CINXE.COM
Ряд в математике. Большая российская энциклопедия
<!DOCTYPE html><html lang="ru"><head><meta charset="utf-8"> <meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1"> <title>Ряд в математике. Большая российская энциклопедия</title> <link href="https://mc.yandex.ru" rel="preconnect"> <link href="https://top-fwz1.mail.ru/js/code.js" as="script" crossorigin> <link href="https://news.gnezdo2.ru/gnezdo_news_tracker_new.js" as="script" crossorigin> <link href="https://mc.yandex.ru" rel="dns-prefetch"> <link href="https://mc.yandex.ru/metrika/tag.js" as="script" crossorigin> <meta name="msapplication-TileColor" content="#da532c"> <meta name="msapplication-config" content="/meta/browserconfig.xml"> <meta name="theme-color" content="#ffffff"> <link rel="icon" sizes="32x32" href="/favicon.ico"> <link rel="icon" type="image/svg+xml" href="/meta/favicon.svg"> <link rel="apple-touch-icon" href="/meta/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="48x48" href="/meta/favicon-48x48.png"> <link rel="manifest" href="/meta/site.webmanifest"> <meta content="2022-05-18T19:21:12.000Z" name="article:modified_time"> <meta content="Термины" property="article:section"> <meta content="Математические объекты" property="article:tag"> <meta content="Ряды" property="article:tag"> <meta content="Сходимость" property="article:tag"> <meta content="Ряд в математике, бесконечная сумма или, что то же самое, Слагаемые называются членами ряда ( иногда называют общим членом ряда), суммы –..." name="description"> <meta content="Математические объекты, Ряды, Сходимость" name="keywords"> <meta content="Ряд в математике, бесконечная сумма или, что то же самое, Слагаемые называются членами ряда ( иногда называют общим членом ряда), суммы –..." property="og:description"> <meta content="https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200" property="og:image"> <meta content="«Большая российская энциклопедия»" property="og:image:alt"> <meta content="792" property="og:image:height"> <meta content="webp&width=1200" property="og:image:type"> <meta content="1200" property="og:image:width"> <meta content="Ряд в математике" property="og:title"> <meta content="article" property="og:type"> <meta content="https://bigenc.ru/c/riad-v-matematike-2e65f7" property="og:url"> <meta content="summary_large_image" property="twitter:card"> <meta content="Большая российская энциклопедия" property="og:site_name"> <meta content="2022-05-18T19:21:12.000Z" name="article:published_time"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/entry.mpjHLZVQ.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/components.EYp_E6uU.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/Formula.OAWbmYZe.css"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/chunk.eVCQshbn.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/components.a6A3eWos.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/index.64RxBmGv.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Renderer.vue.KBqHlDjs.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/ArticleSidebar.vue.QjMjnOY7.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.vue.hLe6_eLu.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/MediaFigure.vue.8Cjz8VZ4.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.MIRfcYkN.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Formula.hIoX9Hw3.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/PreviewLink.1ksiu7wu.js"> <link rel="prefetch" as="image" type="image/jpeg" href="https://s.bigenc.ru/_nuxt/fallback.OCsNm7LY.jpg"> <script type="module" src="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js" crossorigin></script></head><body><div id="__nuxt"><!--[--><div class="loading-indicator" style="position:fixed;top:0;right:0;left:0;pointer-events:none;width:0%;height:1px;opacity:0;background:repeating-linear-gradient(to right,#7698f5 0%,#436ee6 50%,#0047e1 100%);background-size:Infinity% auto;transition:width 0.1s, height 0.4s, opacity 0.4s;z-index:999999;"></div><div><!----><div class="bre-page" itemscope itemprop="mainEntity" itemtype="https://schema.org/WebPage"><header class="bre-header" itemprop="hasPart" itemscope itemtype="https://schema.org/WPHeader" style=""><div class="bre-header-fixed"><nav class="bre-header-nav"><div class="bre-header-nav-item _flex-start _logo"><a class="bre-header-logo -show-on-desktop-s _big" aria-label="Домой"></a><a class="bre-header-logo _small" aria-label="Домой"></a></div><div class="bre-header-nav-item _flex-start _catalog"><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 -show-on-desktop-s tw-px-4 tw-w-[132px] !tw-justify-start" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--> Каталог <!--]--></span></button><button type="button" class="b-button b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer tw-gap-0 md:tw-gap-2 -hide-on-desktop-s" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--><span class="tw-hidden tw-pt-0.5 tw-text-primary-black md:tw-block">Каталог</span><!--]--></span></button></div><div class="bre-header-nav-item _flex-start lg:tw-flex-1"><div class="min-lg:tw-w-[228px] tw-relative max-md:tw-mb-[6px] max-md:tw-mt-4 lg:tw-w-full lg:tw-max-w-[606px] max-md:tw-hidden"><div class="tw-flex max-lg:tw-hidden" data-v-f39cd9b8><div class="tw-flex tw-w-full tw-items-center tw-border tw-border-solid tw-border-transparent tw-bg-gray-6 tw-px-3 tw-transition lg:hover:tw-bg-gray-5 lg:tw-bg-primary-white lg:tw-border-gray-5 lg:hover:tw-border-transparent lg:tw-rounded-e-none lg:tw-pr-4 tw-rounded-lg tw-h-11" data-v-f39cd9b8><span class="nuxt-icon _no-icon-margin tw-shrink-0 tw-text-2xl tw-text-gray-2 tw-cursor-pointer" style="display:none;" data-v-f39cd9b8><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><input class="b-search-input -text-headline-6 tw-h-full tw-shrink tw-grow tw-basis-auto tw-border-none tw-bg-transparent tw-p-0 tw-indent-2 tw-leading-none tw-text-primary-black tw-outline-none tw-transition md:tw-w-[154px] tw-placeholder-gray-2 lg:tw-placeholder-gray-1 lg:tw-indent-1 lg:tw-pr-4 lg:-text-caption-1 placeholder-on-focus" name="new-search" value="" type="text" placeholder="Искать в энциклопедии" autocomplete="off" spellcheck="false" data-v-f39cd9b8><button type="button" class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only" style="display:none;" data-v-f39cd9b8 data-v-cfbedafc><span class="nuxt-icon nuxt-icon--fill nuxt-icon--stroke tw-text-2xl tw-shrink-0 tw-text-gray-2" data-v-cfbedafc><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M17 17 7 7M17 7 7 17"/></svg> </span><!----></button></div><!--[--><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-h-11 tw-w-11 tw-rounded-s-none tw-flex-none" style="" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></button><!--]--></div><!----></div><button class="lg:tw-hidden"><span class="nuxt-icon tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span></button></div><div class="bre-header-nav-item _flex-start -show-on-tablet button-author-animation lg:tw-justify-end lg:tw-basis-[calc(50vw-348px)]"><a class="b-button tw-gap-2 b-button--secondary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-w-[172px] tw-px-6 lg:tw-h-11" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Стать автором <!--]--></span></a></div><div class="bre-header-nav-item _flex-start tw-relative max-md:tw-w-6 sm:tw-z-[9] md:tw-z-[21]"><div class="bre-header-profile"><!--[--><!--[--><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-px-6 -show-on-tablet -hide-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 tw-px-6 -show-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-mx-1 -hide-on-tablet" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M20 21V19C20 17.9391 19.5786 16.9217 18.8284 16.1716C18.0783 15.4214 17.0609 15 16 15H8C6.93913 15 5.92172 15.4214 5.17157 16.1716C4.42143 16.9217 4 17.9391 4 19V21" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M12 12C14.2091 12 16 10.2091 16 8C16 5.79086 14.2091 4 12 4C9.79086 4 8 5.79086 8 8C8 10.2091 9.79086 12 12 12Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></a><!--]--></div></div></nav><!----><!----></div><!----><!----></header><main class="bre-page-main"><!--[--><div class="bre-article-layout _no-margin"><nav class="bre-article-layout__menu"><div class="bre-article-menu lg:tw-sticky"><div class="bre-article-menu__list"><!--[--><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><span class="bre-article-menu__list-item _active"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span><!--]--><!--]--><span style="display:none;" class=""><span>Статья</span></span></span><span class="bre-article-menu__list-item _active tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/riad-v-matematike-2e65f7/annotation" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Аннотация</span></span></span><a href="/c/riad-v-matematike-2e65f7/annotation" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/riad-v-matematike-2e65f7/references" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Библиография</span></span></span><a href="/c/riad-v-matematike-2e65f7/references" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/riad-v-matematike-2e65f7/versions" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Версии</span></span></span><a href="/c/riad-v-matematike-2e65f7/versions" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a></div><!--]--></div></div></nav><!--[--><div><meta itemprop="image primaryImageOfPage" content="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120"><article itemscope itemprop="mainEntity" itemtype="https://schema.org/Article"><div itemprop="publisher" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><div itemprop="copyrightHolder" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><meta itemprop="articleSection" content="Термины"><meta itemprop="headline" content="Ряд в математике"><meta itemprop="keywords" content="Математические объекты, Ряды, Сходимость"><!----><div class="bre-article-page max-md:tw-mt-10 md:max-lg:tw-mt-[81px] max-md:tw-mt-[105px]"><!----><nav class="bre-article-loc -hide-on-desktop-s"><div class="bre-article-loc-button"><span class="bre-article-loc-title">Содержание</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><div class="bre-article-loc-short">Числовые ряды</div></div><!----></nav><div class="article-sidebar -hide-on-desktop-s"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s">Ряд в математике</div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><header class="bre-article-header -hide-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><a href="/t/terms" class="bre-label _link">Термины</a><!--]--><!--]--><span style="display:none;" class=""><span>Термины</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Ряд в математике</h1><!--]--><!----></header><section class="-hide-on-tablet tw-h-14 md:tw-h-20"><!----></section><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Математика"><meta itemprop="caption" content="Математика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120" onerror="this.setAttribute('data-error', 1)" alt="Математика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=kwZEMADbF0h1k2QM5MQ63g&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=iDjHjthf4TWMMOWxyvO9-Q&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=aOq57ZwrPJzlZoA0JyAqNA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=RysrupjbIa5XYWB_pfATYQ&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=8eQ4RSvaDJue-elzThMhjA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=4tn4w-MU4hKmUoYIwAeqew&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=SXvkdFSbX19Vh-sgDBVBiQ&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1920 1920w" title="Математика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Приближения, разложения и асимптотики</dd><!--]--><!--]--><!----></dl></div></div></div><div class="bre-article-page__container"><div class="bre-article-page__content bre-article-content"><header class="bre-article-header -show-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><a href="/t/terms" class="bre-label _link">Термины</a><!--]--><!--]--><span style="display:none;" class=""><span>Термины</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Ряд в математике</h1><!--]--><!----></header><section class="tw-flex"><div class="-show-on-tablet tw-h-14 md:tw-h-20"><div><div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ViewAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ShareAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/LikeAction"><meta itemprop="userInteractionCount" content=""></div></div><span></span></div></div><span></span></section><div class="js-preview-link-root"><div itemprop="articleBody" class="bre-article-body"><!--[--><section><section><p><b>Ряд</b> в математике, бесконечная сумма <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mn>2</mn></msub><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>+</mo><msub><mi>u</mi><mi>n</mi></msub><mo>+</mo><mo>…</mo></mrow><annotation encoding="application/x-tex">u_1+u_2+...+u_n+\ldots \renewcommand{\tag}[1]{\qquad\qquad(#1) }</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">...</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.123em;"></span><span class="minner">…</span></span></span></span></span><!----></span>или, что то же самое, <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mi>n</mi></msub><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(1)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\sum_{n=1}^{\infty} u_n.\tag{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Слагаемые <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>u</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><msub><mi>u</mi><mi>n</mi></msub><mo separator="true">,</mo><mo>…</mo></mrow><annotation encoding="application/x-tex">u_1, u_2,\ldots u_n,\ldots</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span></span></span></span></span><!----></span> называются членами ряда (<span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">u_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> иногда называют общим членом ряда), суммы <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>s</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>+</mo><msub><mi>u</mi><mi>n</mi></msub><mo separator="true">,</mo><mspace width="2em"/><mi>n</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">s_n=u_1+...+u_n,\qquad n=1, 2,\ldots,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">...</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:2em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span></span></span></span><!----></span>– частичными суммами ряда порядка <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>.</p><p>Ряды являются важнейшими средствами вычисления, изучения и приближения чисел и функций. Простейшие ряды встречаются в элементарной математике - это, например, бесконечные <a href="/c/desiatichnaia-drob-0471b0" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->десятичные дроби<!--]--><!--]--><!----></a><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mn>333</mn><mo>…</mo><mo>=</mo><mfrac><mn>3</mn><mn>10</mn></mfrac><mo>+</mo><mfrac><mn>3</mn><mn>100</mn></mfrac><mo>+</mo><mo>…</mo><mo separator="true">,</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\frac{1}{3}=0,333\ldots=\frac{3}{10}+\frac{3}{100}+\ldots,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">333</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">10</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">100</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.3174em;vertical-align:-0.1944em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span></span></span></span><!----></span></p><p>и сумма членов бесконечно убывающей <a href="/c/geometricheskaia-progressiia-c6dffb" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->геометрической прогрессии<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mn>1</mn><mo>+</mo><mi>q</mi><mo>+</mo><msup><mi>q</mi><mn>2</mn></msup><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>+</mo><msup><mi>q</mi><mi>n</mi></msup><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>−</mo><mi>q</mi></mrow></mfrac><mo separator="true">,</mo><mspace width="1em"/><mi mathvariant="normal">∣</mi><mi>q</mi><mi mathvariant="normal">∣</mi><mo><</mo><mn>1.</mn></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(2)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">1+q+q^2+...+q^n+...=\frac{1}{1-q},\quad |q|<1. \tag{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0585em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">...</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.9088em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mord">...</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2019em;vertical-align:-0.8804em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.</span></span><span class="tag"><span class="strut" style="height:2.2019em;vertical-align:-0.8804em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">2</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span></p><p>Для многих чисел, использующихся в математике, имеются их представления в виде ряда, например, для <a href="/c/chislo-p-bf3bee" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->числа <!--]--><!--]--><!----></a><span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span></span><!----></span> справедливы равенства</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mfrac><mi>π</mi><mn>3</mn></mfrac><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mrow><msup><mn>2</mn><mn>3</mn></msup><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mn>3</mn><mrow><msup><mn>2</mn><mn>7</mn></msup><mn>5</mn></mrow></mfrac><mo>+</mo><mfrac><mn>5</mn><mrow><msup><mn>2</mn><mn>10</mn></msup><mn>7</mn></mrow></mfrac><mo>+</mo><mo>…</mo></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(3)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\frac{\pi}{3}=1+\frac{1}{2^{3} 3}+\frac{3}{2^{7}5}+\frac{5}{2^{10}7}+\ldots \tag{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.7936em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">7</span></span></span></span></span></span></span></span></span><span class="mord">5</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">10</span></span></span></span></span></span></span></span></span><span class="mord">7</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.123em;"></span><span class="minner">…</span></span><span class="tag"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">3</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mfrac><mi>π</mi><mn>4</mn></mfrac><mo>=</mo><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mo>−</mo><mfrac><mn>1</mn><mn>7</mn></mfrac><mo>+</mo><mo>…</mo><mo separator="true">,</mo></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(4)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots,\tag{4}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.7936em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">7</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.3174em;vertical-align:-0.1944em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span><span class="tag"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">4</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span></p><p>для <a href="/c/neperovo-chislo-1ba02c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->числа <!--]--><!--]--><!----></a><span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">e</span></span></span></span></span><!----></span>– основания натуральных <a href="/c/logarifm-f43a4a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->логарифмов<!--]--><!--]--><!----></a> – справедливо равенство <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mi>e</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo stretchy="false">!</mo></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mo stretchy="false">!</mo></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>3</mn><mo stretchy="false">!</mo></mrow></mfrac><mo>+</mo><mo>…</mo><mtext> </mtext><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(5)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots\ .\tag{5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">e</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.123em;"></span><span class="minner">…</span><span class="mspace"> </span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">5</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>При вычислениях сумма ряда обычно заменяется конечной суммой <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">s_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> его первых <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span> слагаемых. При этом очень важен ответ на вопрос о том, насколько величина <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">s_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> при данном <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span> близка к сумме ряда, или, как иногда говорят, вопрос о «скорости <a href="/c/skhodimost-4430fe" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->сходимости<!--]--><!--]--><!----></a>» величин <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">s_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> к сумме ряда.</p><p>Различают ряды числовые, членами которых являются числа (например, все ряды (2)–(5)), и функциональные, членами которых являются функции, например, <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>sin</mi><mo></mo><mi>x</mi><mo>=</mo><mi>x</mi><mo>−</mo><mfrac><msup><mi>x</mi><mn>3</mn></msup><mrow><mn>3</mn><mo stretchy="false">!</mo></mrow></mfrac><mo>+</mo><mfrac><msup><mi>x</mi><mn>5</mn></msup><mrow><mn>5</mn><mo stretchy="false">!</mo></mrow></mfrac><mo>+</mo><mo>…</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mi>n</mi></msup><mfrac><msup><mi>x</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mrow><mo stretchy="false">(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">!</mo></mrow></mfrac><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+\ldots=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.1771em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.1771em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">0</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord">.</span></span></span></span></span></span><!----></span>Если в функциональном ряде переменной <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></span><!