CINXE.COM
Group algebra of a locally compact group - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Group algebra of a locally compact group - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e1fca00d-425a-4f84-bca4-0f158cd7336d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Group_algebra_of_a_locally_compact_group","wgTitle":"Group algebra of a locally compact group","wgCurRevisionId":1242476828,"wgRevisionId":1242476828,"wgArticleId":381010,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Wikipedia articles incorporating text from PlanetMath","Algebras","C*-algebras","Von Neumann algebras","Unitary representation theory","Harmonic analysis","Lie groups"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Group_algebra_of_a_locally_compact_group","wgRelevantArticleId":381010, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q17019511","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader", "ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Group algebra of a locally compact group - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Group_algebra_of_a_locally_compact_group"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Group_algebra_of_a_locally_compact_group"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Group_algebra_of_a_locally_compact_group rootpage-Group_algebra_of_a_locally_compact_group skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Group+algebra+of+a+locally+compact+group" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Group+algebra+of+a+locally+compact+group" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Group+algebra+of+a+locally+compact+group" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Group+algebra+of+a+locally+compact+group" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-The_algebra_Cc(G)_of_continuous_functions_with_compact_support" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_algebra_Cc(G)_of_continuous_functions_with_compact_support"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>The algebra <i>C<sub>c</sub></i>(<i>G</i>) of continuous functions with compact support</span> </div> </a> <ul id="toc-The_algebra_Cc(G)_of_continuous_functions_with_compact_support-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_convolution_algebra_L1(G)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_convolution_algebra_L1(G)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>The convolution algebra <i>L</i><sup>1</sup>(<i>G</i>)</span> </div> </a> <button aria-controls="toc-The_convolution_algebra_L1(G)-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle The convolution algebra <i>L</i><sup>1</sup>(<i>G</i>) subsection</span> </button> <ul id="toc-The_convolution_algebra_L1(G)-sublist" class="vector-toc-list"> <li id="toc-The_group_C*-algebra_C*(G)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_group_C*-algebra_C*(G)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>The group C*-algebra <i>C*</i>(<i>G</i>)</span> </div> </a> <ul id="toc-The_group_C*-algebra_C*(G)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_reduced_group_C*-algebra_Cr*(G)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_reduced_group_C*-algebra_Cr*(G)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>The reduced group C*-algebra <i>C<sub>r</sub>*</i>(<i>G</i>)</span> </div> </a> <ul id="toc-The_reduced_group_C*-algebra_Cr*(G)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-von_Neumann_algebras_associated_to_groups" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#von_Neumann_algebras_associated_to_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>von Neumann algebras associated to groups</span> </div> </a> <ul id="toc-von_Neumann_algebras_associated_to_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Group algebra of a locally compact group</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 6 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-6" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">6 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Gruppen-C*-Algebra" title="Gruppen-C*-Algebra – German" lang="de" hreflang="de" data-title="Gruppen-C*-Algebra" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Grupa_al%C4%9Debro" title="Grupa alĝebro – Esperanto" lang="eo" hreflang="eo" data-title="Grupa alĝebro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%BD%8D%E7%9B%B8%E7%BE%A4%E3%81%AE%E7%BE%A4%E7%92%B0" title="位相群の群環 – Japanese" lang="ja" hreflang="ja" data-title="位相群の群環" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/%C3%81lgebra_de_grupo" title="Álgebra de grupo – Portuguese" lang="pt" hreflang="pt" data-title="Álgebra de grupo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru badge-Q70894304 mw-list-item" title=""><a href="https://ru.