CINXE.COM

Fourier transform - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Fourier transform - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e20c2381-1f06-4a70-8a53-968967dde293","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Fourier_transform","wgTitle":"Fourier transform","wgCurRevisionId":1257773298,"wgRevisionId":1257773298,"wgArticleId":52247,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Pages using multiple image with auto scaled images","All articles with unsourced statements","Articles with unsourced statements from May 2009","CS1 French-language sources (fr)","CS1: long volume value","CS1 maint: location missing publisher","Commons category link from Wikidata","Fourier analysis","Integral transforms","Unitary operators","Joseph Fourier","Mathematical physics"],"wgPageViewLanguage":"en", "wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Fourier_transform","wgRelevantArticleId":52247,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q6520159", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","mediawiki.page.gallery.styles":"ready","ext.pygments":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.pygments.view","mediawiki.page.media","ext.scribunto.logs","site", "mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%2CwikimediaBadges%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/3/31/CQT-piano-chord.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="851"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/3/31/CQT-piano-chord.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="567"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/31/CQT-piano-chord.png/640px-CQT-piano-chord.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="454"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Fourier transform - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Fourier_transform"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Fourier_transform&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Fourier_transform"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Fourier_transform rootpage-Fourier_transform skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Fourier+transform" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Fourier+transform" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Fourier+transform" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Fourier+transform" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Definition_for_Lebesgue_integrable_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definition_for_Lebesgue_integrable_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Definition for Lebesgue integrable functions</span> </div> </a> <ul id="toc-Definition_for_Lebesgue_integrable_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unitarity_and_definition_for_square_integrable_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unitarity_and_definition_for_square_integrable_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Unitarity and definition for square integrable functions</span> </div> </a> <ul id="toc-Unitarity_and_definition_for_square_integrable_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Angular_frequency_(ω)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Angular_frequency_(ω)"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Angular frequency (<i>ω</i>)</span> </div> </a> <ul id="toc-Angular_frequency_(ω)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Extension_of_the_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Extension_of_the_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Extension of the definition</span> </div> </a> <ul id="toc-Extension_of_the_definition-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Background" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Background"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Background</span> </div> </a> <button aria-controls="toc-Background-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Background subsection</span> </button> <ul id="toc-Background-sublist" class="vector-toc-list"> <li id="toc-History" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complex_sinusoids" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complex_sinusoids"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Complex sinusoids</span> </div> </a> <ul id="toc-Complex_sinusoids-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Negative_frequency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Negative_frequency"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Negative frequency</span> </div> </a> <ul id="toc-Negative_frequency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fourier_transform_for_periodic_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fourier_transform_for_periodic_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Fourier transform for periodic functions</span> </div> </a> <ul id="toc-Fourier_transform_for_periodic_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sampling_the_Fourier_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sampling_the_Fourier_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Sampling the Fourier transform</span> </div> </a> <ul id="toc-Sampling_the_Fourier_transform-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_of_the_Fourier_transform" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties_of_the_Fourier_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties of the Fourier transform</span> </div> </a> <button aria-controls="toc-Properties_of_the_Fourier_transform-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties of the Fourier transform subsection</span> </button> <ul id="toc-Properties_of_the_Fourier_transform-sublist" class="vector-toc-list"> <li id="toc-Basic_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Basic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Basic properties</span> </div> </a> <ul id="toc-Basic_properties-sublist" class="vector-toc-list"> <li id="toc-Linearity" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Linearity"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Linearity</span> </div> </a> <ul id="toc-Linearity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time_shifting" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Time_shifting"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>Time shifting</span> </div> </a> <ul id="toc-Time_shifting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Frequency_shifting" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Frequency_shifting"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.3</span> <span>Frequency shifting</span> </div> </a> <ul id="toc-Frequency_shifting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time_scaling" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Time_scaling"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.4</span> <span>Time scaling</span> </div> </a> <ul id="toc-Time_scaling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.5</span> <span>Symmetry</span> </div> </a> <ul id="toc-Symmetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conjugation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Conjugation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.6</span> <span>Conjugation</span> </div> </a> <ul id="toc-Conjugation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Real_and_imaginary_part_in_time" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Real_and_imaginary_part_in_time"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.7</span> <span>Real and imaginary part in time</span> </div> </a> <ul id="toc-Real_and_imaginary_part_in_time-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zero_frequency_component" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Zero_frequency_component"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.8</span> <span>Zero frequency component</span> </div> </a> <ul id="toc-Zero_frequency_component-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Invertibility_and_periodicity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Invertibility_and_periodicity"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Invertibility and periodicity</span> </div> </a> <ul id="toc-Invertibility_and_periodicity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Units" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Units"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Units</span> </div> </a> <ul id="toc-Units-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uniform_continuity_and_the_Riemann–Lebesgue_lemma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uniform_continuity_and_the_Riemann–Lebesgue_lemma"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Uniform continuity and the Riemann–Lebesgue lemma</span> </div> </a> <ul id="toc-Uniform_continuity_and_the_Riemann–Lebesgue_lemma-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Plancherel_theorem_and_Parseval&#039;s_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Plancherel_theorem_and_Parseval&#039;s_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Plancherel theorem and Parseval's theorem</span> </div> </a> <ul id="toc-Plancherel_theorem_and_Parseval&#039;s_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_summation_formula" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_summation_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Poisson summation formula</span> </div> </a> <ul id="toc-Poisson_summation_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differentiation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differentiation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Differentiation</span> </div> </a> <ul id="toc-Differentiation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convolution_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Convolution_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>Convolution theorem</span> </div> </a> <ul id="toc-Convolution_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cross-correlation_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cross-correlation_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9</span> <span>Cross-correlation theorem</span> </div> </a> <ul id="toc-Cross-correlation_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eigenfunctions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eigenfunctions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.10</span> <span>Eigenfunctions</span> </div> </a> <ul id="toc-Eigenfunctions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Connection_with_the_Heisenberg_group" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Connection_with_the_Heisenberg_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.11</span> <span>Connection with the Heisenberg group</span> </div> </a> <ul id="toc-Connection_with_the_Heisenberg_group-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Complex_domain" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Complex_domain"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Complex domain</span> </div> </a> <button aria-controls="toc-Complex_domain-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Complex domain subsection</span> </button> <ul id="toc-Complex_domain-sublist" class="vector-toc-list"> <li id="toc-Laplace_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplace_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Laplace transform</span> </div> </a> <ul id="toc-Laplace_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Inversion</span> </div> </a> <ul id="toc-Inversion-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fourier_transform_on_Euclidean_space" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Fourier_transform_on_Euclidean_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Fourier transform on Euclidean space</span> </div> </a> <button aria-controls="toc-Fourier_transform_on_Euclidean_space-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Fourier transform on Euclidean space subsection</span> </button> <ul id="toc-Fourier_transform_on_Euclidean_space-sublist" class="vector-toc-list"> <li id="toc-Uncertainty_principle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uncertainty_principle"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Uncertainty principle</span> </div> </a> <ul id="toc-Uncertainty_principle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sine_and_cosine_transforms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sine_and_cosine_transforms"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Sine and cosine transforms</span> </div> </a> <ul id="toc-Sine_and_cosine_transforms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spherical_harmonics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spherical_harmonics"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Spherical harmonics</span> </div> </a> <ul id="toc-Spherical_harmonics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Restriction_problems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Restriction_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Restriction problems</span> </div> </a> <ul id="toc-Restriction_problems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fourier_transform_on_function_spaces" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Fourier_transform_on_function_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Fourier transform on function spaces</span> </div> </a> <button aria-controls="toc-Fourier_transform_on_function_spaces-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Fourier transform on function spaces subsection</span> </button> <ul id="toc-Fourier_transform_on_function_spaces-sublist" class="vector-toc-list"> <li id="toc-On_Lp_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#On_Lp_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>On <i>L</i><sup><i>p</i></sup> spaces</span> </div> </a> <ul id="toc-On_Lp_spaces-sublist" class="vector-toc-list"> <li id="toc-On_L1" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#On_L1"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1.1</span> <span>On <i>L</i><sup>1</sup></span> </div> </a> <ul id="toc-On_L1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-On_L2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#On_L2"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1.2</span> <span>On <i>L</i><sup>2</sup></span> </div> </a> <ul id="toc-On_L2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-On_other_Lp" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#On_other_Lp"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1.3</span> <span>On other <i>L</i><sup><i>p</i></sup></span> </div> </a> <ul id="toc-On_other_Lp-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Tempered_distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tempered_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Tempered distributions</span> </div> </a> <ul id="toc-Tempered_distributions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Generalizations</span> </div> </a> <button aria-controls="toc-Generalizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations subsection</span> </button> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> <li id="toc-Fourier–Stieltjes_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fourier–Stieltjes_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Fourier–Stieltjes transform</span> </div> </a> <ul id="toc-Fourier–Stieltjes_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Locally_compact_abelian_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Locally_compact_abelian_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Locally compact abelian groups</span> </div> </a> <ul id="toc-Locally_compact_abelian_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gelfand_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gelfand_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Gelfand transform</span> </div> </a> <ul id="toc-Gelfand_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Compact_non-abelian_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Compact_non-abelian_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Compact non-abelian groups</span> </div> </a> <ul id="toc-Compact_non-abelian_groups-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Alternatives" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Alternatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Alternatives</span> </div> </a> <ul id="toc-Alternatives-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Analysis_of_differential_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analysis_of_differential_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Analysis of differential equations</span> </div> </a> <ul id="toc-Analysis_of_differential_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fourier-transform_spectroscopy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fourier-transform_spectroscopy"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Fourier-transform spectroscopy</span> </div> </a> <ul id="toc-Fourier-transform_spectroscopy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Quantum mechanics</span> </div> </a> <ul id="toc-Quantum_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Signal_processing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Signal_processing"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.4</span> <span>Signal processing</span> </div> </a> <ul id="toc-Signal_processing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_notations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_notations"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Other notations</span> </div> </a> <ul id="toc-Other_notations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computation_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Computation_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Computation methods</span> </div> </a> <button aria-controls="toc-Computation_methods-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Computation methods subsection</span> </button> <ul id="toc-Computation_methods-sublist" class="vector-toc-list"> <li id="toc-Discrete_Fourier_transforms_and_fast_Fourier_transforms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discrete_Fourier_transforms_and_fast_Fourier_transforms"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1</span> <span>Discrete Fourier transforms and fast Fourier transforms</span> </div> </a> <ul id="toc-Discrete_Fourier_transforms_and_fast_Fourier_transforms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analytic_integration_of_closed-form_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analytic_integration_of_closed-form_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2</span> <span>Analytic integration of closed-form functions</span> </div> </a> <ul id="toc-Analytic_integration_of_closed-form_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Numerical_integration_of_closed-form_continuous_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Numerical_integration_of_closed-form_continuous_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.3</span> <span>Numerical integration of closed-form continuous functions</span> </div> </a> <ul id="toc-Numerical_integration_of_closed-form_continuous_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Numerical_integration_of_a_series_of_ordered_pairs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Numerical_integration_of_a_series_of_ordered_pairs"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.4</span> <span>Numerical integration of a series of ordered pairs</span> </div> </a> <ul id="toc-Numerical_integration_of_a_series_of_ordered_pairs-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Tables_of_important_Fourier_transforms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Tables_of_important_Fourier_transforms"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Tables of important Fourier transforms</span> </div> </a> <button aria-controls="toc-Tables_of_important_Fourier_transforms-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Tables of important Fourier transforms subsection</span> </button> <ul id="toc-Tables_of_important_Fourier_transforms-sublist" class="vector-toc-list"> <li id="toc-Functional_relationships,_one-dimensional" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Functional_relationships,_one-dimensional"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.1</span> <span>Functional relationships, one-dimensional</span> </div> </a> <ul id="toc-Functional_relationships,_one-dimensional-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Square-integrable_functions,_one-dimensional" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Square-integrable_functions,_one-dimensional"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.2</span> <span>Square-integrable functions, one-dimensional</span> </div> </a> <ul id="toc-Square-integrable_functions,_one-dimensional-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distributions,_one-dimensional" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distributions,_one-dimensional"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.3</span> <span>Distributions, one-dimensional</span> </div> </a> <ul id="toc-Distributions,_one-dimensional-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Two-dimensional_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Two-dimensional_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.4</span> <span>Two-dimensional functions</span> </div> </a> <ul id="toc-Two-dimensional_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formulas_for_general_n-dimensional_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formulas_for_general_n-dimensional_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.5</span> <span>Formulas for general <span><i>n</i></span>-dimensional functions</span> </div> </a> <ul id="toc-Formulas_for_general_n-dimensional_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">18</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Fourier transform</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 64 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-64" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">64 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8B%A8%E1%8D%8E%E1%88%AA%E1%8B%A8%E1%88%AD_%E1%88%BD%E1%8C%8D%E1%8C%8D%E1%88%AD" title="የፎሪየር ሽግግር – Amharic" lang="am" hreflang="am" data-title="የፎሪየር