CINXE.COM
Search results for: assembly systems
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: assembly systems</title> <meta name="description" content="Search results for: assembly systems"> <meta name="keywords" content="assembly systems"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="assembly systems" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="assembly systems"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9819</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: assembly systems</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9819</span> Computer Aided Assembly Attributes Retrieval Methods for Automated Assembly Sequence Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20A.%20Raju%20Bahubalendruni">M. V. A. Raju Bahubalendruni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bibhuti%20Bhusan%20Biswal"> Bibhuti Bhusan Biswal</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20V.%20L.%20Deepak"> B. B. V. L. Deepak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Achieving an appropriate assembly sequence needs deep verification for its physical feasibility. For this purpose, industrial engineers use several assembly predicates; namely, liaison, geometric feasibility, stability and mechanical feasibility. However, testing an assembly sequence for these predicates requires huge assembly information. Extracting such assembly information from an assembled product is a time consuming and highly skillful task with complex reasoning methods. In this paper, computer aided methods are proposed to extract all the necessary assembly information from computer aided design (CAD) environment in order to perform the assembly sequence planning efficiently. These methods use preliminary capabilities of three-dimensional solid modelling and assembly modelling methods used in CAD software considering equilibrium laws of physical bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20automation" title="assembly automation">assembly automation</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20attributes" title=" assembly attributes"> assembly attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly" title=" assembly"> assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a> </p> <a href="https://publications.waset.org/abstracts/55591/computer-aided-assembly-attributes-retrieval-methods-for-automated-assembly-sequence-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9818</span> WEMax: Virtual Manned Assembly Line Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Kyung%20Ham">Won Kyung Ham</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Hoon%20Cho"> Kang Hoon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20C.%20Park"> Sang C. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20forecasting" title="performance forecasting">performance forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20manned%20assembly%20line" title=" virtual manned assembly line"> virtual manned assembly line</a>, <a href="https://publications.waset.org/abstracts/search?q=WEMax" title=" WEMax"> WEMax</a> </p> <a href="https://publications.waset.org/abstracts/3856/wemax-virtual-manned-assembly-line-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9817</span> Analysis and Improvement of Efficiency for Food Processing Assembly Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Savsar">Mehmet Savsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several factors affect productivity of Food Processing Assembly Lines (FPAL). Engineers and line managers usually do not recognize some of these factors and underutilize their production/assembly lines. In this paper, a special food processing assembly line is studied in detail, and procedures are presented to illustrate how productivity and efficiency of such lines can be increased. The assembly line considered produces ten different types of freshly prepared salads on the same line, which is called mixed model assembly line. Problems causing delays and inefficiencies on the line are identified. Line balancing and related tools are used to increase line efficiency and minimize balance delays. The procedure and the approach utilized in this paper can be useful for the operation managers and industrial engineers dealing with similar assembly lines in food processing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20lines" title="assembly lines">assembly lines</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title=" line balancing"> line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20efficiency" title=" production efficiency"> production efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=bottleneck" title=" bottleneck"> bottleneck</a> </p> <a href="https://publications.waset.org/abstracts/68271/analysis-and-improvement-of-efficiency-for-food-processing-assembly-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9816</span> An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balamurali%20Gunji">Balamurali Gunji</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20V.%20L.%20Deepak"> B. B. V. L. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20Biswal"> B. B. Biswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrutha%20Rout"> Amrutha Rout</a>, <a href="https://publications.waset.org/abstracts/search?q=Golak%20Bihari%20Mohanta"> Golak Bihari Mohanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20sequence%20planning" title="assembly sequence planning">assembly sequence planning</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20Bee%20colony%20algorithm" title=" artificial Bee colony algorithm"> artificial Bee colony algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20predicates" title=" assembly predicates"> assembly predicates</a> </p> <a href="https://publications.waset.org/abstracts/87239/an-automated-optimal-robotic-assembly-sequence-planning-using-artificial-bee-colony-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9815</span> An Assembly Line Designing Study for a Refrigeration Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Gundogar">Emin Gundogar</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Erkayman"> Burak Erkayman</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Yilmaz"> Aysegul Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusret%20Sazak"> Nusret