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%BF%D0%BE%D0%B2%D0%B0%D1%8F_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0" title="Групповая алгебра – Russian" lang="ru" hreflang="ru" data-title="Групповая алгебра" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%BE%D0%B2%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0" title="Групова алгебра – Ukrainian" lang="uk" hreflang="uk" data-title="Групова алгебра" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17019511#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Group_algebra_of_a_locally_compact_group" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Group_algebra_of_a_locally_compact_group" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Group_algebra_of_a_locally_compact_group"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Group_algebra_of_a_locally_compact_group"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Group_algebra_of_a_locally_compact_group" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Group_algebra_of_a_locally_compact_group" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&oldid=1242476828" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Group_algebra_of_a_locally_compact_group&id=1242476828&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGroup_algebra_of_a_locally_compact_group"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGroup_algebra_of_a_locally_compact_group"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Group_algebra_of_a_locally_compact_group&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17019511" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about topological algebras associated to topological groups. For the purely algebraic case (without any topology), see <a href="/wiki/Group_ring" title="Group ring">group ring</a>.</div><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Topological algebra associated to continuous groups</div> <p>In <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> and related areas of <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>group algebra</b> is any of various constructions to assign to a <a href="/wiki/Locally_compact_group" title="Locally compact group">locally compact group</a> an <a href="/wiki/Operator_algebra" title="Operator algebra">operator algebra</a> (or more generally a <a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a>), such that representations of the algebra are related to representations of the group. As such, they are similar to the <a href="/wiki/Group_ring" title="Group ring">group ring</a> associated to a discrete group. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="The_algebra_Cc(G)_of_continuous_functions_with_compact_support"><span id="The_algebra_Cc.28G.29_of_continuous_functions_with_compact_support"></span>The algebra <i>C<sub>c</sub></i>(<i>G</i>) of continuous functions with compact support</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit&section=1" title="Edit section: The algebra Cc(G) of continuous functions with compact support"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>G</i> is a <a href="/wiki/Locally_compact_group" title="Locally compact group">locally compact Hausdorff group</a>, <i>G</i> carries an essentially unique left-invariant countably additive <a href="/wiki/Borel_measure" title="Borel measure">Borel measure</a> <i>μ</i> called a <a href="/wiki/Haar_measure" title="Haar measure">Haar measure</a>. Using the Haar measure, one can define a <a href="/wiki/Convolution" title="Convolution">convolution</a> operation on the space <i>C<sub>c</sub></i>(<i>G</i>) of complex-valued continuous functions on <i>G</i> with <a href="/wiki/Compact_support" class="mw-redirect" title="Compact support">compact support</a>; <i>C<sub>c</sub></i>(<i>G</i>) can then be given any of various <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norms</a> and the <a href="/wiki/Completeness_(order_theory)" title="Completeness (order theory)">completion</a> will be a group algebra. </p><p>To define the convolution operation, let <i>f</i> and <i>g</i> be two functions in <i>C<sub>c</sub></i>(<i>G</i>). For <i>t</i> in <i>G</i>, define </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [f*g](t)=\int _{G}f(s)g\left(s^{-1}t\right)\,d\mu (s).