ሽግግር" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%AD%D9%88%D9%8A%D9%84_%D9%81%D9%88%D8%B1%D9%8A%D9%8A%D9%87" title="تحويل فورييه – Arabic" lang="ar" hreflang="ar" data-title="تحويل فورييه" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Tresformada_de_Fourier" title="Tresformada de Fourier – Asturian" lang="ast" hreflang="ast" data-title="Tresformada de Fourier" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Furye_%C3%A7evrilm%C9%99si" title="Furye çevrilməsi – Azerbaijani" lang="az" hreflang="az" data-title="Furye çevrilməsi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AB%E0%A7%81%E0%A6%B0%E0%A6%BF%E0%A6%AF%E0%A6%BC%E0%A7%87_%E0%A6%B0%E0%A7%82%E0%A6%AA%E0%A6%BE%E0%A6%A8%E0%A7%8D%E0%A6%A4%E0%A6%B0" title="ফুরিয়ে রূপান্তর – Bangla" lang="bn" hreflang="bn" data-title="ফুরিয়ে রূপান্তর" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Fourier_pi%C3%A0n-%C5%8Da%E2%81%BF" title="Fourier piàn-ōaⁿ – Minnan" lang="nan" hreflang="nan" data-title="Fourier piàn-ōaⁿ" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B0%D1%9E%D1%82%D0%B2%D0%B0%D1%80%D1%8D%D0%BD%D0%BD%D0%B5_%D0%A4%D1%83%D1%80%E2%80%99%D0%B5" title="Пераўтварэнне Фур’е – Belarusian" lang="be" hreflang="be" data-title="Пераўтварэнне Фур’е" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B0%D1%9E%D1%82%D0%B2%D0%B0%D1%80%D1%8D%D0%BD%D1%8C%D0%BD%D0%B5_%D0%A4%D1%83%D1%80%E2%80%99%D0%B5" title="Пераўтварэньне Фур’е – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Пераўтварэньне Фур’е" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BD%D0%B0_%D0%A4%D1%83%D1%80%D0%B8%D0%B5" title="Преобразование на Фурие – Bulgarian" lang="bg" hreflang="bg" data-title="Преобразование на Фурие" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Fouriertransformation" title="Fouriertransformation – Bavarian" lang="bar" hreflang="bar" data-title="Fouriertransformation" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Transformada_de_Fourier" title="Transformada de Fourier – Catalan" lang="ca" hreflang="ca" data-title="Transformada de Fourier" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Fourierova_transformace" title="Fourierova transformace – Czech" lang="cs" hreflang="cs" data-title="Fourierova transformace" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Fouriertransformation" title="Fouriertransformation – Danish" lang="da" hreflang="da" data-title="Fouriertransformation" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Fourier-Transformation" title="Fourier-Transformation – German" lang="de" hreflang="de" data-title="Fourier-Transformation" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Fourier%27_teisendus" title="Fourier&#039; teisendus – Estonian" lang="et" hreflang="et" data-title="Fourier&#039; teisendus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B5%CF%84%CE%B1%CF%83%CF%87%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CF%83%CE%BC%CF%8C%CF%82_%CE%A6%CE%BF%CF%85%CF%81%CE%B9%CE%AD" title="Μετασχηματισμός Φουριέ – Greek" lang="el" hreflang="el" data-title="Μετασχηματισμός Φουριέ" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Transformada_de_Fourier" title="Transformada de Fourier – Spanish" lang="es" hreflang="es" data-title="Transformada de Fourier" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Furiera_transformo" title="Furiera transformo – Esperanto" lang="eo" hreflang="eo" data-title="Furiera transformo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Fourierren_transformatu" title="Fourierren transformatu – Basque" lang="eu" hreflang="eu" data-title="Fourierren transformatu" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A8%D8%AF%DB%8C%D9%84_%D9%81%D9%88%D8%B1%DB%8C%D9%87" title="تبدیل فوریه – Persian" lang="fa" hreflang="fa" data-title="تبدیل فوریه" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Transformation_de_Fourier" title="Transformation de Fourier – French" lang="fr" hreflang="fr" data-title="Transformation de Fourier" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Transformada_de_Fourier" title="Transformada de Fourier – Galician" lang="gl" hreflang="gl" data-title="Transformada de Fourier" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%91%B8%EB%A6%AC%EC%97%90_%EB%B3%80%ED%99%98" title="푸리에 변환 – Korean" lang="ko" hreflang="ko" data-title="푸리에 변환" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AB%E0%A5%82%E0%A4%B0%E0%A5%8D%E0%A4%AF%E0%A5%87_%E0%A4%B0%E0%A5%82%E0%A4%AA%E0%A4%BE%E0%A4%A8%E0%A5%8D%E0%A4%A4%E0%A4%B0" title="फूर्ये रूपान्तर – Hindi" lang="hi" hreflang="hi" data-title="फूर्ये रूपान्तर" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Fourierova_transformacija" title="Fourierova transformacija – Croatian" lang="hr" hreflang="hr" data-title="Fourierova transformacija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Transformasi_Fourier" title="Transformasi Fourier – Indonesian" lang="id" hreflang="id" data-title="Transformasi Fourier" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fourier%E2%80%93v%C3%B6rpun" title="Fourier–vörpun – Icelandic" lang="is" hreflang="is" data-title="Fourier–vörpun" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Trasformata_di_Fourier" title="Trasformata di Fourier – Italian" lang="it" hreflang="it" data-title="Trasformata di Fourier" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%9E%D7%A8%D7%AA_%D7%A4%D7%95%D7%A8%D7%99%D7%99%D7%94" title="התמרת פורייה – Hebrew" lang="he" hreflang="he" data-title="התמרת פורייה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ks mw-list-item"><a href="https://ks.wikipedia.org/wiki/%D9%81%D9%88%D8%B1%DB%8C%D8%B1_%D9%B9%D8%B1%D8%A7%D9%86%D8%B3%D9%81%D8%A7%D8%B1%D9%85" title="فوریر ٹرانسفارم – Kashmiri" lang="ks" hreflang="ks" data-title="فوریر ٹرانسفارم" data-language-autonym="कॉशुर / کٲشُر" data-language-local-name="Kashmiri" class="interlanguage-link-target"><span>कॉशुर / کٲشُر</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A4%D1%83%D1%80%D1%8C%D0%B5_%D1%82%D2%AF%D1%80%D0%BB%D0%B5%D0%BD%D0%B4%D1%96%D1%80%D1%83" title="Фурье түрлендіру – Kazakh" lang="kk" hreflang="kk" data-title="Фурье түрлендіру" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Furj%C4%97_transformacija" title="Furjė transformacija – Lithuanian" lang="lt" hreflang="lt" data-title="Furjė transformacija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Fourier-transzform%C3%A1ci%C3%B3" title="Fourier-transzformáció – Hungarian" lang="hu" hreflang="hu" data-title="Fourier-transzformáció" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A4%D1%83%D1%80%D0%B8%D0%B5%D0%BE%D0%B2%D0%B0_%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%B1%D0%B0" title="Фуриеова преобразба – Macedonian" lang="mk" hreflang="mk" data-title="Фуриеова преобразба" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Trasformata_ta%27_Fourier" title="Trasformata ta&#039; Fourier – Maltese" lang="mt" hreflang="mt" data-title="Trasformata ta&#039; Fourier" data-language-autonym="Malti" data-language-local-name="Maltese" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A4%D1%83%D1%80%D1%8C%D0%B5_%D1%85%D1%83%D0%B2%D0%B8%D1%80%D0%B3%D0%B0%D0%BB%D1%82" title="Фурье хувиргалт – Mongolian" lang="mn" hreflang="mn" data-title="Фурье хувиргалт" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%96%E1%80%AD%E1%80%AF%E1%80%9B%E1%80%AE%E1%80%9A%E1%80%AC_%E1%80%91%E1%80%9B%E1%80%94%E1%80%BA%E1%80%85%E1%80%96%E1%80%B1%E1%80%AC%E1%80%84%E1%80%BA%E1%80%B8" title="ဖိုရီယာ ထရန်စဖောင်း – Burmese" lang="my" hreflang="my" data-title="ဖိုရီယာ ထရန်စဖောင်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Fouriertransformatie" title="Fouriertransformatie – Dutch" lang="nl" hreflang="nl" data-title="Fouriertransformatie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B" title="フーリエ変換 – Japanese" lang="ja" hreflang="ja" data-title="フーリエ変換" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Fourier-transformasjon" title="Fourier-transformasjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Fourier-transformasjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Fourier-transformasjon" title="Fourier-transformasjon – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Fourier-transformasjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AB%E0%A9%8B%E0%A8%B0%E0%A9%80%E0%A8%85%E0%A8%B0_%E0%A8%AA%E0%A8%B0%E0%A8%BF%E0%A8%B5%E0%A8%B0%E0%A8%A4%E0%A8%A8" title="ਫੋਰੀਅਰ ਪਰਿਵਰਤਨ – Punjabi" lang="pa" hreflang="pa" data-title="ਫੋਰੀਅਰ ਪਰਿਵਰਤਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Transformacja_Fouriera" title="Transformacja Fouriera – Polish" lang="pl" hreflang="pl" data-title="Transformacja Fouriera" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Transformada_de_Fourier" title="Transformada de Fourier – Portuguese" lang="pt" hreflang="pt" data-title="Transformada de Fourier" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Transformata_Fourier" title="Transformata Fourier – Romanian" lang="ro" hreflang="ro" data-title="Transformata Fourier" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%A4%D1%83%D1%80%D1%8C%D0%B5" title="Преобразование Фурье – Russian" lang="ru" hreflang="ru" data-title="Преобразование Фурье" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Transformimi_i_Furierit" title="Transformimi i Furierit – Albanian" lang="sq" hreflang="sq" data-title="Transformimi i Furierit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Fourier_transform" title="Fourier transform – Simple English" lang="en-simple" hreflang="en-simple" data-title="Fourier transform" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Fourierova_transform%C3%A1cia" title="Fourierova transformácia – Slovak" lang="sk" hreflang="sk" data-title="Fourierova transformácia" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Fourierova_transformacija" title="Fourierova transformacija – Slovenian" lang="sl" hreflang="sl" data-title="Fourierova transformacija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D1%83%D1%80%D0%B8%D1%98%D0%B5%D0%BE%D0%B2%D0%B0_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Фуријеова трансформација – Serbian" lang="sr" hreflang="sr" data-title="Фуријеова трансформација" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Transformasi_Fourier" title="Transformasi Fourier – Sundanese" lang="su" hreflang="su" data-title="Transformasi Fourier" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Fourier-muunnos" title="Fourier-muunnos – Finnish" lang="fi" hreflang="fi" data-title="Fourier-muunnos" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Fouriertransform" title="Fouriertransform – Swedish" lang="sv" hreflang="sv" data-title="Fouriertransform" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AF%82%E0%AE%B0%E0%AE%BF%E0%AE%AF%E0%AF%87_%E0%AE%AE%E0%AE%BE%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AF%81" title="வூரியே மாற்று – Tamil" lang="ta" hreflang="ta" data-title="வூரியே மாற்று" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A4%D1%83%D1%80%D1%8C%D0%B5_%D1%80%D3%99%D0%B2%D0%B5%D1%88%D2%AF%D0%B7%D0%B3%D3%99%D1%80%D1%82%D2%AF%D0%B5" title="Фурье рәвешүзгәртүе – Tatar" lang="tt" hreflang="tt" data-title="Фурье рәвешүзгәртүе" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%81%E0%B8%9B%E0%B8%A5%E0%B8%87%E0%B8%9F%E0%B8%B9%E0%B8%A3%E0%B8%B5%E0%B9%80%E0%B8%A2" title="การแปลงฟูรีเย – Thai" lang="th" hreflang="th" data-title="การแปลงฟูรีเย" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Fourier_d%C3%B6n%C3%BC%C5%9F%C3%BCm%C3%BC" title="Fourier dönüşümü – Turkish" lang="tr" hreflang="tr" data-title="Fourier dönüşümü" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%82%D0%B2%D0%BE%D1%80%D0%B5%D0%BD%D0%BD%D1%8F_%D0%A4%D1%83%D1%80%27%D1%94" title="Перетворення Фур&#039;є – Ukrainian" lang="uk" hreflang="uk" data-title="Перетворення Фур&#039;є" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Bi%E1%BA%BFn_%C4%91%E1%BB%95i_Fourier" title="Biến đổi Fourier – Vietnamese" lang="vi" hreflang="vi" data-title="Biến đổi Fourier" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="傅里叶变换 – Wu" lang="wuu" hreflang="wuu" data-title="傅里叶变换" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%82%85%E5%88%A9%E8%91%89%E8%AE%8A%E6%8F%9B" title="傅利葉變換 – Cantonese" lang="yue" hreflang="yue" data-title="傅利葉變換" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="傅里叶变换 – Chinese" lang="zh" hreflang="zh" data-title="傅里叶变换" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-dtp mw-list-item"><a href="https://dtp.wikipedia.org/wiki/Ponimban_Fourier" title="Ponimban Fourier – Central Dusun" lang="dtp" hreflang="dtp" data-title="Ponimban Fourier" data-language-autonym="Kadazandusun" data-language-local-name="Central Dusun" class="interlanguage-link-target"><span>Kadazandusun</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6520159#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Fourier_transform" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Fourier_transform" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Fourier_transform"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Fourier_transform&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Fourier_transform&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Fourier_transform"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Fourier_transform&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Fourier_transform&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Fourier_transform" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Fourier_transform" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Fourier_transform&amp;oldid=1257773298" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Fourier_transform&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Fourier_transform&amp;id=1257773298&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Fourier_transform&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Fourier_transform&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Fourier_transformation" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6520159" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical transform that expresses a function of time as a function of frequency</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with Fourier's original <a href="/wiki/Sine_and_cosine_transforms" title="Sine and cosine transforms">sine and cosine transforms</a>, which may be a simpler introduction to the Fourier transform.</div> <style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><table class="sidebar nomobile nowraplinks"><tbody><tr><th class="sidebar-title"><a class="mw-selflink selflink">Fourier transforms</a></th></tr><tr><td class="sidebar-content"> <div class="plainlist"> <ul><li><a class="mw-selflink selflink">Fourier transform</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a></li> <li><a href="/wiki/Discrete-time_Fourier_transform" title="Discrete-time Fourier transform">Discrete-time Fourier transform</a></li> <li><a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">Discrete Fourier transform</a></li> <li><a href="/wiki/Discrete_Fourier_transform_(general)" class="mw-redirect" title="Discrete Fourier transform (general)">Discrete Fourier transform over a ring</a></li> <li><a href="/wiki/Fourier_transform_on_finite_groups" title="Fourier transform on finite groups">Fourier transform on finite groups</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/List_of_Fourier-related_transforms" title="List of Fourier-related transforms">Related transforms</a></li></ul> </div></td> </tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CQT-piano-chord.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/CQT-piano-chord.png/220px-CQT-piano-chord.png" decoding="async" width="220" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/CQT-piano-chord.png/330px-CQT-piano-chord.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/CQT-piano-chord.png/440px-CQT-piano-chord.png 2x" data-file-width="784" data-file-height="556" /></a><figcaption>An example application of the Fourier transform is determining the constituent pitches in a <a href="/wiki/Music" title="Music">musical</a> <a href="/wiki/Waveform" title="Waveform">waveform</a>. This image is the result of applying a <a href="/wiki/Constant-Q_transform" title="Constant-Q transform">constant-Q transform</a> (a <a href="/wiki/Fourier-related_transform" class="mw-redirect" title="Fourier-related transform">Fourier-related transform</a>) to the waveform of a <a href="/wiki/C_major" title="C major">C major</a> <a href="/wiki/Piano" title="Piano">piano</a> <a href="/wiki/Chord_(music)" title="Chord (music)">chord</a>. The first three peaks on the left correspond to the frequencies of the <a href="/wiki/Fundamental_frequency" title="Fundamental frequency">fundamental frequency</a> of the chord (C, E, G). The remaining smaller peaks are higher-frequency <a href="/wiki/Overtone" title="Overtone">overtones</a> of the fundamental pitches. A <a href="/wiki/Pitch_detection_algorithm" title="Pitch detection algorithm">pitch detection algorithm</a> could use the relative intensity of these peaks to infer which notes the pianist pressed.</figcaption></figure> <p>In <a href="/wiki/Physics" title="Physics">physics</a>, <a href="/wiki/Engineering" title="Engineering">engineering</a> and <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Fourier transform</b> (<b>FT</b>) is an <a href="/wiki/Integral_transform" title="Integral transform">integral transform</a> that takes a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a <a href="/wiki/Complex_number" title="Complex number">complex</a>-valued function of frequency. The term <i>Fourier transform</i> refers to both this complex-valued function and the <a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">mathematical operation</a>. When a distinction needs to be made, the output of the operation is sometimes called the <a href="/wiki/Frequency_domain" title="Frequency domain">frequency domain</a> representation of the original function. The Fourier transform is analogous to decomposing the <a href="/wiki/Sound" title="Sound">sound</a> of a musical <a href="/wiki/Chord_(music)" title="Chord (music)">chord</a> into the <a href="/wiki/Sound_intensity" title="Sound intensity">intensities</a> of its constituent <a href="/wiki/Pitch_(music)" title="Pitch (music)">pitches</a>. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Fourier_transform_time_and_frequency_domains_(small).gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/Fourier_transform_time_and_frequency_domains_%28small%29.gif/220px-Fourier_transform_time_and_frequency_domains_%28small%29.gif" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/72/Fourier_transform_time_and_frequency_domains_%28small%29.gif 1.5x" data-file-width="300" data-file-height="240" /></a><figcaption>The Fourier transform relates the time domain, in red, with a function in the domain of the frequency, in blue. The component frequencies, extended for the whole frequency spectrum, are shown as peaks in the domain of the frequency.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:292px;max-width:292px"><div class="trow"><div class="tsingle" style="width:116px;max-width:116px"><div class="thumbimage" style="height:118px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Sine_voltage.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Sine_voltage.svg/114px-Sine_voltage.svg.png" decoding="async" width="114" height="119" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Sine_voltage.svg/171px-Sine_voltage.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Sine_voltage.svg/228px-Sine_voltage.svg.png 2x" data-file-width="816" data-file-height="850" /></a></span></div></div><div class="tsingle" style="width:172px;max-width:172px"><div class="thumbimage" style="height:118px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Phase_shift.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Phase_shift.svg/170px-Phase_shift.svg.png" decoding="async" width="170" height="119" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Phase_shift.svg/255px-Phase_shift.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Phase_shift.svg/340px-Phase_shift.svg.png 2x" data-file-width="741" data-file-height="517" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">The red <a href="/wiki/Sine_wave" title="Sine wave">sinusoid</a> can be described by peak amplitude (1), peak-to-peak (2), <a href="/wiki/Root_mean_square" title="Root mean square">RMS</a> (3), and <a href="/wiki/Wavelength" title="Wavelength">wavelength</a> (4). The red and blue sinusoids have a phase difference of <span class="texhtml mvar" style="font-style:italic;">θ</span>.</div></div></div></div><p>Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the <a href="#Uncertainty_principle">uncertainty principle</a>. The <a href="/wiki/Critical_point_(mathematics)" title="Critical point (mathematics)">critical</a> case for this principle is the <a href="/wiki/Gaussian_function" title="Gaussian function">Gaussian function</a>, of substantial importance in <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a> as well as in the study of physical phenomena exhibiting <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> (e.g., <a href="/wiki/Diffusion" title="Diffusion">diffusion</a>). The Fourier transform of a Gaussian function is another Gaussian function. <a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a> introduced <a href="/wiki/Sine_and_cosine_transforms" title="Sine and cosine transforms">sine and cosine transforms</a> (which <a href="/wiki/Sine_and_cosine_transforms#Relation_with_complex_exponentials" title="Sine and cosine transforms">correspond to the imaginary and real components</a> of the modern Fourier transform) in his study of <a href="/wiki/Heat_transfer" title="Heat transfer">heat transfer</a>, where Gaussian functions appear as solutions of the <a href="/wiki/Heat_equation" title="Heat equation">heat equation</a>. </p><p>The Fourier transform can be formally defined as an <a href="/wiki/Improper_integral" title="Improper integral">improper</a> <a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a>, making it an integral transform, although this definition is not suitable for many applications requiring a more sophisticated integration theory.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> For example, many relatively simple applications use the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a>, which can be treated formally as if it were a function, but the justification requires a mathematically more sophisticated viewpoint.