CINXE.COM

Search results for: magnetic attraction and repulsion

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: magnetic attraction and repulsion</title> <meta name="description" content="Search results for: magnetic attraction and repulsion"> <meta name="keywords" content="magnetic attraction and repulsion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="magnetic attraction and repulsion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="magnetic attraction and repulsion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1676</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: magnetic attraction and repulsion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1676</span> Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title="magnetic lines of force">magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion" title=" magnetic attraction and repulsion"> magnetic attraction and repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20split" title=" magnet split"> magnet split</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20monopole" title=" magnetic monopole"> magnetic monopole</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20magnets" title=" magnetic lines of force as magnets"> magnetic lines of force as magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20waves" title=" magnetic lines of force as waves"> magnetic lines of force as waves</a> </p> <a href="https://publications.waset.org/abstracts/172916/consideration-of-magnetic-lines-of-force-as-magnets-produced-by-percussion-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1675</span> Magnetic Lines of Force and Diamagnetism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamagnetism" title="diamagnetism">diamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation" title=" magnetic levitation"> magnetic levitation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title=" magnetic lines of force"> magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancing%20magnetic%20lines" title=" enhancing magnetic lines"> enhancing magnetic lines</a> </p> <a href="https://publications.waset.org/abstracts/163614/magnetic-lines-of-force-and-diamagnetism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1674</span> Reduced Vibration in a Levitating Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kazadi">S. Kazadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20An"> A. An</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shen"> B. Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the fitness of a male and female permanent magnetic levitation support for use as an axle on a rotor for a levitating motor. The support enables passive thrust and axial support for the axle as a result of the unique arrangement of permanent magnets. As the axial and thrust bearing aspects are derived from magnetic repulsion, it is not immediately clear that the repulsion is stiff enough to enable even low power motors. This paper describes the design and performance of two low power motors based on the magnetic levitation support. We find that our low power motors, with rotational speeds of 618 and 833 rpms, exhibit performance free from excess vibrations that might hinder performance. This means that the actuation of the motors is adequately stabilized by the axle and results in motors capable of being utilized despite the levitation support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=levitating%20motor" title="levitating motor">levitating motor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation%20support" title=" magnetic levitation support"> magnetic levitation support</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness" title=" fitness"> fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=axle" title=" axle"> axle</a> </p> <a href="https://publications.waset.org/abstracts/24674/reduced-vibration-in-a-levitating-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1673</span> Electrical Interactions and Patterning of Bio-Polymers and Nanoparticles in Water Suspensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Klassen">N. V. Klassen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Vasin"> A. A. Vasin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Likhter"> A. M. Likhter</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Voronin"> K. A. Voronin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Mariasevskaya"> A. V. Mariasevskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Shmit%E2%80%99ko"> I. M. Shmit’ko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regular patterning in mixtures of bio-polymers (chitosan and collagen) and nanoparticles in water suspensions has been found by means of optical microscopy. The patterning was created either by external electrical field of moderate amplitude (200–1000 v/cm) or spontaneously. Simultaneously with the patterning pushing out of water drops mixed with nanoparticles to the external regions was observed. These phenomena are explained by interactions of charged bio-polymers and nanoparticles with external and internal electrical fields as well as with the regions of decreased dielectrical permittivity surrounding nano-objects in water which possesses anomalously high dielectrical permittivity. Electrical charges of opposite signs of the nano-objects induce their mutual attraction whereas dipole moments created around these nano-objects by the electrical fields are pushing these particles to the regions with lower fields. Due to this reason, non-homogeneities of dielectrical permittivity around nano-objects immersed into water suspension induces mutual repulsion of the objects. This spatial decrease of this repulsion with the inter-particle distances is more sharp than that of the Coulomb attraction. So, at longer distances, the attractions are stronger whereas at shorter distances the repulsion prevails. At a certain distance these two forces compensate each other creating the