Sazak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When considering current competition conditions on the world, satisfying customer demands on time has become an important factor that enables the firms take a step further. Therefore, production process must be completed faster to take the competitive advantage. A balanced assembly line is the one of most important factors affecting the speed of production lines. The aim of this study is to build an assembly line to balance the assembly line and to simulate it for different scenarios through a refrigerator factory. The times of the operations is analyzed and grouped by the priorities. First, a Kilbridge & Wester heuristics is put to the model then a simulation approach is implemented to the model and the differences are observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20line%20design" title="assembly line design">assembly line design</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20line%20balancing" title=" assembly line balancing"> assembly line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modelling" title=" simulation modelling"> simulation modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration%20industry" title=" refrigeration industry"> refrigeration industry</a> </p> <a href="https://publications.waset.org/abstracts/9798/an-assembly-line-designing-study-for-a-refrigeration-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9814</span> Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saif%20Ullah">Saif Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Guan%20Zailin"> Guan Zailin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Xianhao"> Xu Xianhao</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Zongdong"> He Zongdong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Baoxi"> Wang Baoxi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20line%20balancing" title="assembly line balancing">assembly line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20sizing" title=" buffer sizing"> buffer sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=Pareto%20solutions" title=" Pareto solutions "> Pareto solutions </a> </p> <a href="https://publications.waset.org/abstracts/14084/multi-objective-simultaneous-assembly-line-balancing-and-buffer-sizing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9813</span> Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Hans%20Heimes"> Heiner Hans Heimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Ordung"> Mathias Ordung</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20Sarovic"> Nemanja Sarovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly" title="assembly">assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20system" title=" battery system"> battery system</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20concept" title=" battery concept"> battery concept</a> </p> <a href="https://publications.waset.org/abstracts/56399/reducing-change-related-costs-in-assembly-of-lithium-ion-batteries-for-electric-cars-by-mechanical-decoupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9812</span> Material Supply Mechanisms for Contemporary Assembly Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Kumar%20Srivastava">Rajiv Kumar Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing of complex products such as automobiles and computers requires a very large number of parts and sub-assemblies. The design of mechanisms for delivery of these materials to the point of assembly is an important manufacturing system and supply chain challenge. Different approaches to this problem have been evolved for assembly lines designed to make large volumes of standardized products. However, contemporary assembly systems are required to concurrently produce a variety of products using approaches such as mixed model production, and at times even mass customization. In this paper we examine the material supply approaches for variety production in moderate to large volumes. The conventional approach for material delivery to high volume assembly lines is to supply and stock materials line-side. However for certain materials, especially when the same or similar items are used along the line, it is more convenient to supply materials in kits. Kitting becomes more preferable when lines concurrently produce multiple products in mixed model mode, since space requirements could increase as product/ part variety increases. At times such kits may travel along with the product, while in some situations it may be better to have delivery and station-specific kits rather than product-based kits. Further, in some mass customization situations it may even be better to have a single delivery and assembly station, to which an entire kit is delivered for fitment, rather than a normal assembly line. Finally, in low-moderate volume assembly such as in engineered machinery, it may be logistically more economical to gather materials in an order-specific kit prior to launching final assembly. We have studied material supply mechanisms to support assembly systems as observed in case studies of firms with different combinations of volume and variety/ customization. It is found that the appropriate approach tends to be a hybrid between direct line supply and different kitting modes, with the best mix being a function of the manufacturing and supply chain environment, as well as space and handling considerations. In our continuing work we are studying these scenarios further, through the use of descriptive models and progressing towards prescriptive models to help achieve the optimal approach, capturing the trade-offs between inventory, material handling, space, and efficient line supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20systems" title="assembly systems">assembly systems</a>, <a href="https://publications.waset.org/abstracts/search?q=kitting" title=" kitting"> kitting</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20supply" title=" material supply"> material supply</a>, <a href="https://publications.waset.org/abstracts/search?q=variety%20production" title=" variety production"> variety production</a> </p> <a href="https://publications.waset.org/abstracts/65480/material-supply-mechanisms-for-contemporary-assembly-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9811</span> Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrie%20Marinceu">Dimitrie