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>note 2<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Fourier transform can also be generalized to functions of several variables on <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, sending a function of <span class="nowrap">3-dimensional</span> 'position space' to a function of <span class="nowrap">3-dimensional</span> momentum (or a function of space and time to a function of <a href="/wiki/4-momentum" class="mw-redirect" title="4-momentum">4-momentum</a>). This idea makes the spatial Fourier transform very natural in the study of waves, as well as in <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, where it is important to be able to represent wave solutions as functions of either position or momentum and sometimes both. In general, functions to which Fourier methods are applicable are complex-valued, and possibly <a href="/wiki/Vector-valued_function" title="Vector-valued function">vector-valued</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>note 3<span class="cite-bracket">&#93;</span></a></sup> Still further generalization is possible to functions on <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>, which, besides the original Fourier transform on <a href="/wiki/Real_number#Arithmetic" title="Real number"><span class="texhtml"><b>R</b></span></a> or <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>, notably includes the <a href="/wiki/Discrete-time_Fourier_transform" title="Discrete-time Fourier transform">discrete-time Fourier transform</a> (DTFT, group = <span class="texhtml"><a href="/wiki/Integers" class="mw-redirect" title="Integers"><b>Z</b></a></span>), the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a> (DFT, group = <a href="/wiki/Cyclic_group" title="Cyclic group"><span class="texhtml"><b>Z</b> mod <i>N</i></span></a>) and the <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> or circular Fourier transform (group = <span class="texhtml"><a href="/wiki/Circle_group" title="Circle group"><i>S</i><sup>1</sup></a></span>, the unit circle ≈ closed finite interval with endpoints identified). The latter is routinely employed to handle <a href="/wiki/Periodic_function" title="Periodic function">periodic functions</a>. The <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a> (FFT) is an algorithm for computing the DFT. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform is an <i>analysis</i> process, decomposing a complex-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0fa998ae55408f7f94d08ee08a04fcf92330878" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle \textstyle f(x)}"></span> into its constituent frequencies and their amplitudes. The inverse process is <i>synthesis</i>, which recreates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0fa998ae55408f7f94d08ee08a04fcf92330878" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle \textstyle f(x)}"></span> from its transform. </p><p> We can start with an analogy, the <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a>, which analyzes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0fa998ae55408f7f94d08ee08a04fcf92330878" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle \textstyle f(x)}"></span> on a bounded interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle x\in [-P/2,P/2],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle x\in [-P/2,P/2],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4be4c2043b276e0f129991362775e5c5beff8982" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.094ex; height:2.843ex;" alt="{\displaystyle \textstyle x\in [-P/2,P/2],}"></span> for some positive real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49f4f085fcd14302f4f7a9bbdf77e816cccb3bc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.392ex; height:2.176ex;" alt="{\displaystyle P.}"></span> The constituent frequencies are a discrete set of <i>harmonics</i> at frequencies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {n}{P}},n\in \mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mi>P</mi> </mfrac> </mstyle> </mrow> <mo>,</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {n}{P}},n\in \mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5822d4d41e37acdd121bd07258c0b75b08b89a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.537ex; height:3.176ex;" alt="{\displaystyle {\tfrac {n}{P}},n\in \mathbb {Z} ,}"></span> whose amplitude and phase are given by the <b>analysis formula:</b><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{n}={\frac {1}{P}}\int _{-P/2}^{P/2}f(x)\,e^{-i2\pi {\frac {n}{P}}x}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>P</mi> </mfrac> </mrow> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{n}={\frac {1}{P}}\int _{-P/2}^{P/2}f(x)\,e^{-i2\pi {\frac {n}{P}}x}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2f8fcbd2cbbf828045ad99386b7d16f0e94aa9b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:30.449ex; height:6.676ex;" alt="{\displaystyle c_{n}={\frac {1}{P}}\int _{-P/2}^{P/2}f(x)\,e^{-i2\pi {\frac {n}{P}}x}\,dx.}"></span>The actual <b>Fourier series</b> is the <b>synthesis formula:</b><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{n=-\infty }^{\infty }c_{n}\,e^{i2\pi {\tfrac {n}{P}}x},\quad \textstyle x\in [-P/2,P/2].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mi>P</mi> </mfrac> </mstyle> </mrow> <mi>x</mi> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{n=-\infty }^{\infty }c_{n}\,e^{i2\pi {\tfrac {n}{P}}x},\quad \textstyle x\in [-P/2,P/2].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/179ca2af800697798c172e1b58a650fbe2a1ccc6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:42.81ex; height:6.843ex;" alt="{\displaystyle f(x)=\sum _{n=-\infty }^{\infty }c_{n}\,e^{i2\pi {\tfrac {n}{P}}x},\quad \textstyle x\in [-P/2,P/2].}"></span>On an unbounded interval, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to \infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to \infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef6cee49754c6d2a1bf8dd48b800bc438a5da57c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.33ex; height:2.509ex;" alt="{\displaystyle P\to \infty ,}"></span> the constituent frequencies are a continuum<b>:</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {n}{P}}\to \xi \in \mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mi>P</mi> </mfrac> </mstyle> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {n}{P}}\to \xi \in \mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de39ff3c77574e12261eccaebfa490c0ed745caf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.88ex; height:3.176ex;" alt="{\displaystyle {\tfrac {n}{P}}\to \xi \in \mathbb {R} ,}"></span><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b7e944bcb1be88e9a6a940638f2adce0ec4211a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.225ex; height:2.009ex;" alt="{\displaystyle c_{n}}"></span> is replaced by a function<b>:</b><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></p><div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table">Fourier transform <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi )=\int _{-\infty }^{\infty }f(x)\ e^{-i2\pi \xi x}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi )=\int _{-\infty }^{\infty }f(x)\ e^{-i2\pi \xi x}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6878d38ad411d2000a6239e949737229cbdcfbc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.714ex; height:6.009ex;" alt="{\displaystyle {\widehat {f}}(\xi )=\int _{-\infty }^{\infty }f(x)\ e^{-i2\pi \xi x}\,dx.}"></span> &#160; &#160; </p> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_Eq.1" class="reference nourlexpansion" style="font-weight:bold;">Eq.1</span>)</b></td></tr></tbody></table> </div> <p>Evaluating <b><a href="#math_Eq.1">Eq.1</a></b> for all values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> produces the <i>frequency-domain</i> function. The integral can diverge at some frequencies. (see <a href="#Fourier_transform_for_periodic_functions">§&#160;Fourier transform for periodic functions</a>) But it converges for <b><u>all</u></b> frequencies when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> decays with all derivatives as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\to \pm \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo>&#x00B1;<!-- ± --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\to \pm \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47b105bb7c549379dd5714250e1b1afbdea39c11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.076ex; height:2.176ex;" alt="{\displaystyle x\to \pm \infty }"></span><b>:</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to \infty }f^{(n)}(x)=0,n=0,1,2,\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to \infty }f^{(n)}(x)=0,n=0,1,2,\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbbbafc54b0f84ae6e43ddffe2e31e16bee271eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.671ex; height:4.343ex;" alt="{\displaystyle \lim _{x\to \infty }f^{(n)}(x)=0,n=0,1,2,\dots }"></span>. (See <a href="/wiki/Schwartz_function" class="mw-redirect" title="Schwartz function">Schwartz function</a>). By the <a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue lemma</a>, the transformed function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/153a4a4d50ef7099fc5f8804e34dccc539f08743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.019ex; width:1.79ex; height:3.343ex;" alt="{\displaystyle {\widehat {f}}}"></span> also decays with all derivatives. </p><p>The complex number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daf24289c9219fa2cfd300c1e50881fcb2089c5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.61ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\xi )}"></span>, in polar coordinates, conveys both <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> and <a href="/wiki/Phase_offset" class="mw-redirect" title="Phase offset">phase</a> of frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301954fda87cb533b5ff06a995680fb94c521266" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.677ex; height:2.509ex;" alt="{\displaystyle \xi .}"></span> The intuitive interpretation of <b><a href="#math_Eq.1">Eq.1</a></b> is that the effect of multiplying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-i2\pi \xi x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-i2\pi \xi x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71fb2df821c09da15777d0d410d97ba5186d63ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.594ex; height:2.676ex;" alt="{\displaystyle e^{-i2\pi \xi x}}"></span> is to subtract <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> from every frequency component of function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e889a7f3ee0216318cbf9f3478208fa1404cc51c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.064ex; height:2.843ex;" alt="{\displaystyle f(x).}"></span><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>note 4<span class="cite-bracket">&#93;</span></a></sup> Only the component that was at frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> can produce a non-zero value of the infinite integral, because (at least formally) all the other shifted components are oscillatory and integrate to zero. (see <a href="#Example">§&#160;Example</a>) </p><p>The corresponding synthesis formula is: </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table">Inverse transform <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\int _{-\infty }^{\infty }{\widehat {f}}(\xi )\ e^{i2\pi \xi x}\,d\xi ,\quad \forall \ x\in \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\int _{-\infty }^{\infty }{\widehat {f}}(\xi )\ e^{i2\pi \xi x}\,d\xi ,\quad \forall \ x\in \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b182002e69d633c3433092e8401ee2b0fcdd3b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.214ex; height:6.009ex;" alt="{\displaystyle f(x)=\int _{-\infty }^{\infty }{\widehat {f}}(\xi )\ e^{i2\pi \xi x}\,d\xi ,\quad \forall \ x\in \mathbb {R} .}"></span> &#160; &#160; </p> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_Eq.2" class="reference nourlexpansion" style="font-weight:bold;">Eq.2</span>)</b></td></tr></tbody></table> </div> <p><b><a href="#math_Eq.2">Eq.2</a></b> is a representation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> as a weighted summation of complex exponential functions. </p><p>This is also known as the <a href="/wiki/Fourier_inversion_theorem" title="Fourier inversion theorem">Fourier inversion theorem</a>, and was first introduced in <a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Fourier's</a> <i>Analytical Theory of Heat</i>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>The functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/153a4a4d50ef7099fc5f8804e34dccc539f08743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.019ex; width:1.79ex; height:3.343ex;" alt="{\displaystyle {\widehat {f}}}"></span> are referred to as a <b>Fourier transform pair</b>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>&#160; A common notation for designating transform pairs is<b>:</b><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\ {\stackrel {\mathcal {F}}{\longleftrightarrow }}\ {\widehat {f}}(\xi ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\ {\stackrel {\mathcal {F}}{\longleftrightarrow }}\ {\widehat {f}}(\xi ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b449cfeb06d29b6c104875b971fa00e6ce9c317" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.155ex; height:4.176ex;" alt="{\displaystyle f(x)\ {\stackrel {\mathcal {F}}{\longleftrightarrow }}\ {\widehat {f}}(\xi ),}"></span> &#160; for example &#160; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rect} (x)\ {\stackrel {\mathcal {F}}{\longleftrightarrow }}\ \operatorname {sinc} (\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>sinc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rect} (x)\ {\stackrel {\mathcal {F}}{\longleftrightarrow }}\ \operatorname {sinc} (\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e95bd2b0d7b3c2d31e1816383f25f5b65374b7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.261ex; height:4.176ex;" alt="{\displaystyle \operatorname {rect} (x)\ {\stackrel {\mathcal {F}}{\longleftrightarrow }}\ \operatorname {sinc} (\xi ).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Definition_for_Lebesgue_integrable_functions">Definition for Lebesgue integrable functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=2" title="Edit section: Definition for Lebesgue integrable functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Until now, we have been dealing with Schwartz functions, which decay rapidly at infinity, with all derivatives. This excludes many functions of practical importance from the definition, such as the <a href="/wiki/Rect_function" class="mw-redirect" title="Rect function">rect function</a>. A <a href="/wiki/Measurable_function" title="Measurable function">measurable function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \to \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \to \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56fd4f6d5889adc68cfb7e6043cfc3cf8d0dd258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.186ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {R} \to \mathbb {C} }"></span> is called (Lebesgue) integrable if the <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue integral</a> of its absolute value is finite: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{1}=\int _{\mathbb {R} }|f(x)|\,dx&lt;\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{1}=\int _{\mathbb {R} }|f(x)|\,dx&lt;\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/594dfc8c7fcd0575cfa65ff750d563aa4875583a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.568ex; height:5.676ex;" alt="{\displaystyle \|f\|_{1}=\int _{\mathbb {R} }|f(x)|\,dx&lt;\infty .}"></span> Two measurable functions are equivalent if they are equal except on a set of measure zero. The set of all equivalence classes of integrable functions is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9a86223fba658a5daf612b39d3e25495d548bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.124ex; height:3.176ex;" alt="{\displaystyle L^{1}(\mathbb {R} )}"></span>. Then:<sup id="cite_ref-Stein-Weiss-1971_15-0" class="reference"><a href="#cite_note-Stein-Weiss-1971-15"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Definition</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>The Fourier transform of a Lebesgue integrable function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in L^{1}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in L^{1}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b74a27234b1df8cb0ef6c17fd8062ac0ceef576" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.244ex; height:3.176ex;" alt="{\displaystyle f\in L^{1}(\mathbb {R} )}"></span> is defined by the formula <b><a href="#math_Eq.1">Eq.1</a></b>. </p> </div> <p>The integral <b><a href="#math_Eq.1">Eq.1</a></b> is well-defined for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi \in \mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi \in \mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0edc17cdde255d4e4acb2243f4dd97b7c409b92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.196ex; height:2.509ex;" alt="{\displaystyle \xi \in \mathbb {R} ,}"></span> because of the assumption <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{1}&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{1}&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d90fdc01fc53547381048f3c9b6ccee484cd7c5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.08ex; height:2.843ex;" alt="{\displaystyle \|f\|_{1}&lt;\infty }"></span>. (It can be shown that the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}\in L^{\infty }\cap C(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo>&#x2229;<!-- ∩ --></mo> <mi>C</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}\in L^{\infty }\cap C(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d9dc182926773ffe781af3061ff82283776b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.906ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}\in L^{\infty }\cap C(\mathbb {R} )}"></span> is bounded and <a href="/wiki/Uniformly_continuous" class="mw-redirect" title="Uniformly continuous">uniformly continuous</a> in the frequency domain, and moreover, by the <a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue lemma</a>, it is zero at infinity.) </p><p>However, the class of Lebesgue integrable functions is not ideal from the point of view of the Fourier transform because there is no easy characterization of the image, and thus no easy characterization of the inverse transform. </p> <div class="mw-heading mw-heading3"><h3 id="Unitarity_and_definition_for_square_integrable_functions">Unitarity and definition for square integrable functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=3" title="Edit section: Unitarity and definition for square integrable functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While <b><a href="#math_Eq.1">Eq.1</a></b> defines the Fourier transform for (complex-valued) functions in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9a86223fba658a5daf612b39d3e25495d548bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.124ex; height:3.176ex;" alt="{\displaystyle L^{1}(\mathbb {R} )}"></span>, it is easy to see that it is not well-defined for other integrability classes, most importantly <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8722fb232f689925a4baa0e4ba478e43ee346672" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.124ex; height:3.176ex;" alt="{\displaystyle L^{2}(\mathbb {R} )}"></span>. For functions in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}\cap L^{2}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>&#x2229;<!-- ∩ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}\cap L^{2}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/966fd2a56686cc8d2ff895cc58dd91932ec6e09f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.344ex; height:3.176ex;" alt="{\displaystyle L^{1}\cap L^{2}(\mathbb {R} )}"></span>, and with the conventions of <b><a href="#math_Eq.1">Eq.1</a></b>, the Fourier transform is a <a href="/wiki/Unitary_operator" title="Unitary operator">unitary operator</a> with respect to the Hilbert inner product on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8722fb232f689925a4baa0e4ba478e43ee346672" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.124ex; height:3.176ex;" alt="{\displaystyle L^{2}(\mathbb {R} )}"></span>, restricted to the dense subspace of integrable functions. Therefore, it admits a unique continuous extension to a unitary operator on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8722fb232f689925a4baa0e4ba478e43ee346672" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.124ex; height:3.176ex;" alt="{\displaystyle L^{2}(\mathbb {R} )}"></span>, also called the Fourier transform. This extension is important in part because the Fourier transform preserves the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8722fb232f689925a4baa0e4ba478e43ee346672" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.124ex; height:3.176ex;" alt="{\displaystyle L^{2}(\mathbb {R} )}"></span> so that, unlike the case of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74c288d1089f1ec85b01b4de25c441fc792bd2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{1}}"></span>, the Fourier transform and inverse transform are on the same footing, being transformations of the same space of functions to itself. </p><p>Importantly, for functions in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba162c66ca85776c83557af5088cc6f8584d1912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{2}}"></span>, the Fourier transform is no longer given by <b><a href="#math_Eq.1">Eq.1</a></b> (interpreted as a Lebesgue integral). For example, the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=(1+x^{2})^{-1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=(1+x^{2})^{-1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ef0888ad24791919f4758109326efb4e5bcaf80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.689ex; height:3.343ex;" alt="{\displaystyle f(x)=(1+x^{2})^{-1/2}}"></span> is in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba162c66ca85776c83557af5088cc6f8584d1912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{2}}"></span> but not <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74c288d1089f1ec85b01b4de25c441fc792bd2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{1}}"></span>, so the integral <b><a href="#math_Eq.1">Eq.1</a></b> diverges. In such cases, the Fourier transform can be obtained explicitly by regularizing the integral, and then passing to a limit. In practice, the integral is often regarded as an <a href="/wiki/Improper_integral" title="Improper integral">improper integral</a> instead of a proper Lebesgue integral, but sometimes for convergence one needs to use <a href="/wiki/Weak_limit" class="mw-redirect" title="Weak limit">weak limit</a> or <a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">principal value</a> instead of the (pointwise) limits implicit in an improper integral. <a href="#CITEREFTitchmarsh1986">Titchmarsh (1986)</a> and <a href="#CITEREFDymMcKean1985">Dym &amp; McKean (1985)</a> each gives three rigorous ways of extending the Fourier transform to square integrable functions using this procedure. </p><p>The conventions chosen in this article are those of <a href="/wiki/Harmonic_analysis" title="Harmonic analysis">harmonic analysis</a>, and are characterized as the unique conventions such that the Fourier transform is both <a href="/wiki/Unitary_operator" title="Unitary operator">unitary</a> on <span class="texhtml"><i>L</i><sup>2</sup></span> and an algebra homomorphism from <span class="texhtml"><i>L</i><sup>1</sup></span> to <span class="texhtml"><i>L</i><sup>∞</sup></span>, without renormalizing the Lebesgue measure.