----></span> придать числовое значение, то такой ряд превращается в числовой. Например, ряд (5) получается из функционального ряда <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>e</mi><mi>x</mi></msup><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mi>x</mi><mrow><mn>1</mn><mo stretchy="false">!</mo></mrow></mfrac><mo>+</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mrow><mn>2</mn><mo stretchy="false">!</mo></mrow></mfrac><mo>+</mo><mfrac><msup><mi>x</mi><mn>3</mn></msup><mrow><mn>3</mn><mo stretchy="false">!</mo></mrow></mfrac><mo>+</mo><mo>…</mo></mrow><annotation encoding="application/x-tex">e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7144em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.7936em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.1771em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.1771em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.123em;"></span><span class="minner">…</span></span></span></span></span></span><!----></span>при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">x=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span>. Когда идёт речь о сходимости ряда, то имеют в виду сходимость числового ряда, заданного непосредственно или получающегося из функционального ряда при тех или иных значениях переменной. Решение многих задач в математике и её приложениях значительно упрощается, если рассматриваемые функции представлять в виде рядов, члены которых являются простейшими функциями. При выполнении некоторых условий математические операции над рядами (сложение, умножение, предельный переход, почленное дифференцирование и интегрирование) проводятся по тем же простым правилам, что и одноимённые операции над конечными суммами.</p><h2 id="h2_chislovыe_ryadы">Числовые ряды</h2><p>Ряд (1) называется сходящимся, если сходится <a href="/c/posledovatel-nost-f5aa37" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->последовательность<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>s</mi><mi>n</mi></msub><msubsup><mo stretchy="false">}</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></msubsup></mrow><annotation encoding="application/x-tex">\{s_n\}^{\infty}_{n=1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">}</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.4519em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> его частичных сумм; в этом случае</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><msub><mi>s</mi><mi>n</mi></msub><mo>=</mo><mi>s</mi></mrow><annotation encoding="application/x-tex">\lim\limits_{n\to\infty}s_n=s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3944em;vertical-align:-0.7em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">s</span></span></span></span></span></span><!----></span> называется суммой ряда и пишут <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>s</mi><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mi>n</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex"> s=\sum_{n=1}^{\infty}u_n.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">s</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></span><!----></span>Таким образом, обозначение (1) применяется как для самого ряда, так и для его суммы (если он сходится). Если последовательность частичных сумм не имеет <a href="/c/predel-v-matematike-6d5ab8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->предела<!--]--><!--]--><!----></a>, то ряд называется расходящимся. Пример сходящегося ряда даёт ряд (2) для любого <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>q</mi><mi mathvariant="normal">∣</mi><mo><</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|q| < 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span>, этот же ряд при любом <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>q</mi><mi mathvariant="normal">∣</mi><mo>⩾</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|q| \geqslant 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> даёт пример расходящегося ряда, в частности, при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi><mo>=</mo><mtext>–</mtext><mn>1</mn></mrow><annotation encoding="application/x-tex">q=–1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">–1</span></span></span></span></span><!----></span> этот ряд есть <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>+</mo><mo>…</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">1-1+1-1+\ldots,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.3174em;vertical-align:-0.1944em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span></span></span></span><!----></span>частичные суммы последнего ряда принимают всего два значения <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span>.</p><p>Если ряд (1) и ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>v</mi><mi>n</mi></msub></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(6)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\sum_{n=1}^{\infty}v_n \tag{6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">6</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>сходятся, то сходится и ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mo stretchy="false">(</mo><msub><mi>u</mi><mi>n</mi></msub><mo>+</mo><msub><mi>v</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\sum_{n=1}^{\infty}(u_n+v_n),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span></span></span><!----></span> называемый суммой рядов (1) и (6), и его сумма равна сумме данных рядов. Если ряд (1) сходится и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">λ</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">λ</span></span></span></span></span><!----></span> – <a href="/c/kompleksnoe-chislo-a7c76d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->комплексное число<!--]--><!--]--><!----></a>, то ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mi>λ</mi><msub><mi>u</mi><mi>n</mi></msub><mo separator="true">,</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\sum_{n=1}^{\infty} λu_n,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">λ</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span><!----></span> называемый произведением ряда на число <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">λ</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">λ</span></span></span></span></span><!----></span>, также сходится и <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mi>λ</mi><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mi>λ</mi><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mi>n</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\sum_{n=1}^{\infty} λu_n=λ\sum_{n=1}^{\infty} u_n.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">λ</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mord mathnormal">λ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></span><!----></span></p><p>Условие сходимости ряда, не использующее величины его суммы, даёт <a href="/c/kriterii-koshi-ac4a25" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->критерий Коши<!--]--><!--]--><!----></a>: для того чтобы ряд (1) сходился, необходимо и достаточно, чтобы для любого <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">ε > 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span> существовало такое число <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>n</mi><mi>ε</mi></msub></mrow><annotation encoding="application/x-tex">n_ε</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">ε</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, что при любом натуральном <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>></mo><msub><mi>n</mi><mi>ε</mi></msub></mrow><annotation encoding="application/x-tex">n > n_ε</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">ε</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> и любом целом <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>⩾</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">p \geqslant 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8311em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span> выполнялось неравенство <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mrow><mo fence="true">∣</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mi>n</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>p</mi></mrow></munderover><msub><mi>u</mi><mi>k</mi></msub><mo fence="true">∣</mo></mrow><mo><</mo><mi>ε</mi><mi mathvariant="normal">.</mi></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\left| \sum_{k=n}^{n+p}u_k \right| < ε.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.1076em;vertical-align:-1.3021em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em;"><span style="top:-3.75em;"><span class="pstrut" style="height:5em;"></span><span style="width:0.333em;height:3.000em;"><svg xmlns="http://www.w3.org/2000/svg" width='0.333em' height='3.000em' viewBox='0 0 333 3000'><path d='M145 15 v585 v1800 v585 c2.667,10,9.667,15,21,15 c10,0,16.667,-5,20,-15 v-585 v-1800 v-585 c-2.667,-10,-9.667,-15,-21,-15 c-10,0,-16.667,5,-20,15z M188 15 H145 v585 v1800 v585 h43z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em;"><span></span></span></span></span></span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8054em;"><span style="top:-1.8479em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mathnormal mtight">n</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3471em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight">p</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3021em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em;"><span style="top:-3.75em;"><span class="pstrut" style="height:5em;"></span><span style="width:0.333em;height:3.000em;"><svg xmlns="http://www.w3.org/2000/svg" width='0.333em' height='3.000em' viewBox='0 0 333 3000'><path d='M145 15 v585 v1800 v585 c2.667,10,9.667,15,21,15 c10,0,16.667,-5,20,-15 v-585 v-1800 v-585 c-2.667,-10,-9.667,-15,-21,-15 c-10,0,-16.667,5,-20,15z M188 15 H145 v585 v1800 v585 h43z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ε</span><span class="mord">.</span></span></span></span></span><!----></span> Отсюда следует, что если ряд (1) сходится, то <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lim\limits_{n\to\infty}u_n=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3944em;vertical-align:-0.7em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span>. Обратное неверно: общий член <a href="/c/garmonicheskii-riad-d5681b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гармонического ряда<!--]--><!--]--><!----></a> <i><a href="/c/garmonicheskii-riad-d5681b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[--> <!--]--><!--]--><!----></a></i><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mo>…</mo><mo>+</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>+</mo><mo>…</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle 1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.123em;"></span><span class="minner">…</span></span></span></span></span></span><!----></span>стремится к нулю, однако этот ряд расходится.</p><p>В теории рядов большую роль играют ряды с неотрицательными членами. Для того чтобы такой ряд сходился, необходимо и достаточно, чтобы последовательность его частичных сумм была ограничена сверху. Для рядов с неотрицательными членами имеются специальные признаки сходимости.</p><p><a href="/c/integral-nyi-priznak-skhodimosti-488a3a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Интегральный признак сходимости<!--]--><!--]--><!----></a>: если функция <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><!----></span> определена при всех <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>⩾</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">x \geqslant 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7733em;vertical-align:-0.1367em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span>, неотрицательна и убывает, то ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(7)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\sum_{n=1}^{\infty} f(n)\tag{7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mclose">)</span></span><span class="tag"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">7</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span> сходится тогда и только тогда, когда сходится интеграл <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi mathvariant="normal">∞</mi></munderover><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi>d</mi><mi>x</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\int\limits_{1}^{\infty} f(x)\,dx.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5408em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9625em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9211em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span><span class="mord">.</span></span></span></span></span></span><!----></span>С помощью этого признака сходимости легко устанавливается, например, что ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><msup><mn>2</mn><mi>α</mi></msup></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mn>3</mn><mi>α</mi></msup></mfrac><mo>+</mo><mo>…</mo><mo>+</mo><mfrac><mn>1</mn><msup><mi>n</mi><mi>α</mi></msup></mfrac><mo>+</mo><mo>…</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle 1+\frac{1}{2^α}+\frac{1}{3^α}+\ldots+\frac{1}{n^α}+\ldots</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5904em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord">3</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5904em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5904em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.123em;"></span><span class="minner">…</span></span></span></span></span></span><!----></span> сходится при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\alpha > 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> и расходится при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>⩽</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">α\leqslant 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7733em;vertical-align:-0.1367em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span>.</p><p><a href="/c/priznak-sravneniia-f59a51" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Признак сравнения<!--]--><!--]--><!----></a>: если для двух рядов (1) и (6) с неотрицательными членами существует такая постоянная <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">c > 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span>, что <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>⩽</mo><msub><mi>u</mi><mi>n</mi></msub><mo>⩽</mo><mi>c</mi><msub><mi>v</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">0 \leqslant u_n\leqslant cv_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7811em;vertical-align:-0.1367em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7867em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord mathnormal">c</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, то из сходимости ряда (6) следует сходимость ряда (1), а из расходимости ряда (1) – расходимость ряда (6). Как следствие признака сравнения получается следующее правило: если<span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><msup><mi>n</mi><mi>α</mi></msup><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mi>c</mi><mo separator="true">,</mo><mspace width="2em"/><msub><mi>u</mi><mi>n</mi></msub><mo>⩾</mo><mn>0</mn><mo separator="true">,</mo></mstyle></mrow><annotation encoding="application/x-tex"> \displaystyle\lim_{n\to\infty}n^\alpha u_n=c,\qquad u_n ⩾ 0,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4144em;vertical-align:-0.7em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8311em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:2em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>то при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">α > 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>⩽</mo><mi>c</mi><mo><</mo><mo>+</mo><mi mathvariant="normal">∞</mi></mrow><annotation encoding="application/x-tex">0 \leqslant c <+ \infty</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7811em;vertical-align:-0.1367em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">+</span><span class="mord">∞</span></span></span></span></span><!----></span> ряд (1) сходится, а при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>⩽</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\alpha\leqslant 1 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7733em;vertical-align:-0.1367em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo><</mo><mi>c</mi><mo>⩽</mo><mo>+</mo><mi mathvariant="normal">∞</mi></mrow><annotation encoding="application/x-tex">0<c\leqslant+\infty</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6835em;vertical-align:-0.0391em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7733em;vertical-align:-0.1367em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">+</span><span class="mord">∞</span></span></span></span></span><!----></span> – расходится.</p><p>Часто оказываются полезными два следствия признака сравнения.</p><p><a href="/c/priznak-dalambera-6b72ac" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Признак Д’Аламбера<!--]--><!--]--><!----></a>: если существует <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><mo stretchy="false">(</mo><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mi mathvariant="normal">/</mi><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mi>c</mi><mo separator="true">,</mo><mspace width="1em"/><msub><mi>u</mi><mi>n</mi></msub><mo>></mo><mn>0</mn><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\lim\limits_{n\to\infty}(u_{n+1}/u_n)=c,\quad u_n > 0,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.45em;vertical-align:-0.7em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>то при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo><</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">c < 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> ряд (1) сходится, а при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex"> c > 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> – расходится.</p><p><a href="/c/priznak-koshi-473694" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Признак Коши<!--]--><!--]--><!----></a>: если существует <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><mo stretchy="false">(</mo><msub><mi>u</mi><mi>n</mi></msub><msup><mo stretchy="false">)</mo><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mi>n</mi></mrow></msup><mo>=</mo><mi>c</mi><mo separator="true">,</mo><mspace width="1em"/><msub><mi>u</mi><mi>n</mi></msub><mo>⩾</mo><mn>0</mn><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\lim\limits_{n\to\infty}(u_n)^{1/n}=c,\quad u_n ⩾ 0,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.638em;vertical-align:-0.7em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1/</span><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8311em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>то при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo><</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">c < 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> ряд (1) сходится, а при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">c > 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> – расходится. </p><p>При <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">c=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> как в случае признака Д’Аламбера, так и в случае признака Коши существуют и сходящиеся, и расходящиеся ряды.</p><p>Важный класс рядов составляют абсолютно сходящиеся ряды: ряд (1) называется абсолютно сходящимся, если сходится ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mi mathvariant="normal">∣</mi><msub><mi>u</mi><mi>n</mi></msub><mi mathvariant="normal">∣</mi><mi mathvariant="normal">.</mi></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\sum_{n=1}^{\infty}|u_n|.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣.</span></span></span></span></span></span><!----></span></p><p>Если ряд абсолютно сходится, то он и просто сходится. Ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mfrac><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mi>n</mi></msup></mrow><msup><mi>n</mi><mrow><mn>2</mn><mi mathvariant="normal">/</mi><mn>3</mn></mrow></msup></mfrac></mrow><annotation encoding="application/x-tex">\sum_{n=1}^{\infty}\frac{(-1)^n}{n^{2/3}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.296em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.814em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2/3</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.704em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span><!----></span>абсолютно сходится, а ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mfrac><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mi>n</mi></msup></mrow><mi>n</mi></mfrac></mrow><annotation encoding="application/x-tex">\sum_{n=1}^{\infty}\frac{(-1)^n}{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span><!----></span>сходится, но не абсолютно. Сумма абсолютно сходящихся рядов и произведение абсолютно сходящегося ряда на число являются абсолютно сходящимися рядами. На абсолютно сходящиеся ряды наиболее полно переносятся свойства конечных сумм. Пусть <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msubsup><mi>u</mi><mi>n</mi><mo>∗</mo></msubsup></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(8)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\sum_{n=1}^{\infty} u^*_n\tag{8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7387em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">8</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>– ряд, состоящий из тех же членов, что и ряд (1), но взятых в другом порядке. Если ряд (1) сходится абсолютно, то ряд (8) также абсолютно сходится и его сумма совпадает с суммой ряда (1). Если ряды (1) и (6) абсолютно сходятся, то ряд, полученный из всевозможных попарных произведений <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>m</mi></msub><msub><mi>v</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">u_mv_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> членов этих рядов, расположенных в произвольном порядке, также абсолютно сходится и его сумма равна произведению сумм рядов (1) и (6), т. е. абсолютно сходящиеся ряды можно перемножать, не заботясь о порядке членов. Признаки сходимости для рядов с неотрицательными членами применимы для установления абсолютной сходимости рядов.