equilibrium state of the mixture of nano-objects with opposite charges. When the groups of positive and negative nano-objects consist from identical particles, quasi-periodical pattern of the suspension is observed like mesoscopic two-dimensional super-crystal. These results can clarify the mechanisms of healing of internal organs with direct or alternative electrical fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-polymers" title="bio-polymers">bio-polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20attraction" title=" Coulomb attraction"> Coulomb attraction</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20repulsion" title=" polarization repulsion"> polarization repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=periodical%20patterning" title=" periodical patterning"> periodical patterning</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20low%20frequency%20resonances" title=" electrical low frequency resonances"> electrical low frequency resonances</a> </p> <a href="https://publications.waset.org/abstracts/10299/electrical-interactions-and-patterning-of-bio-polymers-and-nanoparticles-in-water-suspensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1672</span> Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Paul%20Steimel">Joshua Paul Steimel</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Pappas"> Michael Pappas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethan%20Hall"> Ethan Hall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20matter" title="active matter">active matter</a>, <a href="https://publications.waset.org/abstracts/search?q=colloids" title=" colloids"> colloids</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a> </p> <a href="https://publications.waset.org/abstracts/155350/controlling-interactions-and-non-equilibrium-steady-state-in-spinning-active-matter-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1671</span> Basins of Attraction for Quartic-Order Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Hee%20Geum">Young Hee Geum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We compare optimal quartic order method for the multiple zeros of nonlinear equations illustrating the basins of attraction. To construct basins of attraction effectively, we take a 600×600 uniform grid points at the origin of the complex plane and paint the initial values on the basins of attraction with different colors according to the iteration number required for convergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basins%20of%20attraction" title="basins of attraction">basins of attraction</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-root" title=" multiple-root"> multiple-root</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20equation" title=" nonlinear equation"> nonlinear equation</a> </p> <a href="https://publications.waset.org/abstracts/52045/basins-of-attraction-for-quartic-order-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1670</span> Transformations of Spatial Distributions of Bio-Polymers and Nanoparticles in Water Suspensions Induced by Resonance-Like Low Frequency Electrical Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Vasin">A. A. Vasin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Klassen"> N. V. Klassen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Likhter"> A. M. Likhter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water suspensions of in-organic (metals and oxides) and organic nano-objects (chitozan and collagen) were subjected to the treatment of direct and alternative electrical fields. In addition to quasi-periodical spatial patterning resonance-like performance of spatial distributions of these suspensions has been found at low frequencies of alternating electrical field. These resonances are explained as the result of creation of equilibrium states of groups of charged nano-objects with opposite signs of charges at the interparticle distances where the forces of Coulomb attraction are compensated by the repulsion forces induced by relatively negative polarization of hydrated regions surrounding the nanoparticles with respect to pure water. The low frequencies of these resonances are explained by comparatively big distances between the particles and their big masses with t\respect to masses of atoms constituting molecules with high resonance frequencies. These new resonances open a new approach to detailed modeling and understanding of mechanisms of the influence of electrical fields on the functioning of internal organs of living organisms at the level of cells and neurons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-polymers" title="bio-polymers">bio-polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=coulomb%20attraction" title=" coulomb attraction"> coulomb attraction</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20repulsion" title=" polarization repulsion"> polarization repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=periodical%20patterning" title=" periodical patterning"> periodical patterning</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20low%20frequency%20resonances" title=" electrical low frequency resonances"> electrical low frequency resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=transformations" title=" transformations"> transformations</a> </p> <a href="https://publications.waset.org/abstracts/10301/transformations-of-spatial-distributions-of-bio-polymers-and-nanoparticles-in-water-suspensions-induced-by-resonance-like-low-frequency-electrical-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1669</span> Research on Space Discharge Flying Saucers Cruising Between Planets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Hua%20Zhou">Jiang Hua Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the article "New Theoretical System of Physics in the 21st Century" published by the author, it is proposed to use the "scientific principle" of the "balanced distance" between "gravity" and "repulsion" between "planets" to "research" - "space flying saucer", and The formula for the law of universal repulsion between substances is proposed. Under the guidance of the new theoretical system, according to the principle of "planet" gravitational and repulsive force, the research and development idea of developing discharge-type "space flying saucer" is put forward. This paper expounds the reasons why flying saucers have the following characteristics: Flying Saucers can fly at high speed, change direction immediately, hover at any height on the earth, and there is no sound when flying. With the birth of the theoretical system of physics in the 21st century advocated by the author, a era of interstellar "space flying saucer" research will be created. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planet" title="planet">planet</a>, <a href="https://publications.waset.org/abstracts/search?q=attraction" title=" attraction"> attraction</a>, <a href="https://publications.waset.org/abstracts/search?q=repulsive%20force" title=" repulsive force"> repulsive force</a>, <a href="https://publications.waset.org/abstracts/search?q=balance%20spacing" title=" balance spacing"> balance spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20principles" title=" scientific principles"> scientific principles</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=flying%20saucer" title=" flying saucer"> flying saucer</a> </p> <a href="https://publications.waset.org/abstracts/154486/research-on-space-discharge-flying-saucers-cruising-between-planets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1668</span> New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicola%20G.%20G.%20Cecca">Nicola G. G. Cecca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20bond" title="chemical bond">chemical bond</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20orbital%20theory" title=" molecular orbital theory"> molecular orbital theory</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20force" title=" magnetic attraction force"> magnetic attraction force</a>, <a href="https://publications.waset.org/abstracts/search?q=GEOMAG%E2%84%A2" title=" GEOMAG™"> GEOMAG™</a> </p> <a href="https://publications.waset.org/abstracts/42544/new-teaching-tools-for-a-modern-representation-of-chemical-bond-in-the-course-of-food-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1667</span> Magnetic Nanoparticles for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachinkumar%20Patil">Sachinkumar Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Patil"> Sonali Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shitalkumar%20Patil"> Shitalkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/31421/magnetic-nanoparticles-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1666</span> The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Awan"> F. M. Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Hanafy"> H. A. Hanafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnetic%20materials" title="hard magnetic materials">hard magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20route" title=" ceramic route"> ceramic route</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20ferrite" title=" strontium ferrite"> strontium ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/21878/the-influence-of-reaction-parameters-on-magnetic-properties-of-synthesized-strontium-ferrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1665</span> Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Chen">P. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Chang"> C. T. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Peng"> Y. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Wu"> J. Y. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Jan"> D. J. Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Manirul%20Ali"> Md. Manirul Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20spot" title="cathode spot">cathode spot</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20arc%20discharge" title=" vacuum arc discharge"> vacuum arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20magnetic%20field" title=" oblique magnetic field"> oblique magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=tangential%20magnetic%20field" title=" tangential magnetic field"> tangential magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/52606/analytical-model-for-vacuum-cathode-arcs-in-an-oblique-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1664</span> Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Rodrigues">Nishant Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Spanedda"> Nicole Spanedda</a>, <a href="https://publications.waset.org/abstracts/search?q=Chilukuri%20K.%20Mohan"> Chilukuri K. Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Chakraborty"> Arindam Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20energy%20calculations" title="quantum energy calculations">quantum energy calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20orbitals" title=" atomic orbitals"> atomic orbitals</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-repulsion%20integrals" title=" electron-repulsion integrals"> electron-repulsion integrals</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20machine%20learning" title=" ensemble machine learning"> ensemble machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forests" title=" random forests"> random forests</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/167152/accelerating-quantum-chemistry-calculations-machine-learning-for-efficient-evaluation-of-electron-repulsion-integrals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1663</span> Magnetic and Optical Properties of GaFeMnN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Abbad">A.Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.A.Bentounes"> H.A.Bentounes</a>, <a href="https://publications.waset.org/abstracts/search?q=W.Benstaali"> W.Benstaali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW" title="FP-LAPW">FP-LAPW</a>, <a href="https://publications.waset.org/abstracts/search?q=LSDA" title=" LSDA"> LSDA</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20moment" title=" magnetic moment"> magnetic moment</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity "> reflectivity </a> </p> <a href="https://publications.waset.org/abstracts/26313/magnetic-and-optical-properties-of-gafemnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1662</span> Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Kiani">Mahdi Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Salarieh"> Hassan Salarieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Aria%20Alasty"> Aria Alasty</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahdi%20Darbandi"> S. Mahdi Darbandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20magnetic%20bearing" title="active magnetic bearing">active magnetic bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20pole%20AMB" title=" three pole AMB"> three pole AMB</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20control" title=" hybrid control"> hybrid control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a> </p> <a href="https://publications.waset.org/abstracts/53804/stabilization-of-a-three-pole-active-magnetic-bearing-by-hybrid-control-method-in-static-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1661</span> First Principle Calculation of The Magnetic Properties of Mn-doped 6H-SiC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al%20Azri">M. Al Azri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elzain"> M. Elzain</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouziane"> K. Bouziane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ch%C3%A9rif"> S. M. Chérif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic and magnetic properties of 6H-SiC with Mn impurities have been calculated using ab-initio calculations. Various configurations of Mn sites and Si and C vacancies were considered. The magnetic coupling between the two Mn atoms at substitutional and interstitials sites with and without vacancies is studied as a function of Mn atoms interatomic distance. It was found that the magnetic interaction energy decreases with increasing distance between the magnetic atoms. The energy levels appearing in the band gap due to vacancies and due to Mn impurities are determined. The calculated DOS’s are used to analyze the nature of the exchange interaction between the impurities. The band coupling model based on the p-d and d-d level repulsions between Mn and SiC has been used to describe the magnetism observed in each configuration. Furthermore, the impacts of applying U to Mn-d orbital on the magnetic moment have also been investigated. The results are used to understand the experimental data obtained on Mn- 6H-SiC (as-implanted and as –annealed) for various Mn concentration (CMn = 0.7%, 1.6%, 7%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ab-initio%20calculations" title="ab-initio calculations">ab-initio calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductors" title=" diluted magnetic semiconductors"> diluted magnetic semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/34017/first-principle-calculation-of-the-magnetic-properties-of-mn-doped-6h-sic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1660</span> Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olayinka%20Oduwole">Olayinka Oduwole</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Sheard"> Steve Sheard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20separation" title=" magnetic separation"> magnetic separation</a>, <a href="https://publications.waset.org/abstracts/search?q=super-paramagnetic%20bead" title=" super-paramagnetic bead"> super-paramagnetic bead</a> </p> <a href="https://publications.waset.org/abstracts/40063/comparison-between-simulation-and-experimentally-observed-interactions-between-two-different-sized-magnetic-beads-in-a-fluidic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1659</span> Magnetic Field Induced Tribological Properties of Magnetic Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinjal%20Trivedi">Kinjal Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20V.%20Upadhyay"> Ramesh V. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=four%20ball%20tester" title="four ball tester">four ball tester</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fluid" title=" magnetic fluid"> magnetic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanolubricant" title=" nanolubricant"> nanolubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/88005/magnetic-field-induced-tribological-properties-of-magnetic-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1658</span> Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Chen">Xiao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoying%20Kong"> Xiaoying Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Xu"> Min Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20classification" title="vehicle classification">vehicle classification</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic%20model" title=" road traffic model"> road traffic model</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20sensing" title=" magnetic sensing"> magnetic sensing</a> </p> <a href="https://publications.waset.org/abstracts/86644/road-vehicle-recognition-using-magnetic-sensing-feature-extraction-and-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1657</span> Mass Transfer in Reactor with Magnetic Field Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title="mass transfer">mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20magnetic%20field" title=" oscillating magnetic field"> oscillating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title=" rotating magnetic field"> rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20magnetic%20field" title=" static