Marinceu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Murchison"> Alan Murchison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20packing%20plant" title="used fuel packing plant">used fuel packing plant</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20assembly%20cell" title=" automatic assembly cell"> automatic assembly cell</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20container" title=" used fuel container"> used fuel container</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20box" title=" buffer box"> buffer box</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20geological%20repository" title=" deep geological repository"> deep geological repository</a> </p> <a href="https://publications.waset.org/abstracts/75488/automated-buffer-box-assembly-cell-concept-for-the-canadian-used-fuel-packing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9810</span> Product Feature Modelling for Integrating Product Design and Assembly Process Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baha%20Hasan">Baha Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Wikander"> Jan Wikander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20feature" title="assembly feature">assembly feature</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20process%20planning" title=" assembly process planning"> assembly process planning</a>, <a href="https://publications.waset.org/abstracts/search?q=feature" title=" feature"> feature</a>, <a href="https://publications.waset.org/abstracts/search?q=feature-based%20modelling" title=" feature-based modelling"> feature-based modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=form%20feature" title=" form feature"> form feature</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a> </p> <a href="https://publications.waset.org/abstracts/54522/product-feature-modelling-for-integrating-product-design-and-assembly-process-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9809</span> Design for Error-Proofing Assembly: A Systematic Approach to Prevent Assembly Issues since Early Design Stages, an Industrial Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Estrada">Gabriela Estrada</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaquim%20Lloveras"> Joaquim Lloveras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design for error-proofing assembly is a new DFX approach to prevent assembly issues since early design stages. Assembly issues that can happen during the life phases of a system such as: production, installation, operation, and replacement phases. This prevention is possible by designing the product with poka-yoke or error-proofing characteristics. This approach guide designers to make decisions based on poka-yoke assembly design requirements. As a result of applying these requirements designers are able to create solutions to prevent assembly issues for the product in development stage. This paper integrates the needs to design products in an error proofing way into the systematic approach of design process by Pahl and Beitz. A case study is presented applying this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poka-yoke" title="poka-yoke">poka-yoke</a>, <a href="https://publications.waset.org/abstracts/search?q=error-proofing" title=" error-proofing"> error-proofing</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20issues" title=" assembly issues"> assembly issues</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20process" title=" design process"> design process</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20phases%20of%20a%20system" title=" life phases of a system"> life phases of a system</a> </p> <a href="https://publications.waset.org/abstracts/1576/design-for-error-proofing-assembly-a-systematic-approach-to-prevent-assembly-issues-since-early-design-stages-an-industrial-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9808</span> Design for Error-Proofing Assembly: A Systematic Approach to Prevent Assembly Issues since Early Design Stages. An Industry Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Estrada">Gabriela Estrada</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaquim%20Lloveras"> Joaquim Lloveras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design for error-proofing assembly is a new DFX approach to prevent assembly issues since early design stages. Assembly issues that can happen during the life phases of a system such as: production, installation, operation and replacement phases. This prevention is possible by designing the product with poka-yoke or error-proofing characteristics. This approach guide designers to make decisions based on poka-yoke assembly design requirements. As a result of applying these requirements designers are able to create solutions to prevent assembly issues for the product in development stage. This paper integrates the needs to design products in an error proofing way into the systematic approach of design process by Pahl and Beitz. A case study is presented applying this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poka-yoke" title="poka-yoke">poka-yoke</a>, <a href="https://publications.waset.org/abstracts/search?q=error-proofing" title=" error-proofing"> error-proofing</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20issues" title=" assembly issues"> assembly issues</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20process" title=" design process"> design process</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20phases%20of%20a%20system" title=" life phases of a system"> life phases of a system</a> </p> <a href="https://publications.waset.org/abstracts/1575/design-for-error-proofing-assembly-a-systematic-approach-to-prevent-assembly-issues-since-early-design-stages-an-industry-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9807</span> An Overview of Evaluations Using Augmented Reality for Assembly Training Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Werrlich">S. Werrlich</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Eichstetter"> E. Eichstetter</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Nitsche"> K. Nitsche</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Notni"> G. Notni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Augmented