</p><p>Ряды, сходящиеся не абсолютно, называют условно сходящимися, для них утверждение о независимости их суммы от порядка слагаемых неверно. Справедлива теорема Римана: посредством надлежащего изменения порядка членов данного условно сходящегося ряда можно получить ряд, имеющий любую наперёд заданную сумму, или расходящийся ряд. Примером условно сходящегося ряда может служить ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>−</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mo>−</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>+</mo><mo>…</mo><mo>=</mo><mi>ln</mi><mo></mo><mn>2</mn><mo>=</mo><mn>0.693</mn><mo>…</mo><mtext> </mtext><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots= \ln 2 = 0.693\ldots\,.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">6</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mop">ln</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.693</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">.</span></span></span></span></span></span><!----></span>Если в этом ряде переставить члены так, чтобы за двумя положительными следовал один отрицательный: <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>7</mn></mfrac><mo>−</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>+</mo><mo>…</mo><mtext> </mtext><mo separator="true">,</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\ldots\,,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">7</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.3174em;vertical-align:-0.1944em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span></span></span></span><!----></span>то его сумма увеличится в 1,5 раза. Существуют признаки сходимости, применимые к не абсолютно сходящимся рядам. Например, <a href="/c/priznak-leibnitsa-286716" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->признак Лейбница<!--]--><!--]--><!----></a>: если <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>n</mi></msub><mo>⩾</mo><msub><mi>n</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">u_n \geqslant n_{n+1} > 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7867em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7474em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span> для всех <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>⩾</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n \geqslant 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7733em;vertical-align:-0.1367em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lim\limits_{n\rightarrow\infty} u_n=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3944em;vertical-align:-0.7em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span>, то знакочередующийся ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mi>u</mi><mi>n</mi></msub></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(9)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\sum_{n=1}^{\infty}(-1)^{n+1}u_n \tag{9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">9</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>сходится. Более общие признаки можно получить для рядов вида <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>a</mi><mi>n</mi></msub><msub><mi>b</mi><mi>n</mi></msub><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(10)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\sum_{n=1}^{\infty} a_n b_n . \tag{10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">10</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span></p><p><a href="/c/priznak-abelia-b37ecb" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Признак Абеля<!--]--><!--]--><!----></a>: если последовательность <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>a</mi><mi>n</mi></msub><msubsup><mo stretchy="false">}</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></msubsup></mrow><annotation encoding="application/x-tex">\{a_n\}_{n=1}^{\infty}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">}</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.4519em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> монотонна и ограничена, а ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>b</mi><mi>n</mi></msub></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\sum_{n=1}^{\infty}b_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><!----></span>сходится, то ряд (10) также сходится.</p><p><a href="/c/priznak-dirikhle-e69830" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Признак Дирихле<!--]--><!--]--><!----></a>: если последовательность <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>a</mi><mi>n</mi></msub><msubsup><mo stretchy="false">}</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></msubsup></mrow><annotation encoding="application/x-tex">\{a_n\}^{\infty}_{n=1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">}</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.4519em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> монотонно стремится к нулю, а последовательность частичных сумм ряда <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>b</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">\sum_{n=1}^{\infty}b_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><!----></span>ограничена, то ряд (10) сходится.</p><p>Иногда рассматриваются ряды вида <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mi>n</mi></msub><mi mathvariant="normal">.</mi></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\sum_{n=-\infty}^{\infty} u_n.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9597em;vertical-align:-1.3083em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.9em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3083em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></span><!----></span></p><p>Такой ряд называют сходящимся, если сходятся ряды <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mi>n</mi></msub><mspace width="1em"/><mtext>и</mtext><mspace width="1em"/><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mrow><mo>−</mo><mi>n</mi></mrow></msub><mo separator="true">,</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\sum_{n=0}^{\infty}u_n \quad\text{и}\quad \sum_{n=1}^{\infty}u_{-n},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">0</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord cyrillic_fallback">и</span></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2583em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span></span><!----></span>сумма этих рядов называется суммой исходного ряда. Более сложную структуру имеют т. н. кратные ряды, т. е. ряды вида <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><msub><mi>n</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>n</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>n</mi><mi>k</mi></msub><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mrow><msub><mi>n</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>n</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>n</mi><mi>k</mi></msub></mrow></msub><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\sum_{n_1,n_2,...,n_k=1}^{\infty} u_{n_1,n_2,...,n_k},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.0546em;vertical-align:-1.4032em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight">...</span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4032em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight">...</span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span></span><!----></span>где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>n</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>n</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>n</mi><mi>k</mi></msub></mrow></msub></mrow><annotation encoding="application/x-tex">u_{n_1,n_2,...,n_k}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight">...</span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> – заданные числа, занумерованные <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span></span><!----></span> индексами <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>n</mi><mn>1</mn></msub><mo separator="true">,</mo><mtext> </mtext><msub><mi>n</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mtext> </mtext><msub><mi>n</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">n_1,\,n_2,\ldots,\,n_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, каждый из которых независимо от других пробегает натуральный ряд чисел. Простейшие ряды этого типа – двойные ряды (<span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">k=2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span></span><!----></span>).</p><p>Для некоторых рядов удаётся получить простые формулы или оценки их остатков <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>r</mi><mi>n</mi></msub><mo>=</mo><mi>s</mi><mo>−</mo><msub><mi>s</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">r_n=s-s_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">s</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, что весьма важно, например, при оценке точности вычислений, проводимых с помощью рядов. Например, для геометрической прогрессии (2) <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>r</mi><mi>n</mi></msub><mo>=</mo><mfrac><msup><mi>q</mi><mi>n</mi></msup><mrow><mn>1</mn><mo>−</mo><mi>q</mi></mrow></mfrac><mo separator="true">,</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi mathvariant="normal">∣</mi><mi>q</mi><mi mathvariant="normal">∣</mi><mo><</mo><mn>1</mn><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex"> r_n=\frac{q^n}{1-q},\,\, \, \, \,|q| < 1,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2218em;vertical-align:-0.8804em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3414em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>для ряда (7) при сделанных предположениях <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi>d</mi><mi>x</mi><mo><</mo><msub><mi>r</mi><mi>n</mi></msub><mo><</mo><munderover><mo>∫</mo><mi>n</mi><mi mathvariant="normal">∞</mi></munderover><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi>d</mi><mi>x</mi><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\int\limits_{n+1}^{\infty} f(x)\,dx < r_n < \int\limits_{n}^{\infty} f(x)\,dx,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5991em;vertical-align:-1.6366em;"></span><span class="mop op-limits"><span class="mspace" style="margin-right:0.4445em;"></span><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9625em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9211em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.6366em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:3.5236em;vertical-align:-1.5611em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9625em;"><span style="top:-1.8989em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9211em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5611em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>а для ряда (9) <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">∣</mi><msub><mi>r</mi><mi>n</mi></msub><mi mathvariant="normal">∣</mi><mo>⩽</mo><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">|r_n| ⩽ u_{n+1}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6389em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></span><!----></span></p><p>С помощью некоторых специальных преобразований иногда удаётся «улучшить» сходимость сходящегося ряда. В математике и её приложениях используются не только сходящиеся, но и расходящиеся ряды. Для последних вводятся более общие понятия <a href="/c/summirovanie-riadov-26bd61" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->суммы ряда<!--]--><!--]--><!----></a>.</p><h2 id="h2_funktsional'nыe_ryadы">Функциональные ряды</h2><p>Понятие ряда естественным образом обобщается на случай, когда членами ряда являются функции <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u_n=u_n(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><!----></span> (действительные, комплексные или, более общо, функции, значения которых принадлежат какому-то <a href="/c/metricheskoe-prostranstvo-c40800" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->метрическому пространству<!--]--><!--]--><!----></a>), определённые на некотором множестве <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span>. В этом случае ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mspace width="1em"/><mi>x</mi><mo>∈</mo><mi>E</mi><mo separator="true">,</mo></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(11)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\sum_{n=1}^{\infty} u_n(x),\quad x \in E, \tag{11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mpunct">,</span></span><span class="tag"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">11</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>называют функциональным рядом. Если этот ряд сходится в каждой точке множества <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span>, то он называется сходящимся на множестве <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span>, и множество <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span> называется областью сходимости. Например, ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mfrac><msub><mi>z</mi><mi>n</mi></msub><mrow><mi>n</mi><mo stretchy="false">!</mo></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\sum_{n=0}^{\infty}\frac{z_n}{n!}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">0</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span><!----></span>сходится на всей комплексной плоскости.</p><p>Сумма сходящегося ряда непрерывных, например на некотором отрезке, функций необязательно является непрерывной функцией. Условия, при которых на функциональные ряды переносятся свойства непрерывности, дифференцируемости и интегрируемости конечных сумм функций, формулируются в терминах равномерной сходимости рядов. Сходящийся ряд (11) называют равномерно сходящимся на множестве <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span>, если во всех точках <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span> отклонения частичных сумм ряда <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><msub><mi>s</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mi>k</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle s_n(x)=\sum_{k=1}^{\infty} u_k(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9535em;vertical-align:-1.3021em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8479em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3021em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span></span><!----></span>от его суммы <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>u</mi><mi>k</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle s(x)=\sum_{k=1}^{\infty} u_k(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9535em;vertical-align:-1.3021em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8479em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3021em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span></span><!----></span>при достаточно больших числах <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span> не превышают одной и той же сколь угодно малой величины; точнее, каково бы ни было наперёд заданное число<span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\varepsilon > 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span>, существует такое число <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>n</mi><mi>ε</mi></msub></mrow><annotation encoding="application/x-tex">n_\varepsilon</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">ε</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, что <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mrow><mo fence="true">∣</mo><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>s</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo fence="true">∣</mo></mrow><mo><</mo><mi>ε</mi></mrow><annotation encoding="application/x-tex">\left|s(x)-s_n(x)\right|<\varepsilon</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">∣</span><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">∣</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ε</span></span></span></span></span></span><!----></span>для всех <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>></mo><msub><mi>n</mi><mi>ε</mi></msub></mrow><annotation encoding="application/x-tex">n > n_\varepsilon</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">ε</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> и всех точек <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">x∈E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span>. Это условие равносильно тому, что <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><munder><mrow><mi>sup</mi><mo></mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>E</mi></mrow></munder><mi mathvariant="normal">∣</mi><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>s</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi mathvariant="normal">∣</mi><mo>=</mo><mn>0.</mn></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\lim_{n\rightarrow\infty}\sup_{x\in E}|s(x)-s_n(x)|=0.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.7161em;vertical-align:-0.9661em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4306em;"><span style="top:-2.1612em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="mrel mtight">∈</span><span class="mord mathnormal mtight" style="margin-right:0.05764em;">E</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">sup</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9661em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.</span></span></span></span></span></span><!----></span>Например, ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msup><mi>x</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle \sum_{n=1}^{\infty} x^{n-1}(x-1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span></span></span><!----></span>равномерно сходится на отрезке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mi>q</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[0, q]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mclose">]</span></span></span></span></span><!----></span> при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo><</mo><mi>q</mi><mo><</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">0 < q < 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6835em;vertical-align:-0.0391em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> и не сходится равномерно на отрезке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[0, 1]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mclose">]</span></span></span></span></span><!----></span>. Для того чтобы ряд (11) равномерно сходился на множестве <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span>, необходимо и достаточно, чтобы для любого <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">ε > 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span> существовало такое число <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>n</mi><mi>ϵ</mi></msub></mrow><annotation encoding="application/x-tex">n_\epsilon</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">ϵ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, что для всех <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>></mo><msub><mi>n</mi><mi>ε</mi></msub><mo separator="true">,</mo><mtext> </mtext><mi>p</mi><mo>⩾</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">n > n_ε,\ p \geqslant 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8311em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">ε</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace"> </span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span> и всех точек <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">x∈E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span> выполнялось неравенство <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">∣</mi><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>+</mo><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mi>p</mi></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi mathvariant="normal">∣</mi><mo><</mo><mi>ε</mi></mrow><annotation encoding="application/x-tex">|u_n(x)+...+u_{n+p}(x)| < \varepsilon</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">...</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2583em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight">p</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ε</span></span></span></span></span></span><!----></span>(критерий Коши). </p><p>Если существует такой сходящийся числовой ряд <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>a</mi><mi>n</mi></msub><mo separator="true">,</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle\sum_{n=1}^{\infty}a_n,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span></span><!----></span>что <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi mathvariant="normal">∣</mi><mo>⩽</mo><msub><mi>a</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">|u_n(x)| \leqslant a_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, для всех <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">x∈E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">n=1,2,\ldots,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span></span></span><!----></span> то ряд (11) равномерно сходится на <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span> (<a href="/c/priznak-veiershtrassa-312ab1" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->признак Вейерштрасса<!--]--><!--]--><!----></a>).</p><p>Сумма равномерно сходящегося ряда непрерывных на некотором отрезке (или, более общо, на некотором <a href="/c/topologicheskoe-prostranstvo-e185d9" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->топологическом пространстве<!--]--><!--]--><!----></a>) функций является непрерывной на этом отрезке (пространстве) функцией. Сумма равномерно сходящегося ряда интегрируемых на некотором множестве функций является интегрируемой на этом множестве функцией, и ряд можно интегрировать почленно. Если последовательность частичных сумм ряда интегрируемых функций сходится в среднем к некоторой интегрируемой функции, то интеграл от этой функции равен сумме ряда из интегралов от членов ряда. Интегрируемость в этих утверждениях понимается в смысле Римана или Лебега. Для интегрируемых по Лебегу функций достаточным условием возможности почленного интегрирования ряда с почти всюду сходящейся последовательностью частичных сумм является равномерная оценка их абсолютных величин некоторой интегрируемой по Лебегу функцией. Если члены сходящегося на некотором отрезке ряда (11) дифференцируемы на нём и ряд из их производных сходится равномерно, то сумма ряда также дифференцируема на этом отрезке и ряд можно дифференцировать почленно.