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>f</mi> <mo>∗<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [f*g](t)=\int _{G}f(s)g\left(s^{-1}t\right)\,d\mu (s).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fec7f312d8e5a03ede4d2733df315ef76e06a5e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.846ex; height:5.676ex;" alt="{\displaystyle [f*g](t)=\int _{G}f(s)g\left(s^{-1}t\right)\,d\mu (s).}"></span></dd></dl> <p>The fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>∗<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de088e4a3777d3b5d2787fdec81acd91e78a719e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f*g}"></span> is continuous is immediate from the <a href="/wiki/Dominated_convergence_theorem" title="Dominated convergence theorem">dominated convergence theorem</a>. Also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Support} (f*g)\subseteq \operatorname {Support} (f)\cdot \operatorname {Support} (g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Support</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∗<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>⊆<!-- ⊆ --></mo> <mi>Support</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>Support</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Support} (f*g)\subseteq \operatorname {Support} (f)\cdot \operatorname {Support} (g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f84ee93a8af6c5ad917e5c9f3b5eacc2caaf18f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.636ex; height:2.843ex;" alt="{\displaystyle \operatorname {Support} (f*g)\subseteq \operatorname {Support} (f)\cdot \operatorname {Support} (g)}"></span></dd></dl> <p>where the dot stands for the product in <i>G</i>. <i>C<sub>c</sub></i>(<i>G</i>) also has a natural <a href="/wiki/Involution_(mathematics)" title="Involution (mathematics)">involution</a> defined by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}(s)={\overline {f(s^{-1})}}\,\Delta (s^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}(s)={\overline {f(s^{-1})}}\,\Delta (s^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47774a87f9474760290a066cc7839d2cfcc5a28f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.555ex; height:3.843ex;" alt="{\displaystyle f^{*}(s)={\overline {f(s^{-1})}}\,\Delta (s^{-1})}"></span></dd></dl> <p>where Δ is the <a href="/wiki/Haar_measure#The_modular_function" title="Haar measure">modular function</a> on <i>G</i>. With this involution, it is a <a href="/wiki/*-algebra" title="*-algebra">*-algebra</a>. </p> <blockquote><p><b>Theorem.</b> With the norm: </p><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{1}:=\int _{G}|f(s)|\,d\mu (s),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{1}:=\int _{G}|f(s)|\,d\mu (s),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da6a52b6a360fdb49a43f67ba5bc668a023e7f6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.63ex; height:5.676ex;" alt="{\displaystyle \|f\|_{1}:=\int _{G}|f(s)|\,d\mu (s),}"></span></dd></dl> <p><i>C<sub>c</sub></i>(<i>G</i>) becomes an involutive <a href="/wiki/Normed_algebra" title="Normed algebra">normed algebra</a> with an <a href="/wiki/Approximate_identity" title="Approximate identity">approximate identity</a>.</p></blockquote> <p>The approximate identity can be indexed on a neighborhood basis of the identity consisting of compact sets. Indeed, if <i>V</i> is a compact neighborhood of the identity, let <i>f<sub>V</sub></i> be a non-negative continuous function supported in <i>V</i> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{V}f_{V}(g)\,d\mu (g)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{V}f_{V}(g)\,d\mu (g)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c4402b8a1b25b730b490fb63942ea33148b2bcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.574ex; height:5.676ex;" alt="{\displaystyle \int _{V}f_{V}(g)\,d\mu (g)=1.