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Angular_frequency_(ω)"><span id="Angular_frequency_.28.CF.89.29"></span>Angular frequency (<i>&#969;</i>)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=4" title="Edit section: Angular frequency (ω)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When the independent variable (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>) represents <i>time</i> (often denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>), the transform variable (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span>) represents <a href="/wiki/Frequency" title="Frequency">frequency</a> (often denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>). For example, if time is measured in <a href="/wiki/Second" title="Second">seconds</a>, then frequency is in <a href="/wiki/Hertz" title="Hertz">hertz</a>. The Fourier transform can also be written in terms of <a href="/wiki/Angular_frequency" title="Angular frequency">angular frequency</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =2\pi \xi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =2\pi \xi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/772e59ac44e71e27c1b262d85ea4e2b945fbeae2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.716ex; height:2.509ex;" alt="{\displaystyle \omega =2\pi \xi ,}"></span> whose units are <a href="/wiki/Radian" title="Radian">radians</a> per second. </p><p>The substitution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi ={\tfrac {\omega }{2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi ={\tfrac {\omega }{2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0df73ed29b9da8b21d7153501885e6ee3a80ef8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.729ex; height:3.176ex;" alt="{\displaystyle \xi ={\tfrac {\omega }{2\pi }}}"></span> into <b><a href="#math_Eq.1">Eq.1</a></b> produces this convention, where function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/153a4a4d50ef7099fc5f8804e34dccc539f08743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.019ex; width:1.79ex; height:3.343ex;" alt="{\displaystyle {\widehat {f}}}"></span> is relabeled <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f_{1}}}:}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f_{1}}}:}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a027cd86497dad0923847dbcd144da232f50054d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.01ex; width:3.626ex; height:3.343ex;" alt="{\displaystyle {\widehat {f_{1}}}:}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )&amp;\triangleq \int _{-\infty }^{\infty }f(x)\cdot e^{-i\omega x}\,dx={\widehat {f_{1}}}\left({\tfrac {\omega }{2\pi }}\right),\\f(x)&amp;={\frac {1}{2\pi }}\int _{-\infty }^{\infty }{\widehat {f_{3}}}(\omega )\cdot e^{i\omega x}\,d\omega .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )&amp;\triangleq \int _{-\infty }^{\infty }f(x)\cdot e^{-i\omega x}\,dx={\widehat {f_{1}}}\left({\tfrac {\omega }{2\pi }}\right),\\f(x)&amp;={\frac {1}{2\pi }}\int _{-\infty }^{\infty }{\widehat {f_{3}}}(\omega )\cdot e^{i\omega x}\,d\omega .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5ce33fd475ca20de0a57c101996bfa2ae17601f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:40.635ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )&amp;\triangleq \int _{-\infty }^{\infty }f(x)\cdot e^{-i\omega x}\,dx={\widehat {f_{1}}}\left({\tfrac {\omega }{2\pi }}\right),\\f(x)&amp;={\frac {1}{2\pi }}\int _{-\infty }^{\infty }{\widehat {f_{3}}}(\omega )\cdot e^{i\omega x}\,d\omega .\end{aligned}}}"></span> Unlike the <b><a href="#math_Eq.1">Eq.1</a></b> definition, the Fourier transform is no longer a <a href="/wiki/Unitary_transformation" title="Unitary transformation">unitary transformation</a>, and there is less symmetry between the formulas for the transform and its inverse. Those properties are restored by splitting the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> factor evenly between the transform and its inverse, which leads to another convention: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )&amp;\triangleq {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)\cdot e^{-i\omega x}\,dx={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{1}}}\left({\tfrac {\omega }{2\pi }}\right),\\f(x)&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }{\widehat {f_{2}}}(\omega )\cdot e^{i\omega x}\,d\omega .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )&amp;\triangleq {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)\cdot e^{-i\omega x}\,dx={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{1}}}\left({\tfrac {\omega }{2\pi }}\right),\\f(x)&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }{\widehat {f_{2}}}(\omega )\cdot e^{i\omega x}\,d\omega .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9978c58af0279004978ad1d8f01dc30f6d82bd3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:52.716ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )&amp;\triangleq {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)\cdot e^{-i\omega x}\,dx={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{1}}}\left({\tfrac {\omega }{2\pi }}\right),\\f(x)&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }{\widehat {f_{2}}}(\omega )\cdot e^{i\omega x}\,d\omega .\end{aligned}}}"></span> Variations of all three conventions can be created by conjugating the complex-exponential <a href="/wiki/Integral_kernel" class="mw-redirect" title="Integral kernel">kernel</a> of both the forward and the reverse transform. The signs must be opposites. </p> <table class="wikitable"> <caption>Summary of popular forms of the Fourier transform, one-dimensional </caption> <tbody><tr> <th>ordinary frequency <span class="texhtml mvar" style="font-style:italic;">ξ</span> (Hz) </th> <th>unitary </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f_{1}}}(\xi )\ &amp;\triangleq \ \int _{-\infty }^{\infty }f(x)\,e^{-i2\pi \xi x}\,dx={\sqrt {2\pi }}\ \ {\widehat {f_{2}}}(2\pi \xi )={\widehat {f_{3}}}(2\pi \xi )\\f(x)&amp;=\int _{-\infty }^{\infty }{\widehat {f_{1}}}(\xi )\,e^{i2\pi x\xi }\,d\xi \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f_{1}}}(\xi )\ &amp;\triangleq \ \int _{-\infty }^{\infty }f(x)\,e^{-i2\pi \xi x}\,dx={\sqrt {2\pi }}\ \ {\widehat {f_{2}}}(2\pi \xi )={\widehat {f_{3}}}(2\pi \xi )\\f(x)&amp;=\int _{-\infty }^{\infty }{\widehat {f_{1}}}(\xi )\,e^{i2\pi x\xi }\,d\xi \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b92ac8ef312fe6215da92fc4bcaead4683714f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:56.83ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f_{1}}}(\xi )\ &amp;\triangleq \ \int _{-\infty }^{\infty }f(x)\,e^{-i2\pi \xi x}\,dx={\sqrt {2\pi }}\ \ {\widehat {f_{2}}}(2\pi \xi )={\widehat {f_{3}}}(2\pi \xi )\\f(x)&amp;=\int _{-\infty }^{\infty }{\widehat {f_{1}}}(\xi )\,e^{i2\pi x\xi }\,d\xi \end{aligned}}}"></span> </td></tr> <tr> <th rowspan="2">angular frequency <span class="texhtml mvar" style="font-style:italic;">ω</span> (rad/s) </th> <th>unitary </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )\ &amp;\triangleq \ {\frac {1}{\sqrt {2\pi }}}\ \int _{-\infty }^{\infty }f(x)\,e^{-i\omega x}\,dx={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{1}}}\!\left({\frac {\omega }{2\pi }}\right)={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{3}}}(\omega )\\f(x)&amp;={\frac {1}{\sqrt {2\pi }}}\ \int _{-\infty }^{\infty }{\widehat {f_{2}}}(\omega )\,e^{i\omega x}\,d\omega \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )\ &amp;\triangleq \ {\frac {1}{\sqrt {2\pi }}}\ \int _{-\infty }^{\infty }f(x)\,e^{-i\omega x}\,dx={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{1}}}\!\left({\frac {\omega }{2\pi }}\right)={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{3}}}(\omega )\\f(x)&amp;={\frac {1}{\sqrt {2\pi }}}\ \int _{-\infty }^{\infty }{\widehat {f_{2}}}(\omega )\,e^{i\omega x}\,d\omega \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74fad886f3cc1bf7eb573180ec41d2e793319758" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:67.581ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )\ &amp;\triangleq \ {\frac {1}{\sqrt {2\pi }}}\ \int _{-\infty }^{\infty }f(x)\,e^{-i\omega x}\,dx={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{1}}}\!\left({\frac {\omega }{2\pi }}\right)={\frac {1}{\sqrt {2\pi }}}\ \ {\widehat {f_{3}}}(\omega )\\f(x)&amp;={\frac {1}{\sqrt {2\pi }}}\ \int _{-\infty }^{\infty }{\widehat {f_{2}}}(\omega )\,e^{i\omega x}\,d\omega \end{aligned}}}"></span> </td></tr> <tr> <th>non-unitary </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )\ &amp;\triangleq \ \int _{-\infty }^{\infty }f(x)\,e^{-i\omega x}\,dx={\widehat {f_{1}}}\left({\frac {\omega }{2\pi }}\right)={\sqrt {2\pi }}\ \ {\widehat {f_{2}}}(\omega )\\f(x)&amp;={\frac {1}{2\pi }}\int _{-\infty }^{\infty }{\widehat {f_{3}}}(\omega )\,e^{i\omega x}\,d\omega \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )\ &amp;\triangleq \ \int _{-\infty }^{\infty }f(x)\,e^{-i\omega x}\,dx={\widehat {f_{1}}}\left({\frac {\omega }{2\pi }}\right)={\sqrt {2\pi }}\ \ {\widehat {f_{2}}}(\omega )\\f(x)&amp;={\frac {1}{2\pi }}\int _{-\infty }^{\infty }{\widehat {f_{3}}}(\omega )\,e^{i\omega x}\,d\omega \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc405b5876944ab4cc47aaf35ab0fbd3decefb33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:54.857ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )\ &amp;\triangleq \ \int _{-\infty }^{\infty }f(x)\,e^{-i\omega x}\,dx={\widehat {f_{1}}}\left({\frac {\omega }{2\pi }}\right)={\sqrt {2\pi }}\ \ {\widehat {f_{2}}}(\omega )\\f(x)&amp;={\frac {1}{2\pi }}\int _{-\infty }^{\infty }{\widehat {f_{3}}}(\omega )\,e^{i\omega x}\,d\omega \end{aligned}}}"></span> </td></tr></tbody></table> <table class="wikitable"> <caption>Generalization for <span class="texhtml"><i>n</i></span>-dimensional functions </caption> <tbody><tr> <th>ordinary frequency <span class="texhtml mvar" style="font-style:italic;">ξ</span> (Hz) </th> <th>unitary </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f_{1}}}(\xi )\ &amp;\triangleq \ \int _{\mathbb {R} ^{n}}f(x)e^{-i2\pi \xi \cdot x}\,dx=(2\pi )^{\frac {n}{2}}{\widehat {f_{2}}}(2\pi \xi )={\widehat {f_{3}}}(2\pi \xi )\\f(x)&amp;=\int _{\mathbb {R} ^{n}}{\widehat {f_{1}}}(\xi )e^{i2\pi \xi \cdot x}\,d\xi \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f_{1}}}(\xi )\ &amp;\triangleq \ \int _{\mathbb {R} ^{n}}f(x)e^{-i2\pi \xi \cdot x}\,dx=(2\pi )^{\frac {n}{2}}{\widehat {f_{2}}}(2\pi \xi )={\widehat {f_{3}}}(2\pi \xi )\\f(x)&amp;=\int _{\mathbb {R} ^{n}}{\widehat {f_{1}}}(\xi )e^{i2\pi \xi \cdot x}\,d\xi \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f5e7867bf91faf442de73728c12482cd7a5b722" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:56.711ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f_{1}}}(\xi )\ &amp;\triangleq \ \int _{\mathbb {R} ^{n}}f(x)e^{-i2\pi \xi \cdot x}\,dx=(2\pi )^{\frac {n}{2}}{\widehat {f_{2}}}(2\pi \xi )={\widehat {f_{3}}}(2\pi \xi )\\f(x)&amp;=\int _{\mathbb {R} ^{n}}{\widehat {f_{1}}}(\xi )e^{i2\pi \xi \cdot x}\,d\xi \end{aligned}}}"></span> </td></tr> <tr> <th rowspan="2">angular frequency <span class="texhtml mvar" style="font-style:italic;">ω</span> (rad/s) </th> <th>unitary </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )\ &amp;\triangleq \ {\frac {1}{(2\pi )^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx={\frac {1}{(2\pi )^{\frac {n}{2}}}}{\widehat {f_{1}}}\!\left({\frac {\omega }{2\pi }}\right)={\frac {1}{(2\pi )^{\frac {n}{2}}}}{\widehat {f_{3}}}(\omega )\\f(x)&amp;={\frac {1}{(2\pi )^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}{\widehat {f_{2}}}(\omega )e^{i\omega \cdot x}\,d\omega \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )\ &amp;\triangleq \ {\frac {1}{(2\pi )^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx={\frac {1}{(2\pi )^{\frac {n}{2}}}}{\widehat {f_{1}}}\!\left({\frac {\omega }{2\pi }}\right)={\frac {1}{(2\pi )^{\frac {n}{2}}}}{\widehat {f_{3}}}(\omega )\\f(x)&amp;={\frac {1}{(2\pi )^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}{\widehat {f_{2}}}(\omega )e^{i\omega \cdot x}\,d\omega \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/392222b17168cad2b530cc33dcc7975640cc1357" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:69.205ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f_{2}}}(\omega )\ &amp;\triangleq \ {\frac {1}{(2\pi )^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx={\frac {1}{(2\pi )^{\frac {n}{2}}}}{\widehat {f_{1}}}\!\left({\frac {\omega }{2\pi }}\right)={\frac {1}{(2\pi )^{\frac {n}{2}}}}{\widehat {f_{3}}}(\omega )\\f(x)&amp;={\frac {1}{(2\pi )^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}{\widehat {f_{2}}}(\omega )e^{i\omega \cdot x}\,d\omega \end{aligned}}}"></span> </td></tr> <tr> <th>non-unitary </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )\ &amp;\triangleq \ \int _{\mathbb {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx={\widehat {f_{1}}}\left({\frac {\omega }{2\pi }}\right)=(2\pi )^{\frac {n}{2}}{\widehat {f_{2}}}(\omega )\\f(x)&amp;={\frac {1}{(2\pi )^{n}}}\int _{\mathbb {R} ^{n}}{\widehat {f_{3}}}(\omega )e^{i\omega \cdot x}\,d\omega \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )\ &amp;\triangleq \ \int _{\mathbb {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx={\widehat {f_{1}}}\left({\frac {\omega }{2\pi }}\right)=(2\pi )^{\frac {n}{2}}{\widehat {f_{2}}}(\omega )\\f(x)&amp;={\frac {1}{(2\pi )^{n}}}\int _{\mathbb {R} ^{n}}{\widehat {f_{3}}}(\omega )e^{i\omega \cdot x}\,d\omega \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/156fae48fb4c5ef72f380385b7c8d04b041278b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:54.738ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f_{3}}}(\omega )\ &amp;\triangleq \ \int _{\mathbb {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx={\widehat {f_{1}}}\left({\frac {\omega }{2\pi }}\right)=(2\pi )^{\frac {n}{2}}{\widehat {f_{2}}}(\omega )\\f(x)&amp;={\frac {1}{(2\pi )^{n}}}\int _{\mathbb {R} ^{n}}{\widehat {f_{3}}}(\omega )e^{i\omega \cdot x}\,d\omega \end{aligned}}}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Extension_of_the_definition">Extension of the definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=5" title="Edit section: Extension of the definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1&lt;p&lt;2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1&lt;p&lt;2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b8a390e08862f3f4a52a2855051202494ef8752" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.691ex; height:2.509ex;" alt="{\displaystyle 1&lt;p&lt;2}"></span>, the Fourier transform can be defined on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81b25cc9016efea65c3a2be0b1a358b0d399ce3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.129ex; height:2.843ex;" alt="{\displaystyle L^{p}(\mathbb {R} )}"></span> by <a href="/wiki/Marcinkiewicz_interpolation" class="mw-redirect" title="Marcinkiewicz interpolation">Marcinkiewicz interpolation</a>. </p><p>The Fourier transform can be defined on domains other than the real line. The <a href="#Fourier_transform_on_Euclidean_space">Fourier transform on Euclidean space</a> and the <a href="#Locally_compact_abelian_groups">Fourier transform on locally abelian groups</a> are discussed later in the article. </p><p>The Fourier transform can also be defined for <a href="/wiki/Tempered_distribution" class="mw-redirect" title="Tempered distribution">tempered distributions</a>, dual to the space of rapidly decreasing functions (<a href="/wiki/Schwartz_function" class="mw-redirect" title="Schwartz function">Schwartz functions</a>). A Schwartz function is a smooth function that decays at infinity, along with all of its derivatives. The space of Schwartz functions is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0751119ebd490eacaceee66c787196ffae55c316" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.98ex; height:2.843ex;" alt="{\displaystyle {\mathcal {S}}(\mathbb {R} )}"></span>, and its dual <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}'(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}'(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec8c5377581a431b919b6170e94f771d69583a88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.69ex; height:3.009ex;" alt="{\displaystyle {\mathcal {S}}&#039;(\mathbb {R} )}"></span> is the space of tempered distributions. It is easy to see, by differentiating under the integral and applying the Riemann-Lebesgue lemma, that the Fourier transform of a Schwartz function (defined by the formula <b><a href="#math_Eq.1">Eq.1</a></b>) is again a Schwartz function. The Fourier transform of a tempered distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in {\mathcal {S}}'(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in {\mathcal {S}}'(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd66f3b1b935ab2b29cfbcd8e1b105a220a4deca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.166ex; height:3.009ex;" alt="{\displaystyle T\in {\mathcal {S}}&#039;(\mathbb {R} )}"></span> is defined by duality: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle {\widehat {T}},\phi \rangle =\langle T,{\widehat {\phi }}\rangle ;\quad \forall \phi \in {\mathcal {S}}(\mathbb {R} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>;</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle {\widehat {T}},\phi \rangle =\langle T,{\widehat {\phi }}\rangle ;\quad \forall \phi \in {\mathcal {S}}(\mathbb {R} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/224649b5f5d437c22d447c0bc4eb2c8bdec8a759" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.68ex; height:3.343ex;" alt="{\displaystyle \langle {\widehat {T}},\phi \rangle =\langle T,{\widehat {\phi }}\rangle ;\quad \forall \phi \in {\mathcal {S}}(\mathbb {R} ).}"></span> </p><p>Many other characterizations of the Fourier transform exist. For example, one uses the <a href="/wiki/Stone%E2%80%93von_Neumann_theorem" title="Stone–von Neumann theorem">Stone–von Neumann theorem</a>: the Fourier transform is the unique unitary <a href="/wiki/Intertwiner" class="mw-redirect" title="Intertwiner">intertwiner</a> for the symplectic and Euclidean Schrödinger representations of the <a href="/wiki/Heisenberg_group" title="Heisenberg group">Heisenberg group</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Background">Background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=6" title="Edit section: Background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="History">History</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=7" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Fourier_analysis#History" title="Fourier analysis">Fourier analysis §&#160;History</a>, and <a href="/wiki/Fourier_series#History" title="Fourier series">Fourier series §&#160;History</a></div> <p>In 1822, Fourier claimed (see <a href="/wiki/Joseph_Fourier#The_Analytic_Theory_of_Heat" title="Joseph Fourier">Joseph Fourier §&#160;The Analytic Theory of Heat</a>) that any function, whether continuous or discontinuous, can be expanded into a series of sines.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> That important work was corrected and expanded upon by others to provide the foundation for the various forms of the Fourier transform used since. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Unfasor.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/8/89/Unfasor.gif" decoding="async" width="219" height="432" class="mw-file-element" data-file-width="219" data-file-height="432" /></a><figcaption>Fig.1 When function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cdot e^{i2\pi \xi t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cdot e^{i2\pi \xi t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed7af52cdc5f71d361cb03a969826200a5ce6d27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.391ex; height:2.676ex;" alt="{\displaystyle A\cdot e^{i2\pi \xi t}}"></span> is depicted in the complex plane, the vector formed by its <a href="/wiki/Complex_number" title="Complex number">imaginary and real parts</a> rotates around the origin. Its real part <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397de1edef5bf2ee15c020f325d7d781a3aa7f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle y(t)}"></span> is a cosine wave.