</p><p>Понятие функционального ряда обобщается и на случай кратных рядов. В различных разделах математики и её приложениях широко используются разложения функций в функциональные ряды, прежде всего в <a href="/c/stepennoi-riad-a85b0a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->степенные ряды<!--]--><!--]--><!----></a> и <a href="/c/trigonometricheskii-riad-07eca5" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->тригонометрические ряды<!--]--><!--]--><!----></a>.</p><p>Метод разложения в ряды является эффективным методом изучения функций, вычисления и оценок интегралов, решения всевозможных уравнений (алгебраических, дифференциальных, интегральных). Мощным методом исследования является <a href="/c/garmonicheskii-analiz-074578" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гармонический анализ<!--]--><!--]--><!----></a>, основанный на представлении периодических и почти периодических функций <a href="/c/riad-fur-e-6e7e4a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->рядами Фурье<!--]--><!--]--><!----></a><i>. </i>См. также <a href="/c/asimptoticheskii-riad-a0a828" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->асимптотический ряд<!--]--><!--]--><!----></a>, <a href="/c/riad-lorana-4d06d8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ряд Лорана<!--]--><!--]--><!----></a>, <a href="/c/riad-teilora-1b70fd" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ряд Тейлора<!--]--><!--]--><!----></a><i>.</i></p><span class="author _note-exclude"><span><span itemprop="sourceOrganization">Редакция математических наук. </span></span>По материалам статьи Л. Д. Кудрявцева и А. П. Юшкевича из Математического энциклопедического словаря.</span></section></section><!--]--></div><span class="bre-inline-menu _article-meta" style=""><meta itemprop="description" content="Ряд в математике, бесконечная сумма или, что то же самое, Слагаемые называются членами ряда ( иногда называют общим членом ряда), суммы –..."><span><span class="bre-inline-menu__item _article-meta max-md:tw-block"><!--[-->Опубликовано <!--]--><span itemprop="datePublished">18 мая 2022 г. в 19:21 (GMT+3). </span></span><span class="bre-inline-menu__item _article-meta max-md:tw-block"> Последнее обновление <span itemprop="dateModified">18 мая 2022 г. в 19:21 (GMT+3).</span></span></span><span class="-flex-divider"></span><span class="bre-inline-menu__item tw-items-start"><button type="button" class="b-button tw-gap-2 b-button--link -text-button-text tw-rounded-lg tw-cursor-pointer" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[-->Связаться с редакцией<!--]--></span></button></span></span></div></div><div class="bre-tags-wrap"><!--[--><span data-v-063d9480><a href="/l/matematicheskie-ob-ekty-96f114" class="bre-article-tag bre-article-tag__link _default _no-border" data-v-063d9480>#Математические объекты</a><!----></span><span data-v-063d9480><a href="/l/riady-0f226a" class="bre-article-tag bre-article-tag__link _default _no-border" data-v-063d9480>#Ряды</a><!----></span><span data-v-063d9480><a href="/l/skhodimost-049181" class="bre-article-tag bre-article-tag__link _default _no-border" data-v-063d9480>#Сходимость</a><!----></span><!--]--></div></div><aside class="bre-article-page__sidebar -show-on-desktop-s" style=""><!----><nav class="bre-article-loc lg:tw-sticky"><div class="bre-article-loc-button"><span class="bre-article-loc-title">Содержание</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><div class="bre-article-loc-short">Числовые ряды</div></div><!----></nav><div class="bre-article-page__sidebar-wrapper"><div class="article-sidebar"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s"></div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><!----><!----><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Математика"><meta itemprop="caption" content="Математика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120" onerror="this.setAttribute('data-error', 1)" alt="Математика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=kwZEMADbF0h1k2QM5MQ63g&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=iDjHjthf4TWMMOWxyvO9-Q&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=aOq57ZwrPJzlZoA0JyAqNA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=RysrupjbIa5XYWB_pfATYQ&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=8eQ4RSvaDJue-elzThMhjA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=4tn4w-MU4hKmUoYIwAeqew&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=SXvkdFSbX19Vh-sgDBVBiQ&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1920 1920w" title="Математика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Приближения, разложения и асимптотики</dd><!--]--><!--]--><!----></dl></div></div></div></div></aside></div><!----></article></div><!--]--></div><!----><!--]--><div></div></main><footer class="bre-footer" itemscope itemprop="hasPart" itemtype="https://schema.org/WPFooter"><meta itemprop="copyrightNotice" content="&copy;&nbsp;АНО БРЭ, 2022&nbsp;&mdash;&nbsp;2024. Все права защищены."><div class="bre-footer__inner" itemprop="hasPart" itemscope itemtype="https://schema.org/SiteNavigationElement"><!--[--><div class="_menu bre-footer-section"><ul class="bre-inline-menu _footer-link-groups"><!--[--><li class="_footer-links bre-inline-menu__item"><ul class="bre-inline-menu _footer-links"><!--[--><li class="_button bre-inline-menu__item"><a href="/p/about-project" class="" itemprop="url"><!----><span>О портале</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/author" class="" itemprop="url"><!----><span>Стать автором</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/partners" class="" itemprop="url"><!----><span>Партнёры</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/copyright-holders" class="" itemprop="url"><!----><span>Правообладателям</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/contacts" class="" itemprop="url"><!----><span>Контакты</span></a></li><li class="_button _full-width bre-inline-menu__item"><a href="https://old.bigenc.ru/" rel="noopener noreferrer nofollow" target="_blank" itemprop="url"><!----><span>Старая версия сайта</span></a></li><!--]--></ul></li><li class="bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="bre-inline-menu__item"><a href="https://t.me/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Telegram"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="m2.319 11.552 4.147 1.555 1.605 5.189a.49.49 0 0 0 .562.336.487.487 0 0 0 .214-.102l2.312-1.893a.686.686 0 0 1 .84-.024l4.17 3.043a.486.486 0 0 0 .766-.297L19.99 4.59a.494.494 0 0 0-.397-.584.49.49 0 0 0-.258.025l-17.022 6.6a.491.491 0 0 0 .006.92Zm5.493.728 8.107-5.02c.145-.088.294.11.17.227l-6.69 6.25a1.39 1.39 0 0 0-.43.832l-.228 1.698c-.03.227-.346.25-.41.03l-.875-3.096a.823.823 0 0 1 .356-.921Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://vk.com/bigenc_ru" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="ВКонтакте"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="M21.969 6.82c.17.425-.353 1.418-1.567 2.978-.17.213-.389.496-.656.85-.559.663-.875 1.1-.947 1.313-.122.284-.073.555.145.815.122.142.401.426.838.851h.037v.036c.996.874 1.664 1.62 2.004 2.234l.073.141.073.267v.336l-.255.266-.62.124-2.66.071c-.17.024-.37 0-.601-.07a2.607 2.607 0 0 1-.528-.213l-.22-.142a4.162 4.162 0 0 1-.728-.639 28.415 28.415 0 0 1-.71-.78 3.62 3.62 0 0 0-.638-.585c-.219-.153-.413-.206-.583-.16a.18.18 0 0 0-.091.036 1.473 1.473 0 0 0-.183.16 1.148 1.148 0 0 0-.218.301 2.19 2.19 0 0 0-.164.514c-.049.225-.073.49-.073.798a.939.939 0 0 1-.036.266 1.154 1.154 0 0 1-.073.195l-.037.036c-.146.141-.34.212-.583.212h-1.166a4.34 4.34 0 0 1-1.548-.141 5.719 5.719 0 0 1-1.367-.55c-.389-.225-.74-.45-1.057-.674a6.361 6.361 0 0 1-.729-.585l-.255-.248a1.58 1.58 0 0 1-.291-.284c-.122-.141-.37-.449-.747-.922a23.006 23.006 0 0 1-1.111-1.524A29.008 29.008 0 0 1 3.42 9.957 34.16 34.16 0 0 1 2.073 7.21.8.8 0 0 1 2 6.926c0-.071.012-.13.036-.177l.037-.036c.097-.142.291-.213.583-.213h2.879a.49.49 0 0 1 .218.054l.182.088.037.036c.121.07.206.177.255.319.146.33.31.68.492 1.046s.322.644.419.833l.146.284c.218.402.419.75.6 1.046.183.295.347.526.493.691.146.166.291.296.437.39.146.095.267.142.365.142.097 0 .194-.012.291-.036l.036-.053.128-.23.146-.461.09-.816V8.557a6.15 6.15 0 0 0-.108-.727 2.135 2.135 0 0 0-.146-.479l-.037-.106c-.17-.236-.473-.39-.91-.461-.074 0-.05-.083.072-.248a1.55 1.55 0 0 1 .401-.284c.364-.189 1.19-.272 2.478-.248.559 0 1.032.047 1.421.142.121.023.23.065.328.124.097.059.17.142.219.248.048.106.085.213.109.32.024.106.036.26.036.46v.55a5.784 5.784 0 0 0-.036.709v.85c0 .072-.006.214-.018.426a9.251 9.251 0 0 0-.018.497c0 .118.012.254.036.408.024.153.067.283.128.39a.55.55 0 0 0 .4.283c.061.012.152-.023.274-.106a2.55 2.55 0 0 0 .4-.355c.146-.153.328-.384.547-.691.219-.307.45-.662.692-1.064a18.64 18.64 0 0 0 1.13-2.305c.024-.047.055-.1.091-.16.037-.058.08-.1.128-.123h.036l.037-.036.145-.035h.219l2.988-.036c.267-.023.492-.011.674.036.182.047.286.106.31.177l.073.106Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://dzen.ru/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Дзен"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <defs> <mask id="inner-star"> <circle cx="12" cy="12" r="9" fill="#fff"/> <path d="M21 12.0964V11.9036C17.0143 11.775 15.195 11.6786 13.7357 10.2643C12.3214 8.805 12.2186 6.98571 12.0964 3H11.9036C11.775 6.98571 11.6786 8.805 10.2643 10.2643C8.805 11.6786 6.98571 11.7814 3 11.9036V12.0964C6.98571 12.225 8.805 12.3214 10.2643 13.7357C11.6786 15.195 11.7814 17.0143 11.9036 21H12.0964C12.225 17.0143 12.3214 15.195 13.7357 13.7357C15.195 12.3214 17.0143 12.2186 21 12.0964Z" fill="#000"/> </mask> </defs> <circle cx="12" cy="12" r="9" fill="currentColor" mask="url(#inner-star)"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://ok.ru/group/70000000707835" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Одноклассники"><svg viewBox="0 0 200 200" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M100.1 99.2C109.8 99.2 118.6 95.2 124.9 88.9C131.2 82.6 135.2 73.8 135.2 64.1C135.2 54.4 131.2 45.6 124.9 39.3C118.6 33 109.8 29 100.1 29C90.4 29 81.6 33 75.3 39.3C69 45.5 65 54.3 65 64.1C65 73.9 69 82.6 75.3 88.9C81.6 95.2 90.5 99.2 100.1 99.2ZM88.9 52.7C91.8 49.8 95.8 48 100.2 48C104.7 48 108.6 49.8 111.5 52.7C114.4 55.6 116.2 59.6 116.2 64C116.2 68.5 114.4 72.4 111.5 75.3C108.6 78.2 104.6 80 100.2 80C95.7 80 91.8 78.2 88.9 75.3C86 72.4 84.2 68.4 84.2 64C84.2 59.6 86.1 55.6 88.9 52.7Z" fill="currentColor"/> <path d="M147.5 113.4L137.2 99.3C136.6 98.5 135.4 98.4 134.7 99.1C125 107.4 113 112.8 100.1 112.8C87.2 112.8 75.3 107.4 65.5 99.1C64.8 98.5 63.6 98.6 63 99.3L52.7 113.4C52.2 114.1 52.3 115 52.9 115.6C61.6 122.6 71.7 127.4 82.2 129.9L60.4 168.3C59.8 169.4 60.6 170.8 61.8 170.8H83.1C83.8 170.8 84.4 170.4 84.6 169.7L99.8 135.7L115 169.7C115.2 170.3 115.8 170.8 116.5 170.8H137.8C139.1 170.8 139.8 169.5 139.2 168.3L117.4 129.9C127.9 127.4 138 122.8 146.7 115.6C148 115 148.1 114.1 147.5 113.4Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://www.youtube.com/channel/UCY4SUgcT8rBt4EgK9CAg6Ng" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="YouTube"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M21.1623 4.21363C22.1781 4.48683 22.9706 5.28671 23.2453 6.30818C23.9638 9.22233 23.917 14.7319 23.2604 17.6916C22.9887 18.713 22.1932 19.5099 21.1774 19.7861C18.3094 20.4995 5.46414 20.4114 2.76226 19.7861C1.74641 19.5129 0.953955 18.713 0.679238 17.6916C0.0015019 14.914 0.0482943 9.04019 0.664143 6.32335C0.935842 5.30188 1.73131 4.50505 2.74716 4.22881C6.58112 3.42438 19.7977 3.68392 21.1623 4.21363ZM9.69057 8.44824L15.8491 11.9999L9.69057 15.5515V8.44824Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://rutube.ru/channel/29677486/" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="RUTUBE"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M3 6.45205C3 4.54554 4.54554 3 6.45205 3H17.5479C19.4545 3 21 4.54554 21 6.45205V17.5479C21 19.4545 19.4545 21 17.5479 21H6.45205C4.54554 21 3 19.4545 3 17.5479V6.45205ZM14.8657 7.43835H6.20547V16.8082H8.6159V13.7598H13.2346L15.342 16.8082H18.0411L15.7173 13.7458C16.439 13.6335 16.9586 13.3665 17.2761 12.9451C17.5936 12.5237 17.7524 11.8494 17.7524 10.9503V10.2479C17.7524 9.71409 17.6947 9.29268 17.5936 8.96955C17.4926 8.64646 17.3194 8.3655 17.0741 8.11265C16.8142 7.87383 16.5256 7.70526 16.1792 7.59288C15.8328 7.49454 15.3997 7.43835 14.8657 7.43835ZM14.476 11.6948H8.6159V9.50336H14.476C14.808 9.50336 15.0389 9.55957 15.1544 9.65789C15.2698 9.75622 15.342 9.93886 15.342 10.2058V10.9925C15.342 11.2734 15.2698 11.456 15.1544 11.5543C15.0389 11.6527 14.808 11.6948 14.476 11.6948ZM19.274 6.57535C19.274 7.18816 18.7771 7.68494 18.1646 7.68494C17.5516 7.68494 17.0548 7.18816 17.0548 6.57535C17.0548 5.96254 17.5516 5.46576 18.1646 5.46576C18.7771 5.46576 19.274 5.96254 19.274 6.57535Z" fill="currentColor"/> </svg> </span><!----></a></li><!--]--></ul></li><!--]--></ul></div><div class="_border bre-footer-section"><ul class="bre-inline-menu"><!--[--><li class="_footer-text bre-inline-menu__item"><span><!----><span>Научно-образовательный портал «Большая российская энциклопедия»<br />Создан при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации.<br />Свидетельство о регистрации СМИ ЭЛ № ФС77-84198, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 15 ноября 2022 года.<br>ISSN: 2949-2076</span></span></li><li class="_footer-text bre-inline-menu__item"><span><!----><span>Учредитель: Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия» <br /> Главный редактор: Кравец С. Л. <br />Телефон редакции: <a href="tel:+74959179000">+7 (495) 917 90 00</a> <br />Эл. почта редакции: <a href="mailto:secretar@greatbook.ru">secretar@greatbook.ru</a></span></span></li><li class="_half-width bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-[60px] _no-icon-margin" title="АНО «БРЭ»"><svg viewBox="0 0 60 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M25.577.226C14.027 1.426 4.087 8.42.903 17.586c-1.187 3.417-1.206 8.83-.045 12.525 4.42 14.064 24.29 21.772 41.012 15.91 4.81-1.686 7.426-3.253 11.082-6.64 9.507-8.81 9.383-22.047-.29-31.086C45.986 2.058 36.151-.872 25.576.226zm12.902 3.345c1.283.355 3.172 1.009 4.198 1.452l1.866.806-2.498.863c-2.472.855-2.529.854-5.365-.107-3.749-1.27-9.587-1.36-14.153-.22-2.764.692-3.65.744-5.015.298-.91-.298-1.657-.717-1.657-.93 0-.435 4.797-2.101 7.962-2.765 2.75-.577 11.74-.207 14.662.603zM16.498 7.354c1.654.685 1.69.756 1.736 3.35.051 2.917.542 5.21.962 4.494.147-.251.406-1.213.574-2.138.169-.924.839-2.208 1.49-2.854 1.145-1.134 2.687-1.289 5.207-.523.928.282.818 10.774-.116 11.128-.385.147-.7.475-.7.73 0 .284 1.353.395 3.494.288 3.904-.195 5.13-.936 5.627-3.4.42-2.078-1.08-3.728-3.748-4.125l-2.108-.313v-2.05c0-2.032.015-2.051 1.617-2.051 1.196 0 1.764.27 2.187 1.04l.57 1.039.28-1.155c.768-3.16 5.399-.393 7.647 4.569 1.253 2.765 2.241 6.748 1.786 7.198-.136.136-5.723.237-12.415.226-9.379-.016-12.595-.173-14.033-.686-1.026-.366-1.918-.67-1.982-.673-.065-.004-.117.409-.117.917 0 .877-.311.924-6.085.924H2.285l.316-1.733c.84-4.62 3.604-9.246 7.303-12.224 3.61-2.905 4.04-3.034 6.594-1.978zm31.704.637c4.444 3.03 8.238 8.665 8.977 13.334l.311 1.964H48.171l-.258-2.821c-.33-3.602-2.508-8.06-5.049-10.334-1.046-.936-1.816-1.789-1.71-1.894.31-.306 3.796-1.516 4.471-1.552.339-.018 1.498.568 2.577 1.303zm-15.32.018c.815.318.741.406-.584.697-1.994.438-8.188-.192-6.88-.7 1.21-.47 6.259-.468 7.463.003zm-1.45 8.003c1.79 1.593 1.82 3.79.064 4.582-1.793.81-2.58-.147-2.58-3.137 0-2.827.585-3.163 2.516-1.445zm-17.73 10.05c-.164 1.016-.152 1.848.026 1.848s1.017-.728 1.864-1.618l1.54-1.617H43.459l-.306 1.964c-.824 5.29-2.498 8.885-4.907 10.53-.976.667-1.813.75-5.132.505l-3.964-.292-.132-5.43c-.129-5.327-.112-5.429.897-5.429 1.575 0 2.733 1.32 2.733 3.115 0 1.338-.219 1.668-1.4 2.11-1.494.558-1.867 1.244-.676 1.244 2.64 0 4.921-3.225 3.992-5.646-.584-1.52-1.303-1.747-5.542-1.747-2.972 0-3.418.095-2.744.583.696.504.787 1.301.672 5.882l-.133 5.298-2.262.374c-2.662.442-3.293.074-4.047-2.355-1.024-3.302-.923-3.132-1.405-2.376-.239.374-.438 1.837-.442 3.252l-.007 2.572-2.547 1.046c-1.475.605-2.943.921-3.486.75-1.374-.431-6.27-5.358-7.66-7.707-1.317-2.227-2.856-7.512-2.4-8.243.166-.266 2.655-.462 5.864-.462H14l-.299 1.848zm43.493.335c-.525 3.8-2.78 7.8-6.359 11.283-1.79 1.742-3.553 3.167-3.916 3.167-.364 0-1.837-.446-3.273-.99l-2.612-.99 2.245-2.36c2.681-2.82 4.187-5.74 4.564-8.85.438-3.62.174-3.444 5.144-3.444h4.51l-.303 2.184zM34.867 39.034c-1.24.715-5.09 1.044-8.004.684-4.526-.56-2.874-1.182 3.103-1.168 4.098.01 5.484.147 4.9.484zm7.727 1.625c1.2.405 2.182.91 2.182 1.122 0 .54-4.773 2.26-8.396 3.028-3.871.82-9.19.82-13.061 0-3.535-.749-8.397-2.485-8.397-2.997 0-.195.81-.62 1.801-.944 1.592-.52 1.955-.489 3.13.273 1.141.74 2.277.86 8.11.86 5.997 0 7.028-.116 8.883-1 2.592-1.235 3.025-1.26 5.748-.342z" fill="currentColor"/></svg> </span><!----></span></li><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации"><svg viewBox="0 0 48 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M23.723.258c.06.157 0 .258-.15.258a.254.254 0 0 0-.248.258c0 .142.118.258.263.258.144 0 .216.078.159.172-.058.095.056.172.253.172.196 0 .31-.077.253-.172-.058-.094.014-.172.159-.172.149 0 .263-.146.263-.338 0-.232-.08-.308-.255-.24-.183.072-.226.022-.151-.177.077-.203.005-.277-.27-.277-.262 0-.344.077-.276.258zm-.11 1.57c-.21.214-.128.712.134.815.414.162.781-.076.726-.471-.05-.362-.62-.59-.86-.344zm-.086 1.303c-.277.283-.254 1.342.058 2.608.405 1.644.432 1.654.764.283.508-2.103.396-3.097-.35-3.097a.767.767 0 0 0-.472.206zm-1.65.296c-.984.45-1.211 1.079-.825 2.284.161.502.398 1.124.526 1.382.218.44.284.463 1.032.363.44-.059.823-.127.853-.152.08-.067-.675-3.928-.796-4.07-.056-.066-.412.02-.79.193zm3.392-.113c-.143.439-.788 3.943-.734 3.989.03.025.415.094.855.153.747.1.814.076 1.032-.363.127-.258.364-.88.525-1.382.432-1.348.155-1.927-1.17-2.44-.323-.125-.457-.114-.509.043zM10.175 4.2c-.473.491-.977.824-1.428.944-.977.26-1.39.573-.612.463.325-.046.932-.13 1.35-.186.418-.056 1.193-.33 1.723-.611.53-.28 1.214-.511 1.519-.514.552-.006.55-.008-.288-.429-.464-.233-1-.424-1.189-.425-.19 0-.673.34-1.075.758zm25.301-.313c-.741.39-.747.4-.25.407.28.004.963.233 1.519.508.974.484 1.306.572 2.95.783.912.117.64-.153-.443-.44-.45-.12-.954-.454-1.427-.945-.842-.874-1.193-.921-2.349-.313zm-18.727.71c-.182.21-.193.3-.04.352.112.038.161.14.109.227-.053.086.015.157.15.157.293 0 .477-.415.342-.774-.123-.326-.251-.317-.56.038zm13.94-.038c-.095.254.023.774.176.774.043 0 .193-.116.332-.258.225-.23.225-.287 0-.516-.14-.142-.289-.258-.332-.258-.043 0-.122.116-.175.258zm-18.352.043c-.01.071-.006.361.008.645.015.284-.092.855-.236 1.27-.665 1.913-.131 2.904 1.849 3.431l.675.18-.498-.376c-.83-.627-1.274-1.18-1.274-1.584 0-.21.19-.82.421-1.356.548-1.26.563-2.088.043-2.23-.524-.143-.967-.134-.988.02zm22.253-.014c-.43.12-.378 1.028.127 2.191.232.535.422 1.153.422 1.373 0 .42-.442.973-1.275 1.597l-.497.372.59-.13c1.968-.433 2.597-1.564 1.933-3.475-.144-.414-.239-1.024-.211-1.355.045-.535.004-.605-.372-.629a2.652 2.652 0 0 0-.717.056zM3.422 5.958c-.489.633-.737 1.705-.609 2.632.205 1.48.872 2.56 2.75 4.454.968.977 1.799 1.737 1.845 1.69.212-.216-.4-1.476-1.08-2.223-.728-.8-1.653-2.533-1.539-2.882.031-.095.54.524 1.13 1.377.59.852 1.132 1.512 1.204 1.467.072-.046.177-.272.234-.504.08-.325-.126-.783-.912-2.023-.56-.88-1.327-2.24-1.706-3.021-.38-.78-.753-1.42-.83-1.42-.075 0-.295.204-.487.453zm13.32-.109c0 .26.088.352.296.312.162-.032.295-.172.295-.312 0-.139-.133-.279-.295-.31-.208-.042-.296.051-.296.31zm13.924-.172c-.141.233.05.517.348.517.134 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm12.595 1.248c-.38.78-1.147 2.14-1.706 3.021-.787 1.24-.993 1.697-.913 2.023.057.232.163.459.235.504.072.045.613-.615 1.204-1.467.59-.853 1.098-1.472 1.13-1.377.113.349-.812 2.082-1.54 2.882-.68.747-1.292 2.007-1.08 2.222.047.048.877-.712 1.846-1.689 2.38-2.4 3.154-4.12 2.674-5.937-.185-.698-.761-1.602-1.022-1.602-.076 0-.449.64-.828 1.42zM7.924 5.877c-.552.206-.574.402-.127 1.09.395.609.425 1.246.08 1.711-.137.184-.248.449-.248.59 0 .19.097.16.39-.12.528-.505.622-.474.622.21 0 .343.143.749.35.989l.349.406-.1-.475c-.06-.286.009-.688.173-1.011.312-.615.256-1.332-.209-2.684-.324-.943-.453-1.014-1.28-.706zm30.871.706c-.465 1.352-.52 2.069-.208 2.684.164.323.232.725.172 1.011l-.1.475.35-.406c.206-.24.35-.646.35-.99 0-.683.093-.714.621-.209.293.28.39.31.39.12 0-.141-.11-.406-.247-.59-.345-.465-.316-1.102.079-1.71.457-.704.426-.882-.194-1.102-.814-.289-.88-.25-1.213.717zm-22.156.03c-.112.296.049 1.64.265 2.227.117.315.162.264.334-.378.273-1.02.178-1.991-.2-2.065a.365.365 0 0 0-.4.216zm14.005.009c-.132.35.036 1.882.25 2.27.122.224.203.069.356-.688.11-.537.175-1.15.145-1.363-.064-.461-.601-.618-.752-.22zm-15.213.127c-.54.266-.614.788-.251 1.775.3.819.336.85.895.793.32-.032.595-.07.61-.086.014-.014-.091-.627-.235-1.36-.266-1.36-.348-1.451-1.02-1.122zm2.414.004c-.114.362-.428 2.024-.428 2.268 0 .127.237.266.527.31.48.07.554.016.84-.627.172-.387.316-.878.318-1.091.006-.703-1.073-1.442-1.257-.86zm11.397.118c-.435.444-.442 1.04-.021 1.882.29.58.385.644.844.576.587-.088.6-.162.292-1.672-.235-1.153-.542-1.37-1.115-.786zm2.307 1c-.144.733-.249 1.346-.234 1.36.014.015.285.054.602.086.544.056.593.015.905-.754.189-.465.288-.986.23-1.217-.087-.355-.707-.808-1.105-.808-.075 0-.255.6-.398 1.333zm-9.406.066c-.41.168-.413.18-.094.419.457.343 3.443.344 3.902.001.316-.237.31-.252-.148-.43-.591-.23-3.09-.223-3.66.01zm-.928.947c-.186.15-.793.495-1.35.769-1.002.492-1.007.497-.41.497.784 0 2.113-.412 2.857-.887l.59-.377-.421-.125c-.656-.194-.902-.17-1.266.123zm4.304-.123l-.422.125.59.377c.746.476 2.075.888 2.858.886l.602-.002-.9-.427c-.496-.236-1.116-.583-1.377-.773-.501-.364-.67-.387-1.351-.186zm-9.283.805c-.14.053-.365.132-.502.177-.218.072-.218.101 0 .242.531.342 3.034.11 2.683-.25-.138-.14-1.898-.276-2.181-.17zm13.797.01c-.255.045-.464.145-.464.223 0 .238.486.352 1.49.349.986-.003 1.572-.2 1.233-.414-.25-.157-1.688-.257-2.259-.158zm-14.81.807c0 .49.798 1.74 1.55 2.43.904.828 1.277.996.988.446-.264-.503-.213-.575.2-.28.551.394.865.356.638-.076-.212-.403-.049-.435.412-.08.458.353.643.314.512-.106-.11-.354-.106-.355.356-.047.462.309.466.308.374-.052-.092-.357-.082-.356.5.047.623.43 2.109.584 2.318.238.06-.098-.093-.172-.358-.172-.255 0-.798-.165-1.208-.367l-.744-.368.48-.4.48-.4-.588-.007-.588-.006.58-.317c.632-.346.96-.861.41-.646-.54.211-4.146.31-5.257.145-.705-.105-1.055-.1-1.055.018zm10.999-.06c.04.124.335.37.653.543l.58.317-.589.006-.588.006.48.4.48.401-.744.368c-.41.202-.953.367-1.207.367-.266 