Reality (AR) is a strong growing research topic in different training domains such as medicine, sports, military, education and industrial use cases like assembly and maintenance tasks. AR claims to improve the efficiency and skill-transfer of training tasks. This paper gives a comprehensive overview of evaluations using AR for assembly and maintenance training tasks published between 1992 and 2017. We search in a structured way in four different online databases and get 862 results. We select 17 relevant articles focusing on evaluating AR-based training applications for assembly and maintenance tasks. This paper also indicates design guidelines which are necessary for creating a successful application for an AR-based training. We also present five scientific limitations in the field of AR-based training for assembly tasks. Finally, we show our approach to solve current research problems using Design Science Research (DSR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly" title="assembly">assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=survey" title=" survey"> survey</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a> </p> <a href="https://publications.waset.org/abstracts/66159/an-overview-of-evaluations-using-augmented-reality-for-assembly-training-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9806</span> Electrochemical Layer by Layer Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mao%20Li">Mao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuguang%20Ma"> Yuguang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuhiko%20Ariga"> Katsuhiko Ariga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of functional materials is governed by their ability to interact with surrounding environments in a well-defined and controlled manner. Layer-by-Layer (LbL) assembly is one of the most widely used technologies for coating both planar and particulate substrates in a diverse range of fields, including optics, energy, catalysis, separations, and biomedicine. Herein, we introduce electrochemical-coupling layer-by-layer assembly as a novel fabrication methodology for preparing layered thin films. This assembly method not only determines the process properties (such as the time, scalability, and manual intervention) but also directly control the physicochemical properties of the films (such as the thickness, homogeneity, and inter- and intra-layer film organization), with both sets of properties linked to application-specific performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layer%20by%20layer%20assembly" title="layer by layer assembly">layer by layer assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=electropolymerization" title=" electropolymerization"> electropolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=carbazole" title=" carbazole"> carbazole</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20thin%20film" title=" optical thin film"> optical thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=electronics" title=" electronics"> electronics</a> </p> <a href="https://publications.waset.org/abstracts/42525/electrochemical-layer-by-layer-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9805</span> 3D Linear and Cyclic Homo-Peptide Crystals Forged by Supramolecular Swelling Self-Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenliang%20Song">Wenliang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhang"> Yu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Jin"> Hua Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Kim"> Il Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The self-assembly of the polypeptide (PP) into well-defined structures at different length scales is both biomimetic relevant and fundamentally interesting. Although there are various reports of nanostructures fabricated by the self-assembly of various PPs, directed self-assembly of PP into three-dimensional (3D) hierarchical structure has proven to be difficult, despite their importance for biological applications. Herein, an efficient method has been developed through living polymerization of phenylalanine N-Carboxy anhydride (NCA) towards the linear and cyclic polyphenylalanine, and the new invented swelling methodology can form diverse hierarchical polypeptide crystals. The solvent-dependent self-assembly behaviors of these homopolymers were characterized by high-resolution imaging tools such as atomic force microscopy, transmission electron microscopy, scanning electron microscope. The linear and cyclic polypeptide formed 3D nano hierarchical shapes, such as a sphere, cubic, stratiform and hexagonal star in different solvents. Notably, a crystalline packing model was proposed to explain the formation of 3D nanostructures based on the various diffraction patterns, looking forward to give an insight for their dissimilar shape inflection during the self-assembly process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title="self-assembly">self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=polypeptide" title=" polypeptide"> polypeptide</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-polymer" title=" bio-polymer"> bio-polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20polymer" title=" crystalline polymer"> crystalline polymer</a> </p> <a href="https://publications.waset.org/abstracts/75722/3d-linear-and-cyclic-homo-peptide-crystals-forged-by-supramolecular-swelling-self-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9804</span> Template-less Self-Assembled Morphologically Cubic BiFeO₃ for Improved Electrical Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenna%20Metera">Jenna Metera</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Graeve"> Olivia Graeve</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic capacitor technologies using lead based materials is being phased out for its environmental and handling hazards. Bismuth ferrite (BiFeO₃) is the next best replacement for those lead-based technologies. Unfortunately, the electrical properties in bismuth systems are not as robust as the lead alternatives. The improvement of electrical properties such as charge density, charge anisotropy, relative permittivity, and