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Complex_sinusoids">Complex sinusoids</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=8" title="Edit section: Complex sinusoids"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, the coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daf24289c9219fa2cfd300c1e50881fcb2089c5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.61ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\xi )}"></span> are complex numbers, which have two equivalent forms (see <a href="/wiki/Euler%27s_formula" title="Euler&#39;s formula">Euler's formula</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi )=\underbrace {Ae^{i\theta }} _{\text{polar coordinate form}}=\underbrace {A\cos(\theta )+iA\sin(\theta )} _{\text{rectangular coordinate form}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>polar coordinate form</mtext> </mrow> </munder> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>A</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rectangular coordinate form</mtext> </mrow> </munder> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi )=\underbrace {Ae^{i\theta }} _{\text{polar coordinate form}}=\underbrace {A\cos(\theta )+iA\sin(\theta )} _{\text{rectangular coordinate form}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1afd750cfb93bfa43d1a25cc0a47c174ca0afdd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:47.246ex; height:7.343ex;" alt="{\displaystyle {\widehat {f}}(\xi )=\underbrace {Ae^{i\theta }} _{\text{polar coordinate form}}=\underbrace {A\cos(\theta )+iA\sin(\theta )} _{\text{rectangular coordinate form}}.}"></span> </p><p>The product with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i2\pi \xi x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i2\pi \xi x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21b0e3490934b365ffe026bd724c2a029a3bc1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.316ex; height:2.676ex;" alt="{\displaystyle e^{i2\pi \xi x}}"></span> (<b><a href="#math_Eq.2">Eq.2</a></b>) has these forms: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widehat {f}}(\xi )\cdot e^{i2\pi \xi x}&amp;=Ae^{i\theta }\cdot e^{i2\pi \xi x}\\&amp;=\underbrace {Ae^{i(2\pi \xi x+\theta )}} _{\text{polar coordinate form}}\\&amp;=\underbrace {A\cos(2\pi \xi x+\theta )+iA\sin(2\pi \xi x+\theta )} _{\text{rectangular coordinate form}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo>+</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>polar coordinate form</mtext> </mrow> </munder> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo>+</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>A</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo>+</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rectangular coordinate form</mtext> </mrow> </munder> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widehat {f}}(\xi )\cdot e^{i2\pi \xi x}&amp;=Ae^{i\theta }\cdot e^{i2\pi \xi x}\\&amp;=\underbrace {Ae^{i(2\pi \xi x+\theta )}} _{\text{polar coordinate form}}\\&amp;=\underbrace {A\cos(2\pi \xi x+\theta )+iA\sin(2\pi \xi x+\theta )} _{\text{rectangular coordinate form}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33d4431fd50d8cf141cec3c2369a5dbd70c052e8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; width:51.161ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}{\widehat {f}}(\xi )\cdot e^{i2\pi \xi x}&amp;=Ae^{i\theta }\cdot e^{i2\pi \xi x}\\&amp;=\underbrace {Ae^{i(2\pi \xi x+\theta )}} _{\text{polar coordinate form}}\\&amp;=\underbrace {A\cos(2\pi \xi x+\theta )+iA\sin(2\pi \xi x+\theta )} _{\text{rectangular coordinate form}}.\end{aligned}}}"></span> </p><p>It is noteworthy how easily the product was simplified using the polar form, and how easily the rectangular form was deduced by an application of Euler's formula. </p> <div class="mw-heading mw-heading3"><h3 id="Negative_frequency">Negative frequency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=9" title="Edit section: Negative frequency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Negative_frequency#Simplifying_the_Fourier_transform" title="Negative frequency">Negative frequency § Simplifying the Fourier transform</a></div> <p>Euler's formula introduces the possibility of negative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301954fda87cb533b5ff06a995680fb94c521266" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.677ex; height:2.509ex;" alt="{\displaystyle \xi .}"></span>&#160; And <b><a href="#math_Eq.1">Eq.1</a></b> is defined <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall \xi \in \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall \xi \in \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6de562c799ca7f9ee87746c1747069d0d3fef81d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.488ex; height:2.509ex;" alt="{\displaystyle \forall \xi \in \mathbb {R} .}"></span> Only certain complex-valued <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> have transforms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}=0,\ \forall \ \xi &lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mtext>&#xA0;</mtext> <mi>&#x03BE;<!-- ξ --></mi> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}=0,\ \forall \ \xi &lt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db05e7dd64ab70f26c4ae8212aaa1bd641c8e1c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.811ex; height:3.343ex;" alt="{\displaystyle {\widehat {f}}=0,\ \forall \ \xi &lt;0}"></span> (See <a href="/wiki/Analytic_signal" title="Analytic signal">Analytic signal</a>. A simple example is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i2\pi \xi _{0}x}\ (\xi _{0}&gt;0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>x</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i2\pi \xi _{0}x}\ (\xi _{0}&gt;0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a34a21c666866f8354d967ce7744c5e88faaa4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.509ex; height:3.176ex;" alt="{\displaystyle e^{i2\pi \xi _{0}x}\ (\xi _{0}&gt;0).}"></span>)&#160; But negative frequency is necessary to characterize all other complex-valued <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10535d1a7a971ffeeb216605cb846099fab2e653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.064ex; height:2.843ex;" alt="{\displaystyle f(x),}"></span> found in <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>, <a href="/wiki/Partial_differential_equations" class="mw-redirect" title="Partial differential equations">partial differential equations</a>, <a href="/wiki/Radar" title="Radar">radar</a>, <a href="/wiki/Nonlinear_optics" title="Nonlinear optics">nonlinear optics</a>, <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, and others. </p><p>For a real-valued <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10535d1a7a971ffeeb216605cb846099fab2e653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.064ex; height:2.843ex;" alt="{\displaystyle f(x),}"></span> <b><a href="#math_Eq.1">Eq.1</a></b> has the symmetry property <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\xi )={\widehat {f}}^{*}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\xi )={\widehat {f}}^{*}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50a670cb111a7210bfb3e369d2bd4416c5fa50da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.182ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(-\xi )={\widehat {f}}^{*}(\xi )}"></span> (see <a href="#Conjugation">§&#160;Conjugation</a> below). This redundancy enables <b><a href="#math_Eq.2">Eq.2</a></b> to distinguish <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\cos(2\pi \xi _{0}x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\cos(2\pi \xi _{0}x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9469b2564627e7f2565c32971b9810e5da5d9e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.333ex; height:2.843ex;" alt="{\displaystyle f(x)=\cos(2\pi \xi _{0}x)}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i2\pi \xi _{0}x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>x</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i2\pi \xi _{0}x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/777ea4d98a632a4c4ae9a0aeebb254657bf5b84b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.786ex; height:2.676ex;" alt="{\displaystyle e^{i2\pi \xi _{0}x}.}"></span>&#160; But of course it cannot tell us the actual sign of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi _{0},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi _{0},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25bd4fe87ec09e09111556de6d212964c82bfa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.72ex; height:2.509ex;" alt="{\displaystyle \xi _{0},}"></span> because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(2\pi \xi _{0}x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(2\pi \xi _{0}x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cf7c101643f84d7c3ede82a512b33fea021561d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.817ex; height:2.843ex;" alt="{\displaystyle \cos(2\pi \xi _{0}x)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(2\pi (-\xi _{0})x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(2\pi (-\xi _{0})x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55b5d11bc741efd26be0eaa4361937efc7bb5fff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.435ex; height:2.843ex;" alt="{\displaystyle \cos(2\pi (-\xi _{0})x)}"></span> are indistinguishable on just the real numbers line. </p> <div class="mw-heading mw-heading3"><h3 id="Fourier_transform_for_periodic_functions">Fourier transform for periodic functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=10" title="Edit section: Fourier transform for periodic functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform of a periodic function cannot be defined using the integral formula directly. In order for integral in <b><a href="#math_Eq.1">Eq.1</a></b> to be defined the function must be <a href="/wiki/Absolutely_integrable_function" title="Absolutely integrable function">absolutely integrable</a>. Instead it is common to use <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a>. It is possible to extend the definition to include periodic functions by viewing them as <a href="/wiki/Distribution_(mathematics)#Tempered_distributions" title="Distribution (mathematics)">tempered distributions</a>. </p><p>This makes it possible to see a connection between the <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> and the Fourier transform for periodic functions that have a <a href="/wiki/Convergence_of_Fourier_series" title="Convergence of Fourier series">convergent Fourier series</a>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is a <a href="/wiki/Periodic_function" title="Periodic function">periodic function</a>, with period <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>, that has a convergent Fourier series, then: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi )=\sum _{n=-\infty }^{\infty }c_{n}\cdot \delta \left(\xi -{\tfrac {n}{P}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mi>P</mi> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi )=\sum _{n=-\infty }^{\infty }c_{n}\cdot \delta \left(\xi -{\tfrac {n}{P}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ceef16aa3bef9aba66f10a0b188a55a905992d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.373ex; height:6.843ex;" alt="{\displaystyle {\widehat {f}}(\xi )=\sum _{n=-\infty }^{\infty }c_{n}\cdot \delta \left(\xi -{\tfrac {n}{P}}\right),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b7e944bcb1be88e9a6a940638f2adce0ec4211a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.225ex; height:2.009ex;" alt="{\displaystyle c_{n}}"></span> are the Fourier series coefficients of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> is the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a>. In other words, the Fourier transform is a <a href="/wiki/Dirac_comb" title="Dirac comb">Dirac comb</a> function whose <i>teeth</i> are multiplied by the Fourier series coefficients. </p> <div class="mw-heading mw-heading3"><h3 id="Sampling_the_Fourier_transform">Sampling the Fourier transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=11" title="Edit section: Sampling the Fourier transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform of an <a href="/wiki/Absolutely_integrable_function" title="Absolutely integrable function">integrable</a> function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> can be sampled at regular intervals of arbitrary length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{P}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{P}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fe880fb45edd7850339811b311fd3f83bdd08a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.717ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{P}}.}"></span> These samples can be deduced from one cycle of a periodic function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43bdbe4ab8c7bbbb89a5410c25b536d10befbb5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.606ex; height:2.509ex;" alt="{\displaystyle f_{P}}"></span> which has <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> coefficients proportional to those samples by the <a href="/wiki/Poisson_summation_formula" title="Poisson summation formula">Poisson summation formula</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}(x)\triangleq \sum _{n=-\infty }^{\infty }f(x+nP)={\frac {1}{P}}\sum _{k=-\infty }^{\infty }{\widehat {f}}\left({\tfrac {k}{P}}\right)e^{i2\pi {\frac {k}{P}}x},\quad \forall k\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>n</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>x</mi> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}(x)\triangleq \sum _{n=-\infty }^{\infty }f(x+nP)={\frac {1}{P}}\sum _{k=-\infty }^{\infty }{\widehat {f}}\left({\tfrac {k}{P}}\right)e^{i2\pi {\frac {k}{P}}x},\quad \forall k\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cda40763487a38c721fcd3ca5733bb378dc23b51" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:60.393ex; height:7.009ex;" alt="{\displaystyle f_{P}(x)\triangleq \sum _{n=-\infty }^{\infty }f(x+nP)={\frac {1}{P}}\sum _{k=-\infty }^{\infty }{\widehat {f}}\left({\tfrac {k}{P}}\right)e^{i2\pi {\frac {k}{P}}x},\quad \forall k\in \mathbb {Z} }"></span> </p><p>The integrability of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> ensures the periodic summation converges. Therefore, the samples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}\left({\tfrac {k}{P}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}\left({\tfrac {k}{P}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f36468faab271d3d9f9bd6371c421f86d52c248" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.004ex; height:4.843ex;" alt="{\displaystyle {\widehat {f}}\left({\tfrac {k}{P}}\right)}"></span> can be determined by Fourier series analysis: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}\left({\tfrac {k}{P}}\right)=\int _{P}f_{P}(x)\cdot e^{-i2\pi {\frac {k}{P}}x}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}\left({\tfrac {k}{P}}\right)=\int _{P}f_{P}(x)\cdot e^{-i2\pi {\frac {k}{P}}x}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c22c792da81986c2443240c1c9ab8d7ced254d4d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.956ex; height:5.676ex;" alt="{\displaystyle {\widehat {f}}\left({\tfrac {k}{P}}\right)=\int _{P}f_{P}(x)\cdot e^{-i2\pi {\frac {k}{P}}x}\,dx.}"></span> </p><p>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> has <a href="/wiki/Compact_support" class="mw-redirect" title="Compact support">compact support</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3b4d293b8559025b05cdeabd847ece92e33e8b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.745ex; height:2.843ex;" alt="{\displaystyle f_{P}(x)}"></span> has a finite number of terms within the interval of integration. When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> does not have compact support, numerical evaluation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3b4d293b8559025b05cdeabd847ece92e33e8b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.745ex; height:2.843ex;" alt="{\displaystyle f_{P}(x)}"></span> requires an approximation, such as tapering <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> or truncating the number of terms. </p> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=12" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following figures provide a visual illustration of how the Fourier transform's integral measures whether a frequency is present in a particular function. The first image depicts the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)=\cos(2\pi \ 3t)\ e^{-\pi t^{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mtext>&#xA0;</mtext> <mn>3</mn> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)=\cos(2\pi \ 3t)\ e^{-\pi t^{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a23a2291ba2775682f5f89bb818a880af3d456e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.212ex; height:3.509ex;" alt="{\displaystyle f(t)=\cos(2\pi \ 3t)\ e^{-\pi t^{2}},}"></span> which is a 3&#160;<a href="/wiki/Hertz" title="Hertz">Hz</a> cosine wave (the first term) shaped by a <a href="/wiki/Gaussian_function" title="Gaussian function">Gaussian</a> <a href="/wiki/Envelope_(waves)" title="Envelope (waves)">envelope function</a> (the second term) that smoothly turns the wave on and off. The next 2 images show the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)e^{-i2\pi 3t},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mn>3</mn> <mi>t</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)e^{-i2\pi 3t},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72c8055f8e22a17ed0e188522a056e29d1d3d3bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.916ex; height:3.176ex;" alt="{\displaystyle f(t)e^{-i2\pi 3t},}"></span> which must be integrated to calculate the Fourier transform at +3&#160;Hz. The real part of the integrand has a non-negative average value, because the alternating signs of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (e^{-i2\pi 3t})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mn>3</mn> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (e^{-i2\pi 3t})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd7c5dfe8df5d7dd2caf85bafab65f7bf15b4570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.894ex; height:3.176ex;" alt="{\displaystyle \operatorname {Re} (e^{-i2\pi 3t})}"></span> oscillate at the same rate and in phase, whereas <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Im} (e^{-i2\pi 3t})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mn>3</mn> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Im} (e^{-i2\pi 3t})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9b7a3fd61b28e9ab6fdc7e9eb4a18617789df74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.926ex; height:3.176ex;" alt="{\displaystyle \operatorname {Im} (e^{-i2\pi 3t})}"></span> oscillate at the same rate but with orthogonal phase. The absolute value of the Fourier transform at +3&#160;Hz is 0.5, which is relatively large. When added to the Fourier transform at -3&#160;Hz (which is identical because we started with a real signal), we find that the amplitude of the 3&#160;Hz frequency component is 1. </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Onfreq.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Onfreq.png/695px-Onfreq.png" decoding="async" width="695" height="324" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Onfreq.png/1043px-Onfreq.png 1.5x, //upload.wikimedia.org/wikipedia/commons/2/2f/Onfreq.png 2x" data-file-width="1274" data-file-height="594" /></a><figcaption>Original function, which has a strong 3&#160;Hz component. Real and imaginary parts of the integrand of its Fourier transform at +3&#160;Hz.</figcaption></figure> <div style="clear:both;" class=""></div><p>However, when you try to measure a frequency that is not present, both the real and imaginary component of the integral vary rapidly between positive and negative values. For instance, the red curve is looking for 5&#160;Hz. The absolute value of its integral is nearly zero, indicating that almost no 5&#160;Hz component was in the signal. The general situation is usually more complicated than this, but heuristically this is how the Fourier transform measures how much of an individual frequency is present in a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db88c28d6c644c905a4e12de7971c3d1eed37540" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.574ex; height:2.843ex;" alt="{\displaystyle f(t).}"></span></p><ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 395px"> <div class="thumb" style="width: 390px; height: 390px;"><span typeof="mw:File"><a href="/wiki/File:Offfreq_i2p.svg" class="mw-file-description" title="Real and imaginary parts of the integrand for its Fourier transform at +5&#160;Hz."><img alt="Real and imaginary parts of the integrand for its Fourier transform at +5&#160;Hz." src="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Offfreq_i2p.svg/360px-Offfreq_i2p.svg.png" decoding="async" width="360" height="310" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Offfreq_i2p.svg/540px-Offfreq_i2p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/94/Offfreq_i2p.svg/720px-Offfreq_i2p.svg.png 2x" data-file-width="575" data-file-height="495" /></a></span></div> <div class="gallerytext"> Real and imaginary parts of the integrand for its Fourier transform at +5&#160;Hz.</div> </li> <li class="gallerybox" style="width: 395px"> <div class="thumb" style="width: 390px; height: 390px;"><span typeof="mw:File"><a href="/wiki/File:Fourier_transform_of_oscillating_function.svg" class="mw-file-description" title="Magnitude of its Fourier transform, with +3 and +5&#160;Hz labeled."><img alt="Magnitude of its Fourier transform, with +3 and +5&#160;Hz labeled." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Fourier_transform_of_oscillating_function.svg/360px-Fourier_transform_of_oscillating_function.svg.png" decoding="async" width="360" height="297" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Fourier_transform_of_oscillating_function.svg/540px-Fourier_transform_of_oscillating_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/Fourier_transform_of_oscillating_function.svg/720px-Fourier_transform_of_oscillating_function.svg.png 2x" data-file-width="598" data-file-height="494" /></a></span></div> <div class="gallerytext"> Magnitude of its Fourier transform, with +3 and +5&#160;Hz labeled.