0-.419.074-.36.172.21.346 1.696.193 2.32-.238.582-.403.591-.404.5-.046-.093.36-.088.36.374.051.461-.308.466-.307.356.047-.131.42.054.459.511.106.46-.355.624-.323.412.08-.226.432.087.47.638.076.413-.295.465-.223.2.28-.289.55.085.382.987-.446.753-.69 1.55-1.94 1.55-2.43 0-.117-.35-.123-1.054-.018-1.11.166-4.716.066-5.256-.145-.224-.088-.295-.057-.243.103zm-11.42.515c-.153.251.405 1.128 1.001 1.576l.517.389-.294-.423a12.588 12.588 0 0 1-.637-1.068c-.366-.691-.426-.74-.587-.474zm17.818.453c-.193.367-.484.856-.646 1.089l-.295.423.517-.389c.673-.505 1.184-1.373.95-1.611-.12-.122-.285.032-.526.488zM.61 11.206c-.159.262.61 1.77 1.246 2.445.734.778 2.12 1.771 3.374 2.417.813.42.915.436 1.159.188.147-.15.239-.293.205-.318a74.556 74.556 0 0 0-.906-.584 9.907 9.907 0 0 1-1.52-1.248c-.65-.683-.657-.702-.188-.521.589.227 1.262.691 2.383 1.644.746.635 1.772 1.09 1.772.785 0-.171-2-2.117-3.088-3.004-.539-.439-1.365-.997-1.836-1.24-.912-.471-2.454-.806-2.6-.564zm45.728-.016c-1.464.295-3.226 1.487-5.419 3.666-.58.576-1.054 1.098-1.054 1.158 0 .304 1.026-.15 1.772-.785 1.12-.953 1.794-1.417 2.383-1.644.469-.18.462-.162-.19.521-.37.39-1.054.95-1.518 1.248-.464.296-.872.56-.906.584-.035.025.057.168.204.318.244.248.346.232 1.16-.188 1.253-.646 2.64-1.64 3.373-2.417.926-.982 1.595-2.716 1.011-2.621-.064.01-.431.082-.816.16zm-32.82.184c-.8.3-.994 1.35-.38 2.064.219.254.295.249.911-.062.645-.325.708-.327 1.535-.051 1.27.424 1.602.2.622-.422-.43-.273-.988-.772-1.24-1.108-.474-.634-.702-.7-1.448-.42zm3.818.077c-.378.292-.784.267-.889-.053-.048-.148.133-.213.577-.21.61.005.628.02.312.263zm14.216-.053c-.104.32-.51.345-.889.053-.316-.243-.299-.258.313-.263.444-.004.625.062.576.21zm1.481.397c-.252.336-.81.835-1.24 1.108-.98.621-.649.845.623.422.827-.276.89-.274 1.534.051.616.31.693.316.91.062.638-.741.418-1.768-.445-2.075-.763-.27-.884-.233-1.382.432zm-25.399.065c-.297.567-.205 2.075.178 2.88.31.655 2.21 2.636 2.526 2.636.215 0-.294-1.246-.574-1.406-.298-.17-1.123-1.516-1.123-1.83 0-.109.318.154.706.584.697.77.709.775.908.396.181-.345.112-.492-.68-1.442-.484-.582-1.022-1.305-1.196-1.605-.367-.633-.504-.672-.745-.213zm31.987.213c-.174.3-.713 1.023-1.198 1.605-.79.95-.86 1.097-.678 1.442.199.38.21.374.907-.396.389-.43.706-.693.706-.585 0 .316-.825 1.661-1.122 1.83-.28.16-.79 1.407-.575 1.407.317 0 2.215-1.98 2.526-2.636.383-.805.476-2.313.178-2.88-.241-.46-.377-.42-.744.213zm-25.41.486c0 .095-.114.172-.253.172-.14 0-.254-.077-.254-.172 0-.095.114-.172.254-.172.139 0 .253.077.253.172zm20 0c.057.095-.015.172-.16.172-.144 0-.262-.077-.262-.172 0-.095.071-.172.158-.172.088 0 .206.077.264.172zm-14.43.497c0 .091.322.48.717.863l.717.698.054-.635c.04-.454-.03-.698-.243-.857-.212-.158-.33-.167-.413-.032-.083.138-.213.136-.474-.006-.208-.114-.359-.127-.359-.03zm7.193.069c-.214.159-.283.402-.244.857l.054.635.718-.698c.752-.732.953-1.157.405-.858-.198.108-.37.11-.473.005-.103-.104-.27-.083-.46.058zm-8.038.304c0 .293-.052.318-.337.162-.525-.286-.4.055.285.773.561.59.634.621.747.327.264-.686.163-1.21-.273-1.412-.374-.174-.422-.157-.422.15zm9.663-.132c-.397.183-.485.739-.222 1.413.124.318.18.293.747-.335.676-.747.791-1.065.288-.79-.264.144-.336.117-.38-.142-.044-.266-.119-.29-.433-.146zm-7.097 1.126c-.04.796.019 1.088.285 1.419.331.412.336.413.593.072.4-.533.33-1.362-.168-1.965-.24-.291-.487-.53-.548-.53-.062.001-.134.452-.162 1.004zm4.285-.474c-.498.603-.569 1.432-.168 1.965.257.341.262.34.594-.072.265-.33.324-.623.284-1.42-.027-.55-.1-1.002-.162-1.002-.061 0-.308.238-.548.529zm-11.354.155c-.573.173-1.067.294-1.097.269-.03-.025-.26-.096-.513-.157-.586-.144-.484.267.14.557.77.358 1.725.244 2.184-.26.34-.374.55-.792.372-.736l-1.086.327zm1.244.142c-.25.265-.454.619-.454.786 0 .283.03.282.464-.026.6-.425 1.474-.725 2.135-.732.497-.005.507-.018.196-.258-.18-.139-.678-.253-1.108-.253-.634 0-.864.09-1.233.483zm14.304-.23c-.31.24-.3.253.196.258.662.007 1.536.307 2.135.732.452.32.464.321.464.006 0-.178-.213-.532-.474-.786-.37-.362-.638-.463-1.233-.463-.418 0-.908.114-1.088.253zm2.457-.093c0 .074.187.34.414.59.459.504 1.414.618 2.185.26.623-.29.726-.7.14-.557-.253.061-.485.133-.515.158-.03.025-.543-.096-1.14-.27-.596-.174-1.084-.256-1.084-.181zm-12.489.748c0 .77.366 1.501.751 1.501.259 0 .43-.37.43-.928 0-.348-.78-1.309-1.064-1.309-.064 0-.117.332-.117.736zm7.373-.253c-.444.473-.555.94-.35 1.482.145.386.508.337.816-.11.27-.394.37-1.854.125-1.854-.075 0-.341.217-.59.482zm-16.74.488c-.643 1 .008 2.858 1.268 3.617.577.348.664.584.167.452-.186-.05-.338-.144-.338-.209 0-.164-2.158-1.804-2.825-2.148-.57-.293-1.965-.438-2.173-.226-.215.22.51 1.366 1.183 1.868.361.27 1.074.692 1.583.938.746.36.955.402 1.07.216.227-.364.19-.419-.496-.734a6.155 6.155 0 0 1-1.14-.708c-.82-.683-.074-.502 1.09.265.575.378 1.175.689 1.334.69.206.002.169.065-.13.22-.56.288-.62.744-.178 1.353l.363.5-.39-.087a45.326 45.326 0 0 0-1.393-.264c-1.17-.206-1.775-.622-.683-.469.372.052.917.148 1.213.213.48.106.528.082.45-.226-.096-.372-1.576-.899-2.518-.897-.763.001-1.76.333-1.76.586 0 .325 1.216 1.138 1.971 1.317.9.213 2.54.197 2.952-.028.25-.136.396-.136.529 0s.062.188-.256.188c-.287 0-.597.189-.886.54l-.445.539.375.407c.252.274.564.407.951.407h.577l-.456.552c-.464.562-1.676 1.232-2.008 1.11-.1-.036.27-.29.822-.563 1.03-.51 1.392-.927.803-.927-.447 0-1.705.463-2.227.82-.233.159-.614.299-.846.31-.232.012-.875.15-1.428.306-.553.156-1.199.278-1.435.27-.777-.026.93-.689 2.388-.927.732-.12 1.367-.255 1.413-.302.045-.046-.343-.129-.862-.183-1.34-.142-3.548.262-4.717.862-.57.292-1.435 1.07-1.435 1.289 0 .262.913.51 1.89.512 1.32.003 3.558-.763 3.933-1.347.154-.24.318-.397.364-.35.047.047-.046.29-.205.537-.369.574-.252.68.73.663 1.12-.02 2.23-.502 2.244-.974.01-.364.012-.363.163.02.119.3.288.386.76.386.334 0 .75-.077.923-.172.286-.156.307-.118.224.407-.114.712.179 1.314.638 1.314.19 0 .561-.221.826-.491l.482-.49.11.447c.129.53.553 1.05.856 1.05.298 0 .914-.836.914-1.24 0-.272.106-.218.582.296.991 1.071 1.163.852 1.182-1.508.01-1.199-.05-2.021-.148-2.021-.09 0-.374.206-.632.458-.36.352-.688.477-1.401.538-1.114.094-1.79-.156-2.39-.883-.378-.458-.425-.641-.344-1.342a5.43 5.43 0 0 1 .441-1.505c.673-1.344.393-2.112-1.216-3.342-.596-.456-1.297-1.172-1.557-1.592-.26-.42-.491-.762-.513-.762-.023 0-.172.204-.333.454zm7.926.019c.156.644.644 1.477.85 1.45.364-.045.262-.855-.175-1.383-.555-.673-.828-.7-.675-.067zm10.308.067c-.433.524-.537 1.317-.184 1.4.194.047.703-.822.86-1.467.152-.633-.121-.606-.676.067zm7.763.21c-.264.426-.966 1.148-1.559 1.604-.592.455-1.188 1-1.323 1.21-.344.532-.306 1.318.1 2.132.192.38.39 1.058.442 1.505.082.7.035.884-.343 1.342-.6.727-1.276.977-2.39.883-.731-.062-1.04-.184-1.433-.568-.275-.27-.553-.435-.619-.369-.064.067-.129 1.01-.143 2.095-.024 1.86-.006 1.975.308 1.975.183 0 .588-.277.9-.615.468-.505.57-.555.57-.28 0 .403.616 1.239.914 1.239.302 0 .727-.52.856-1.05l.11-.448.481.491c.265.27.636.49.826.49.456 0 .752-.6.64-1.299l-.089-.564.536.218c.294.12.725.166.957.103.35-.095.418-.212.396-.677a1.759 1.759 0 0 0-.41-.978l-.382-.415h.526c.322 0 .71-.167 1-.43l.474-.43-.552-.516c-.303-.284-.663-.517-.801-.517s-.25-.085-.25-.19c0-.119.11-.14.295-.053.515.239 2.24.283 3.054.078.919-.233 2.051-.94 2.051-1.283 0-.296-.863-.616-1.66-.616-1.031 0-2.518.51-2.618.898-.08.308-.031.332.45.226.295-.065.84-.161 1.212-.213 1.163-.163.442.282-.773.477-.596.095-1.224.217-1.397.27-.282.088-.277.047.06-.415.45-.62.393-1.075-.17-1.365-.3-.155-.337-.218-.13-.22.158-.001.759-.312 1.333-.69 1.164-.767 1.91-.948 1.09-.265a6.155 6.155 0 0 1-1.14.708c-.683.314-.722.371-.5.727.17.275 1.581-.323 2.64-1.119.703-.529 1.428-1.663 1.207-1.888-.234-.24-1.62-.067-2.298.285-.574.298-2.453 1.734-2.707 2.068-.135.177-.675.345-.674.21 0-.069.217-.25.48-.402 1.28-.742 1.969-2.81 1.246-3.735l-.312-.4-.48.776zm-13.945.848c-.297.856-.255 1.26.192 1.842l.33.43.334-.43c.397-.512.429-1.048.099-1.698-.461-.909-.678-.941-.955-.144zm2.172-.436c-.71.83-.812 1.614-.296 2.278l.333.43.334-.43c.39-.502.443-1.482.113-2.13-.214-.42-.243-.43-.484-.148zm-24.734.003c-.348.243.62 1.431 1.618 1.983 1.108.615 3.585 1.253 5.432 1.4l1.435.116-.417-.34c-.23-.187-1.076-.497-1.88-.688-1.466-.349-3.02-.979-3.02-1.225 0-.194 1.282.087 2.574.565 2.08.77 1.095-.396-1.064-1.26-1.145-.457-1.724-.582-2.944-.635-.836-.036-1.616.002-1.734.084zm43.865.307c-.683.238-1.48.554-1.772.703-.49.251-1.107.867-1.115 1.115-.002.06.509-.082 1.135-.314 1.295-.48 2.574-.76 2.574-.564 0 .261-1.449.855-2.948 1.208-.842.198-1.719.512-1.95.698l-.418.338 1.434-.113c1.85-.146 4.327-.781 5.433-1.395.988-.547 1.97-1.744 1.617-1.972-.477-.31-2.727-.142-3.99.296zm-24.21.342c-.104.654.19 1.814.473 1.858.091.015.27-.192.395-.46.258-.547.07-1.246-.47-1.743-.28-.259-.305-.237-.398.345zm8.132-.325c-.568.663-.685 1.074-.481 1.702.224.692.375.741.633.206.309-.64.368-1.045.241-1.65-.115-.549-.133-.56-.393-.258zm-6.714.204c-.275.523-.22 1.258.135 1.806l.316.489.274-.398c.405-.59.347-1.396-.135-1.856-.405-.388-.408-.389-.59-.041zm5.087.072c-.444.482-.488 1.263-.102 1.825l.273.398.316-.489c.366-.566.413-1.409.103-1.841-.2-.28-.24-.274-.59.107zm-4.148 1.864c-.324.47-.364 1.497-.082 2.126.258.578.381.554.816-.163.407-.672.361-1.276-.15-1.959l-.306-.41-.278.405zm1.498.147c-.142.28-.257.712-.257.963 0 .434.473 1.454.675 1.454.201 0 .675-1.02.675-1.454 0-.52-.436-1.47-.675-1.47-.088 0-.276.228-.418.507zm1.724-.116c-.494.768-.527 1.268-.128 1.926.438.723.56.748.82.169.293-.656.24-1.705-.11-2.144l-.304-.384-.278.433zm-4.762.12c-.368.414-.407 1.208-.1 1.983l.206.516.41-.483c.49-.579.538-1.465.109-2.006l-.3-.377-.325.367zm6.261.026c-.401.585-.344 1.424.135 1.99l.41.483.205-.516c.32-.806.27-1.596-.125-2l-.35-.356-.274.4zm-25.371.503c-.784.158-1.4.447-1.4.656 0 .264.774.872 1.566 1.23.754.34 3.358.677 5.269.683l.675.002-.506-.416c-.35-.288-.818-.45-1.52-.527-.556-.061-1.268-.193-1.58-.292-.837-.265-.323-.493.834-.37.61.065 1.082.025 1.336-.113.543-.296.271-.419-1.674-.757-1.734-.301-1.946-.308-3-.096zm42.159.073c-.688.131-1.447.29-1.688.351-.428.11-.43.117-.1.37.253.194.594.234 1.35.161 1.221-.118 1.763.11.907.381-.313.1-1.025.23-1.581.292-.702.077-1.169.24-1.52.527l-.506.416.675-.002c3.165-.01 5.53-.526 6.454-1.411.51-.488.483-.625-.174-.904-.867-.37-2.442-.444-3.817-.181zm-22.524 1.74c-.624.936-.58 1.103.287 1.103.402 0 .77-.04.82-.09.15-.154-.044-.845-.36-1.272l-.302-.408-.445.667zm1.701-.117c-.159.274-.29.662-.29.86 0 .306.103.36.676.36.573 0 .675-.054.675-.36 0-.362-.495-1.36-.675-1.36-.053 0-.226.225-.386.5zm1.688 0c-.16.274-.29.662-.29.86 0 .306.103.36.675.36.573 0 .676-.054.676-.36 0-.362-.496-1.36-.675-1.36-.053 0-.227.225-.386.5zm1.67-.074c-.151.234-.293.602-.315.817-.037.352.04.397.76.444.579.038.802-.011.802-.175 0-.213-.786-1.512-.915-1.512-.032 0-.182.192-.333.426zm-6.104.14c-.265.702-1.728 1.048-2.363.558-.477-.368-.581-.324-.581.246 0 .582.494 1.135 1.124 1.258.45.088.672-.198.502-.65-.078-.207.066-.258.739-.258.743 0 .846-.046.938-.417.056-.23.025-.559-.07-.732-.165-.299-.178-.3-.289-.005zm7.613.094c-.235.755.026 1.06.907 1.06.774 0 .808.02.79.474-.015.409.039.465.404.414.615-.085 1.181-.692 1.181-1.266 0-.488-.002-.49-.497-.228-.879.463-1.806.28-2.394-.475l-.275-.352-.116.373zM2.312 21.689c-.75.227-1.603.729-1.603.942 0 .103.323.376.717.606.64.374.916.419 2.574.419 1.021 0 2.082-.064 2.358-.142l.503-.142-.418-.33c-.277-.219-.57-.298-.868-.234-.585.123-1.73-.095-1.536-.293.081-.083.685-.181 1.341-.218.748-.042 1.36-.178 1.637-.363.243-.163.443-.326.443-.362 0-.137-4.662-.03-5.148.117zm5.883-.02c-.6.147-1.748.826-1.748 1.035 0 .379 1.308.78 2.48.759 1.504-.026 1.86-.139 1.569-.497-.138-.17-.52-.256-1.126-.256-.569 0-.878-.066-.813-.172.057-.095.332-.172.612-.172.632 0 1.16-.277 1.16-.609 0-.278-1.155-.325-2.134-.088zm29.475.064c0 .354.512.633 1.16.633.28 0 .555.077.613.172.064.106-.245.172-.814.172-.606 0-.988.087-1.126.256-.291.358.065.47 1.57.497 1.18.02 2.48-.38 2.48-.766 0-.08-.337-.346-.748-.591-.952-.569-3.135-.829-3.135-.373zm2.87-.177c0 .313 1.036.682 2.079.74.656.038 1.26.136 1.342.22.194.198-.952.415-1.537.292-.299-.064-.59.015-.868.234l-.417.33.502.142c.276.078 1.337.142 2.358.142 1.658 0 1.934-.045 2.574-.419.395-.23.718-.507.718-.614 0-.108-.361-.384-.802-.614-.725-.378-1.047-.423-3.376-.476-1.415-.032-2.573-.022-2.573.023zm-19.747 1.41c0 .07.165.426.367.792.253.46.426.615.559.502.16-.135.978.276 1.594.802.04.034-.008.145-.108.247-.13.132-.303.104-.606-.098-.316-.21-.456-.231-.548-.08-.07.116-.004.273.153.363.396.226.347.368-.256.731-.475.286-.503.343-.253.53.154.114.28.257.28.318 0 .24-.655.09-1.075-.247-.404-.323-.445-.466-.445-1.545 0-1.114-.025-1.195-.408-1.293-.85-.218-1.022-.06-1.076.989-.099 1.905.66 2.827 2.204 2.68.486-.047 1.004-.137 1.151-.201.156-.068.43.018.656.204l.387.32-.866.648c-.476.357-.865.7-.863.763.002.063.381.367.844.675.462.308.84.618.84.688-.003.265-1.423 1.054-1.61.895-.127-.106-.313.069-.571.538-.212.383-.35.73-.31.771.04.042.43.026.865-.035.621-.087.773-.17.708-.388-.055-.188.184-.46.741-.847l.824-.57.853.57c.587.392.828.657.77.847-.065.218.085.3.708.388.435.06.82.081.854.045.053-.053-.522-1.188-.749-1.48-.035-.044-.124.021-.2.145-.105.174-.293.114-.828-.263-.38-.269-.694-.54-.698-.603-.003-.063.374-.398.838-.746.465-.348.806-.696.76-.774-.048-.077-.428-.36-.845-.63-.417-.268-.759-.544-.759-.613 0-.069.18-.245.399-.392.307-.205.504-.226.855-.09.665.258 1.823.216 2.238-.08.52-.372.926-1.589.864-2.592L28.98 24h-1.351l-.084 1.263c-.071 1.061-.148 1.315-.483 1.591-.424.35-1.036.443-1.036.157a.17.17 0 0 1 .169-.172c.193 0 .235-.513.042-.522-.07-.003-.273-.118-.45-.255-.309-.238-.31-.266-.032-.58.387-.436.034-.681-.403-.28-.22.204-.398.244-.592.133-.232-.132-.143-.25.53-.696.57-.377.847-.476.933-.335.067.111.15.166.185.121.227-.291.802-1.426.75-1.48-.035-.035-.42-.015-.855.046-.623.087-.773.17-.708.388.058.19-.18.453-.755.837l-.84.56-.838-.56c-.614-.41-.815-.64-.748-.861.064-.215-.003-.301-.238-.301-.18 0-.565-.049-.855-.108-.29-.059-.527-.05-.527.02zm15.733.647c.035.118.517.439 1.069.712.552.273.914.53.804.57-.11.04-.429-.049-.709-.196-.663-.35-.695-.343-.695.14 0 .44.432.698 1.621.971.68.157 1.586.048 1.586-.191 0-.372-1.187-1.459-1.988-1.82-.98-.441-1.792-.531-1.688-.186zm3 .116c-.868.135-.702.21 1.132.51 1.244.203 2.77.841 2.069.865-.373.012-1.082-.15-2.676-.61l-.404-.117.39.538c.75 1.033 4.062 1.797 5.44 1.255.254-.1.463-.248.463-.327 0-.22-.866-.998-1.442-1.293-1.213-.624-3.648-1.025-4.971-.82zm-28.929 2.195c-.236.364-.479.913-.539 1.218-.096.49-.065.557.257.557.955 0 2.619-1.371 2.518-2.076-.054-.374-.094-.358-.869.326-1.077.952-1.282.9-.4-.1.189-.212.26-.387.158-.387-.101 0-.3-.044-.44-.1-.17-.066-.4.122-.685.562zm24.542-.243c0 .704 1.656 2.018 2.544 2.018.324 0 .354-.066.258-.557-.159-.81-.91-1.902-1.224-1.78-.14.056-.339.1-.44.1-.101 0-.03.175.157.387.189.213.4.492.472.62.191.341-.415-.013-.839-.49-.184-.207-.468-.45-.631-.539-.244-.133-.297-.09-.297.24zm-10.962.211c-.013.256-.39.209-.478-.06-.047-.144.03-.208.206-.171.155.033.277.137.272.231zm-18.005.424c-.884.517-2.088 1.778-2.088 2.188 0 .158.258.227.844.227.612 0 .935.093 1.173.335.348.355 2.61 5.897 2.796 6.848.06.307.178.56.264.56.085 0 .155.204.155.453 0 .25.168.796.372 1.213.367.75.367.766.057 1.354-.277.524-.287.653-.084 1.067.273.56 1.271 1.543 1.708 1.684.17.056.31.243.31.418 0 .398.925 1.208 1.379 1.208.306 0 .333-.09.271-.903-.038-.497-.12-1.02-.184-1.162-.083-.185.157-.436.855-.894 1.577-1.034 2.164-1.226 3.789-1.242 1.786-.017 2.015-.172 1.502-1.019-.332-.547-.337-.593-.058-.518.343.091 1.222-.534 1.222-.868 0-.144-.175-.19-.525-.138-.594.09-.818-.145-.822-.86-.003-.568.546-.998 1.274-.998.304 0 .65-.139.818-.328.282-.318.262-.33-.69-.397-.832-.059-1.03-.015-1.29.285l-.306.354.176-.369c.131-.273.113-.498-.072-.875-.202-.413-.364-.512-.882-.539-.349-.018-.78-.05-.96-.071-.205-.025-.468.176-.717.546-.215.322-.392.506-.392.41 0-.096.16-.382.357-.637.347-.45.348-.47.043-.71-.64-.503-1.744.153-2.098 1.245-.3.926-.131 1.123.627.728.873-.453 1.042-.419 1.103.227.08.837.535.815 1.298-.06l.64-.736.108.55c.066.333.21.549.37.549.233 0 .232.044-.009.419-.148.23-.245.637-.215.903.036.315-.044.544-.228.656-3.535 2.149-4.644 2.385-5.283 1.126-.229-.451-.36-.523-.942-.523-.496 0-.7-.08-.767-.302-.133-.438-1.1-2.484-1.275-2.699-.186-.227-1.999-4.03-1.999-4.193 0-.065.337-.3.748-.523.646-.35 1.748-1.473 2.2-2.244.22-.375-.725-.079-1.387.434-.677.526-.712.268-.066-.489.264-.31.52-.78.568-1.044.085-.47.08-.474-.27-.178-.917.773-1.675 1.565-1.986 2.077-.378.62-.57.61-.691-.04-.067-.359.034-.498.613-.844.381-.228 1.149-.78 1.706-1.227l1.013-.813-.652.118c-.359.065-1.093.354-1.632.642-1.22.652-1.722.553-.598-.118.7-.418.775-.511.502-.62-.547-.219-.799-.166-1.693.357zm33.962-.357c-.272.109-.197.202.503.62 1.123.671.622.77-.599.118-.539-.288-1.273-.577-1.631-.641l-.652-.118 1.097.883c1.657 1.334 2.887 1.91 4.077 1.91.704 0 .986-.065.986-.227 0-.41-1.204-1.671-2.087-2.188-.895-.523-1.146-.576-1.694-.357zm-16.736.346c.051.084-.026.2-.173.258-.464.181-.63.119-.407-.154.238-.293.443-.33.58-.104zm1.783.104c.175.215.152.258-.138.258-.37 0-.6-.223-.42-.407.17-.173.331-.13.558.149zm-12.566.47c-.28.686-.335 1.467-.125 1.803.27.435 1.886-1.041 1.889-1.726 0-.218-.733.072-.964.38-.18.242-.207.222-.214-.153-.004-.237-.08-.545-.167-.686-.125-.201-.213-.12-.419.382zm2.12-.158c-.353.915-.204 2.354.245 2.354.243 0 1.087-1.033 1.087-1.33 0-.324-.493-.384-.665-.082-.14.244-.171.206-.185-.222-.01-.284-.08-.671-.156-.86-.128-.32-.151-.31-.325.14zm2.024.213c-.403.697-.438 1.077-.158 1.703.257.576.414.553.822-.12.502-.83.587-1.32.28-1.632-.238-.244-.28-.215-.442.316l-.179.584.067-.731c.037-.402.044-.731.016-.731-.029 0-.211.275-.406.611zm14.091.12l.067.73-.179-.583c-.162-.53-.203-.56-.442-.316a.694.694 0 0 0-.161.67c.14.55.743 1.52.944 1.52.09 0 .255-.31.367-.688.175-.598.16-.768-.12-1.304-.451-.864-.553-.87-.476-.03zm2.035-.356c-.057.22-.108.592-.112.829-.006.369-.031.388-.176.136-.172-.302-.665-.242-.665.081 0 .308.848 1.331 1.103 1.331.32 0 .478-.7.372-1.66-.103-.93-.37-1.296-.522-.717zm2.028-.128a2.39 2.39 0 0 0-.117.67c-.005.33-.03.341-.212.097-.23-.31-.965-.6-.964-.38.002.346.721 1.292 1.218 1.6.485.3.561.308.693.068.186-.338.003-1.64-.288-2.045-.206-.287-.225-.288-.33-.01zm3.228.403c.047.257.302.722.567 1.033.615.722.628 1.102.017.517-.517-.495-1.706-.864-1.466-.455.756 1.29 2.592 2.728 3.482 2.728.94 0-.377-2.428-2.05-3.779l-.634-.512.084.468zm-13.538.058c.05.083-.101.24-.336.348-.33.154-.485.149-.686-.022-.233-.197-.23-.241.024-.431.292-.218.836-.16.997.105zm-12.79.304c-1.026.671-1.99 2.449-1.99 3.67 0 .798.021.84.38.729.652-.202 1.45-.919 1.905-1.709.402-.698.417-.795.193-1.23l-.243-.473-.263.518c-.144.285-.384.621-.532.747-.242.204-.251.178-.091-.25.098-.264.326-.69.507-.95.282-.404.742-1.401.629-1.364-.021.007-.244.147-.495.312zm6.2.463c-.241.59-.238.679.045 1.173.427.744.625.536.625-.656 0-1.216-.29-1.441-.67-.517zM29.3 27.42c-.14.375-.001 2 .175 2.045.088.022.298-.2.466-.494.282-.492.285-.585.05-1.162-.267-.649-.536-.8-.69-.389zm6.514-.015c0 .118.19.5.423.85.431.646.814 1.508.67 1.508-.043 0-.296-.306-.562-.68l-.484-.68-.197.441c-.17.38-.136.549.24 1.204.436.758 1.61 1.78 2.045 1.78.313 0 .3-1.381-.02-2.162-.368-.899-1.243-2.07-1.707-2.286-.313-.146-.408-.14-.408.025zm-21.648.982c-.054.142-.186.547-.292.9-.207.686-.507 1.021-.507.567 0-.15.111-.545.247-.876l.247-.603-.506.304c-.79.476-1.214 2.475-.713 3.367.168.301 1.135-.683 1.526-1.553.36-.803.398-1.04.259-1.65-.1-.435-.2-.613-.261-.456zm1.825.467c-.064.388-.229.848-.366 1.023-.228.29-.24.267-.136-.278.114-.593.113-.594-.287-.324-.463.312-.625 1.468-.319 2.288l.182.487.433-.412c.882-.84 1.27-2.204.858-3.007l-.248-.483-.117.706zm15.621-.167c-.35.863.034 2.136.89 2.951l.432.412.182-.487c.309-.828.145-1.975-.327-2.293l-.409-.276.117.594c.178.908-.207.396-.459-.61l-.207-.828-.219.537zm1.935.13c-.162.876.223 1.96.96 2.712.355.36.707.616.785.567.289-.182.346-1.434.103-2.267-.177-.61-.387-.93-.751-1.15l-.506-.304.247.603c.136.331.245.74.242.909-.005.283-.024.281-.25-.024-.136-.183-.294-.59-.352-.906-.146-.794-.347-.853-.478-.14zm-8.869.023c.37.25.672.48.672.514 0 .033-.304.265-.675.516l-.675.455-.675-.455c-.372-.25-.675-.49-.675-.533 0-.074 1.206-.95 1.308-.95.027 0 .351.204.72.453zm-6.74 1.946c-.116.657-.3 1.27-.41 1.364-.11.093-.502.194-.872.224l-.673.056.573.318c.315.175.92.33 1.343.345l.77.025.052-.645c.041-.51-.007-.645-.23-.645-.262 0-.263-.022-.003-.315.465-.522.294-1.922-.233-1.922-.06 0-.203.538-.318 1.195zm11.496-.988c-.295.3-.248 1.35.077 1.715.26.293.26.315 0 .315-.375 0-.396 1.17-.023 1.315.312.122 1.756-.23 2.09-.51.195-.164.098-.22-.504-.289l-.745-.086-.229-1.333c-.233-1.36-.31-1.49-.666-1.127zm2.034 3.1c-.467.23-.473.34-.042.736.185.172.337.412.337.535 0 .123.361.397.802.61.441.212.859.416.928.452.232.121.13-1.004-.138-1.533-.206-.406-1.174-1.068-1.46-.998a6.313 6.313 0 0 0-.427.198zm6.609.07c.08.213.026.257-.235.187-.273-.073-.34-.007-.34.335 0 .341.064.405.323.32.262-.084.307-.037.234.247-.071.277-.01.352.287.352.296 0 .357-.075.286-.352-.073-.284-.028-.33.234-.246.26.084.323.02.323-.32 0-.343-.066-.409-.34-.336-.261.07-.316.026-.235-.188.078-.205.007-.279-.268-.279-.276 0-.346.074-.27.28zm-8.087.36c-.549.052-.738.168-1.001.615-.179.303-.305.629-.282.724.023.094-.054.075-.172-.043-.24-.241-2.341-.304-2.341-.07 0 .36.723.773 1.375.787.552.01.767.111 1.04.482.294.4.314.534.14.922-.168.377-.289.44-.71.378-.644-.096-.746.069-.352.565.204.257.493.39.843.39.581 0 .65.181.337.882-.108.242-.148.489-.088.55.06.06.622.168 1.25.238 1.997.224 4.315.816 5.43 1.386.96.492 1.136.53 1.615.354.295-.109.707-.198.916-.198.85 0 2.018-.971 2.914-2.426l.28-.454-.871-.107c-1.123-.137-2.498-.137-3.787 0-.93.099-1.007.137-.836.416.295.481-.121.852-.952.847-1.3-.006-3.481-.98-3.481-1.554 0-.135.627-.076 1.06.1.27.11.29.044.194-.63-.058-.413-.24-.945-.402-1.182-.162-.237-.333-.84-.38-1.339-.06-.628-.207-1.039-.477-1.332-.215-.234-.435-.411-.488-.395a9.238 9.238 0 0 1-.774.094zm.93 2.294c0 .076.106.163.236.193.195.046.197.093.016.263-.177.166-.275.093-.487-.363-.146-.314-.372-.661-.502-.771-.192-.162-.262-.108-.365.277-.07.263-.112.788-.095 1.166.033.68.155.858 1.037 1.51.412.304.412.304-.094.046-.897-.458-1.097-.703-1.097-1.347 0-.411-.15-.8-.458-1.185-.366-.457-.38-.504-.074-.235.328.288.407.3.54.086.086-.138.157-.44.158-.672.003-.402.03-.391.594.237.325.361.59.72.59.795zm-6.372-.871c-.301.187-.548.434-.548.547 0 .114-.213 0-.474-.255-.547-.535-1.214-.622-1.214-.158 0 .166.133.544.295.837.41.743 1.393 1.907 1.393 1.651 0-.116.272-.518.606-.895.41-.462.635-.908.697-1.376.104-.787.014-.829-.755-.351zm.97.119c0 .253-.09.718-.203 