dielectric loss are the parameters that will make BiFeO₃ a competitive alternative to lead-based ceramic materials. In order to maximize the utility of these properties, we propose the ordering and an evaporation-induced self-assembly of a cubic morphology powder. Evaporation-induced self-assembly is a template-less, bottom-up, self-assembly option. The capillary forces move the particles closer together when the solvent evaporates, promoting organized agglomeration at the particle faces. The assembly of particles into organized structures can lead to enhanced properties compared to unorganized structures or single particles themselves. The interactions between the particles can be controlled based on the long-range order in the organized structure. The cubic particle morphology is produced through a hydrothermal synthesis with changes in the concentration of potassium hydroxide, which changes the morphology of the powder. Once the assembly materializes, the powder is fabricated into workable substrates for electrical testing after consolidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporation" title="evaporation">evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-free" title=" lead-free"> lead-free</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a> </p> <a href="https://publications.waset.org/abstracts/126398/template-less-self-assembled-morphologically-cubic-bifeo3-for-improved-electrical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9803</span> Effect of Interference and Form Defect on the Cohesion of the Shrink-Fit Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allal%20Bedlaoui">Allal Bedlaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Boutoutaou"> Hamid Boutoutaou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to its superior economics, shrink-fit assembly is one of the best mechanical assembly methods. There are simply two components, the axis and hub. It is used in many different industries, including the production of trains, cars, and airplanes. The outer radius of the inner cylinder must be greater than the inner radius of the outer cylinder for this operation; this difference is referred to as the "interference" between the two cylinders. There are three ways to accomplish this: heating the outer cylinder to cause it to expand; cooling the cylinder's inside to cause it to contract; and third, finishing the fitting under a press. At the intersection of the two matched parts, a contact pressure and friction force are generated. We consider interference and form defects in this article because they prevent the connection between the axis and the hub from having a perfect form surface and because we will be looking at how they affect the assembly. Numerical simulation is used to ascertain if interference and form defects have a beneficial or negative influence in the distribution of stresses, assembly resistance, and plasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shrink-fit" title="shrink-fit">shrink-fit</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=form%20defect" title=" form defect"> form defect</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20force" title=" extraction force"> extraction force</a> </p> <a href="https://publications.waset.org/abstracts/167735/effect-of-interference-and-form-defect-on-the-cohesion-of-the-shrink-fit-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9802</span> Modern Technologies and Equipment for Modular-Aggregate Installation of Shipborne Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Mikhailov">A. O. Mikhailov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Gerasimov"> N. I. Gerasimov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Morozov"> K. N. Morozov</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Grachev"> I. V. Grachev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most advanced method of onboard equipment installation on the world shipbuilding practice is modular method, or modularization. The main idea of this is assembly of equipment, pipelines and hull structures in so called assembly units yet at the shopfloor. Those assembly units are thereafter loaded and installed inside the ship's hull. This allows to reduce labour intensiveness and significantly improve assembly quality, due to the fact that a good part of installation work is performed in the shops, instead of restricted onboard premises. Also, this method allows performing equipment installation at very early stages of hull erection. This practice is widely spread in naval submarines building. However, in merchant shipbuilding, equipment is installed mostly individually. To implement modular principles of equipment installation in designing and construction of civil ships and marine rigs, some new technologies are being developed in the following areas. The paper contains main principles and already achieved results in the above mentioned areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20and%20installation%20technology" title="assembly and installation technology">assembly and installation technology</a>, <a href="https://publications.waset.org/abstracts/search?q=onboard%20equipment%20installation" title=" onboard equipment installation"> onboard equipment installation</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20assembly%20units" title=" large-scale assembly units"> large-scale assembly units</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20method" title=" modular method"> modular method</a> </p> <a href="https://publications.waset.org/abstracts/8774/modern-technologies-and-equipment-for-modular-aggregate-installation-of-shipborne-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">660</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9801</span> An Approach to the Assembly Line Balancing Problem with Uncertain Operation Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhongmin%20Wang">Zhongmin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Wei"> Lin Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hengshan%20Zhang"> Hengshan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianhua%20Chen"> Tianhua Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yimin%20Zhou"> Yimin Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assembly line balancing problems