}"></span></dd></dl> <p>Then {<i>f<sub>V</sub></i>}<sub><i>V</i></sub> is an approximate identity. A group algebra has an identity, as opposed to just an approximate identity, if and only if the topology on the group is the <a href="/wiki/Discrete_topology" class="mw-redirect" title="Discrete topology">discrete topology</a>. </p><p>Note that for discrete groups, <i>C<sub>c</sub></i>(<i>G</i>) is the same thing as the complex group ring <b>C</b>[<i>G</i>]. </p><p>The importance of the group algebra is that it captures the <a href="/wiki/Unitary_representation" title="Unitary representation">unitary representation</a> theory of <i>G</i> as shown in the following </p> <blockquote><p><b>Theorem.</b> Let <i>G</i> be a locally compact group. If <i>U</i> is a strongly continuous unitary representation of <i>G</i> on a Hilbert space <i>H</i>, then </p><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{U}(f)=\int _{G}f(g)U(g)\,d\mu (g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{U}(f)=\int _{G}f(g)U(g)\,d\mu (g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5eb9c4a76d9ce91be30e3bfdb57c1fe88d52f4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.049ex; height:5.676ex;" alt="{\displaystyle \pi _{U}(f)=\int _{G}f(g)U(g)\,d\mu (g)}"></span></dd></dl> <p>is a non-degenerate bounded *-representation of the normed algebra <i>C<sub>c</sub></i>(<i>G</i>). The map </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\mapsto \pi _{U}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\mapsto \pi _{U}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c13be819df2768d41367fc238c8bdb9d12b1d81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.214ex; height:2.509ex;" alt="{\displaystyle U\mapsto \pi _{U}}"></span></dd></dl><p> is a bijection between the set of strongly continuous unitary representations of <i>G</i> and non-degenerate bounded *-representations of <i>C<sub>c</sub></i>(<i>G</i>). This bijection respects unitary equivalence and <a href="/w/index.php?title=Strong_containment&action=edit&redlink=1" class="new" title="Strong containment (page does not exist)">strong containment</a>. In particular, <span class="texhtml mvar" style="font-style:italic;">π</span><sub><i>U</i></sub> is irreducible if and only if <i>U</i> is irreducible.</p></blockquote> <p>Non-degeneracy of a representation <span class="texhtml mvar" style="font-style:italic;">π</span> of <i>C<sub>c</sub></i>(<i>G</i>) on a Hilbert space <i>H</i><sub><span class="texhtml mvar" style="font-style:italic;">π</span></sub> means that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{\pi (f)\xi :f\in \operatorname {C} _{c}(G),\xi \in H_{\pi }\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mi>ξ<!-- ξ --></mi> <mo>:</mo> <mi>f</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi mathvariant="normal">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>ξ<!-- ξ --></mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{\pi (f)\xi :f\in \operatorname {C} _{c}(G),\xi \in H_{\pi }\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6420e4e51dfe8c60543e2bf008e4ffdefc4a5ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.1ex; height:2.843ex;" alt="{\displaystyle \left\{\pi (f)\xi :f\in \operatorname {C} _{c}(G),\xi \in H_{\pi }\right\}}"></span></dd></dl> <p>is dense in <i>H</i><sub><span class="texhtml mvar" style="font-style:italic;">π</span></sub>. </p> <div class="mw-heading mw-heading2"><h2 id="The_convolution_algebra_L1(G)"><span id="The_convolution_algebra_L1.28G.29"></span>The convolution algebra <i>L</i><sup>1</sup>(<i>G</i>)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit&section=2" title="Edit section: The convolution algebra L1(G)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is a standard theorem of <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a> that the completion of <i>C<sub>c</sub></i>(<i>G</i>) in the <i>L</i><sup>1</sup>(<i>G</i>) norm is isomorphic to the space <a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup>1</sup>(<i>G</i>)</a> of equivalence classes of functions which are integrable with respect to the <a href="/wiki/Haar_measure" title="Haar measure">Haar measure</a>, where, as usual, two functions are regarded as equivalent if and only if they differ only on a set of Haar measure zero. </p> <blockquote><p><b>Theorem.</b> <i>L</i><sup>1</sup>(<i>G</i>) is a <a href="/wiki/Banach_*-algebra" class="mw-redirect" title="Banach *-algebra">Banach *-algebra</a> with the convolution product and involution defined above and with the <i>L</i><sup>1</sup> norm. <i>L</i><sup>1</sup>(<i>G</i>) also has a bounded approximate identity.