1.034-.176.497-.163.612.105.872.22.213.33.24.384.09.042-.115.262-.489.49-.83l.412-.62-.383-.494c-.485-.627-.804-.648-.804-.052zm-4.108.025c-.366.412-.356.49.142 1.093.233.281.422.622.422.756 0 .322.242.312.513-.021.179-.219.167-.373-.063-.866-.155-.33-.28-.752-.28-.938 0-.425-.368-.437-.734-.024zm-6.358.179c-.408.222-.614.473-.673.817-.06.35-.198.512-.465.551-.5.073-.479.3.06.66.363.242.529.26.95.097l.51-.196-.097.61c-.084.529-.059.594.19.485.158-.069.579-.143.936-.165.986-.061 1.522-.562 1.662-1.55.078-.555.045-.97-.1-1.251l-.217-.422-.363.52c-.2.285-.434.701-.522.924-.117.298-.162.326-.17.104-.02-.55-.798-.348-1.16.301-.152.274-.192.287-.196.064-.002-.154.11-.376.248-.494.257-.217.361-1.376.124-1.376-.07 0-.394.144-.717.32zm16.981-.195c-.346.353.355 1.96 1.02 2.34.367.21 1.035-.007 1.243-.404.149-.283.127-.342-.13-.342a.719.719 0 0 1-.715-.703c0-.404-1.173-1.141-1.418-.89zm5.026.12c-.565.252-1.298 1.131-1.497 1.798-.122.41-.12.41.933.306.58-.058 1.074-.127 1.096-.153.128-.146.258-2.196.138-2.19-.078.003-.38.111-.67.24zm.949.012c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.144-.15-.258-.337-.258-.188 0-.338.114-.338.258zm.881.859c.026.614.123 1.12.216 1.125.093.005.613.052 1.156.105.975.096.986.092.867-.308-.204-.682-.94-1.547-1.534-1.8-.31-.131-.605-.24-.657-.24-.052 0-.073.503-.047 1.118zm-.881.001c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.143-.15-.258-.337-.258-.188 0-.338.115-.338.258zm.032.903c.031.166.169.301.306.301.136 0 .274-.135.305-.3.04-.212-.051-.302-.306-.302-.254 0-.345.09-.305.301zm-15.732.307c-.23.24-.564.569-.743.731-.865.787-1.11 1.074-1.11 1.303 0 .21.128.2.795-.058 1.187-.459 1.568-.875 1.568-1.71 0-.386-.02-.702-.046-.702-.025 0-.234.196-.464.436zm2.648-.321c-.23.235-.101 1.058.234 1.492.196.254.655.533 1.055.642.39.107.803.273.92.37.155.13.21.089.21-.156 0-.19-.461-.755-1.078-1.321a121.956 121.956 0 0 1-1.154-1.066c-.04-.042-.125-.024-.187.039zm-1.795.625c-.005.655.388 1.669.648 1.669.331 0 .703-.692.792-1.475l.097-.848-.45.516c-.249.287-.482.431-.523.326a3.04 3.04 0 0 0-.317-.516c-.223-.301-.242-.277-.247.328zm13.096.213a.276.276 0 0 0 .158.365c.33.13.48-.026.353-.364-.128-.34-.383-.341-.511-.001zm.936.02c.071.377.562.43.562.062 0-.14-.14-.283-.31-.317-.226-.044-.295.026-.252.256zm.89-.098c-.174.287.217.616.45.379.195-.199.073-.566-.188-.566-.081 0-.2.084-.262.187zm.853-.015c-.141.233.05.517.348.517.133 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm1.041-.057c-.205.21-.116.574.14.574.141 0 .254-.153.254-.345 0-.342-.18-.447-.394-.229zm-4.594.244c-.063.103-.036.267.06.364.213.217.54.034.54-.303 0-.29-.435-.334-.6-.06zm5.354.099c.033.174.173.317.311.317.362 0 .31-.5-.06-.573-.225-.044-.294.026-.25.256zm-18.173.733c-.185.187-.965.612-1.733.946-.768.334-1.752.883-2.186 1.22-.888.692-1.489.744-1.467.127.009-.26-.084-.387-.284-.387-.664 0-1.177 1.053-.833 1.71.157.298.13.446-.154.813-.438.568-.442 1.264-.008 1.825.185.24.337.56.337.712 0 .408.293.33.61-.163l.28-.436.306.511c.168.281.456.594.64.694.407.223 1.199.235 1.525.024.168-.108.38-.01.717.333.561.572 1.258.769 1.875.53.388-.15.513-.099 1.025.423.32.327.652.594.736.594.084 0 .405-.265.713-.59.48-.505.62-.566.978-.428.587.228 1.64-.096 2.053-.632.279-.36.396-.405.673-.254.792.432 1.866-.045 2.254-1 .165-.408.19-.418.259-.107.141.64.715 1.074.715.54 0-.13.151-.432.337-.673.44-.569.442-1.523.006-1.926-.251-.231-.293-.383-.17-.618.381-.724.02-1.745-.683-1.933-.258-.068-.344-.017-.323.194.088.92-.458.968-1.489.132-.395-.32-1.478-.909-2.408-1.308-.929-.4-1.768-.854-1.865-1.008-.136-.218-.197-.23-.268-.055-.051.125-.264.43-.472.677-.414.49-.442.476-1.144-.52-.204-.29-.231-.29-.552.033zm.602 2.714c-.192.644-.438 1.904-.548 2.8-.191 1.554-.21 1.606-.418 1.119-.281-.66-.164-1.408.548-3.484.315-.92.584-1.828.598-2.017.022-.308.032-.305.096.034.04.208-.084.905-.276 1.548zm2.528 2.03c.23.732.2 1.688-.064 2.057-.199.277-.24.149-.333-1.042-.059-.747-.298-2.055-.531-2.907-.234-.851-.422-1.664-.42-1.806.005-.22.82 2.015 1.348 3.698zm-4.029-2.759c-.282.328-.714.947-.962 1.377-.436.76-.758.887-.75.297.005-.379.414-.89 1.32-1.653.923-.776 1.049-.783.392-.02zm5.668.683c.37.343.549.667.549.992 0 .582-.29.634-.493.09-.08-.216-.405-.739-.72-1.161-1.087-1.456-.97-1.442.664.079zM19.78 44.17c0 .12-.07.217-.157.217-.248 0-.7-.528-.596-.698.123-.203.753.2.753.481zm8.86-.018c-.297.22-.59.174-.59-.093 0-.075.171-.214.38-.31.482-.224.64.081.21.403z" fill="currentColor"/></svg> </span><!----></span></li><!--]--></ul></li><li class="_half-width _align-end tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="16+"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" fill="none"><circle cx="24" cy="24" r="23" stroke="currentColor" stroke-width="2"/><path fill="currentColor" d="M10.11 21.188v-1.516c.703-.031 1.195-.078 1.476-.14.448-.1.812-.298 1.094-.595.192-.203.338-.474.437-.812.057-.203.086-.354.086-.453h1.852V29h-2.282v-7.813H10.11Zm10.77 4.226c0 .61.165 1.107.493 1.492a1.57 1.57 0 0 0 1.25.578c.495 0 .883-.185 1.164-.554.286-.375.43-.86.43-1.453 0-.662-.162-1.167-.485-1.516a1.545 1.545 0 0 0-1.187-.531c-.38 0-.717.114-1.008.343-.438.339-.656.886-.656 1.641Zm3.133-4.89c0-.183-.07-.383-.21-.602-.24-.354-.602-.531-1.086-.531-.724 0-1.24.406-1.547 1.218-.167.448-.282 1.11-.344 1.985.276-.328.596-.568.96-.719a3.243 3.243 0 0 1 1.25-.227c1.006 0 1.829.342 2.47 1.024.645.682.968 1.555.968 2.617 0 1.057-.315 1.99-.945 2.797-.63.807-1.61 1.21-2.937 1.21-1.427 0-2.48-.595-3.157-1.788-.526-.932-.789-2.136-.789-3.61 0-.864.037-1.567.11-2.109.13-.963.382-1.766.757-2.406a3.89 3.89 0 0 1 1.266-1.32c.526-.334 1.154-.5 1.883-.5 1.052 0 1.89.27 2.515.812.625.537.977 1.253 1.055 2.148h-2.219Zm3.85 5.257v-2.039h3.203V20.54h2.055v3.203h3.203v2.04H33.12V29h-2.055v-3.219h-3.203Z"/></svg> </span><!----></span></li><!--]--></ul></div><div class="bre-footer-section"><ul class="bre-inline-menu _min-gap-x _no-gap-y"><!--[--><li class="_footer-copyright bre-inline-menu__item"><span><!----><span>© АНО БРЭ, 2022 — 2025. Все права защищены.</span></span></li><li class="-hide-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы) может быть использован только с разрешения правообладателей.</span></span></span></li><li class="-show-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы) может быть использован только с разрешения правообладателей.</span></span></span></li><!--]--></ul></div><!--]--></div></footer><span></span></div></div><!----><!--]--></div><script type="application/json" id="__NUXT_DATA__" data-ssr="true">[["Reactive",1],{"data":2,"state":3,"once":5,"_errors":6,"serverRendered":7,"path":8,"pinia":9},{},{"$sreferer":4},"https://www.google.com/",["Set"],{},true,"/c/riad-v-matematike-2e65f7",{"preview":10,"auth-token":12,"search":15,"page-loading":20,"search-suggestions":21,"filters":24,"component-header":26,"collection":27,"article":28,"article-media-slider":1187,"modal":1195,"article-notes":1196,"article-loc":1197,"article-sidebar":1198,"author":1199,"article-metrics":1200,"collection-articles-favorite":1201,"article-collections":1202,"article-versions":1203,"error-form":1212,"text-selection":1213},{"get_":11,"getError":11,"getPending":7},null,{"post_":11,"postError":11,"postPending":7,"savedRoutePath":11,"isAuthorized":13,"firstNameLetter":14,"fullName":14,"userId":14,"processingRefresh":13,"showAuthModal":11},false,"",{"searchQuery":14,"savedList":16,"limit":17,"offset":18,"loading":13,"isSearchOpened":13,"page":19},[],10,0,1,{"loading":13},{"get_":11,"getError":11,"getPending":7,"headerSearchQuery":14,"pageSearchQuery":14,"selectedSuggestionIndex":22,"focusOn":23},-1,"header",{"get_":11,"getError":11,"getPending":7,"loading":13,"isExtendedSearchOpened":13,"chosenFilters":25},{},{"showCategories":13,"isFixed":13},{"get_":11,"getError":11,"getPending":7,"put_":-1,"putError":11,"putPending":7,"delete_":-1,"deleteError":11,"deletePending":7},{"get_":29,"getError":11,"getPending":13,"headers":1182,"timeline":1185,"isFullScreen":13,"getCache":1186},{"article":30,"components":1177},{"content":31,"createdAt":1147,"id":1148,"lastVersionId":1149,"meta":1150,"sections":11,"slug":1165,"tags":1166,"updatedAt":1147},{"article":32,"biblioRecord":1114,"category":1115,"categorySlug":1116,"sidebar":1117,"title":1146},[33],{"content":34,"type":1113},[35],{"attrs":36,"content":38,"marks":11,"text":14,"type":1113},{"section_id":37},"bd56b5be-eaa0-4c4d-ade7-1a46d0bd26be",[39,87,108,127,149,160,228,253,260,279,329,371,440,445,492,538,543,568,592,602,610,635,682,705,727,735,770,793,807,813,861,961,998,1014,1039,1103],{"attrs":40,"content":41,"marks":11,"text":14,"type":86},{"textAlign":11},[42,50,52,57,59,63,65,69,71,74,76,79,81,84],{"attrs":11,"content":11,"marks":43,"text":48,"type":49},[44],{"attrs":45,"content":11,"marks":11,"text":14,"type":47},{"version":46},"1","bold","Ряд","text",{"attrs":11,"content":11,"marks":11,"text":51,"type":49}," в математике, бесконечная сумма ",{"attrs":53,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":14,"src":55,"title":14},"block","u_1+u_2+...+u_n+\\ldots \\renewcommand{\\tag}[1]{\\qquad\\qquad(#1) }","formula",{"attrs":11,"content":11,"marks":11,"text":58,"type":49},"или, что то же самое, ",{"attrs":60,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":62,"title":14},"displayMode","\\sum_{n=1}^{\\infty} u_n.\\tag{1}",{"attrs":11,"content":11,"marks":11,"text":64,"type":49},"Слагаемые ",{"attrs":66,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":68,"title":14},"inline","u_1, u_2,\\ldots u_n,\\ldots",{"attrs":11,"content":11,"marks":11,"text":70,"type":49}," называются членами ряда (",{"attrs":72,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":73,"title":14},"u_n",{"attrs":11,"content":11,"marks":11,"text":75,"type":49}," иногда называют общим членом ряда), суммы ",{"attrs":77,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":78,"title":14},"s_n=u_1+...+u_n,\\qquad n=1, 2,\\ldots,",{"attrs":11,"content":11,"marks":11,"text":80,"type":49},"– частичными суммами ряда порядка ",{"attrs":82,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":83,"title":14},"n",{"attrs":11,"content":11,"marks":11,"text":85,"type":49},".","paragraph",{"attrs":88,"content":89,"marks":11,"text":14,"type":86},{"textAlign":11},[90,92,105],{"attrs":11,"content":11,"marks":11,"text":91,"type":49},"Ряды являются важнейшими средствами вычисления, изучения и приближения чисел и функций. Простейшие ряды встречаются в элементарной математике - это, например, бесконечные ",{"attrs":11,"content":11,"marks":93,"text":104,"type":49},[94],{"attrs":95,"content":11,"marks":11,"text":14,"type":103},{"content_id":96,"external":13,"graph_link":7,"href":97,"kind_id":98,"link":99,"link_type":102,"navigation_value":11,"target":14,"version":46},"0471b084-4db2-441f-b129-00bf8597e462","#","2",{"slug":100,"type":101},"desiatichnaia-drob-0471b0","article",114,"a","десятичные дроби",{"attrs":106,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":107,"title":14},"\\displaystyle\\frac{1}{3}=0,333\\ldots=\\frac{3}{10}+\\frac{3}{100}+\\ldots,",{"attrs":109,"content":110,"marks":11,"text":14,"type":86},{"textAlign":11},[111,113,122,124],{"attrs":11,"content":11,"marks":11,"text":112,"type":49},"и сумма членов бесконечно убывающей ",{"attrs":11,"content":11,"marks":114,"text":121,"type":49},[115],{"attrs":116,"content":11,"marks":11,"text":14,"type":103},{"content_id":117,"external":13,"graph_link":7,"href":118,"kind_id":14,"link":119,"link_type":102,"navigation_value":11,"target":14,"version":46},"c6dffbe2-1ca0-4b53-be1f-90a807151acc","content/c6dffbe2-1ca0-4b53-be1f-90a807151acc",{"slug":120,"type":101},"geometricheskaia-progressiia-c6dffb","геометрической прогрессии",{"attrs":11,"content":11,"marks":11,"text":123,"type":49}," ",{"attrs":125,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":126,"title":14},"1+q+q^2+...+q^n+...=\\frac{1}{1-q},\\quad |q|\u003C1. \\tag{2}",{"attrs":128,"content":129,"marks":11,"text":14,"type":86},{"textAlign":11},[130,132,140,147],{"attrs":11,"content":11,"marks":11,"text":131,"type":49},"Для многих чисел, использующихся в математике, имеются их представления в виде ряда, например, для ",{"attrs":11,"content":11,"marks":133,"text":139,"type":49},[134],{"attrs":135,"content":11,"marks":11,"text":14,"type":103},{"content_id":136,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":137,"link_type":102,"navigation_value":11,"target":14,"version":46},"bf3bee97-6162-4c5c-b17e-a5cffda015b8",{"slug":138,"type":101},"chislo-p-bf3bee","числа ",{"attrs":141,"content":11,"marks":143,"text":14,"type":56},{"display":67,"displayMode":14,"src":142,"title":14},"\\pi",[144],{"attrs":145,"content":11,"marks":11,"text":14,"type":103},{"content_id":136,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":146,"link_type":102,"navigation_value":11,"target":14,"version":46},{"slug":138,"type":101},{"attrs":11,"content":11,"marks":11,"text":148,"type":49}," справедливы равенства",{"attrs":150,"content":151,"marks":11,"text":14,"type":86},{"textAlign":11},[152,155,157],{"attrs":153,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":154,"title":14},"\\frac{\\pi}{3}=1+\\frac{1}{2^{3} 3}+\\frac{3}{2^{7}5}+\\frac{5}{2^{10}7}+\\ldots \\tag{3}",{"attrs":11,"content":11,"marks":11,"text":156,"type":49}," и ",{"attrs":158,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":159,"title":14},"\\frac{\\pi}{4}=1-\\frac{1}{3}+\\frac{1}{5}-\\frac{1}{7}+\\ldots,\\tag{4}",{"attrs":161,"content":162,"marks":11,"text":14,"type":86},{"textAlign":11},[163,165,172,179,181,189,191,194,196,199,201,203,205,207,209,211,213,222,224,226],{"attrs":11,"content":11,"marks":11,"text":164,"type":49},"для ",{"attrs":11,"content":11,"marks":166,"text":139,"type":49},[167],{"attrs":168,"content":11,"marks":11,"text":14,"type":103},{"content_id":169,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":170,"link_type":102,"navigation_value":11,"target":14,"version":46},"1ba02c34-3980-4bcf-98b1-d25624f3caca",{"slug":171,"type":101},"neperovo-chislo-1ba02c",{"attrs":173,"content":11,"marks":175,"text":14,"type":56},{"display":67,"displayMode":14,"src":174,"title":14},"e",[176],{"attrs":177,"content":11,"marks":11,"text":14,"type":103},{"content_id":169,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":178,"link_type":102,"navigation_value":11,"target":14,"version":46},{"slug":171,"type":101},{"attrs":11,"content":11,"marks":11,"text":180,"type":49},"– основания натуральных ",{"attrs":11,"content":11,"marks":182,"text":188,"type":49},[183],{"attrs":184,"content":11,"marks":11,"text":14,"type":103},{"content_id":185,"external":13,"graph_link":7,"href":97,"kind_id":98,"link":186,"link_type":102,"navigation_value":11,"target":14,"version":46},"f43a4a36-cf49-4240-aada-7fdcf94a004b",{"slug":187,"type":101},"logarifm-f43a4a","логарифмов",{"attrs":11,"content":11,"marks":11,"text":190,"type":49}," – справедливо равенство ",{"attrs":192,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":193,"title":14},"e=1+\\frac{1}{1!}+\\frac{1}{2!}+\\frac{1}{3!}+\\ldots\\ .\\tag{5}",{"attrs":11,"content":11,"marks":11,"text":195,"type":49},"При вычислениях сумма ряда обычно заменяется конечной суммой ",{"attrs":197,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":198,"title":14},"s_n",{"attrs":11,"content":11,"marks":11,"text":200,"type":49}," его первых ",{"attrs":202,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":83,"title":14},{"attrs":11,"content":11,"marks":11,"text":204,"type":49}," слагаемых. При этом очень важен ответ на вопрос о том, насколько величина ",{"attrs":206,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":198,"title":14},{"attrs":11,"content":11,"marks":11,"text":208,"type":49}," при данном ",{"attrs":210,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":83,"title":14},{"attrs":11,"content":11,"marks":11,"text":212,"type":49}," близка к сумме ряда, или, как иногда говорят, вопрос о «скорости ",{"attrs":11,"content":11,"marks":214,"text":221,"type":49},[215],{"attrs":216,"content":11,"marks":11,"text":14,"type":103},{"content_id":217,"external":13,"graph_link":7,"href":97,"kind_id":98,"link":218,"link_type":220,"navigation_value":11,"target":14,"version":46},"4430fe16-a0b3-4ab5-9ceb-3ddc4935a894",{"slug":219,"type":101},"skhodimost-4430fe","53","сходимости",{"attrs":11,"content":11,"marks":11,"text":223,"type":49},"» величин ",{"attrs":225,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":198,"title":14},{"attrs":11,"content":11,"marks":11,"text":227,"type":49}," к сумме ряда.",{"attrs":229,"content":230,"marks":11,"text":14,"type":86},{"textAlign":11},[231,233,236,238,241,243,246,248,251],{"attrs":11,"content":11,"marks":11,"text":232,"type":49},"Различают ряды числовые, членами которых являются числа (например, все ряды (2)–(5)), и функциональные, членами которых являются функции, например, ",{"attrs":234,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":235,"title":14},"\\sin x=x-\\frac{x^3}{3!}+\\frac{x^5}{5!}+\\ldots=\\sum_{n=0}^{\\infty}(-1)^n\\frac{x^{2n+1}}{(2n+1)!}.",{"attrs":11,"content":11,"marks":11,"text":237,"type":49},"Если в функциональном ряде переменной ",{"attrs":239,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":240,"title":14},"x",{"attrs":11,"content":11,"marks":11,"text":242,"type":49}," придать числовое значение, то такой ряд превращается в числовой. Например, ряд (5) получается из функционального ряда ",{"attrs":244,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":245,"title":14},"e^x=1+\\frac{x}{1!}+\\frac{x^2}{2!}+\\frac{x^3}{3!}+\\ldots",{"attrs":11,"content":11,"marks":11,"text":247,"type":49},"при ",{"attrs":249,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":250,"title":14},"x=1",{"attrs":11,"content":11,"marks":11,"text":252,"type":49},". Когда идёт речь о сходимости ряда, то имеют в виду сходимость числового ряда, заданного непосредственно или получающегося из функционального ряда при тех или иных значениях переменной. Решение многих задач в математике и её приложениях значительно упрощается, если рассматриваемые функции представлять в виде рядов, члены которых являются простейшими функциями. При выполнении некоторых условий математические операции над рядами (сложение, умножение, предельный переход, почленное дифференцирование и интегрирование) проводятся по тем же простым правилам, что и одноимённые операции над конечными суммами.",{"attrs":254,"content":256,"marks":11,"text":14,"type":259},{"textAlign":11,"version":46,"id":255},"h2_chislovыe_ryadы",[257],{"attrs":11,"content":11,"marks":11,"text":258,"type":49},"Числовые ряды","h2",{"attrs":261,"content":262,"marks":11,"text":14,"type":86},{"textAlign":11},[263,265,273,274,277],{"attrs":11,"content":11,"marks":11,"text":264,"type":49},"Ряд (1) называется сходящимся, если сходится ",{"attrs":11,"content":11,"marks":266,"text":272,"type":49},[267],{"attrs":268,"content":11,"marks":11,"text":14,"type":103},{"content_id":269,"external":13,"graph_link":7,"href":97,"kind_id":98,"link":270,"link_type":102,"navigation_value":11,"target":14,"version":46},"f5aa37e1-7dca-4b17-bf3a-cd463642ffb8",{"slug":271,"type":101},"posledovatel-nost-f5aa37","последовательность",{"attrs":11,"content":11,"marks":11,"text":123,"type":49},{"attrs":275,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":276,"title":14},"\\{s_n\\}^{\\infty}_{n=1}",{"attrs":11,"content":11,"marks":11,"text":278,"type":49}," его частичных сумм; в этом случае",{"attrs":280,"content":281,"marks":11,"text":14,"type":86},{"textAlign":11},[282,285,287,290,292,300,302,305,307,310,312,315,317,320,322,325,326,328],{"attrs":283,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":284,"title":14},"\\lim\\limits_{n\\to\\infty}s_n=s",{"attrs":11,"content":11,"marks":11,"text":286,"type":49}," называется суммой ряда и пишут ",{"attrs":288,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":289,"title":14}," s=\\sum_{n=1}^{\\infty}u_n.",{"attrs":11,"content":11,"marks":11,"text":291,"type":49},"Таким образом, обозначение (1) применяется как для самого ряда, так и для его суммы (если он сходится). Если последовательность частичных сумм не имеет ",{"attrs":11,"content":11,"marks":293,"text":299,"type":49},[294],{"attrs":295,"content":11,"marks":11,"text":14,"type":103},{"content_id":296,"external":13,"graph_link":7,"href":97,"kind_id":98,"link":297,"link_type":220,"navigation_value":11,"target":14,"version":46},"6d5ab850-d5b5-426e-a3f0-0b8d9777ed90",{"slug":298,"type":101},"predel-v-matematike-6d5ab8","предела",{"attrs":11,"content":11,"marks":11,"text":301,"type":49},", то ряд называется расходящимся. Пример сходящегося ряда даёт ряд (2) для любого ",{"attrs":303,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":304,"title":14},"|q| \u003C 1",{"attrs":11,"content":11,"marks":11,"text":306,"type":49},", этот же ряд при любом ",{"attrs":308,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":309,"title":14},"|q| \\geqslant 1",{"attrs":11,"content":11,"marks":11,"text":311,"type":49}," даёт пример расходящегося ряда, в частности, при ",{"attrs":313,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":314,"title":14},"q=–1",{"attrs":11,"content":11,"marks":11,"text":316,"type":49}," этот ряд есть ",{"attrs":318,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":319,"title":14},"1-1+1-1+\\ldots,",{"attrs":11,"content":11,"marks":11,"text":321,"type":49},"частичные суммы последнего ряда принимают всего два значения ",{"attrs":323,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":324,"title":14},"0",{"attrs":11,"content":11,"marks":11,"text":156,"type":49},{"attrs":327,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":46,"title":14},{"attrs":11,"content":11,"marks":11,"text":85,"type":49},{"attrs":330,"content":331,"marks":11,"text":14,"type":86},{"textAlign":11},[332,334,337,339,342,344,347,349,357,359,362,364,366,368],{"attrs":11,"content":11,"marks":11,"text":333,"type":49},"Если ряд (1) и ряд ",{"attrs":335,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":336,"title":14},"\\sum_{n=1}^{\\infty}v_n \\tag{6}",{"attrs":11,"content":11,"marks":11,"text":338,"type":49},"сходятся, то сходится и ряд ",{"attrs":340,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":341,"title":14},"\\sum_{n=1}^{\\infty}(u_n+v_n),",{"attrs":11,"content":11,"marks":11,"text":343,"type":49}," называемый суммой рядов (1) и (6), и его сумма равна сумме данных рядов. Если ряд (1) сходится и ",{"attrs":345,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":346,"title":14},"λ",{"attrs":11,"content":11,"marks":11,"text":348,"type":49}," – ",{"attrs":11,"content":11,"marks":350,"text":356,"type":49},[351],{"attrs":352,"content":11,"marks":11,"text":14,"type":103},{"content_id":353,"external":13,"graph_link":7,"href":97,"kind_id":98,"link":354,"link_type":102,"navigation_value":11,"target":14,"version":46},"a7c76d06-b09f-4b3b-be8a-4c7f81368ddf",{"slug":355,"type":101},"kompleksnoe-chislo-a7c76d","комплексное