are signficant in mass production systems. In order to deal with the uncertainties that practically exist but barely mentioned in the literature, this paper develops a mathematic model with an optimisation algorithm to solve the assembly line balancing problem with uncertainty operation time. The developed model is able to work with a variable number of workstations under the uncertain environment, aiming to obtain the minimal number of workstation and minimal idle time for each workstation. In particular, the proposed approach first introduces the concept of protection time that closely works with the uncertain operation time. Four dominance rules and the mechanism of determining up and low bounds are subsequently put forward, which serve as the basis for the proposed branch and bound algorithm. Experimental results show that the proposed work verified on a benchmark data set is able to solve the uncertainties efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20lines" title="assembly lines">assembly lines</a>, <a href="https://publications.waset.org/abstracts/search?q=SALBP-UOT" title=" SALBP-UOT"> SALBP-UOT</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20operation%20time" title="uncertain operation time">uncertain operation time</a>, <a href="https://publications.waset.org/abstracts/search?q=branch%20and%20bound%20algorithm." title=" branch and bound algorithm."> branch and bound algorithm.</a> </p> <a href="https://publications.waset.org/abstracts/108751/an-approach-to-the-assembly-line-balancing-problem-with-uncertain-operation-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9800</span> Trends in Solving Assembly Job Shop Scheduling Problem: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Midhun%20Paul">Midhun Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Radha%20Ramanan"> T. Radha Ramanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to present a state-of-the-art literature review highlighting the challenges in the research of the scheduling of assembly job shop problem and providing an insight on how the future directions of the research would be. The number of work has been substantial that it requires a review to enable one to understand the origin of the research and how it is getting evolved. This review paper presents a comprehensive review of the literature dealing with various studies carried on assembly job shop scheduling. The review details the evolution of the AJS from the perspective of other scheduling problems and also presents a classification scheme. The work also identifies the potential directions for future research, which we believe to be worthwhile considering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20job%20shop" title="assembly job shop">assembly job shop</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20directions" title=" future directions"> future directions</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a> </p> <a href="https://publications.waset.org/abstracts/2449/trends-in-solving-assembly-job-shop-scheduling-problem-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9799</span> Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henrik%20Prinzhorn">Henrik Prinzhorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nyhuis"> Peter Nyhuis</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Wagner"> Johannes Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Burggr%C3%A4f"> Peter Burggräf</a>, <a href="https://publications.waset.org/abstracts/search?q=Torben%20Schmitz"> Torben Schmitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Reuter"> Christina Reuter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20scheduling" title="assembly scheduling">assembly scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20products" title=" large-scale products"> large-scale products</a>, <a href="https://publications.waset.org/abstracts/search?q=make-to-order" title=" make-to-order"> make-to-order</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=rescheduling" title=" rescheduling"> rescheduling</a> </p> <a href="https://publications.waset.org/abstracts/40012/optimization-model-for-identification-of-assembly-alternatives-of-large-scale-make-to-order-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9798</span> Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yuri">T. Yuri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zagloel"> M. Zagloel</a>, <a href="https://publications.waset.org/abstracts/search?q=Inaki%20M.%20Hakim"> Inaki M. Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tegu%20Bintang%20Nugraha"> Tegu Bintang Nugraha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title="automotive industry">automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20uncertainty" title=" demand uncertainty"> demand uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20assembly%20system" title=" flexible assembly system"> flexible assembly system</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title=" line balancing"> line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20stream%20mapping" title=" value stream mapping"> value stream mapping</a> </p> <a href="https://publications.waset.org/abstracts/57658/flexible-mixed-model-assembly-line-design-a-strategy-to-respond-for-demand-uncertainty-at-automotive-part-manufacturer-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9797</span> Redox-Mediated Supramolecular Radical Gel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonam%20Chorol">Sonam Chorol</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharvan%20Kumar"> Sharvan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritam%20Mukhopadhyay"> Pritam Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In biology, supramolecular systems require the use of chemical fuels to stay in sustained nonequilibrium steady states termed dissipative self-assembly in contrast to synthetic self-assembly. Biomimicking these natural dynamic systems, some studies have demonstrated artificial self-assembly under nonequilibrium utilizing various forms of energies (fuel) such as chemical, redox, and pH. Naphthalene diimides (NDIs) are well-known organic molecules in supramolecular architectures with high electron affinity and have applications in controlled electron transfer (ET) reactions, etc. Herein, we