magnetic field"> static magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/140936/mass-transfer-in-reactor-with-magnetic-field-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1656</span> Artificial Intelligence Based Analysis of Magnetic Resonance Signals for the Diagnosis of Tissue Abnormalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kapila%20Warnakulasuriya">Kapila Warnakulasuriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Walimuni%20Janaka%20Mendis"> Walimuni Janaka Mendis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an artificial intelligence-based approach is developed to diagnose abnormal tissues in human or animal bodies by analyzing magnetic resonance signals. As opposed to the conventional method of generating an image from the magnetic resonance signals, which are then evaluated by a radiologist for the diagnosis of abnormalities, in the discussed approach, the magnetic resonance signals are analyzed by an artificial intelligence algorithm without having to generate or analyze an image. The AI-based program compares magnetic resonance signals with millions of possible magnetic resonance waveforms which can be generated from various types of normal tissues. Waveforms generated by abnormal tissues are then identified, and images of the abnormal tissues are generated with the possible location of them in the body for further diagnostic tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance" title="magnetic resonance">magnetic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20waveform%20analysis" title=" magnetic waveform analysis"> magnetic waveform analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20tissues" title=" abnormal tissues"> abnormal tissues</a> </p> <a href="https://publications.waset.org/abstracts/164140/artificial-intelligence-based-analysis-of-magnetic-resonance-signals-for-the-diagnosis-of-tissue-abnormalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1655</span> Analytical Modeling of Equivalent Magnetic Circuit in Multi-segment and Multi-barrier Synchronous Reluctance Motor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huai-Cong%20Liu%EF%BC%8CTae%20Chul%20Jeong%EF%BC%8CJu%20Lee">Huai-Cong Liu,Tae Chul Jeong,Ju Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes characteristic analysis of a synchronous reluctance motor (SynRM)’s rotor with the Multi-segment and Multi-layer structure. The magnetic-saturation phenomenon in SynRM is often appeared. Therefore, when modeling analysis of SynRM the calculation of nonlinear magnetic field needs to be considered. An important influence factor on the convergence process is how to determine the relative permeability. An improved method, which ensures the calculation, is convergence by linear iterative method for saturated magnetic field. If there are inflection points on the magnetic curve,an optimum convergence method of solution for nonlinear magnetic field was provided. Then the equivalent magnetic circuit is calculated, and d,q-axis inductance can be got. At last, this process is applied to design a 7.5Kw SynRM and its validity is verified by comparing with the result of finite element method (FEM) and experimental test data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SynRM" title="SynRM">SynRM</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic-saturation" title=" magnetic-saturation"> magnetic-saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20circuit" title=" magnetic circuit"> magnetic circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20modeling" title=" analytical modeling"> analytical modeling</a> </p> <a href="https://publications.waset.org/abstracts/25307/analytical-modeling-of-equivalent-magnetic-circuit-in-multi-segment-and-multi-barrier-synchronous-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1654</span> Electronic and Magnetic Properties of the Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃ and Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃ Perovskites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sari%20Aouatef">Sari Aouatef</a>, <a href="https://publications.waset.org/abstracts/search?q=Larabi%20Amina"> Larabi Amina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> First-principles calculations within density functional theory based are used to investigate the influence of doped rare earth elements on some properties of perovskite systems Dy₀.₀₆₂₅Y₀.₉₃₇₅FeO₃ and Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃. The electronic and magnetic properties are studied by means of the full-potential linearized augmented plane wave method with Vasp code. The calculated densities of states presented in this work identify the semiconducting behavior for Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃, and the semi-metallic behavior for Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃. Besides, to investigate magnetic properties of several compounds, four magnetic configurations are considered (ferromagnetic (FM), antiferromagnetic type A (A-AFM), antiferromagnetic type C (C-AFM) and antiferromagnetic type G (G-AFM). By doping the Dy element, the system shows different changes in the magnetic order and electronic structure. It is found that Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃ exhibits the strongest magnetic change corresponding to the transition to the ferromagnetic order with the largest magnetic moment of 4.997. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Perovskites" title=" Perovskites"> Perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=multiferroic" title=" multiferroic"> multiferroic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/144435/electronic-and-magnetic-properties-of-the-dy00625y09375-feo3-and-dy0125-y0875-feo3-perovskites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1653</span> Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Ming%20Su">Chao-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Sheng%20Wu"> Pei-Sheng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Kuo"> Yu-Chi Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin-Chou%20Huang"> Yin-Chou Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan-Yueh%20Chen"> Tan-Yueh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jefunnie%20Matahum"> Jefunnie Matahum</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Rong%20Ger"> Tzong-Rong Ger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20particles" title="magnetic particles">magnetic particles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoresistive%20sensors" title=" magnetoresistive sensors"> magnetoresistive sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%EF%AC%82uidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a> </p> <a href="https://publications.waset.org/abstracts/65704/integration-of-magnetoresistance-sensor-in-microfluidic-chip-for-magnetic-particles-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1652</span> Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao-Li%20Liu">Xiao-Li Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling-Yun%20Zhao"> Ling-Yun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing-Jie%20Liang"> Xing-Jie Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai-Ming%20Fan"> Hai-Ming Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20hyperthermia" title=" magnetic hyperthermia"> magnetic hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/73963/optimization-of-surface-coating-on-magnetic-nanoparticles-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1651</span> Development of ELF Passive Shielding Application Using Magnetic Aqueous Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20N.%20L.%20Mahadi">W. N. L. Mahadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Syed%20Zin"> S. N. Syed Zin</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20R.%20Othman"> W. A. R. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Mohd%20Rasyid"> N. A. Mohd Rasyid</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Jusoh"> N. Jusoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Public concerns on Extremely Low Frequency (ELF) Electromagnetic Field (EMF) exposure have been elongated since the last few decades. Electrical substations and high tension rooms (HT room) in commercial buildings were among the contributing factors emanating ELF magnetic fields. This paper discussed various shielding methods conventionally used in mitigating the ELF exposure. Nevertheless, the standard methods were found to be impractical and incapable of meeting currents shielding demands. In response to that, remarkable researches were conducted in effort to invent novel methods which is more convenient and efficient such as magnetic aqueous shielding or paint, textiles and papers shielding. A mitigation method using magnetic aqueous substrate in shielding application was proposed in this paper for further investigation. using Manganese Zinc Ferrite (Mn0.4Zn0.6Fe2O4). The magnetic field and flux distribution inside the aqueous magnetic material are evaluated to optimize shielding against ELF-EMF exposure, as to mitigate its exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ELF%20shielding" title="ELF shielding">ELF shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20aqueous%20substrate" title=" magnetic aqueous substrate"> magnetic aqueous substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effectiveness" title=" shielding effectiveness"> shielding effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20shielding" title=" passive shielding"> passive shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20material" title=" magnetic material"> magnetic material</a> </p> <a href="https://publications.waset.org/abstracts/17277/development-of-elf-passive-shielding-application-using-magnetic-aqueous-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1650</span> Study on a Family of Optimal Fourth-Order Multiple-Root Solver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Hee%20Geum">Young Hee Geum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper,we develop the complex dynamics of a family of optimal fourth-order multiple-root solvers and plot their basins of attraction. Mobius conjugacy maps and extraneous fixed points applied to a prototype quadratic polynomial raised to the power of the known integer multiplicity m are investigated. A 300 x 300 uniform grid centered at the origin covering 3 x 3 square region is chosen to visualize the initial values on each basin of attraction in accordance with a coloring scheme based on their dynamical behavior. The illustrative basins of attractions applied to various test polynomials and the corresponding statistical data for convergence are shown to confirm the theoretical convergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basin%20of%20attraction" title="basin of attraction">basin of attraction</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugacy" title=" conjugacy"> conjugacy</a>, <a href="https://publications.waset.org/abstracts/search?q=fourth-order" title=" fourth-order"> fourth-order</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-root%20finder" title=" multiple-root finder"> multiple-root finder</a> </p> <a href="https://publications.waset.org/abstracts/74099/study-on-a-family-of-optimal-fourth-order-multiple-root-solver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1649</span> Electro Magnetic Tractor (E. M. Tractor)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sijo%20Varghese">Sijo Varghese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A space craft (E. M. Tractor) which is intended to deflect or tug the asteroids which possesses threat towards the planets is the whole idea behind this paper. In this case "Electro Magnetic Induction" is used where it is known that when two separate circuits are connected to the electro magnet and on application of electric current through the one circuit in to the coil induces magnetic fields which repels the other circuit.