число",{"attrs":11,"content":11,"marks":11,"text":358,"type":49},", то ряд ",{"attrs":360,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":14,"src":361,"title":14},"\\displaystyle\\sum_{n=1}^{\\infty} λu_n,",{"attrs":11,"content":11,"marks":11,"text":363,"type":49}," называемый произведением ряда на число ",{"attrs":365,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":346,"title":14},{"attrs":11,"content":11,"marks":11,"text":367,"type":49},", также сходится и ",{"attrs":369,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":370,"title":14},"\\sum_{n=1}^{\\infty} λu_n=λ\\sum_{n=1}^{\\infty} u_n.",{"attrs":372,"content":373,"marks":11,"text":14,"type":86},{"textAlign":11},[374,376,384,386,389,391,394,396,399,401,404,406,409,411,414,416,426,427,435,438],{"attrs":11,"content":11,"marks":11,"text":375,"type":49},"Условие сходимости ряда, не использующее величины его суммы, даёт ",{"attrs":11,"content":11,"marks":377,"text":383,"type":49},[378],{"attrs":379,"content":11,"marks":11,"text":14,"type":103},{"content_id":380,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":381,"link_type":102,"navigation_value":11,"target":14,"version":46},"ac4a25c4-37be-4b40-b640-6757ea8390d1",{"slug":382,"type":101},"kriterii-koshi-ac4a25","критерий Коши",{"attrs":11,"content":11,"marks":11,"text":385,"type":49},": для того чтобы ряд (1) сходился, необходимо и достаточно, чтобы для любого ",{"attrs":387,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":388,"title":14},"ε > 0",{"attrs":11,"content":11,"marks":11,"text":390,"type":49}," существовало такое число ",{"attrs":392,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":393,"title":14},"n_ε",{"attrs":11,"content":11,"marks":11,"text":395,"type":49},", что при любом натуральном ",{"attrs":397,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":398,"title":14},"n > n_ε",{"attrs":11,"content":11,"marks":11,"text":400,"type":49}," и любом целом ",{"attrs":402,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":403,"title":14},"p \\geqslant 0",{"attrs":11,"content":11,"marks":11,"text":405,"type":49}," выполнялось неравенство ",{"attrs":407,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":14,"src":408,"title":14},"\\displaystyle\\left| \\sum_{k=n}^{n+p}u_k \\right| \u003C ε.",{"attrs":11,"content":11,"marks":11,"text":410,"type":49}," Отсюда следует, что если ряд (1) сходится, то ",{"attrs":412,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":413,"title":14},"\\lim\\limits_{n\\to\\infty}u_n=0",{"attrs":11,"content":11,"marks":11,"text":415,"type":49},". Обратное неверно: общий член ",{"attrs":11,"content":11,"marks":417,"text":425,"type":49},[418],{"attrs":419,"content":11,"marks":11,"text":14,"type":103},{"content_id":420,"external":13,"graph_link":7,"href":421,"kind_id":14,"link":422,"link_type":424,"navigation_value":11,"target":14,"version":46},"d5681b30-621d-4258-a714-de028669dab7","content/d5681b30-621d-4258-a714-de028669dab7",{"slug":423,"type":101},"garmonicheskii-riad-d5681b","9","гармонического ряда",{"attrs":11,"content":11,"marks":11,"text":123,"type":49},{"attrs":11,"content":11,"marks":428,"text":123,"type":49},[429,432],{"attrs":430,"content":11,"marks":11,"text":14,"type":103},{"content_id":420,"external":13,"graph_link":7,"href":421,"kind_id":14,"link":431,"link_type":102,"navigation_value":11,"target":14,"version":46},{"slug":423,"type":101},{"attrs":433,"content":11,"marks":11,"text":14,"type":434},{"version":46},"italic",{"attrs":436,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":437,"title":14},"\\displaystyle 1+\\frac{1}{2}+\\frac{1}{3}+\\ldots+\\frac{1}{n}+\\ldots",{"attrs":11,"content":11,"marks":11,"text":439,"type":49},"стремится к нулю, однако этот ряд расходится.",{"attrs":441,"content":442,"marks":11,"text":14,"type":86},{"textAlign":11},[443],{"attrs":11,"content":11,"marks":11,"text":444,"type":49},"В теории рядов большую роль играют ряды с неотрицательными членами. Для того чтобы такой ряд сходился, необходимо и достаточно, чтобы последовательность его частичных сумм была ограничена сверху. Для рядов с неотрицательными членами имеются специальные признаки сходимости.",{"attrs":446,"content":447,"marks":11,"text":14,"type":86},{"textAlign":11},[448,456,458,461,463,466,468,471,473,476,478,481,483,486,488,491],{"attrs":11,"content":11,"marks":449,"text":455,"type":49},[450],{"attrs":451,"content":11,"marks":11,"text":14,"type":103},{"content_id":452,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":453,"link_type":102,"navigation_value":11,"target":14,"version":46},"488a3a96-2e53-469d-9b09-74ddb62008d7",{"slug":454,"type":101},"integral-nyi-priznak-skhodimosti-488a3a","Интегральный признак сходимости",{"attrs":11,"content":11,"marks":11,"text":457,"type":49},": если функция ",{"attrs":459,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":460,"title":14},"f(x)",{"attrs":11,"content":11,"marks":11,"text":462,"type":49}," определена при всех ",{"attrs":464,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":465,"title":14},"x \\geqslant 1",{"attrs":11,"content":11,"marks":11,"text":467,"type":49},", неотрицательна и убывает, то ряд ",{"attrs":469,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":470,"title":14},"\\sum_{n=1}^{\\infty} f(n)\\tag{7}",{"attrs":11,"content":11,"marks":11,"text":472,"type":49}," сходится тогда и только тогда, когда сходится интеграл ",{"attrs":474,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":475,"title":14},"\\int\\limits_{1}^{\\infty} f(x)\\,dx.",{"attrs":11,"content":11,"marks":11,"text":477,"type":49},"С помощью этого признака сходимости легко устанавливается, например, что ряд ",{"attrs":479,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":480,"title":14},"\\displaystyle 1+\\frac{1}{2^α}+\\frac{1}{3^α}+\\ldots+\\frac{1}{n^α}+\\ldots",{"attrs":11,"content":11,"marks":11,"text":482,"type":49}," сходится при ",{"attrs":484,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":485,"title":14},"\\alpha > 1",{"attrs":11,"content":11,"marks":11,"text":487,"type":49}," и расходится при ",{"attrs":489,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":490,"title":14},"α\\leqslant 1",{"attrs":11,"content":11,"marks":11,"text":85,"type":49},{"attrs":493,"content":494,"marks":11,"text":14,"type":86},{"textAlign":11},[495,503,505,508,510,513,515,518,520,523,524,527,529,532,533,536],{"attrs":11,"content":11,"marks":496,"text":502,"type":49},[497],{"attrs":498,"content":11,"marks":11,"text":14,"type":103},{"content_id":499,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":500,"link_type":102,"navigation_value":11,"target":14,"version":46},"f59a51a5-1c98-4937-8c36-1f9e3e0c81b6",{"slug":501,"type":101},"priznak-sravneniia-f59a51","Признак сравнения",{"attrs":11,"content":11,"marks":11,"text":504,"type":49},": если для двух рядов (1) и (6) с неотрицательными членами существует такая постоянная ",{"attrs":506,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":507,"title":14},"c > 0",{"attrs":11,"content":11,"marks":11,"text":509,"type":49},", что ",{"attrs":511,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":512,"title":14},"0 \\leqslant u_n\\leqslant cv_n",{"attrs":11,"content":11,"marks":11,"text":514,"type":49},", то из сходимости ряда (6) следует сходимость ряда (1), а из расходимости ряда (1) – расходимость ряда (6). Как следствие признака сравнения получается следующее правило: если",{"attrs":516,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":517,"title":14}," \\displaystyle\\lim_{n\\to\\infty}n^\\alpha u_n=c,\\qquad u_n ⩾ 0,",{"attrs":11,"content":11,"marks":11,"text":519,"type":49},"то при ",{"attrs":521,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":522,"title":14},"α > 1",{"attrs":11,"content":11,"marks":11,"text":156,"type":49},{"attrs":525,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":526,"title":14},"0 \\leqslant c \u003C+ \\infty",{"attrs":11,"content":11,"marks":11,"text":528,"type":49}," ряд (1) сходится, а при ",{"attrs":530,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":531,"title":14},"\\alpha\\leqslant 1 ",{"attrs":11,"content":11,"marks":11,"text":156,"type":49},{"attrs":534,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":535,"title":14},"0\u003Cc\\leqslant+\\infty",{"attrs":11,"content":11,"marks":11,"text":537,"type":49}," – расходится.",{"attrs":539,"content":540,"marks":11,"text":14,"type":86},{"textAlign":11},[541],{"attrs":11,"content":11,"marks":11,"text":542,"type":49},"Часто оказываются полезными два следствия признака сравнения.",{"attrs":544,"content":545,"marks":11,"text":14,"type":86},{"textAlign":11},[546,554,556,559,560,563,564,567],{"attrs":11,"content":11,"marks":547,"text":553,"type":49},[548],{"attrs":549,"content":11,"marks":11,"text":14,"type":103},{"content_id":550,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":551,"link_type":102,"navigation_value":11,"target":14,"version":46},"6b72acb1-ac0d-436d-af1d-3318cc334846",{"slug":552,"type":101},"priznak-dalambera-6b72ac","Признак Д’Аламбера",{"attrs":11,"content":11,"marks":11,"text":555,"type":49},": если существует ",{"attrs":557,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":558,"title":14},"\\lim\\limits_{n\\to\\infty}(u_{n+1}/u_n)=c,\\quad u_n > 0,",{"attrs":11,"content":11,"marks":11,"text":519,"type":49},{"attrs":561,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":562,"title":14},"c \u003C 1",{"attrs":11,"content":11,"marks":11,"text":528,"type":49},{"attrs":565,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":566,"title":14}," c > 1",{"attrs":11,"content":11,"marks":11,"text":537,"type":49},{"attrs":569,"content":570,"marks":11,"text":14,"type":86},{"textAlign":11},[571,579,580,583,584,586,587,590],{"attrs":11,"content":11,"marks":572,"text":578,"type":49},[573],{"attrs":574,"content":11,"marks":11,"text":14,"type":103},{"content_id":575,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":576,"link_type":102,"navigation_value":11,"target":14,"version":46},"47369467-3bda-496c-a21d-be4d14aa1c70",{"slug":577,"type":101},"priznak-koshi-473694","Признак Коши",{"attrs":11,"content":11,"marks":11,"text":555,"type":49},{"attrs":581,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":582,"title":14},"\\lim\\limits_{n\\to\\infty}(u_n)^{1/n}=c,\\quad u_n ⩾ 0,",{"attrs":11,"content":11,"marks":11,"text":519,"type":49},{"attrs":585,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":562,"title":14},{"attrs":11,"content":11,"marks":11,"text":528,"type":49},{"attrs":588,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":589,"title":14},"c > 1",{"attrs":11,"content":11,"marks":11,"text":591,"type":49}," – расходится. ",{"attrs":593,"content":594,"marks":11,"text":14,"type":86},{"textAlign":11},[595,597,600],{"attrs":11,"content":11,"marks":11,"text":596,"type":49},"При ",{"attrs":598,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":599,"title":14},"c=1",{"attrs":11,"content":11,"marks":11,"text":601,"type":49}," как в случае признака Д’Аламбера, так и в случае признака Коши существуют и сходящиеся, и расходящиеся ряды.",{"attrs":603,"content":604,"marks":11,"text":14,"type":86},{"textAlign":11},[605,607],{"attrs":11,"content":11,"marks":11,"text":606,"type":49},"Важный класс рядов составляют абсолютно сходящиеся ряды: ряд (1) называется абсолютно сходящимся, если сходится ряд ",{"attrs":608,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":609,"title":14},"\\displaystyle\\sum_{n=1}^{\\infty}|u_n|.",{"attrs":611,"content":612,"marks":11,"text":14,"type":86},{"textAlign":11},[613,615,618,620,623,625,628,630,633],{"attrs":11,"content":11,"marks":11,"text":614,"type":49},"Если ряд абсолютно сходится, то он и просто сходится. Ряд ",{"attrs":616,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":617,"title":14},"\\sum_{n=1}^{\\infty}\\frac{(-1)^n}{n^{2/3}}",{"attrs":11,"content":11,"marks":11,"text":619,"type":49},"абсолютно сходится, а ряд ",{"attrs":621,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":622,"title":14},"\\sum_{n=1}^{\\infty}\\frac{(-1)^n}{n}",{"attrs":11,"content":11,"marks":11,"text":624,"type":49},"сходится, но не абсолютно. Сумма абсолютно сходящихся рядов и произведение абсолютно сходящегося ряда на число являются абсолютно сходящимися рядами. На абсолютно сходящиеся ряды наиболее полно переносятся свойства конечных сумм. Пусть ",{"attrs":626,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":627,"title":14},"\\sum_{n=1}^{\\infty} u^*_n\\tag{8}",{"attrs":11,"content":11,"marks":11,"text":629,"type":49},"– ряд, состоящий из тех же членов, что и ряд (1), но взятых в другом порядке. Если ряд (1) сходится абсолютно, то ряд (8) также абсолютно сходится и его сумма совпадает с суммой ряда (1). Если ряды (1) и (6) абсолютно сходятся, то ряд, полученный из всевозможных попарных произведений ",{"attrs":631,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":632,"title":14},"u_mv_n",{"attrs":11,"content":11,"marks":11,"text":634,"type":49}," членов этих рядов, расположенных в произвольном порядке, также абсолютно сходится и его сумма равна произведению сумм рядов (1) и (6), т. е. абсолютно сходящиеся ряды можно перемножать, не заботясь о порядке членов. Признаки сходимости для рядов с неотрицательными членами применимы для установления абсолютной сходимости рядов.",{"attrs":636,"content":637,"marks":11,"text":14,"type":86},{"textAlign":11},[638,640,643,645,648,650,658,660,663,665,668,669,672,674,677,679],{"attrs":11,"content":11,"marks":11,"text":639,"type":49},"Ряды, сходящиеся не абсолютно, называют условно сходящимися, для них утверждение о независимости их суммы от порядка слагаемых неверно. Справедлива теорема Римана: посредством надлежащего изменения порядка членов данного условно сходящегося ряда можно получить ряд, имеющий любую наперёд заданную сумму, или расходящийся ряд. Примером условно сходящегося ряда может служить ряд ",{"attrs":641,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":642,"title":14},"1-\\frac{1}{2}+\\frac{1}{3}-\\frac{1}{4}+\\frac{1}{5}-\\frac{1}{6}+\\ldots= \\ln 2 = 0.693\\ldots\\,.",{"attrs":11,"content":11,"marks":11,"text":644,"type":49},"Если в этом ряде переставить члены так, чтобы за двумя положительными следовал один отрицательный: ",{"attrs":646,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":647,"title":14},"\\displaystyle 1+\\frac{1}{3}-\\frac{1}{2}+\\frac{1}{5}+\\frac{1}{7}-\\frac{1}{4}+\\ldots\\,,",{"attrs":11,"content":11,"marks":11,"text":649,"type":49},"то его сумма увеличится в 1,5 раза. Существуют признаки сходимости, применимые к не абсолютно сходящимся рядам. Например, ",{"attrs":11,"content":11,"marks":651,"text":657,"type":49},[652],{"attrs":653,"content":11,"marks":11,"text":14,"type":103},{"content_id":654,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":655,"link_type":102,"navigation_value":11,"target":14,"version":46},"2867165e-8ee7-4011-bba2-7bae4ed0a303",{"slug":656,"type":101},"priznak-leibnitsa-286716","признак Лейбница",{"attrs":11,"content":11,"marks":11,"text":659,"type":49},": если ",{"attrs":661,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":662,"title":14},"u_n \\geqslant n_{n+1} > 0",{"attrs":11,"content":11,"marks":11,"text":664,"type":49}," для всех ",{"attrs":666,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":667,"title":14},"n \\geqslant 1",{"attrs":11,"content":11,"marks":11,"text":156,"type":49},{"attrs":670,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":671,"title":14},"\\lim\\limits_{n\\rightarrow\\infty} u_n=0",{"attrs":11,"content":11,"marks":11,"text":673,"type":49},", то знакочередующийся ряд ",{"attrs":675,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":676,"title":14},"\\sum_{n=1}^{\\infty}(-1)^{n+1}u_n \\tag{9}",{"attrs":11,"content":11,"marks":11,"text":678,"type":49},"сходится. Более общие признаки можно получить для рядов вида ",{"attrs":680,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":681,"title":14},"\\sum_{n=1}^{\\infty} a_n b_n . \\tag{10}",{"attrs":683,"content":684,"marks":11,"text":14,"type":86},{"textAlign":11},[685,693,695,698,700,703],{"attrs":11,"content":11,"marks":686,"text":692,"type":49},[687],{"attrs":688,"content":11,"marks":11,"text":14,"type":103},{"content_id":689,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":690,"link_type":102,"navigation_value":11,"target":14,"version":46},"b37ecbdf-bff6-42e0-89b4-d96f48eb2157",{"slug":691,"type":101},"priznak-abelia-b37ecb","Признак Абеля",{"attrs":11,"content":11,"marks":11,"text":694,"type":49},": если последовательность ",{"attrs":696,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":697,"title":14},"\\{a_n\\}_{n=1}^{\\infty}",{"attrs":11,"content":11,"marks":11,"text":699,"type":49}," монотонна и ограничена, а ряд ",{"attrs":701,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":702,"title":14},"\\displaystyle\\sum_{n=1}^{\\infty}b_n",{"attrs":11,"content":11,"marks":11,"text":704,"type":49},"сходится, то ряд (10) также сходится.",{"attrs":706,"content":707,"marks":11,"text":14,"type":86},{"textAlign":11},[708,716,717,720,722,725],{"attrs":11,"content":11,"marks":709,"text":715,"type":49},[710],{"attrs":711,"content":11,"marks":11,"text":14,"type":103},{"content_id":712,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":713,"link_type":102,"navigation_value":11,"target":14,"version":46},"e6983008-c1b2-4783-aa1a-de00205bf9db",{"slug":714,"type":101},"priznak-dirikhle-e69830","Признак Дирихле",{"attrs":11,"content":11,"marks":11,"text":694,"type":49},{"attrs":718,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":719,"title":14},"\\{a_n\\}^{\\infty}_{n=1}",{"attrs":11,"content":11,"marks":11,"text":721,"type":49}," монотонно стремится к нулю, а последовательность частичных сумм ряда ",{"attrs":723,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":724,"title":14},"\\sum_{n=1}^{\\infty}b_n",{"attrs":11,"content":11,"marks":11,"text":726,"type":49},"ограничена, то ряд (10) сходится.",{"attrs":728,"content":729,"marks":11,"text":14,"type":86},{"textAlign":11},[730,732],{"attrs":11,"content":11,"marks":11,"text":731,"type":49},"Иногда рассматриваются ряды вида ",{"attrs":733,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":734,"title":14},"\\displaystyle\\sum_{n=-\\infty}^{\\infty} u_n.",{"attrs":736,"content":737,"marks":11,"text":14,"type":86},{"textAlign":11},[738,740,743,745,748,750,753,755,758,760,763,765,768],{"attrs":11,"content":11,"marks":11,"text":739,"type":49},"Такой ряд называют сходящимся, если сходятся ряды ",{"attrs":741,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":742,"title":14},"\\displaystyle\\sum_{n=0}^{\\infty}u_n \\quad\\text{и}\\quad \\sum_{n=1}^{\\infty}u_{-n},",{"attrs":11,"content":11,"marks":11,"text":744,"type":49},"сумма этих рядов называется суммой исходного ряда. Более сложную структуру имеют т. н. кратные ряды, т. е. ряды вида ",{"attrs":746,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":747,"title":14},"\\sum_{n_1,n_2,...,n_k=1}^{\\infty} u_{n_1,n_2,...,n_k},",{"attrs":11,"content":11,"marks":11,"text":749,"type":49},"где ",{"attrs":751,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":752,"title":14},"u_{n_1,n_2,...,n_k}",{"attrs":11,"content":11,"marks":11,"text":754,"type":49}," – заданные числа, занумерованные ",{"attrs":756,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":757,"title":14},"k",{"attrs":11,"content":11,"marks":11,"text":759,"type":49}," индексами ",{"attrs":761,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":762,"title":14},"n_1,\\,n_2,\\ldots,\\,n_k",{"attrs":11,"content":11,"marks":11,"text":764,"type":49},", каждый из которых независимо от других пробегает натуральный ряд чисел. Простейшие ряды этого типа – двойные ряды (",{"attrs":766,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":767,"title":14},"k=2",{"attrs":11,"content":11,"marks":11,"text":769,"type":49},").",{"attrs":771,"content":772,"marks":11,"text":14,"type":86},{"textAlign":11},[773,775,778,780,783,785,788,790],{"attrs":11,"content":11,"marks":11,"text":774,"type":49},"Для некоторых рядов удаётся получить простые формулы или оценки их остатков ",{"attrs":776,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":777,"title":14},"r_n=s-s_n",{"attrs":11,"content":11,"marks":11,"text":779,"type":49},", что весьма важно, например, при оценке точности вычислений, проводимых с помощью рядов. Например, для геометрической прогрессии (2) ",{"attrs":781,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":782,"title":14}," r_n=\\frac{q^n}{1-q},\\,\\, \\, \\, \\,|q| \u003C 1,",{"attrs":11,"content":11,"marks":11,"text":784,"type":49},"для ряда (7) при сделанных предположениях ",{"attrs":786,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":787,"title":14},"\\int\\limits_{n+1}^{\\infty} f(x)\\,dx \u003C r_n \u003C \\int\\limits_{n}^{\\infty} f(x)\\,dx,",{"attrs":11,"content":11,"marks":11,"text":789,"type":49},"а для ряда (9) ",{"attrs":791,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":792,"title":14},"|r_n| ⩽ u_{n+1}.",{"attrs":794,"content":795,"marks":11,"text":14,"type":86},{"textAlign":11},[796,798,806],{"attrs":11,"content":11,"marks":11,"text":797,"type":49},"С помощью некоторых специальных преобразований иногда удаётся «улучшить» сходимость сходящегося ряда. В математике и её приложениях используются не только сходящиеся, но и расходящиеся ряды. Для последних вводятся более общие понятия ",{"attrs":11,"content":11,"marks":799,"text":805,"type":49},[800],{"attrs":801,"content":11,"marks":11,"text":14,"type":103},{"content_id":802,"external":13,"graph_link":7,"href":97,"kind_id":98,"link":803,"link_type":102,"navigation_value":11,"target":14,"version":46},"26bd6170-d2bd-4a24-8b5a-c6320b02e9e3",{"slug":804,"type":101},"summirovanie-riadov-26bd61","суммы ряда",{"attrs":11,"content":11,"marks":11,"text":85,"type":49},{"attrs":808,"content":810,"marks":11,"text":14,"type":259},{"textAlign":11,"version":46,"id":809},"h2_funktsional'nыe_ryadы",[811],{"attrs":11,"content":11,"marks":11,"text":812,"type":49},"Функциональные ряды",{"attrs":814,"content":815,"marks":11,"text":14,"type":86},{"textAlign":11},[816,818,821,823,832,834,837,839,842,844,846,848,850,852,854,856,859],{"attrs":11,"content":11,"marks":11,"text":817,"type":49},"Понятие ряда естественным образом обобщается на случай, когда членами ряда являются функции ",{"attrs":819,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":820,"title":14},"u_n=u_n(x)",{"attrs":11,"content":11,"marks":11,"text":822,"type":49}," (действительные, комплексные или, более общо, функции, значения которых принадлежат какому-то ",{"attrs":11,"content":11,"marks":824,"text":831,"type":49},[825],{"attrs":826,"content":11,"marks":11,"text":14,"type":103},{"content_id":827,"external":13,"graph_link":7,"href":828,"kind_id":14,"link":829,"link_type":102,"navigation_value":11,"target":14,"version":46},"c408007a-e6df-44da-8dcc-b28a38276da6","content/c408007a-e6df-44da-8dcc-b28a38276da6",{"slug":830,"type":101},"metricheskoe-prostranstvo-c40800","метрическому пространству",{"attrs":11,"content":11,"marks":11,"text":833,"type":49},"), определённые на некотором множестве ",{"attrs":835,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":836,"title":14},"E",{"attrs":11,"content":11,"marks":11,"text":838,"type":49},". В этом случае ряд ",{"attrs":840,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":841,"title":14},"\\sum_{n=1}^{\\infty} u_n(x),\\quad x \\in E, \\tag{11}",{"attrs":11,"content":11,"marks":11,"text":843,"type":49},"называют функциональным рядом. Если этот ряд сходится в каждой точке множества ",{"attrs":845,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":836,"title":14},{"attrs":11,"content":11,"marks":11,"text":847,"type":49},", то он называется сходящимся на множестве ",{"attrs":849,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":836,"title":14},{"attrs":11,"content":11,"marks":11,"text":851,"type":49},", и множество ",{"attrs":853,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":836,"title":14},{"attrs":11,"content":11,"marks":11,"text":855,"type":49}," называется областью сходимости. Например, ряд ",{"attrs":857,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":858,"title":14},"\\displaystyle\\sum_{n=0}^{\\infty}\\frac{z_n}{n!