report the endergonic ET from tetraphenylborate to highly electron-deficient phosphonium NDI²+ dication to generate NDI•+ radical. The formation of radicals was confirmed by UV-Vis-NIR absorption spectroscopy. Electron-donor and electron-acceptor energy levels were calculated from experimental electrochemistry and theoretical DFT analysis. The HOMO of the electron donor locates below the LUMO of the electro-acceptor. This indicates that electron transfer is endergonic (ΔE°ET = negative). The endergonic ET from NaBPh₄ to NDI²+ dication was achieved thermodynamically by the formation of coupled biphenyl product confirmed by GC-MS analysis. NDI molecule bearing octyl phosphonium at the core and H-bond forming imide moieties at the axial position forms a gel. The rheological properties of purified radical ion NDI⦁+ gels were evaluated. The atomic force microscopy studies reveal the formation of large branching-type networks with a maximum height of 70-80 nm. The endergonic ET from NaBPh₄ to NDI²+ dication was used to design the assembly and disassembly redox reaction cycle using reducing (NaBPh₄) and oxidizing agents (Br₂) as chemical fuels. A part of NaBPh₄ is used to drive assembly, while a fraction of the NaBPh₄ is dissipated by forming a useful product. The system goes back to the disassembled NDI²+ dication state with the addition of Br₂. We think bioinspired dissipative self-assembly is the best approach to developing future lifelike materials with autonomous behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionic-gel" title="Ionic-gel">Ionic-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=redox-cycle" title=" redox-cycle"> redox-cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20product" title=" useful product"> useful product</a> </p> <a href="https://publications.waset.org/abstracts/165942/redox-mediated-supramolecular-radical-gel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9796</span> Determination of the Economic Planning Depth for Assembly Process Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kampker">A. Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Burggr%C3%A4f"> P. Burggräf</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20B%C3%A4umers"> Y. Bäumers </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to be competitive, companies have to reduce their production costs while meeting increasing quality requirements. Therefore, companies try to plan their assembly processes as detailed as possible. However, increasing product individualization leading to a higher number of variants, smaller batch sizes and shorter product life cycles raise the question to what extent the effort of detailed planning is still justified. An important approach in this field of research is the concept of determining the economic planning depth for assembly process planning based on production specific influencing factors. In this paper, first solution hypotheses as well as a first draft of the resulting method will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20process%20planning" title="assembly process planning">assembly process planning</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20planning%20depth" title=" economic planning depth"> economic planning depth</a>, <a href="https://publications.waset.org/abstracts/search?q=planning%20benefit" title=" planning benefit"> planning benefit</a>, <a href="https://publications.waset.org/abstracts/search?q=planning%20effort" title=" planning effort"> planning effort</a> </p> <a href="https://publications.waset.org/abstracts/30242/determination-of-the-economic-planning-depth-for-assembly-process-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9795</span> Framework Study on Single Assembly Line to Improve Productivity with Six Sigma and Line Balancing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inaki%20Maulida%20Hakim">Inaki Maulida Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yuri%20M.%20Zagloel"> T. Yuri M. Zagloel</a>, <a href="https://publications.waset.org/abstracts/search?q=Astari%20Wulandari"> Astari Wulandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Six sigma is a framework that is used to identify inefficiency so that the cause of inefficiency will be known and right improvement to overcome cause of inefficiency can be conducted. This paper presents result of implementing six sigma to improve piston assembly line in Manufacturing Laboratory, Universitas Indonesia. Six sigma framework will be used to analyze the significant factor of inefficiency that needs to be improved which causes bottleneck in assembly line. After analysis based on six sigma framework conducted, line balancing method was chosen for improvement to overcome causative factor of inefficiency which is differences time between workstation that causes bottleneck in assembly line. Then after line balancing conducted in piston assembly line, the result is increase in efficiency. Efficiency is shown in the decreasing of Defects per Million Opportunities (DPMO) from 900,000 to 700,000, the increasing of level of labor productivity from 0.0041 to 0.00742, the decreasing of idle time from 121.3 seconds to 12.1 seconds, and the increasing of output, which is from 1 piston in 5 minutes become 3 pistons in 5 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20line" title="assembly line">assembly line</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title=" line balancing"> line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title=" six sigma"> six sigma</a> </p> <a href="https://publications.waset.org/abstracts/53876/framework-study-on-single-assembly-line-to-improve-productivity-with-six-sigma-and-line-balancing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9794</span> Information Technologies in Automotive Assembly Industry in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jirarat%20Teeravaraprug">Jirarat Teeravaraprug</a>, <a href="https://publications.waset.org/abstracts/search?q=Usawadee%20Inklay"> Usawadee Inklay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gave an attempt in prioritizing information technologies that organizations should give concentration. The case study was organizations in the automotive assembly industry in Thailand. Data were first collected to gather