</div> </li> </ul> <p>To re-enforce an earlier point, the reason for the response at &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi =-3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi =-3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24fc7cce49f684f02fd9f7c3a864502a21fbd72d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.099ex; height:2.509ex;" alt="{\displaystyle \xi =-3}"></span> Hz&#160; is because &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(2\pi 3t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mn>3</mn> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(2\pi 3t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5cf99465284f29aff98d05b97d1320a29fb13ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.417ex; height:2.843ex;" alt="{\displaystyle \cos(2\pi 3t)}"></span>&#160; and &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(2\pi (-3)t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(2\pi (-3)t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07336ab6aef6c1ca5243bd274fa688c71f76aa3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.034ex; height:2.843ex;" alt="{\displaystyle \cos(2\pi (-3)t)}"></span>&#160; are indistinguishable. The transform of &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i2\pi 3t}\cdot e^{-\pi t^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mn>3</mn> <mi>t</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i2\pi 3t}\cdot e^{-\pi t^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ad7480778f419dac238a3a83a1bdcebf6bbdc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.703ex; height:3.009ex;" alt="{\displaystyle e^{i2\pi 3t}\cdot e^{-\pi t^{2}}}"></span>&#160; would have just one response, whose amplitude is the integral of the smooth envelope: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\pi t^{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\pi t^{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09a3a326b85fc65d085122006384f111eae35695" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.608ex; height:3.343ex;" alt="{\displaystyle e^{-\pi t^{2}},}"></span>&#160; whereas &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (f(t)\cdot e^{-i2\pi 3t})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mn>3</mn> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (f(t)\cdot e^{-i2\pi 3t})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56bc1a5f371a70dc3aa714809df24f4b4a9f9f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.5ex; height:3.176ex;" alt="{\displaystyle \operatorname {Re} (f(t)\cdot e^{-i2\pi 3t})}"></span> is &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\pi t^{2}}(1+\cos(2\pi 6t))/2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mn>6</mn> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\pi t^{2}}(1+\cos(2\pi 6t))/2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84099d8e713424452ec9e5c55827d168406ea0d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.162ex; height:3.509ex;" alt="{\displaystyle e^{-\pi t^{2}}(1+\cos(2\pi 6t))/2.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Properties_of_the_Fourier_transform">Properties of the Fourier transform</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=13" title="Edit section: Properties of the Fourier transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02c07825dae28705df03d15daeb8844d49c4dbd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.478ex; height:2.843ex;" alt="{\displaystyle h(x)}"></span> represent <i>integrable functions</i> <a href="/wiki/Lebesgue-measurable" class="mw-redirect" title="Lebesgue-measurable">Lebesgue-measurable</a> on the real line satisfying: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }|f(x)|\,dx&lt;\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }|f(x)|\,dx&lt;\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18053041a2f48527e792f7f6f42a30c486d4fd6c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.547ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }|f(x)|\,dx&lt;\infty .}"></span> We denote the Fourier transforms of these functions as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c12179a82497132d68a556a537ef57b46cbbf83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.538ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}(\xi )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {h}}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>h</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {h}}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10388d495d1f3bddd53259ce4ce6a82ec81ce908" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.178ex; height:3.343ex;" alt="{\displaystyle {\hat {h}}(\xi )}"></span> respectively. </p> <div class="mw-heading mw-heading3"><h3 id="Basic_properties">Basic properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=14" title="Edit section: Basic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform has the following basic properties:<sup id="cite_ref-Pinsky-2002_18-0" class="reference"><a href="#cite_note-Pinsky-2002-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Linearity">Linearity</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=15" title="Edit section: Linearity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\ f(x)+b\ h(x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ a\ {\widehat {f}}(\xi )+b\ {\widehat {h}}(\xi );\quad \ a,b\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mtext>&#xA0;</mtext> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi>a</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>h</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>;</mo> <mspace width="1em" /> <mtext>&#xA0;</mtext> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\ f(x)+b\ h(x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ a\ {\widehat {f}}(\xi )+b\ {\widehat {h}}(\xi );\quad \ a,b\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e32218dabd895e7e588d5b0240388ff026d78382" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.499ex; height:4.176ex;" alt="{\displaystyle a\ f(x)+b\ h(x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ a\ {\widehat {f}}(\xi )+b\ {\widehat {h}}(\xi );\quad \ a,b\in \mathbb {C} }"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Time_shifting">Time shifting</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=16" title="Edit section: Time shifting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x-x_{0})\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ e^{-i2\pi x_{0}\xi }\ {\widehat {f}}(\xi );\quad \ x_{0}\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>;</mo> <mspace width="1em" /> <mtext>&#xA0;</mtext> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x-x_{0})\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ e^{-i2\pi x_{0}\xi }\ {\widehat {f}}(\xi );\quad \ x_{0}\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3237cdaf3afec99d5809287835baf287a1fbcfc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.738ex; height:4.176ex;" alt="{\displaystyle f(x-x_{0})\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ e^{-i2\pi x_{0}\xi }\ {\widehat {f}}(\xi );\quad \ x_{0}\in \mathbb {R} }"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Frequency_shifting">Frequency shifting</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=17" title="Edit section: Frequency shifting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i2\pi \xi _{0}x}f(x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\widehat {f}}(\xi -\xi _{0});\quad \ \xi _{0}\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>x</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>;</mo> <mspace width="1em" /> <mtext>&#xA0;</mtext> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i2\pi \xi _{0}x}f(x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\widehat {f}}(\xi -\xi _{0});\quad \ \xi _{0}\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c1cd0d60e96787f948603907e6b39e06f6af59d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.248ex; height:4.176ex;" alt="{\displaystyle e^{i2\pi \xi _{0}x}f(x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\widehat {f}}(\xi -\xi _{0});\quad \ \xi _{0}\in \mathbb {R} }"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Time_scaling">Time scaling</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=18" title="Edit section: Time scaling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(ax)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\xi }{a}}\right);\quad \ a\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BE;<!-- ξ --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>;</mo> <mspace width="1em" /> <mtext>&#xA0;</mtext> <mi>a</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(ax)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\xi }{a}}\right);\quad \ a\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d53962c42205e7f89988998892dcd4fb6d6a9f49" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.106ex; height:6.343ex;" alt="{\displaystyle f(ax)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\xi }{a}}\right);\quad \ a\neq 0}"></span> The case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/231103d8099e125875dd690668e93a56aa10bd99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.299ex; height:2.343ex;" alt="{\displaystyle a=-1}"></span> leads to the <i>time-reversal property</i>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(-x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\widehat {f}}(-\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(-x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\widehat {f}}(-\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/634cd0f2b232c72f0f76cec719d57a401336018a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.283ex; height:4.176ex;" alt="{\displaystyle f(-x)\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\widehat {f}}(-\xi )}"></span> </p> <div class="noresize thumb tright" style=";"> <div class="thumbinner" style="overflow:hidden;width:302px;"> <div class="thumbimage" style="overflow:hidden; position:relative; background-color:white;"> <div style=";left:0px; top:0px; width:300px; position:absolute;"> <span typeof="mw:File"><a href="/wiki/File:Fourier_unit_pulse.svg" class="mw-file-description" title="The transform of an even-symmetric real-valued function &#39;&quot;`UNIQ--postMath-00000086-QINU`&quot;&#39; is also an even-symmetric real-valued function &#39;&quot;`UNIQ--postMath-00000087-QINU`&quot;&#39; The time-shift, &#39;&quot;`UNIQ--postMath-00000088-QINU`&quot;&#39; creates an imaginary component, &#39;&quot;`UNIQ--postMath-00000089-QINU`&quot;&#39; (see §&#160;Symmmetry."><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Fourier_unit_pulse.svg/300px-Fourier_unit_pulse.svg.png" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Fourier_unit_pulse.svg/450px-Fourier_unit_pulse.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/Fourier_unit_pulse.svg/600px-Fourier_unit_pulse.svg.png 2x" data-file-width="800" data-file-height="600" /></a></span></div> <div style="text-align:left; background-color:transparent; line-height:110%;"> <div id="annotation_20x40" style="position:absolute; left:20px; top:40px; line-height:110%;"><span style="background-color:transparent; color:inherit;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7646cfe88784c1c5cbd6d8432573fe074436b562" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.777ex; height:2.176ex;" alt="{\displaystyle \scriptstyle f(t)}"></span></span></div> <div id="annotation_170x40" style="position:absolute; left:170px; top:40px; line-height:110%;"><span style="background-color:transparent; color:inherit;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\widehat {f}}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\widehat {f}}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6191f91db7f79bdff527b11bc39d829bb3485c25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.668ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\widehat {f}}(\omega )}"></span></span></div> <div id="annotation_20x140" style="position:absolute; left:20px; top:140px; line-height:110%;"><span style="background-color:transparent; color:inherit;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle g(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle g(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/692893150c829aadf1f000c536fb815434c61963" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.662ex; height:2.176ex;" alt="{\displaystyle \scriptstyle g(t)}"></span></span></div> <div id="annotation_170x140" style="position:absolute; left:170px; top:140px; line-height:110%;"><span style="background-color:transparent; color:inherit;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\widehat {g}}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\widehat {g}}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4b42fd34a11cb78603b29d39b4f7b0cac44cb69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.192ex; height:2.509ex;" alt="{\displaystyle \scriptstyle {\widehat {g}}(\omega )}"></span></span></div> <div id="annotation_130x80" style="position:absolute; left:130px; top:80px; line-height:110%;"><span style="background-color:transparent; color:inherit;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>t</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb2910bbfdfd61ced9d9519beb8f978af340d78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.594ex; height:1.676ex;" alt="{\displaystyle \scriptstyle t}"></span></span></div> <div id="annotation_280x85" style="position:absolute; left:280px; top:85px; line-height:110%;"><span style="background-color:transparent; color:inherit;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/691e776df98eed20b0084e0cb2953e837b45dbc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.022ex; height:1.343ex;" alt="{\displaystyle \scriptstyle \omega }"></span></span></div> <div id="annotation_130x192" style="position:absolute; left:130px; top:192px; line-height:110%;"><span style="background-color:transparent; color:inherit;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>t</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb2910bbfdfd61ced9d9519beb8f978af340d78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.594ex; height:1.676ex;" alt="{\displaystyle \scriptstyle t}"></span></span></div> <div id="annotation_280x180" style="position:absolute; left:280px; top:180px; line-height:110%;"><span style="background-color:transparent; color:inherit;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/691e776df98eed20b0084e0cb2953e837b45dbc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.022ex; height:1.343ex;" alt="{\displaystyle \scriptstyle \omega }"></span></span></div> </div> <div style="visibility:hidden"><span class="noviewer" typeof="mw:File/Frameless"><a href="/wiki/File:Fourier_unit_pulse.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Fourier_unit_pulse.svg/300px-Fourier_unit_pulse.svg.png" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Fourier_unit_pulse.svg/450px-Fourier_unit_pulse.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/Fourier_unit_pulse.svg/600px-Fourier_unit_pulse.svg.png 2x" data-file-width="800" data-file-height="600" /></a></span></div> </div> <div class="thumbcaption"><div class="magnify"><a href="/wiki/File:Fourier_unit_pulse.svg" title="File:Fourier unit pulse.svg"> </a></div>The transform of an even-symmetric real-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f(t)=f_{RE})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>E</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f(t)=f_{RE})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13d83b464fa6b9e28b3b9ab88afa94e289a4a1fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.71ex; height:2.843ex;" alt="{\displaystyle (f(t)=f_{RE})}"></span> is also an even-symmetric real-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {f}}_{RE}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>E</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\hat {f}}_{RE}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76d407313e09e0ac40a41f85ab6f79a92751667b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.89ex; height:3.343ex;" alt="{\displaystyle ({\hat {f}}_{RE}).}"></span> The time-shift, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g(t)=g_{RE}+g_{RO}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>E</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g(t)=g_{RE}+g_{RO}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/581fa244b7c3ab480c53d3e564e55a6b6228bb39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.847ex; height:2.843ex;" alt="{\displaystyle (g(t)=g_{RE}+g_{RO}),}"></span> creates an imaginary component, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\cdot {\hat {g}}_{IO}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>O</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\cdot {\hat {g}}_{IO}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec8a27a4e99dce07953b2430373b16a9dbc57591" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.675ex; height:2.676ex;" alt="{\displaystyle i\cdot {\hat {g}}_{IO}.}"></span> (see <a href="#Symmmetry">§&#160;Symmmetry</a>.</div> </div></div> <div class="mw-heading mw-heading4"><h4 id="Symmetry">Symmetry</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=19" title="Edit section: Symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When the real and imaginary parts of a complex function are decomposed into their <a href="/wiki/Even_and_odd_functions#Even–odd_decomposition" title="Even and odd functions">even and odd parts</a>, there are four components, denoted below by the subscripts RE, RO, IE, and IO. And there is a one-to-one mapping between the four components of a complex time function and the four components of its complex frequency transform: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{rlcccccccc}{\mathsf {Time\ domain}}&amp;f&amp;=&amp;f_{_{\text{RE}}}&amp;+&amp;f_{_{\text{RO}}}&amp;+&amp;i\ f_{_{\text{IE}}}&amp;+&amp;\underbrace {i\ f_{_{\text{IO}}}} \\&amp;{\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;{\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}\\{\mathsf {Frequency\ domain}}&amp;{\widehat {f}}&amp;=&amp;{\widehat {f}}_{_{\text{RE}}}&amp;+&amp;\overbrace {i\ {\widehat {f}}_{_{\text{IO}}}\,} &amp;+&amp;i\ {\widehat {f}}_{_{\text{IE}}}&amp;+&amp;{\widehat {f}}_{_{\text{RO}}}\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left center center center center center center center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> <mi mathvariant="sans-serif">i</mi> <mi mathvariant="sans-serif">m</mi> <mi mathvariant="sans-serif">e</mi> <mtext mathvariant="sans-serif">&#xA0;</mtext> <mi mathvariant="sans-serif">d</mi> <mi mathvariant="sans-serif">o</mi> <mi mathvariant="sans-serif">m</mi> <mi mathvariant="sans-serif">a</mi> <mi mathvariant="sans-serif">i</mi> <mi mathvariant="sans-serif">n</mi> </mrow> </mrow> </mtd> <mtd> <mi>f</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>RE</mtext> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>RO</mtext> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>IE</mtext> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>IO</mtext> </mrow> </msub> </mrow> </msub> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" symmetric="true" maxsize="2.470em" minsize="2.470em">&#x21D5;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" symmetric="true" maxsize="2.470em" minsize="2.470em">&#x21D5;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mtd> <mtd /> <mtd> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" symmetric="true" maxsize="2.470em" minsize="2.470em">&#x21D5;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mtd> <mtd /> <mtd> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" symmetric="true" maxsize="2.470em" minsize="2.470em">&#x21D5;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mtd> <mtd /> <mtd> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" symmetric="true" maxsize="2.470em" minsize="2.470em">&#x21D5;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">F</mi> <mi mathvariant="sans-serif">r</mi> <mi mathvariant="sans-serif">e</mi> <mi mathvariant="sans-serif">q</mi> <mi mathvariant="sans-serif">u</mi> <mi mathvariant="sans-serif">e</mi> <mi mathvariant="sans-serif">n</mi> <mi mathvariant="sans-serif">c</mi> <mi mathvariant="sans-serif">y</mi> <mtext mathvariant="sans-serif">&#xA0;</mtext> <mi mathvariant="sans-serif">d</mi> <mi mathvariant="sans-serif">o</mi> <mi mathvariant="sans-serif">m</mi> <mi mathvariant="sans-serif">a</mi> <mi mathvariant="sans-serif">i</mi> <mi mathvariant="sans-serif">n</mi> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>RE</mtext> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>IO</mtext> </mrow> </msub> </mrow> </msub> <mspace width="thinmathspace" /> </mrow> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>IE</mtext> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>RO</mtext> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{rlcccccccc}{\mathsf {Time\ domain}}&amp;f&amp;=&amp;f_{_{\text{RE}}}&amp;+&amp;f_{_{\text{RO}}}&amp;+&amp;i\ f_{_{\text{IE}}}&amp;+&amp;\underbrace {i\ f_{_{\text{IO}}}} \\&amp;{\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;{\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}\\{\mathsf {Frequency\ domain}}&amp;{\widehat {f}}&amp;=&amp;{\widehat {f}}_{_{\text{RE}}}&amp;+&amp;\overbrace {i\ {\widehat {f}}_{_{\text{IO}}}\,} &amp;+&amp;i\ {\widehat {f}}_{_{\text{IE}}}&amp;+&amp;{\widehat {f}}_{_{\text{RO}}}\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb8c89b9ef8896bcf2044ab86985ebc7566c0bfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.786ex; margin-bottom: -0.219ex; width:69.535ex; height:17.176ex;" alt="{\displaystyle {\begin{array}{rlcccccccc}{\mathsf {Time\ domain}}&amp;f&amp;=&amp;f_{_{\text{RE}}}&amp;+&amp;f_{_{\text{RO}}}&amp;+&amp;i\ f_{_{\text{IE}}}&amp;+&amp;\underbrace {i\ f_{_{\text{IO}}}} \\&amp;{\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;{\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}&amp;&amp;\ \ {\Bigg \Updownarrow }{\mathcal {F}}\\{\mathsf {Frequency\ domain}}&amp;{\widehat {f}}&amp;=&amp;{\widehat {f}}_{_{\text{RE}}}&amp;+&amp;\overbrace {i\ {\widehat {f}}_{_{\text{IO}}}\,} &amp;+&amp;i\ {\widehat {f}}_{_{\text{IE}}}&amp;+&amp;{\widehat {f}}_{_{\text{RO}}}\end{array}}}"></span> </p><p>From this, various relationships are apparent, for example<b>:</b> </p> <ul><li>The transform of a real-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{_{RE}}+f_{_{RO}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>E</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{_{RE}}+f_{_{RO}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/550b87215e740c6433a22ccc7c41b0bd5a93d1c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.784ex; height:3.009ex;" alt="{\displaystyle (f_{_{RE}}+f_{_{RO}})}"></span> is the <i><a href="/wiki/Even_and_odd_functions#Complex-valued_functions" title="Even and odd functions">conjugate symmetric</a></i> function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}_{RE}+i\ {\hat {f}}_{IO}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>E</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>O</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}_{RE}+i\ {\hat {f}}_{IO}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f91aa65958af710115cb69126789a4ee0180cbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.318ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}_{RE}+i\ {\hat {f}}_{IO}.