</p></blockquote> <div class="mw-heading mw-heading3"><h3 id="The_group_C*-algebra_C*(G)"><span id="The_group_C.2A-algebra_C.2A.28G.29"></span>The group C*-algebra <i>C*</i>(<i>G</i>)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit&section=3" title="Edit section: The group C*-algebra C*(G)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <b>C</b>[<i>G</i>] be the <a href="/wiki/Group_ring" title="Group ring">group ring</a> of a <a href="/wiki/Discrete_group" title="Discrete group">discrete group</a> <i>G</i>. </p><p>For a locally compact group <i>G</i>, the group <a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a> <i>C*</i>(<i>G</i>) of <i>G</i> is defined to be the C*-enveloping algebra of <i>L</i><sup>1</sup>(<i>G</i>), i.e. the completion of <i>C<sub>c</sub></i>(<i>G</i>) with respect to the largest C*-norm: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{C^{*}}:=\sup _{\pi }\|\pi (f)\|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mrow> </msub> <mo>:=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> </munder> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{C^{*}}:=\sup _{\pi }\|\pi (f)\|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57f601387c43047b9af54eea8ffa062cb51e9d49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.964ex; height:4.343ex;" alt="{\displaystyle \|f\|_{C^{*}}:=\sup _{\pi }\|\pi (f)\|,}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">π</span> ranges over all non-degenerate *-representations of <i>C<sub>c</sub></i>(<i>G</i>) on Hilbert spaces. When <i>G</i> is discrete, it follows from the triangle inequality that, for any such <span class="texhtml mvar" style="font-style:italic;">π</span>, one has: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\pi (f)\|\leq \|f\|_{1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>≤<!-- ≤ --></mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\pi (f)\|\leq \|f\|_{1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fba0e0ea79caff88a865f9b44301d829b36a22a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.148ex; height:2.843ex;" alt="{\displaystyle \|\pi (f)\|\leq \|f\|_{1},}"></span></dd></dl> <p>hence the norm is well-defined. </p><p>It follows from the definition that, when G is a discrete group, <i>C*</i>(<i>G</i>) has the following <a href="/wiki/Universal_property" title="Universal property">universal property</a>: any *-homomorphism from <b>C</b>[<i>G</i>] to some <b>B</b>(<i>H</i>) (the C*-algebra of <a href="/wiki/Bounded_operator" title="Bounded operator">bounded operators</a> on some <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> <i>H</i>) factors through the <a href="/wiki/Inclusion_map" title="Inclusion map">inclusion map</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} [G]\hookrightarrow C_{\max }^{*}(G).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo stretchy="false">[</mo> <mi>G</mi> <mo stretchy="false">]</mo> <mo stretchy="false">↪<!-- ↪ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} [G]\hookrightarrow C_{\max }^{*}(G).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17be3a281cad53339c54dfb159766f47309b9340" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.194ex; height:2.843ex;" alt="{\displaystyle \mathbf {C} [G]\hookrightarrow C_{\max }^{*}(G).}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="The_reduced_group_C*-algebra_Cr*(G)"><span id="The_reduced_group_C.2A-algebra_Cr.2A.28G.29"></span>The reduced group C*-algebra <i>C<sub>r</sub>*</i>(<i>G</i>)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit&section=4" title="Edit section: The reduced group C*-algebra Cr*(G)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The reduced group C*-algebra <i>C<sub>r</sub>*</i>(<i>G</i>) is the completion of <i>C<sub>c</sub></i>(<i>G</i>) with respect to the norm </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{C_{r}^{*}}:=\sup \left\{\|f*g\|_{2}:\|g\|_{2}=1\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> </mrow> </msub> <mo>:=</mo> <mo movablelimits="true" form="prefix">sup</mo> <mrow> <mo>{</mo> <mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <mo>∗<!-- ∗ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>:</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{C_{r}^{*}}:=\sup \left\{\|f*g\|_{2}:\|g\|_{2}=1\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/512a908108b352d77c7dce5086f7d52412fe03c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:35.593ex; height:3.176ex;" alt="{\displaystyle \|f\|_{C_{r}^{*}}:=\sup \left\{\|f*g\|_{2}:\|g\|_{2}=1\right\},}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{2}={\sqrt {\int _{G}|f|^{2}\,d\mu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>μ<!