzadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini"> S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirzaii"> A. Mirzaii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20shear%20modulus" title="small shear modulus">small shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=bender%20element%20test" title=" bender element test"> bender element test</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20fines" title=" plastic fines"> plastic fines</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/78616/determination-of-small-shear-modulus-of-clayey-sand-using-bender-element-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5367</span> Calibration of Contact Model Parameters and Analysis of Microscopic Behaviors of Cuxhaven Sand Using The Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjali%20Uday">Anjali Uday</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuting%20Wang"> Yuting Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Andres%20Alfonso%20Pena%20Olare"> Andres Alfonso Pena Olare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Discrete Element Method is a promising approach to modeling microscopic behaviors of granular materials. The quality of the simulations however depends on the model parameters utilized. The present study focuses on calibration and validation of the discrete element parameters for Cuxhaven sand based on the experimental data from triaxial and oedometer tests. A sensitivity analysis was conducted during the sample preparation stage and the shear stage of the triaxial tests. The influence of parameters like rolling resistance, inter-particle friction coefficient, confining pressure and effective modulus were investigated on the void ratio of the sample generated. During the shear stage, the effect of parameters like inter-particle friction coefficient, effective modulus, rolling resistance friction coefficient and normal-to-shear stiffness ratio are examined. The calibration of the parameters is carried out such that the simulations reproduce the macro mechanical characteristics like dilation angle, peak stress, and stiffness. The above-mentioned calibrated parameters are then validated by simulating an oedometer test on the sand. The oedometer test results are in good agreement with experiments, which proves the suitability of the calibrated parameters. In the next step, the calibrated and validated model parameters are applied to forecast the micromechanical behavior including the evolution of contact force chains, buckling of columns of particles, observation of non-coaxiality, and sample inhomogeneity during a simple shear test. The evolution of contact force chains vividly shows the distribution, and alignment of strong contact forces. The changes in coordination number are in good agreement with the volumetric strain exhibited during the simple shear test. The vertical inhomogeneity of void ratios is documented throughout the shearing phase, which shows looser structures in the top and bottom layers. Buckling of columns is not observed due to the small rolling resistance coefficient adopted for simulations. The non-coaxiality of principal stress and strain rate is also well captured. Thus the micromechanical behaviors are well described using the calibrated and validated material parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20model" title="discrete element model">discrete element model</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20calibration" title=" parameter calibration"> parameter calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20test" title=" triaxial test"> triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=oedometer%20test" title=" oedometer test"> oedometer test</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20shear%20test" title=" simple shear test"> simple shear test</a> </p> <a href="https://publications.waset.org/abstracts/150752/calibration-of-contact-model-parameters-and-analysis-of-microscopic-behaviors-of-cuxhaven-sand-using-the-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=4" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=183">183</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=184">184</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20tests&page=6" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>