}"></span> Conversely, a <i>conjugate symmetric</i> transform implies a real-valued time-domain.</li> <li>The transform of an imaginary-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i\ f_{_{IE}}+i\ f_{_{IO}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>E</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>O</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i\ f_{_{IE}}+i\ f_{_{IO}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45bd7e42a412c64a9b3dc184521191442fb50115" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.87ex; height:3.009ex;" alt="{\displaystyle (i\ f_{_{IE}}+i\ f_{_{IO}})}"></span> is the <i><a href="/wiki/Even_and_odd_functions#Complex-valued_functions" title="Even and odd functions">conjugate antisymmetric</a></i> function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}_{RO}+i\ {\hat {f}}_{IE},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>E</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}_{RO}+i\ {\hat {f}}_{IE},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c5ea7847f5759a1e8d1d21b267d789d15551252" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.318ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}_{RO}+i\ {\hat {f}}_{IE},}"></span> and the converse is true.</li> <li>The transform of a <i><a href="/wiki/Even_and_odd_functions#Complex-valued_functions" title="Even and odd functions">conjugate symmetric</a></i> function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{_{RE}}+i\ f_{_{IO}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>E</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>O</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{_{RE}}+i\ f_{_{IO}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/090dc90c3d6f9381c4d50a4b84e789aa3c7b9013" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.827ex; height:3.009ex;" alt="{\displaystyle (f_{_{RE}}+i\ f_{_{IO}})}"></span> is the real-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}_{RE}+{\hat {f}}_{RO},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>E</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}_{RE}+{\hat {f}}_{RO},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5383aec75a13a1d41e41fd766a31c7e759033728" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.354ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}_{RE}+{\hat {f}}_{RO},}"></span> and the converse is true.</li> <li>The transform of a <i><a href="/wiki/Even_and_odd_functions#Complex-valued_functions" title="Even and odd functions">conjugate antisymmetric</a></i> function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{_{RO}}+i\ f_{_{IE}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>E</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{_{RO}}+i\ f_{_{IE}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09859ebf176c9b0e5be2c875d01e628a7758c12d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.827ex; height:3.009ex;" alt="{\displaystyle (f_{_{RO}}+i\ f_{_{IE}})}"></span> is the imaginary-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\ {\hat {f}}_{IE}+i{\hat {f}}_{IO},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>E</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>O</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\ {\hat {f}}_{IE}+i{\hat {f}}_{IO},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c13febf83a4468aac73322704ff6e84af6690153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.702ex; height:3.343ex;" alt="{\displaystyle i\ {\hat {f}}_{IE}+i{\hat {f}}_{IO},}"></span> and the converse is true.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Conjugation">Conjugation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=20" title="Edit section: Conjugation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bigl (}f(x){\bigr )}^{*}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ \left({\widehat {f}}(-\xi )\right)^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bigl (}f(x){\bigr )}^{*}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ \left({\widehat {f}}(-\xi )\right)^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51eaa8208ada744a964ebea4c4390e86ef0d3c2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.489ex; height:5.176ex;" alt="{\displaystyle {\bigl (}f(x){\bigr )}^{*}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ \left({\widehat {f}}(-\xi )\right)^{*}}"></span> (Note: the ∗ denotes <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugation</a>.) </p><p>In particular, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is <b>real</b>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/153a4a4d50ef7099fc5f8804e34dccc539f08743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.019ex; width:1.79ex; height:3.343ex;" alt="{\displaystyle {\widehat {f}}}"></span> is <a href="/wiki/Even_and_odd_functions#Complex-valued_functions" title="Even and odd functions">even symmetric</a> (aka <a href="/wiki/Hermitian_function" title="Hermitian function">Hermitian function</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\xi )={\bigl (}{\widehat {f}}(\xi ){\bigr )}^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\xi )={\bigl (}{\widehat {f}}(\xi ){\bigr )}^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa277656f3014e78e248761d97e96314761cf79c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.958ex; height:3.676ex;" alt="{\displaystyle {\widehat {f}}(-\xi )={\bigl (}{\widehat {f}}(\xi ){\bigr )}^{*}.}"></span> </p><p>And if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is purely imaginary, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/153a4a4d50ef7099fc5f8804e34dccc539f08743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.019ex; width:1.79ex; height:3.343ex;" alt="{\displaystyle {\widehat {f}}}"></span> is <a href="/wiki/Even_and_odd_functions#Complex-valued_functions" title="Even and odd functions">odd symmetric</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\xi )=-({\widehat {f}}(\xi ))^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\xi )=-({\widehat {f}}(\xi ))^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1299ca0ecd82a4ebc38c9d13e11b40e2e665fa1e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.446ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(-\xi )=-({\widehat {f}}(\xi ))^{*}.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Real_and_imaginary_part_in_time">Real and imaginary part in time</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=21" title="Edit section: Real and imaginary part in time"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} \{f(x)\}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\tfrac {1}{2}}\left({\widehat {f}}(\xi )+{\bigl (}{\widehat {f}}(-\xi ){\bigr )}^{*}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} \{f(x)\}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\tfrac {1}{2}}\left({\widehat {f}}(\xi )+{\bigl (}{\widehat {f}}(-\xi ){\bigr )}^{*}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acd817ebefa9e41666a9d313dd2f91a8aed6b564" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.999ex; height:5.176ex;" alt="{\displaystyle \operatorname {Re} \{f(x)\}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\tfrac {1}{2}}\left({\widehat {f}}(\xi )+{\bigl (}{\widehat {f}}(-\xi ){\bigr )}^{*}\right)}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Im} \{f(x)\}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\tfrac {1}{2i}}\left({\widehat {f}}(\xi )-{\bigl (}{\widehat {f}}(-\xi ){\bigr )}^{*}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Im} \{f(x)\}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\tfrac {1}{2i}}\left({\widehat {f}}(\xi )-{\bigl (}{\widehat {f}}(-\xi ){\bigr )}^{*}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a17e8f7015b8df5d26463189604fdcb1b9e0a98" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.599ex; height:5.176ex;" alt="{\displaystyle \operatorname {Im} \{f(x)\}\ \ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ \ {\tfrac {1}{2i}}\left({\widehat {f}}(\xi )-{\bigl (}{\widehat {f}}(-\xi ){\bigr )}^{*}\right)}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Zero_frequency_component">Zero frequency component</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=22" title="Edit section: Zero frequency component"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Substituting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da5354e193004a0e2f16e7d4a76ea499ffcca225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.291ex; height:2.509ex;" alt="{\displaystyle \xi =0}"></span> in the definition, we obtain: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(0)=\int _{-\infty }^{\infty }f(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(0)=\int _{-\infty }^{\infty }f(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/512d3e27c203a3eadf508b01e54cc3494786bd2c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.672ex; height:6.009ex;" alt="{\displaystyle {\widehat {f}}(0)=\int _{-\infty }^{\infty }f(x)\,dx.}"></span> </p><p>The integral of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> over its domain is known as the average value or <a href="/wiki/DC_bias" title="DC bias">DC bias</a> of the function. </p> <div class="mw-heading mw-heading3"><h3 id="Invertibility_and_periodicity">Invertibility and periodicity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=23" title="Edit section: Invertibility and periodicity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Fourier_inversion_theorem" title="Fourier inversion theorem">Fourier inversion theorem</a> and <a href="/wiki/Fractional_Fourier_transform" title="Fractional Fourier transform">Fractional Fourier transform</a></div> <p>Under suitable conditions on the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, it can be recovered from its Fourier transform <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span>. Indeed, denoting the Fourier transform operator by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}f:={\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mi>f</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}f:={\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ff40f194cee63574a5ba8dde9eba123f660a991" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.65ex; height:3.176ex;" alt="{\displaystyle {\mathcal {F}}f:={\hat {f}}}"></span>, then for suitable functions, applying the Fourier transform twice simply flips the function: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\mathcal {F}}^{2}f\right)(x)=f(-x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\mathcal {F}}^{2}f\right)(x)=f(-x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28af50c062873b13d4bc35fd6819211a074fb026" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.316ex; height:3.343ex;" alt="{\displaystyle \left({\mathcal {F}}^{2}f\right)(x)=f(-x)}"></span>, which can be interpreted as "reversing time". Since reversing time is two-periodic, applying this twice yields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}^{4}(f)=f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}^{4}(f)=f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96f00cd4b4467bedcf9b7bac2806e5652f25489c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.523ex; height:3.176ex;" alt="{\displaystyle {\mathcal {F}}^{4}(f)=f}"></span>, so the Fourier transform operator is four-periodic, and similarly the inverse Fourier transform can be obtained by applying the Fourier transform three times: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}^{3}\left({\hat {f}}\right)=f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}^{3}\left({\hat {f}}\right)=f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3b5be1345ccd7f17d95f2a0391c857bdc0682a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.296ex; height:4.843ex;" alt="{\displaystyle {\mathcal {F}}^{3}\left({\hat {f}}\right)=f}"></span>. In particular the Fourier transform is invertible (under suitable conditions). </p><p>More precisely, defining the <i>parity operator</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {P}}f)(x)=f(-x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {P}}f)(x)=f(-x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/833b26fbf0d49261634ba577773d45d07d9f7394" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.255ex; height:2.843ex;" alt="{\displaystyle ({\mathcal {P}}f)(x)=f(-x)}"></span>, we have: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\mathcal {F}}^{0}&amp;=\mathrm {id} ,\\{\mathcal {F}}^{1}&amp;={\mathcal {F}},\\{\mathcal {F}}^{2}&amp;={\mathcal {P}},\\{\mathcal {F}}^{3}&amp;={\mathcal {F}}^{-1}={\mathcal {P}}\circ {\mathcal {F}}={\mathcal {F}}\circ {\mathcal {P}},\\{\mathcal {F}}^{4}&amp;=\mathrm {id} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">d</mi> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>&#x2218;<!-- ∘ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>&#x2218;<!-- ∘ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">d</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\mathcal {F}}^{0}&amp;=\mathrm {id} ,\\{\mathcal {F}}^{1}&amp;={\mathcal {F}},\\{\mathcal {F}}^{2}&amp;={\mathcal {P}},\\{\mathcal {F}}^{3}&amp;={\mathcal {F}}^{-1}={\mathcal {P}}\circ {\mathcal {F}}={\mathcal {F}}\circ {\mathcal {P}},\\{\mathcal {F}}^{4}&amp;=\mathrm {id} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ab7ea5949bf8494cf70c4d81e62e977c0c7abfb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:29.737ex; height:15.843ex;" alt="{\displaystyle {\begin{aligned}{\mathcal {F}}^{0}&amp;=\mathrm {id} ,\\{\mathcal {F}}^{1}&amp;={\mathcal {F}},\\{\mathcal {F}}^{2}&amp;={\mathcal {P}},\\{\mathcal {F}}^{3}&amp;={\mathcal {F}}^{-1}={\mathcal {P}}\circ {\mathcal {F}}={\mathcal {F}}\circ {\mathcal {P}},\\{\mathcal {F}}^{4}&amp;=\mathrm {id} \end{aligned}}}"></span> These equalities of operators require careful definition of the space of functions in question, defining equality of functions (equality at every point? equality <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a>?) and defining equality of operators – that is, defining the topology on the function space and operator space in question. These are not true for all functions, but are true under various conditions, which are the content of the various forms of the <a href="/wiki/Fourier_inversion_theorem" title="Fourier inversion theorem">Fourier inversion theorem</a>. </p><p>This fourfold periodicity of the Fourier transform is similar to a rotation of the plane by 90°, particularly as the two-fold iteration yields a reversal, and in fact this analogy can be made precise. While the Fourier transform can simply be interpreted as switching the time domain and the frequency domain, with the inverse Fourier transform switching them back, more geometrically it can be interpreted as a rotation by 90° in the <a href="/wiki/Time%E2%80%93frequency_domain" class="mw-redirect" title="Time–frequency domain">time–frequency domain</a> (considering time as the <span class="texhtml mvar" style="font-style:italic;">x</span>-axis and frequency as the <span class="texhtml mvar" style="font-style:italic;">y</span>-axis), and the Fourier transform can be generalized to the <a href="/wiki/Fractional_Fourier_transform" title="Fractional Fourier transform">fractional Fourier transform</a>, which involves rotations by other angles. This can be further generalized to <a href="/wiki/Linear_canonical_transformation" title="Linear canonical transformation">linear canonical transformations</a>, which can be visualized as the action of the <a href="/wiki/Special_linear_group" title="Special linear group">special linear group</a> <span class="texhtml"><a href="/wiki/SL2(R)" title="SL2(R)">SL<sub>2</sub>(<b>R</b>)</a></span> on the time–frequency plane, with the preserved symplectic form corresponding to the <a href="#Uncertainty_principle">uncertainty principle</a>, below. This approach is particularly studied in <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>, under <a href="/wiki/Time%E2%80%93frequency_analysis" title="Time–frequency analysis">time–frequency analysis</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Units">Units</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=24" title="Edit section: Units"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Spectral_density#Units" title="Spectral density">Spectral density §&#160;Units</a></div> <p>The frequency variable must have inverse units to the units of the original function's domain (typically named <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>). For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> is measured in seconds, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> should be in cycles per second or <a href="/wiki/Hertz" title="Hertz">hertz</a>. If the scale of time is in units of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> seconds, then another Greek letter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is typically used instead to represent <a href="/wiki/Angular_frequency" title="Angular frequency">angular frequency</a> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =2\pi \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =2\pi \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7a4c7c58f489ad173cd8e39e6135e42a2dd5ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.069ex; height:2.509ex;" alt="{\displaystyle \omega =2\pi \xi }"></span>) in units of <a href="/wiki/Radian" title="Radian">radians</a> per second. If using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> for units of length, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> must be in inverse length, e.g., <a href="/wiki/Wavenumber" title="Wavenumber">wavenumbers</a>. That is to say, there are two versions of the real line: one which is the <a href="/wiki/Range_of_a_function" title="Range of a function">range</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> and measured in units of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea3ad87830a1055c7b85c04cf940cfd3b847ae6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.486ex; height:2.343ex;" alt="{\displaystyle t,}"></span> and the other which is the range of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> and measured in inverse units to the units of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e6cc375ac6123d2342be53eba87b92fbbacf07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.486ex; height:2.009ex;" alt="{\displaystyle t.}"></span> These two distinct versions of the real line cannot be equated with each other. Therefore, the Fourier transform goes from one space of functions to a different space of functions: functions which have a different domain of definition. </p><p>In general, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> must always be taken to be a <a href="/wiki/Linear_form" title="Linear form">linear form</a> on the space of its domain, which is to say that the second real line is the <a href="/wiki/Dual_space" title="Dual space">dual space</a> of the first real line. See the article on <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a> for a more formal explanation and for more details. This point of view becomes essential in generalizations of the Fourier transform to general <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry groups</a>, including the case of Fourier series. </p><p>That there is no one preferred way (often, one says "no canonical way") to compare the two versions of the real line which are involved in the Fourier transform—fixing the units on one line does not force the scale of the units on the other line—is the reason for the plethora of rival conventions on the definition of the Fourier transform. The various definitions resulting from different choices of units differ by various constants. </p><p>In other conventions, the Fourier transform has <span class="texhtml mvar" style="font-style:italic;">i</span> in the exponent instead of <span class="texhtml">−<i>i</i></span>, and vice versa for the inversion formula. This convention is common in modern physics<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> and is the default for <a rel="nofollow" class="external text" href="https://www.wolframalpha.com">Wolfram Alpha</a>, and does not mean that the frequency has become negative, since there is no canonical definition of positivity for frequency of a complex wave. It simply means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c12179a82497132d68a556a537ef57b46cbbf83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.538ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}(\xi )}"></span> is the amplitude of the wave &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-i2\pi \xi x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-i2\pi \xi x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71fb2df821c09da15777d0d410d97ba5186d63ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.594ex; height:2.676ex;" alt="{\displaystyle e^{-i2\pi \xi x}}"></span>&#160; instead of the wave &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i2\pi \xi x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i2\pi \xi x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21b0e3490934b365ffe026bd724c2a029a3bc1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.316ex; height:2.676ex;" alt="{\displaystyle e^{i2\pi \xi x}}"></span> (the former, with its minus sign, is often seen in the time dependence for <a href="/wiki/Sinusoidal_plane-wave_solutions_of_the_electromagnetic_wave_equation" title="Sinusoidal plane-wave solutions of the electromagnetic wave equation">Sinusoidal plane-wave solutions of the electromagnetic wave equation</a>, or in the <a href="/wiki/Wave_function#Time_dependence" title="Wave function">time dependence for quantum wave functions</a>). Many of the identities involving the Fourier transform remain valid in those conventions, provided all terms that explicitly involve <span class="texhtml"><i>i</i></span> have it replaced by <span class="texhtml">−<i>i</i></span>. In <a href="/wiki/Electrical_engineering" title="Electrical engineering">Electrical engineering</a> the letter <span class="texhtml"><i>j</i></span> is typically used for the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a> instead of <span class="texhtml"><i>i</i></span> because <span class="texhtml"><i>i</i></span> is used for current. </p><p>When using <a href="/wiki/Dimensionless_units" class="mw-redirect" title="Dimensionless units">dimensionless units</a>, the constant factors might not even be written in the transform definition. For instance, in <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, the characteristic function <span class="texhtml mvar" style="font-style:italic;">Φ</span> of the probability density function <span class="texhtml mvar" style="font-style:italic;">f</span> of a random variable <span class="texhtml mvar" style="font-style:italic;">X</span> of continuous type is defined without a negative sign in the exponential, and since the units of <span class="texhtml mvar" style="font-style:italic;">x</span> are ignored, there is no 2<span class="texhtml mvar" style="font-style:italic;">π</span> either: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (\lambda )=\int _{-\infty }^{\infty }f(x)e^{i\lambda x}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03BB;<!