-- μ --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{2}={\sqrt {\int _{G}|f|^{2}\,d\mu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f00674546f777c9924c6d86080b5b991463670c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:19.915ex; height:7.676ex;" alt="{\displaystyle \|f\|_{2}={\sqrt {\int _{G}|f|^{2}\,d\mu }}}"></span></dd></dl> <p>is the <i>L</i><sup>2</sup> norm. Since the completion of <i>C<sub>c</sub></i>(<i>G</i>) with regard to the <i>L</i><sup>2</sup> norm is a Hilbert space, the <i>C<sub>r</sub>*</i> norm is the norm of the bounded operator acting on <i>L</i><sup>2</sup>(<i>G</i>) by convolution with <i>f</i> and thus a C*-norm. </p><p>Equivalently, <i>C<sub>r</sub>*</i>(<i>G</i>) is the C*-algebra generated by the image of the left regular representation on <i>ℓ</i><sup>2</sup>(<i>G</i>). </p><p>In general, <i>C<sub>r</sub>*</i>(<i>G</i>) is a quotient of <i>C*</i>(<i>G</i>). The reduced group C*-algebra is isomorphic to the non-reduced group C*-algebra defined above if and only if <i>G</i> is <a href="/wiki/Amenable_group" title="Amenable group">amenable</a>. </p> <div class="mw-heading mw-heading2"><h2 id="von_Neumann_algebras_associated_to_groups">von Neumann algebras associated to groups</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit&section=5" title="Edit section: von Neumann algebras associated to groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The group von Neumann algebra <i>W*</i>(<i>G</i>) of <i>G</i> is the enveloping von Neumann algebra of <i>C*</i>(<i>G</i>). </p><p>For a discrete group <i>G</i>, we can consider the <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> ℓ<sup>2</sup>(<i>G</i>) for which <i>G</i> is an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a>. Since <i>G</i> operates on ℓ<sup>2</sup>(<i>G</i>) by permuting the basis vectors, we can identify the complex group ring <b>C</b>[<i>G</i>] with a subalgebra of the algebra of <a href="/wiki/Bounded_operator" title="Bounded operator">bounded operators</a> on ℓ<sup>2</sup>(<i>G</i>). The weak closure of this subalgebra, <i>NG</i>, is a <a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">von Neumann algebra</a>. </p><p>The center of <i>NG</i> can be described in terms of those elements of <i>G</i> whose <a href="/wiki/Conjugacy_class" title="Conjugacy class">conjugacy class</a> is finite. In particular, if the identity element of <i>G</i> is the only group element with that property (that is, <i>G</i> has the <a href="/wiki/Infinite_conjugacy_class_property" title="Infinite conjugacy class property">infinite conjugacy class property</a>), the center of <i>NG</i> consists only of complex multiples of the identity. </p><p><i>NG</i> is isomorphic to the <a href="/wiki/Hyperfinite_type_II-1_factor" class="mw-redirect" title="Hyperfinite type II-1 factor">hyperfinite type II<sub>1</sub> factor</a> if and only if <i>G</i> is <a href="/wiki/Countable" class="mw-redirect" title="Countable">countable</a>, <a href="/wiki/Amenable_group" title="Amenable group">amenable</a>, and has the infinite conjugacy class property. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit&section=6" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Graph_algebra" title="Graph algebra">Graph algebra</a></li> <li><a href="/wiki/Incidence_algebra" title="Incidence algebra">Incidence algebra</a></li> <li><a href="/wiki/Hecke_algebra_of_a_locally_compact_group" class="mw-redirect" title="Hecke algebra of a locally compact group">Hecke algebra of a locally compact group</a></li> <li><a href="/wiki/Path_algebra" class="mw-redirect" title="Path algebra">Path algebra</a></li> <li><a href="/wiki/Groupoid_algebra" title="Groupoid algebra">Groupoid algebra</a></li> <li><a href="/wiki/Stereotype_algebra" class="mw-redirect" title="Stereotype algebra">Stereotype algebra</a></li> <li><a href="/wiki/Stereotype_group_algebra" class="mw-redirect" title="Stereotype group algebra">Stereotype group algebra</a></li> <li><a href="/wiki/Hopf_algebra" title="Hopf algebra">Hopf algebra</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit&section=7" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_algebra_of_a_locally_compact_group&action=edit&section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLang2002" class="citation book cs1">Lang, S. (2002). <a rel="nofollow" class="external text" href="https://www.springer.com/gp/book/9780387953854"><i>Algebra</i></a>. Graduate Texts in Mathematics. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4613-0041-0" title="Special:BookSources/978-1-4613-0041-0"><bdi>978-1-4613-0041-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra&rft.series=Graduate+Texts+in+Mathematics&rft.pub=Springer&rft.date=2002&rft.isbn=978-1-4613-0041-0&rft.aulast=Lang&rft.aufirst=S.&rft_id=https%3A%2F%2Fwww.springer.com%2Fgp%2Fbook%2F9780387953854&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+algebra+of+a+locally+compact+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVinberg2003" class="citation book cs1">Vinberg, E. (10 April 2003). <a rel="nofollow" class="external text" href="https://www.ams.org/books/gsm/056/"><i>A Course in Algebra</i></a>. Graduate Studies in Mathematics. Vol. 56. American Mathematical Society. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fgsm%2F056">10.1090/gsm/056</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-3413-8" title="Special:BookSources/978-0-8218-3413-8"><bdi>978-0-8218-3413-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Course+in+Algebra&rft.series=Graduate+Studies+in+Mathematics&rft.pub=American+Mathematical+Society&rft.date=2003-04-10&rft_id=info%3Adoi%2F10.1090%2Fgsm%2F056&rft.isbn=978-0-8218-3413-8&rft.aulast=Vinberg&rft.aufirst=E.&rft_id=https%3A%2F%2Fwww.ams.org%2Fbooks%2Fgsm%2F056%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+algebra+of+a+locally+compact+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDixmier1982" class="citation book cs1">Dixmier, Jacques (1982). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=P34ZAQAAIAAJ&q=C*-Algebras%20Jacques%20Dixmier"><i>C*-algebras</i></a>. North-Holland. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-86391-1" title="Special:BookSources/978-0-444-86391-1"><bdi>978-0-444-86391-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=C%2A-algebras&rft.pub=North-Holland&rft.date=1982&rft.isbn=978-0-444-86391-1&rft.aulast=Dixmier&rft.aufirst=Jacques&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DP34ZAQAAIAAJ%26q%3DC%2A-Algebras%2520Jacques%2520Dixmier&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+algebra+of+a+locally+compact+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKirillov1976" class="citation book cs1">Kirillov, Aleksandr A. (1976). <a rel="nofollow" class="external text" href="https://link.springer.com/book/10.1007/978-3-642-66243-0"><i>Elements of the Theory of Representations</i></a>. Grundlehren der mathematischen Wissenschaften. Vol. 220. Springer-Verlag. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-66243-0">10.1007/978-3-642-66243-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-66245-4" title="Special:BookSources/978-3-642-66245-4"><bdi>978-3-642-66245-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elements+of+the+Theory+of+Representations&rft.series=Grundlehren+der+mathematischen+Wissenschaften&rft.pub=Springer-Verlag&rft.date=1976&rft_id=info%3Adoi%2F10.1007%2F978-3-642-66243-0&rft.isbn=978-3-642-66245-4&rft.aulast=Kirillov&rft.aufirst=Aleksandr+A.&rft_id=https%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-642-66243-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+algebra+of+a+locally+compact+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoomis2011" class="citation book cs1">Loomis, Lynn H. (19 July 2011). <i>Introduction to Abstract Harmonic Analysis (Dover Books on Mathematics) by Lynn H. Loomis (2011) Paperback</i>. Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-48123-4" title="Special:BookSources/978-0-486-48123-4"><bdi>978-0-486-48123-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Abstract+Harmonic+Analysis+%28Dover+Books+on+Mathematics%29+by+Lynn+H.+Loomis+%282011%29+Paperback&rft.pub=Dover+Publications&rft.date=2011-07-19&rft.isbn=978-0-486-48123-4&rft.aulast=Loomis&rft.aufirst=Lynn+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+algebra+of+a+locally+compact+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFA.I._Shtern2001" class="citation cs2">A.I. Shtern (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Group_algebra_of_a_locally_compact_group">"Group algebra of a locally compact group"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Group+algebra+of+a+locally+compact+group&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft.au=A.I.