all information technologies known and used in the automotive assembly industry in Thailand. Five experts from the industries were surveyed based on the concept of fuzzy DEMATEL. The information technologies were categorized into six groups, which were communication, transaction, planning, organization management, warehouse management, and transportation. The cause groups of information technologies for each group were analysed and presented. Moreover, the relationship between the used and the significant information technologies was given. Discussions based on the used information technologies and the research results are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title="information technology">information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20assembly%20industry" title=" automotive assembly industry"> automotive assembly industry</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20DEMATEL" title=" fuzzy DEMATEL"> fuzzy DEMATEL</a> </p> <a href="https://publications.waset.org/abstracts/2498/information-technologies-in-automotive-assembly-industry-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9793</span> Multi Objective Optimization for Two-Sided Assembly Line Balancing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srushti%20Bhatt">Srushti Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Kiran"> M. B. Kiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-sided assembly line balancing problem is yet to be addressed simply to compete for the global market for manufacturers. The task assigned in an ordered sequence to get optimum performance of the system is known as assembly line balancing problem mainly classified as single and two sided. It is very challenging in manufacturing industries to balance two-sided assembly line, wherein the set of sequential workstations the task operations are performed in two sides of the line. The conflicting major objective in two-sided assembly line balancing problem is either to maximize /minimize the performance parameters. The present study emphases on combining different evolutionary algorithm; ant colony, Tabu search and petri net method; and compares their results of an algorithm for solving two-sided assembly line balancing problem. The concept of multi objective optimization of performance parameters is now a day adopted to make a decision involving more than one objective function to be simultaneously optimized. The optimum result can be expected among the selected methods using multi-objective optimization. The performance parameters considered in the present study are a number of workstation, slickness and smoothness index. The simulation of the assembly line balancing problem provides optimal results of classical and practical problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ant%20colony" title="Ant colony">Ant colony</a>, <a href="https://publications.waset.org/abstracts/search?q=petri%20net" title=" petri net"> petri net</a>, <a href="https://publications.waset.org/abstracts/search?q=tabu%20search" title=" tabu search"> tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20sided%20ALBP" title=" two sided ALBP"> two sided ALBP</a> </p> <a href="https://publications.waset.org/abstracts/63766/multi-objective-optimization-for-two-sided-assembly-line-balancing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9792</span> An Architecture Framework for Design of Assembly Expert System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chee%20Fai%20Tan">Chee Fai Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Wahidin"> L. S. Wahidin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Khalil"> S. N. Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, manufacturing cost is one of the important factors that will affect the product cost as well as company profit. There are many methods that have been used to reduce the manufacturing cost in order for a company to stay competitive. One of the factors that effect manufacturing cost is the time. Expert system can be used as a method to reduce the manufacturing time. The purpose of the expert system is to diagnose and solve the problem of design of assembly. The paper describes an architecture framework for design of assembly expert system that focuses on commercial vehicle seat manufacturing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20assembly" title="design of assembly">design of assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20seat" title=" vehicle seat"> vehicle seat</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a> </p> <a href="https://publications.waset.org/abstracts/7387/an-architecture-framework-for-design-of-assembly-expert-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9791</span> Multi-Modal Visualization of Working Instructions for Assembly Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josef%20Wolfartsberger">Josef Wolfartsberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Heiml"> Michael Heiml</a>, <a href="https://publications.waset.org/abstracts/search?q=Georg%20Schwarz"> Georg Schwarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Egger"> Sabrina Egger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly" title="assembly">assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=assistive%20technologies" title=" assistive technologies"> assistive technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/105132/multi-modal-visualization-of-working-instructions-for-assembly-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9790</span> Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Song%20Hung">Wei-Song Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20dehydration" title=" alcohol dehydration"> alcohol dehydration</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile%20%28mPAN%29" title=" polyacrylonitrile (mPAN)"> polyacrylonitrile (mPAN)</a> </p> <a href="https://publications.waset.org/abstracts/20913/effect-of-microstructure-of-graphene-oxide-fabricated-through-different-self-assembly-techniques-on-alcohol-dehydration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=327">327</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=328">328</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=assembly%20systems&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>