}",{"attrs":11,"content":11,"marks":11,"text":860,"type":49},"сходится на всей комплексной плоскости.",{"attrs":862,"content":863,"marks":11,"text":14,"type":86},{"textAlign":11},[864,866,868,870,872,874,877,879,882,884,886,888,891,893,896,897,900,902,905,907,910,912,915,917,920,922,925,927,930,932,935,937,939,941,943,944,947,949,952,953,955,956,959],{"attrs":11,"content":11,"marks":11,"text":865,"type":49},"Сумма сходящегося ряда непрерывных, например на некотором отрезке, функций необязательно является непрерывной функцией. Условия, при которых на функциональные ряды переносятся свойства непрерывности, дифференцируемости и интегрируемости конечных сумм функций, формулируются в терминах равномерной сходимости рядов. Сходящийся ряд (11) называют равномерно сходящимся на множестве ",{"attrs":867,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":836,"title":14},{"attrs":11,"content":11,"marks":11,"text":869,"type":49},", если во всех точках ",{"attrs":871,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":836,"title":14},{"attrs":11,"content":11,"marks":11,"text":873,"type":49}," отклонения частичных сумм ряда ",{"attrs":875,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":876,"title":14},"\\displaystyle s_n(x)=\\sum_{k=1}^{\\infty} u_k(x)",{"attrs":11,"content":11,"marks":11,"text":878,"type":49},"от его суммы ",{"attrs":880,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":881,"title":14},"\\displaystyle s(x)=\\sum_{k=1}^{\\infty} u_k(x)",{"attrs":11,"content":11,"marks":11,"text":883,"type":49},"при достаточно больших числах ",{"attrs":885,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":83,"title":14},{"attrs":11,"content":11,"marks":11,"text":887,"type":49}," не превышают одной и той же сколь угодно малой величины; точнее, каково бы ни было наперёд заданное число",{"attrs":889,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":890,"title":14},"\\varepsilon > 0",{"attrs":11,"content":11,"marks":11,"text":892,"type":49},", существует такое число ",{"attrs":894,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":895,"title":14},"n_\\varepsilon",{"attrs":11,"content":11,"marks":11,"text":509,"type":49},{"attrs":898,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":899,"title":14},"\\left|s(x)-s_n(x)\\right|\u003C\\varepsilon",{"attrs":11,"content":11,"marks":11,"text":901,"type":49},"для всех ",{"attrs":903,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":904,"title":14},"n > n_\\varepsilon",{"attrs":11,"content":11,"marks":11,"text":906,"type":49}," и всех точек ",{"attrs":908,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":909,"title":14},"x∈E",{"attrs":11,"content":11,"marks":11,"text":911,"type":49},". Это условие равносильно тому, что ",{"attrs":913,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":914,"title":14},"\\displaystyle\\lim_{n\\rightarrow\\infty}\\sup_{x\\in E}|s(x)-s_n(x)|=0.",{"attrs":11,"content":11,"marks":11,"text":916,"type":49},"Например, ряд ",{"attrs":918,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":919,"title":14},"\\displaystyle \\sum_{n=1}^{\\infty} x^{n-1}(x-1)",{"attrs":11,"content":11,"marks":11,"text":921,"type":49},"равномерно сходится на отрезке ",{"attrs":923,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":924,"title":14},"[0, q]",{"attrs":11,"content":11,"marks":11,"text":926,"type":49}," при ",{"attrs":928,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":929,"title":14},"0 \u003C q \u003C 1",{"attrs":11,"content":11,"marks":11,"text":931,"type":49}," и не сходится равномерно на отрезке ",{"attrs":933,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":934,"title":14},"[0, 1]",{"attrs":11,"content":11,"marks":11,"text":936,"type":49},". Для того чтобы ряд (11) равномерно сходился на множестве ",{"attrs":938,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":836,"title":14},{"attrs":11,"content":11,"marks":11,"text":940,"type":49},", необходимо и достаточно, чтобы для любого ",{"attrs":942,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":388,"title":14},{"attrs":11,"content":11,"marks":11,"text":390,"type":49},{"attrs":945,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":946,"title":14},"n_\\epsilon",{"attrs":11,"content":11,"marks":11,"text":948,"type":49},", что для всех ",{"attrs":950,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":951,"title":14},"n > n_ε,\\ p \\geqslant 0",{"attrs":11,"content":11,"marks":11,"text":906,"type":49},{"attrs":954,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":909,"title":14},{"attrs":11,"content":11,"marks":11,"text":405,"type":49},{"attrs":957,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":958,"title":14},"|u_n(x)+...+u_{n+p}(x)| \u003C \\varepsilon",{"attrs":11,"content":11,"marks":11,"text":960,"type":49},"(критерий Коши). ",{"attrs":962,"content":963,"marks":11,"text":14,"type":86},{"textAlign":11},[964,966,969,971,974,976,978,980,983,985,987,989,997],{"attrs":11,"content":11,"marks":11,"text":965,"type":49},"Если существует такой сходящийся числовой ряд ",{"attrs":967,"content":11,"marks":11,"text":14,"type":56},{"display":54,"displayMode":61,"src":968,"title":14},"\\displaystyle\\sum_{n=1}^{\\infty}a_n,",{"attrs":11,"content":11,"marks":11,"text":970,"type":49},"что ",{"attrs":972,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":973,"title":14},"|u_n(x)| \\leqslant a_n",{"attrs":11,"content":11,"marks":11,"text":975,"type":49},", для всех ",{"attrs":977,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":909,"title":14},{"attrs":11,"content":11,"marks":11,"text":979,"type":49},", ",{"attrs":981,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":982,"title":14},"n=1,2,\\ldots,",{"attrs":11,"content":11,"marks":11,"text":984,"type":49}," то ряд (11) равномерно сходится на ",{"attrs":986,"content":11,"marks":11,"text":14,"type":56},{"display":67,"displayMode":14,"src":836,"title":14},{"attrs":11,"content":11,"marks":11,"text":988,"type":49}," (",{"attrs":11,"content":11,"marks":990,"text":996,"type":49},[991],{"attrs":992,"content":11,"marks":11,"text":14,"type":103},{"content_id":993,"external":13,"graph_link":7,"href":97,"kind_id":14,"link":994,"link_type":102,"navigation_value":11,"target":14,"version":46},"312ab1af-8b2d-481e-96b7-47bbbdd0670a",{"slug":995,"type":101},"priznak-veiershtrassa-312ab1","признак Вейерштрасса",{"attrs":11,"content":11,"marks":11,"text":769,"type":49},{"attrs":999,"content":1000,"marks":11,"text":14,"type":86},{"textAlign":11},[1001,1003,1012],{"attrs":11,"content":11,"marks":11,"text":1002,"type":49},"Сумма равномерно сходящегося ряда непрерывных на некотором отрезке (или, более общо, на некотором ",{"attrs":11,"content":11,"marks":1004,"text":1011,"type":49},[1005],{"attrs":1006,"content":11,"marks":11,"text":14,"type":103},{"content_id":1007,"external":13,"graph_link":7,"href":1008,"kind_id":14,"link":1009,"link_type":102,"navigation_value":11,"target":14,"version":46},"e185d92e-3244-432e-a7f9-bb19ba80092d","content/e185d92e-3244-432e-a7f9-bb19ba80092d",{"slug":1010,"type":101},"topologicheskoe-prostranstvo-e185d9","топологическом пространстве",{"attrs":11,"content":11,"marks":11,"text":1013,"type":49},") функций является непрерывной на этом отрезке (пространстве) функцией. Сумма равномерно сходящегося ряда интегрируемых на некотором множестве функций является интегрируемой на этом множестве функцией, и ряд можно интегрировать почленно. Если последовательность частичных сумм ряда интегрируемых функций сходится в среднем к некоторой интегрируемой функции, то интеграл от этой функции равен сумме ряда из интегралов от членов ряда. Интегрируемость в этих утверждениях понимается в смысле Римана или Лебега. Для интегрируемых по Лебегу функций достаточным условием возможности почленного интегрирования ряда с почти всюду сходящейся последовательностью частичных сумм является равномерная оценка их абсолютных величин некоторой интегрируемой по Лебегу функцией. Если члены сходящегося на некотором отрезке ряда (11) дифференцируемы на нём и ряд из их производных сходится равномерно, то сумма ряда также дифференцируема на этом отрезке и ряд можно дифференцировать почленно.",{"attrs":1015,"content":1016,"marks":11,"text":14,"type":86},{"textAlign":11},[1017,1019,1028,1029,1038],{"attrs":11,"content":11,"marks":11,"text":1018,"type":49},"Понятие функционального ряда обобщается и на случай кратных рядов. В различных разделах математики и её приложениях широко используются разложения функций в функциональные ряды, прежде всего в ",{"attrs":11,"content":11,"marks":1020,"text":1027,"type":49},[1021],{"attrs":1022,"content":11,"marks":11,"text":14,"type":103},{"content_id":1023,"external":13,"graph_link":7,"href":1024,"kind_id":14,"link":1025,"link_type":424,"navigation_value":11,"target":14,"version":46},"a85b0aa1-c222-423a-b2ed-f42877093c19","content/a85b0aa1-c222-423a-b2ed-f42877093c19",{"slug":1026,"type":101},"stepennoi-riad-a85b0a","степенные ряды",{"attrs":11,"content":11,"marks":11,"text":156,"type":49},{"attrs":11,"content":11,"marks":1030,"text":1037,"type":49},[1031],{"attrs":1032,"content":11,"marks":11,"text":14,"type":103},{"content_id":1033,"external":13,"graph_link":7,"href":1034,"kind_id":14,"link":1035,"link_type":424,"navigation_value":11,"target":14,"version":46},"07eca577-532c-49c2-baf8-d27b1e545521","content/07eca577-532c-49c2-baf8-d27b1e545521",{"slug":1036,"type":101},"trigonometricheskii-riad-07eca5","тригонометрические ряды",{"attrs":11,"content":11,"marks":11,"text":85,"type":49},{"attrs":1040,"content":1041,"marks":11,"text":14,"type":86},{"textAlign":11},[1042,1044,1053,1055,1064,1069,1071,1079,1080,1089,1090,1099],{"attrs":11,"content":11,"marks":11,"text":1043,"type":49},"Метод разложения в ряды является эффективным методом изучения функций, вычисления и оценок интегралов, решения всевозможных уравнений (алгебраических, дифференциальных, интегральных). Мощным методом исследования является ",{"attrs":11,"content":11,"marks":1045,"text":1052,"type":49},[1046],{"attrs":1047,"content":11,"marks":11,"text":14,"type":103},{"content_id":1048,"external":13,"graph_link":7,"href":1049,"kind_id":14,"link":1050,"link_type":102,"navigation_value":11,"target":14,"version":46},"074578e9-c625-40f1-b0e1-f522c4dcd050","content/074578e9-c625-40f1-b0e1-f522c4dcd050",{"slug":1051,"type":101},"garmonicheskii-analiz-074578","гармонический анализ",{"attrs":11,"content":11,"marks":11,"text":1054,"type":49},", основанный на представлении периодических и почти периодических функций ",{"attrs":11,"content":11,"marks":1056,"text":1063,"type":49},[1057],{"attrs":1058,"content":11,"marks":11,"text":14,"type":103},{"content_id":1059,"external":13,"graph_link":7,"href":1060,"kind_id":14,"link":1061,"link_type":424,"navigation_value":11,"target":14,"version":46},"6e7e4af5-4440-4340-ab1e-0851d6b9f500","content/6e7e4af5-4440-4340-ab1e-0851d6b9f500",{"slug":1062,"type":101},"riad-fur-e-6e7e4a","рядами Фурье",{"attrs":11,"content":11,"marks":1065,"text":1068,"type":49},[1066],{"attrs":1067,"content":11,"marks":11,"text":14,"type":434},{"version":46},". ",{"attrs":11,"content":11,"marks":11,"text":1070,"type":49},"См. также ",{"attrs":11,"content":11,"marks":1072,"text":1078,"type":49},[1073],{"attrs":1074,"content":11,"marks":11,"text":14,"type":103},{"content_id":1075,"external":13,"graph_link":7,"href":97,"kind_id":98,"link":1076,"link_type":424,"navigation_value":11,"target":14,"version":46},"a0a8285b-1a72-4b37-a60b-36a65561005a",{"slug":1077,"type":101},"asimptoticheskii-riad-a0a828","асимптотический ряд",{"attrs":11,"content":11,"marks":11,"text":979,"type":49},{"attrs":11,"content":11,"marks":1081,"text":1088,"type":49},[1082],{"attrs":1083,"content":11,"marks":11,"text":14,"type":103},{"content_id":1084,"external":13,"graph_link":7,"href":1085,"kind_id":14,"link":1086,"link_type":424,"navigation_value":11,"target":14,"version":46},"4d06d8f1-debe-4e26-8eca-e5ef5d3c25d5","content/4d06d8f1-debe-4e26-8eca-e5ef5d3c25d5",{"slug":1087,"type":101},"riad-lorana-4d06d8","ряд Лорана",{"attrs":11,"content":11,"marks":11,"text":979,"type":49},{"attrs":11,"content":11,"marks":1091,"text":1098,"type":49},[1092],{"attrs":1093,"content":11,"marks":11,"text":14,"type":103},{"content_id":1094,"external":13,"graph_link":7,"href":1095,"kind_id":14,"link":1096,"link_type":424,"navigation_value":11,"target":14,"version":46},"1b70fd58-64fd-4033-bd0f-cd4f1d6394a0","content/1b70fd58-64fd-4033-bd0f-cd4f1d6394a0",{"slug":1097,"type":101},"riad-teilora-1b70fd","ряд Тейлора",{"attrs":11,"content":11,"marks":1100,"text":85,"type":49},[1101],{"attrs":1102,"content":11,"marks":11,"text":14,"type":434},{"version":46},{"attrs":1104,"content":11,"marks":11,"text":14,"type":1112},{"list":1105},[1106,1109],{"slug":14,"type":1107,"value":1108},"affiliated_organizations","Редакция математических наук",{"slug":14,"type":1110,"value":1111},"comments_to_the_author_signature","По материалам статьи Л. Д. Кудрявцева и А. П. Юшкевича из Математического энциклопедического словаря.","author","doc","Ряд в математике // Большая российская энциклопедия: научно-образовательный портал – URL: https://bigenc.ru/c/riad-v-matematike-2e65f7/?v=3753779. – Дата публикации: 18.05.2022","Термины","terms",{"descriptionList":1118,"image":1122},[1119],{"kind":49,"label":1120,"value":1121},"Области знаний","Приближения, разложения и асимптотики",{"caption":1123,"element":1126},{"text":1124,"title":1125},"Математика. Научно-образовательный портал «Большая российская энциклопедия»","Математика",{"alt":1125,"areaViews":1127,"height":1142,"placeholder":7,"src":1143,"srcset":1144,"title":1125,"width":1145},[1128,1132,1137],{"alias":1129,"height":1130,"srcset":1131,"width":1130},"1/1",228,"https://i.bigenc.ru/resizer/resize?sign=6VYkqpXGFFum_yaKmqqAcg&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=bzKaSbgT_itcDhGLcVw8oA&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=_tGXyUZVJ32BRDl5Yo461w&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=DlPXAGLUgtmi5b-vD1HVlw&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=6TDZj1bfqv3EnbZVakutYA&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=Ev3rMS_2VTHJ-ySyzsLZBg&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=B8xkvplBfD15y95eSPEDGw&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=1qoVMguHtIQccH4wHD9dUw&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=H1o_TZMlxu-UZUD9MsoWpw&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=3840 3840w",{"alias":1133,"height":1134,"srcset":1135,"width":1136},"3/4",752,"https://i.bigenc.ru/resizer/resize?sign=nc3nKK9j9df4KQiLGGb84w&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=68zVF9E9tm6qxlltGCuhfg&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=aSDz96-qucNrk-ZKW064fw&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=d6kX3tl1wmAlDvL30Vn9DQ&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=5RtyQRTkWVMhxPJS0VrapA&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=8cD21MeHMxnMPkzwu_Mztg&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=cU70domXDGR7fB2crdZRiA&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=k-9U0n1UqYqOJRS-DZ7MWA&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=_E3VXK0Q6qbWZvcE8hxU_Q&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=3840 3840w",564,{"alias":1138,"height":1139,"srcset":1140,"width":1141},"16/9",394,"https://i.bigenc.ru/resizer/resize?sign=FajqjhmscSErdVNL6kwK_Q&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=kYo6Za7GRD2FRG1fIpTuRQ&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=XG_TlHmPh4ArMZcMY8icPw&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=Q7HjrlmJ87eIYUxcWojXJQ&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=YM7IYwUUSz0OO065zdxwtw&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=ey_rnBaOXv-gXL2kcVAAoQ&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=_np0OMgBGGW8dLD13Rnv5Q&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=MiCmUdExF65IUpLkFHPAAw&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=_z5cHAbpX81T_4b7JROzdQ&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=3840 3840w",700,1008,"https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120","https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=kwZEMADbF0h1k2QM5MQ63g&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=iDjHjthf4TWMMOWxyvO9-Q&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=aOq57ZwrPJzlZoA0JyAqNA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=RysrupjbIa5XYWB_pfATYQ&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=8eQ4RSvaDJue-elzThMhjA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=4tn4w-MU4hKmUoYIwAeqew&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=SXvkdFSbX19Vh-sgDBVBiQ&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1920 1920w",1528,"Ряд в математике","2022-05-18T19:21:12.000Z","2e65f7ba-0fbb-41b1-be19-86d86dae549b",3753779,{"article:modified_time":1147,"article:section":1115,"article:tag":1151,"description":1155,"keywords":1156,"og:description":1155,"og:image":1157,"og:image:alt":1158,"og:image:height":1159,"og:image:type":1160,"og:image:width":1161,"og:title":1162,"og:type":101,"og:url":1163,"title":1162,"twitter:card":1164},[1152,1153,1154],"Математические объекты","Ряды","Сходимость","Ряд в математике, бесконечная сумма или, что то же самое, Слагаемые называются членами ряда ( иногда называют общим членом ряда), суммы –...","Математические объекты, Ряды, Сходимость","https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200","«Большая российская энциклопедия»","792","webp&width=1200","1200","Ряд в математике. Большая российская энциклопедия","https://bigenc.ru/c/riad-v-matematike-2e65f7","summary_large_image","riad-v-matematike-2e65f7",[1167,1171,1174],{"label":1152,"link":1168},{"slug":1169,"type":1170},"matematicheskie-ob-ekty-96f114","tag",{"label":1153,"link":1172},{"slug":1173,"type":1170},"riady-0f226a",{"label":1154,"link":1175},{"slug":1176,"type":1170},"skhodimost-049181",{"createdAt":1147,"tabs":1178,"title":1146,"updatedAt":1147},[101,1179,1180,1181],"annotation","references","versions",[1183,1184],{"id":255,"title":258,"type":259},{"id":809,"title":812,"type":259},{},"/content/articles/riad-v-matematike-2e65f7",{"get_":1188,"getError":11,"getPending":13,"slideNumber":18,"getCache":1194},{"components":1189,"media":1191,"meta":1192},{"createdAt":1147,"tabs":1190,"title":1146,"updatedAt":1147},[101,1179,1180,1181],{},{"article:modified_time":1147,"article:section":1115,"article:tag":1193,"description":1155,"keywords":1156,"og:description":1155,"og:image":1157,"og:image:alt":1158,"og:image:height":1159,"og:image:type":1160,"og:image:width":1161,"og:title":1162,"og:type":101,"og:url":1163,"title":1162,"twitter:card":1164},[1152,1153,1154],"/content/articles/riad-v-matematike-2e65f7/media?slider=true",{"isOpened":13},{"get_":11,"getError":11,"getPending":7,"post_":-1,"postError":11,"postPending":7,"count":18,"noteActive":13,"allVersions":13,"rendered":13,"loading":13},{"isOpened":13},{"isOpened":13},{"get_":11,"getError":11,"getPending":7},{"get_":11,"getError":11,"getPending":7},{"get_":11,"getError":11,"getPending":7},{"get_":11,"getError":11,"getPending":7,"post_":-1,"postError":11,"postPending":7},{"get_":1204,"getError":11,"getPending":13,"getCache":1211},{"components":1205,"title":1146,"versions":1207},{"createdAt":1147,"tabs":1206,"title":1146,"updatedAt":1147},[101,1179,1180,1181],[1208],{"createdAt":1147,"id":1209,"isCurrent":7,"title":1210},"3753779","Версия №1 (актуальная)","/content/articles/riad-v-matematike-2e65f7/versions",{"show":13},{"text":14}]</script> <script>window.__NUXT__={};window.__NUXT__.config={public:{apiPrefix:"https://api.bigenc.ru",sVault:"",iVault:"",apiContentSubPrefix:"c.",apiUserSubPrefix:"u.",domain:"bigenc.ru",sentryDns:"https://be4279c4bfa0caa49440eefadf8abb1c@sentry.bigenc.ru/2",googleAnalytics:{id:"G-B0B7W0RKMV",allowedEnv:"production",url:"https://www.googletagmanager.com/gtag/js?id=G-B0B7W0RKMV"},mailRuCounter:{id:3400444,allowedEnv:"production",url:"https://top-fwz1.mail.ru/js/code.js"},version:"1.40.12",gnezdo:{id:2904018441,allowedEnv:"production",url:"https://news.gnezdo2.ru/gnezdo_news_tracker_new.js"},clickcloud:{id:"https://r.ccsyncuuid.net/match/1000511/",allowedEnv:"production"},yandexMetrika:{id:88885444,allowedEnv:"production",url:"https://mc.yandex.ru/metrika/tag.js",options:{defer:true,webvisor:true,clickmap:true,trackLinks:true,childIframe:true,accurateTrackBounce:true}},device:{enabled:true,defaultUserAgent:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false},persistedState:{storage:"cookies",debug:false,cookieOptions:{}}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://s.bigenc.ru/"}}</script></body></html>