+Shtern&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DGroup_algebra_of_a_locally_compact_group&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+algebra+of+a+locally+compact+group" class="Z3988"></span> <i>This article incorporates material from Group $C^*$-algebra on <a href="/wiki/PlanetMath" title="PlanetMath">PlanetMath</a>, which is licensed under the <a href="/wiki/Wikipedia:CC-BY-SA" class="mw-redirect" title="Wikipedia:CC-BY-SA">Creative Commons Attribution/Share-Alike License</a>.</i></li></ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7649cfcddd‐sdfzz Cached time: 20241127121323 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.176 seconds Real time usage: 0.302 seconds Preprocessor visited node count: 675/1000000 Post‐expand include size: 14221/2097152 bytes Template argument size: 826/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 15067/5000000 bytes Lua time usage: 0.097/10.000 seconds Lua memory usage: 4229532/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 199.429 1 -total 41.17% 82.109 5 Template:Cite_book 25.08% 50.014 1 Template:About 18.46% 36.809 1 Template:Short_description 9.42% 18.785 4 Template:Main_other 8.15% 16.257 1 Template:SDcat 6.66% 13.290 1 Template:Springer 4.66% 9.300 1 Template:Reflist 2.75% 5.492 2 Template:Pagetype 1.75% 3.495 1 Template:PlanetMath_attribution --> <!-- Saved in parser cache with key enwiki:pcache:381010:|#|:idhash:canonical and timestamp 20241127121323 and revision id 1242476828. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Group_algebra_of_a_locally_compact_group&oldid=1242476828">https://en.wikipedia.org/w/index.php?title=Group_algebra_of_a_locally_compact_group&oldid=1242476828</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Algebras" title="Category:Algebras">Algebras</a></li><li><a href="/wiki/Category:C*-algebras" title="Category:C*-algebras">C*-algebras</a></li><li><a href="/wiki/Category:Von_Neumann_algebras" title="Category:Von Neumann algebras">Von Neumann algebras</a></li><li><a href="/wiki/Category:Unitary_representation_theory" title="Category:Unitary representation theory">Unitary representation theory</a></li><li><a href="/wiki/Category:Harmonic_analysis" title="Category:Harmonic analysis">Harmonic analysis</a></li><li><a href="/wiki/Category:Lie_groups" title="Category:Lie groups">Lie groups</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_incorporating_text_from_PlanetMath" title="Category:Wikipedia articles incorporating text from PlanetMath">Wikipedia articles incorporating text from PlanetMath</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 27 August 2024, at 00:36<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Group_algebra_of_a_locally_compact_group&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-57488d5c7d-zq88n","wgBackendResponseTime":146,"wgPageParseReport":{"limitreport":{"cputime":"0.176","walltime":"0.302","ppvisitednodes":{"value":675,"limit":1000000},"postexpandincludesize":{"value":14221,"limit":2097152},"templateargumentsize":{"value":826,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":15067,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 199.429 1 -total"," 41.17% 82.109 5 Template:Cite_book"," 25.08% 50.014 1 Template:About"," 18.46% 36.809 1 Template:Short_description"," 9.42% 18.785 4 Template:Main_other"," 8.15% 16.257 1 Template:SDcat"," 6.66% 13.290 1 Template:Springer"," 4.66% 9.300 1 Template:Reflist"," 2.75% 5.492 2 Template:Pagetype"," 1.75% 3.495 1 Template:PlanetMath_attribution"]},"scribunto":{"limitreport-timeusage":{"value":"0.097","limit":"10.000"},"limitreport-memusage":{"value":4229532,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7649cfcddd-sdfzz","timestamp":"20241127121323","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Group algebra of a locally compact group","url":"https:\/\/en.wikipedia.org\/wiki\/Group_algebra_of_a_locally_compact_group","sameAs":"http:\/\/www.wikidata.org\/entity\/Q17019511","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q17019511","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-11-27T15:21:30Z","dateModified":"2024-08-27T00:36:42Z","headline":"topological algebra associated to continuous groups"}</script> </body> </html>