( Faraday's law of Electromagnetic Induction). Basically a Spacecraft is used to attach a large sheet of aluminum on to the surface of the asteroid, the Spacecraft acts as an electro magnet and the induced magnetic field would eventually repel the aluminum intern repelling the asteroid. This method would take less time as compared to use of gravity( which requires a larger spacecraft and process will take a long time). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asteroids" title="asteroids">asteroids</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20magnetic%20induction" title=" electro magnetic induction"> electro magnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20magnetic%20tractor" title=" electro magnetic tractor "> electro magnetic tractor </a> </p> <a href="https://publications.waset.org/abstracts/20948/electro-magnetic-tractor-e-m-tractor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1648</span> New Refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ for Application in Magnetic Refrigeration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Essebti%20Dhahri">Essebti Dhahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a new refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ (x = 0.0-0.1) manganites. These compounds were prepared by the sol-gel method. The refinement of the X-ray diffraction reveals that all samples crystallize in a rhombohedral structure (space group R3 ̅c). Detailed measurements of the magnetization as a function of temperature and magnetic applied field M (µ₀H, T) were carried out. From the M(µ₀H, T) curves, we have calculated the magnetic entropy change (ΔSM) according to the Maxwell relation. The temperature dependence of the magnetization M(T) reveals a decrease of M when increasing the x content. The magnetic entropy change (ΔSM) reaches a maximum value near room temperature. It was also found that this compound exhibits a large magnetocaloric effect MCE which increases when decreasing Ga concentration. So, the studied compounds could be considered potential materials for magnetic refrigeration application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20measurements" title="magnetic measurements">magnetic measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=Rietveld%20refinement" title=" Rietveld refinement"> Rietveld refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20refrigeration" title=" magnetic refrigeration"> magnetic refrigeration</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric%20effect" title=" magnetocaloric effect"> magnetocaloric effect</a> </p> <a href="https://publications.waset.org/abstracts/158058/new-refrigerant-la07ca015sr015mn1gao3-for-application-in-magnetic-refrigeration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1647</span> Application of Functionalized Magnetic Particles as Demulsifier for Oil‐in‐Water Emulsions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamideh%20Hamedi">Hamideh Hamedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Rezaei"> Nima Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohrab%20Zendehboudi"> Sohrab Zendehboudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Separating emulsified oil contaminations from waste- or produced water is of interest to various industries. Magnetic particles (MPs) application for separating dispersed and emulsified oil from wastewater is becoming more popular. Stabilization of MPs is required through developing a coating layer on their surfaces to prevent their agglomeration and enhance their dispersibility. In this research, we study the effects of coating material, size, and concentration of iron oxide MPs on oil separation efficiency, using oil adsorption capacity measurements. We functionalize both micro-and nanoparticles of Fe3O4 using sodium dodecyl sulfate (SDS) as an anionic surfactant, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and stearic acid (SA). The chemical structures and morphologies of these particles are characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX). The oil-water separation results indicate that a low dosage of the coated magnetic nanoparticle with CTAB (0.5 g/L MNP-CTAB) results the highest oil adsorption capacity (nearly 100%) for 1000 ppm dodecane-in-water emulsion, containing ultra-small droplets (250–300 nm). While separation efficiency of the same dosage of bare MNPs is around 57.5%. Demulsification results of magnetic microparticles (MMPs) also reveal that the functionalizing particles with CTAB increase oil removal efficiency from 86.3% for bare MMP to 92% for MMP-CTAB. Comparing the results of different coating materials implies that the major interaction reaction is an electrostatic attraction between negatively charged oil droplets and positively charged MNP-CTAB and MMP-CTAB. Furthermore, the synthesized nanoparticles could be recycled and reused; after ten cycles the oil adsorption capacity slightly decreases to near 95%. In conclusion, functionalized magnetic particles with high oil separation efficiency could be used effectively in treatment of oily wastewater. Finally, optimization of the adsorption process is required by considering the effective system variables, and fluid properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oily%20wastewater%20treatment" title="oily wastewater treatment">oily wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsions" title=" emulsions"> emulsions</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-water%20separation" title=" oil-water separation"> oil-water separation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/151570/application-of-functionalized-magnetic-particles-as-demulsifier-for-oilinwater-emulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=55">55</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=56">56</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10