-- λ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (\lambda )=\int _{-\infty }^{\infty }f(x)e^{i\lambda x}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8fb518c08834ea08d878d225aa4d7a4d683206e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.261ex; height:6.009ex;" alt="{\displaystyle \phi (\lambda )=\int _{-\infty }^{\infty }f(x)e^{i\lambda x}\,dx.}"></span> </p><p>(In probability theory, and in mathematical statistics, the use of the Fourier—Stieltjes transform is preferred, because so many random variables are not of continuous type, and do not possess a density function, and one must treat not functions but <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a>, i.e., measures which possess "atoms".) </p><p>From the higher point of view of <a href="/wiki/Character_theory" title="Character theory">group characters</a>, which is much more abstract, all these arbitrary choices disappear, as will be explained in the later section of this article, which treats the notion of the Fourier transform of a function on a <a href="/wiki/Locally_compact_abelian_group" title="Locally compact abelian group">locally compact Abelian group</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Uniform_continuity_and_the_Riemann–Lebesgue_lemma"><span id="Uniform_continuity_and_the_Riemann.E2.80.93Lebesgue_lemma"></span>Uniform continuity and the Riemann–Lebesgue lemma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=25" title="Edit section: Uniform continuity and the Riemann–Lebesgue lemma"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Rectangular_function.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Rectangular_function.svg/220px-Rectangular_function.svg.png" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Rectangular_function.svg/330px-Rectangular_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Rectangular_function.svg/440px-Rectangular_function.svg.png 2x" data-file-width="840" data-file-height="580" /></a><figcaption>The <a href="/wiki/Rectangular_function" title="Rectangular function">rectangular function</a> is <a href="/wiki/Lebesgue_integrable" class="mw-redirect" title="Lebesgue integrable">Lebesgue integrable</a>.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sinc_function_(normalized).svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Sinc_function_%28normalized%29.svg/220px-Sinc_function_%28normalized%29.svg.png" decoding="async" width="220" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Sinc_function_%28normalized%29.svg/330px-Sinc_function_%28normalized%29.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Sinc_function_%28normalized%29.svg/440px-Sinc_function_%28normalized%29.svg.png 2x" data-file-width="908" data-file-height="623" /></a><figcaption>The <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a>, which is the Fourier transform of the rectangular function, is bounded and continuous, but not Lebesgue integrable.</figcaption></figure> <p>The Fourier transform may be defined in some cases for non-integrable functions, but the Fourier transforms of integrable functions have several strong properties. </p><p>The Fourier transform <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span> of any integrable function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is <a href="/wiki/Uniformly_continuous" class="mw-redirect" title="Uniformly continuous">uniformly continuous</a> and<sup id="cite_ref-Katznelson-1976_20-0" class="reference"><a href="#cite_note-Katznelson-1976-20"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|{\hat {f}}\right\|_{\infty }\leq \left\|f\right\|_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mi>f</mi> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|{\hat {f}}\right\|_{\infty }\leq \left\|f\right\|_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e5a78ed502d4cfaa27fc2c44ca907bd8efb4c3c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:13.656ex; height:4.009ex;" alt="{\displaystyle \left\|{\hat {f}}\right\|_{\infty }\leq \left\|f\right\|_{1}}"></span> </p><p>By the <i><a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue lemma</a></i>,<sup id="cite_ref-Stein-Weiss-1971_15-1" class="reference"><a href="#cite_note-Stein-Weiss-1971-15"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )\to 0{\text{ as }}|\xi |\to \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )\to 0{\text{ as }}|\xi |\to \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/353b052333a590ecb5efc7456839e24200de5d4d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.463ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}(\xi )\to 0{\text{ as }}|\xi |\to \infty .}"></span> </p><p>However, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span> need not be integrable. For example, the Fourier transform of the <a href="/wiki/Rectangular_function" title="Rectangular function">rectangular function</a>, which is integrable, is the <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a>, which is not <a href="/wiki/Lebesgue_integrable" class="mw-redirect" title="Lebesgue integrable">Lebesgue integrable</a>, because its <a href="/wiki/Improper_integral" title="Improper integral">improper integrals</a> behave analogously to the <a href="/wiki/Alternating_harmonic_series" class="mw-redirect" title="Alternating harmonic series">alternating harmonic series</a>, in converging to a sum without being <a href="/wiki/Absolutely_convergent" class="mw-redirect" title="Absolutely convergent">absolutely convergent</a>. </p><p>It is not generally possible to write the <i>inverse transform</i> as a <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue integral</a>. However, when both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span> are integrable, the inverse equality <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )e^{i2\pi x\xi }\,d\xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )e^{i2\pi x\xi }\,d\xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db3dd00a6d72376d70477581d1106bbf7dd4388e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.837ex; height:6.009ex;" alt="{\displaystyle f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )e^{i2\pi x\xi }\,d\xi }"></span> holds for almost every <span class="texhtml mvar" style="font-style:italic;">x</span>. As a result, the Fourier transform is <a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a> on <span class="texhtml"><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup>1</sup>(<b>R</b>)</a></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Plancherel_theorem_and_Parseval's_theorem"><span id="Plancherel_theorem_and_Parseval.27s_theorem"></span>Plancherel theorem and Parseval's theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=26" title="Edit section: Plancherel theorem and Parseval&#039;s theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <blockquote><p><i>Main page: <a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a></i></p></blockquote><p>Let <span class="texhtml"><i>f</i>(<i>x</i>)</span> and <span class="texhtml"><i>g</i>(<i>x</i>)</span> be integrable, and let <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> and <span class="texhtml"><i>ĝ</i>(<i>ξ</i>)</span> be their Fourier transforms. If <span class="texhtml"><i>f</i>(<i>x</i>)</span> and <span class="texhtml"><i>g</i>(<i>x</i>)</span> are also <a href="/wiki/Square-integrable" class="mw-redirect" title="Square-integrable">square-integrable</a>, then the Parseval formula follows:<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle _{L^{2}}=\int _{-\infty }^{\infty }f(x){\overline {g(x)}}\,dx=\int _{-\infty }^{\infty }{\hat {f}}(\xi ){\overline {{\hat {g}}(\xi )}}\,d\xi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle _{L^{2}}=\int _{-\infty }^{\infty }f(x){\overline {g(x)}}\,dx=\int _{-\infty }^{\infty }{\hat {f}}(\xi ){\overline {{\hat {g}}(\xi )}}\,d\xi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89a1ae32e4420e33a008dda1e017a54d3b898486" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.009ex; height:6.009ex;" alt="{\displaystyle \langle f,g\rangle _{L^{2}}=\int _{-\infty }^{\infty }f(x){\overline {g(x)}}\,dx=\int _{-\infty }^{\infty }{\hat {f}}(\xi ){\overline {{\hat {g}}(\xi )}}\,d\xi ,}"></span> where the bar denotes <a href="/wiki/Complex_conjugation" class="mw-redirect" title="Complex conjugation">complex conjugation</a>. </p><p>The <a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a>, which follows from the above, states that<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{L^{2}}^{2}=\int _{-\infty }^{\infty }\left|f(x)\right|^{2}\,dx=\int _{-\infty }^{\infty }\left|{\hat {f}}(\xi )\right|^{2}\,d\xi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{L^{2}}^{2}=\int _{-\infty }^{\infty }\left|f(x)\right|^{2}\,dx=\int _{-\infty }^{\infty }\left|{\hat {f}}(\xi )\right|^{2}\,d\xi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4c8d69cb1b163d5b0d80b7033eef1f489fc2cf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:41.515ex; height:6.009ex;" alt="{\displaystyle \|f\|_{L^{2}}^{2}=\int _{-\infty }^{\infty }\left|f(x)\right|^{2}\,dx=\int _{-\infty }^{\infty }\left|{\hat {f}}(\xi )\right|^{2}\,d\xi .}"></span> </p><p>Plancherel's theorem makes it possible to extend the Fourier transform, by a continuity argument, to a <a href="/wiki/Unitary_operator" title="Unitary operator">unitary operator</a> on <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b>)</span>. On <span class="texhtml"><i>L</i><sup>1</sup>(<b>R</b>) ∩ <i>L</i><sup>2</sup>(<b>R</b>)</span>, this extension agrees with original Fourier transform defined on <span class="texhtml"><i>L</i><sup>1</sup>(<b>R</b>)</span>, thus enlarging the domain of the Fourier transform to <span class="texhtml"><i>L</i><sup>1</sup>(<b>R</b>) + <i>L</i><sup>2</sup>(<b>R</b>)</span> (and consequently to <span class="texhtml"><span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span>(<b>R</b>)</span> for <span class="texhtml">1 ≤ <i>p</i> ≤ 2</span>). Plancherel's theorem has the interpretation in the sciences that the Fourier transform preserves the <a href="/wiki/Energy" title="Energy">energy</a> of the original quantity. The terminology of these formulas is not quite standardised. Parseval's theorem was proved only for Fourier series, and was first proved by Lyapunov. But Parseval's formula makes sense for the Fourier transform as well, and so even though in the context of the Fourier transform it was proved by Plancherel, it is still often referred to as Parseval's formula, or Parseval's relation, or even Parseval's theorem. </p><p>See <a href="/wiki/Pontryagin_duality" title="Pontryagin duality">Pontryagin duality</a> for a general formulation of this concept in the context of locally compact abelian groups. </p> <div class="mw-heading mw-heading3"><h3 id="Poisson_summation_formula">Poisson summation formula</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=27" title="Edit section: Poisson summation formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Poisson_summation_formula" title="Poisson summation formula">Poisson summation formula</a></div> <p>The Poisson summation formula (PSF) is an equation that relates the <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> coefficients of the <a href="/wiki/Periodic_summation" title="Periodic summation">periodic summation</a> of a function to values of the function's continuous Fourier transform. The Poisson summation formula says that for sufficiently regular functions <span class="texhtml mvar" style="font-style:italic;">f</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n}{\hat {f}}(n)=\sum _{n}f(n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n}{\hat {f}}(n)=\sum _{n}f(n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7224b0df29ab2c3c029990ae25252e027854809f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.615ex; height:5.509ex;" alt="{\displaystyle \sum _{n}{\hat {f}}(n)=\sum _{n}f(n).}"></span> </p><p>It has a variety of useful forms that are derived from the basic one by application of the Fourier transform's scaling and time-shifting properties. The formula has applications in engineering, physics, and <a href="/wiki/Number_theory" title="Number theory">number theory</a>. The frequency-domain dual of the standard Poisson summation formula is also called the <a href="/wiki/Discrete-time_Fourier_transform" title="Discrete-time Fourier transform">discrete-time Fourier transform</a>. </p><p>Poisson summation is generally associated with the physics of periodic media, such as heat conduction on a circle. The fundamental solution of the heat equation on a circle is called a <a href="/wiki/Theta_function" title="Theta function">theta function</a>. It is used in <a href="/wiki/Number_theory" title="Number theory">number theory</a> to prove the transformation properties of theta functions, which turn out to be a type of <a href="/wiki/Modular_form" title="Modular form">modular form</a>, and it is connected more generally to the theory of <a href="/wiki/Automorphic_form" title="Automorphic form">automorphic forms</a> where it appears on one side of the <a href="/wiki/Selberg_trace_formula" title="Selberg trace formula">Selberg trace formula</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Differentiation">Differentiation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=28" title="Edit section: Differentiation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose <span class="texhtml"><i>f</i>(<i>x</i>)</span> is an absolutely continuous differentiable function, and both <span class="texhtml"><i>f</i></span> and its derivative <span class="texhtml"><i>f′</i></span> are integrable. Then the Fourier transform of the derivative is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f'\,}}(\xi )={\mathcal {F}}\left\{{\frac {d}{dx}}f(x)\right\}=i2\pi \xi {\hat {f}}(\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f'\,}}(\xi )={\mathcal {F}}\left\{{\frac {d}{dx}}f(x)\right\}=i2\pi \xi {\hat {f}}(\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f42cb58f48fcb4f12168206617bec538890dc34" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.54ex; height:6.176ex;" alt="{\displaystyle {\widehat {f&#039;\,}}(\xi )={\mathcal {F}}\left\{{\frac {d}{dx}}f(x)\right\}=i2\pi \xi {\hat {f}}(\xi ).}"></span> More generally, the Fourier transformation of the <span class="texhtml mvar" style="font-style:italic;">n</span>th derivative <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>(<i>n</i>)</sup></span></span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f^{(n)}}}(\xi )={\mathcal {F}}\left\{{\frac {d^{n}}{dx^{n}}}f(x)\right\}=(i2\pi \xi )^{n}{\hat {f}}(\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f^{(n)}}}(\xi )={\mathcal {F}}\left\{{\frac {d^{n}}{dx^{n}}}f(x)\right\}=(i2\pi \xi )^{n}{\hat {f}}(\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c617ed9a74c9681a8ebd7427f113448435ab78c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.212ex; height:6.176ex;" alt="{\displaystyle {\widehat {f^{(n)}}}(\xi )={\mathcal {F}}\left\{{\frac {d^{n}}{dx^{n}}}f(x)\right\}=(i2\pi \xi )^{n}{\hat {f}}(\xi ).}"></span> </p><p>Analogously, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\left\{{\frac {d^{n}}{d\xi ^{n}}}{\hat {f}}(\xi )\right\}=(i2\pi x)^{n}f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\left\{{\frac {d^{n}}{d\xi ^{n}}}{\hat {f}}(\xi )\right\}=(i2\pi x)^{n}f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/378027fd0425903e85378560939c9c40c3ed1734" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.813ex; height:6.176ex;" alt="{\displaystyle {\mathcal {F}}\left\{{\frac {d^{n}}{d\xi ^{n}}}{\hat {f}}(\xi )\right\}=(i2\pi x)^{n}f(x)}"></span>, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\left\{x^{n}f(x)\right\}=\left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}}{d\xi ^{n}}}{\hat {f}}(\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\left\{x^{n}f(x)\right\}=\left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}}{d\xi ^{n}}}{\hat {f}}(\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/948d3b4963685cb698cda569634e1cb47bfabc72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.162ex; height:6.176ex;" alt="{\displaystyle {\mathcal {F}}\left\{x^{n}f(x)\right\}=\left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}}{d\xi ^{n}}}{\hat {f}}(\xi ).}"></span> </p><p>By applying the Fourier transform and using these formulas, some <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equations</a> can be transformed into algebraic equations, which are much easier to solve. These formulas also give rise to the rule of thumb "<span class="texhtml"><i>f</i>(<i>x</i>)</span> is smooth <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> quickly falls to 0 for <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>ξ</i></span>&#124; → ∞</span>." By using the analogous rules for the inverse Fourier transform, one can also say "<span class="texhtml"><i>f</i>(<i>x</i>)</span> quickly falls to 0 for <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124; → ∞</span> if and only if <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> is smooth." </p> <div class="mw-heading mw-heading3"><h3 id="Convolution_theorem">Convolution theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=29" title="Edit section: Convolution theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Convolution_theorem" title="Convolution theorem">Convolution theorem</a></div> <p>The Fourier transform translates between <a href="/wiki/Convolution" title="Convolution">convolution</a> and multiplication of functions. If <span class="texhtml"><i>f</i>(<i>x</i>)</span> and <span class="texhtml"><i>g</i>(<i>x</i>)</span> are integrable functions with Fourier transforms <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> and <span class="texhtml"><i>ĝ</i>(<i>ξ</i>)</span> respectively, then the Fourier transform of the convolution is given by the product of the Fourier transforms <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> and <span class="texhtml"><i>ĝ</i>(<i>ξ</i>)</span> (under other conventions for the definition of the Fourier transform a constant factor may appear). </p><p>This means that if: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)=(f*g)(x)=\int _{-\infty }^{\infty }f(y)g(x-y)\,dy,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)=(f*g)(x)=\int _{-\infty }^{\infty }f(y)g(x-y)\,dy,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98846d3276efe8aa934969785746a7d0a854caeb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.946ex; height:6.009ex;" alt="{\displaystyle h(x)=(f*g)(x)=\int _{-\infty }^{\infty }f(y)g(x-y)\,dy,}"></span> where <span class="texhtml">∗</span> denotes the convolution operation, then: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {h}}(\xi )={\hat {f}}(\xi )\,{\hat {g}}(\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>h</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {h}}(\xi )={\hat {f}}(\xi )\,{\hat {g}}(\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d94210e69afa7843cfb846fdbd7d81cf5d5447b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.92ex; height:3.343ex;" alt="{\displaystyle {\hat {h}}(\xi )={\hat {f}}(\xi )\,{\hat {g}}(\xi ).}"></span> </p><p>In <a href="/wiki/LTI_system_theory" class="mw-redirect" title="LTI system theory">linear time invariant (LTI) system theory</a>, it is common to interpret <span class="texhtml"><i>g</i>(<i>x</i>)</span> as the <a href="/wiki/Impulse_response" title="Impulse response">impulse response</a> of an LTI system with input <span class="texhtml"><i>f</i>(<i>x</i>)</span> and output <span class="texhtml"><i>h</i>(<i>x</i>)</span>, since substituting the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">unit impulse</a> for <span class="texhtml"><i>f</i>(<i>x</i>)</span> yields <span class="texhtml"><i>h</i>(<i>x</i>) = <i>g</i>(<i>x</i>)</span>. In this case, <span class="texhtml"><i>ĝ</i>(<i>ξ</i>)</span> represents the <a href="/wiki/Frequency_response" title="Frequency response">frequency response</a> of the system. </p><p>Conversely, if <span class="texhtml"><i>f</i>(<i>x</i>)</span> can be decomposed as the product of two square integrable functions <span class="texhtml"><i>p</i>(<i>x</i>)</span> and <span class="texhtml"><i>q</i>(<i>x</i>)</span>, then the Fourier transform of <span class="texhtml"><i>f</i>(<i>x</i>)</span> is given by the convolution of the respective Fourier transforms <span class="texhtml"><i>p̂</i>(<i>ξ</i>)</span> and <span class="texhtml"><i>q̂</i>(<i>ξ</i>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Cross-correlation_theorem">Cross-correlation theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=30" title="Edit section: Cross-correlation theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Cross-correlation" title="Cross-correlation">Cross-correlation</a> and <a href="/wiki/Wiener%E2%80%93Khinchin_theorem" title="Wiener–Khinchin theorem">Wiener–Khinchin_theorem</a></div> <p>In an analogous manner, it can be shown that if <span class="texhtml"><i>h</i>(<i>x</i>)</span> is the <a href="/wiki/Cross-correlation" title="Cross-correlation">cross-correlation</a> of <span class="texhtml"><i>f</i>(<i>x</i>)</span> and <span class="texhtml"><i>g</i>(<i>x</i>)</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)=(f\star g)(x)=\int _{-\infty }^{\infty }{\overline {f(y)}}g(x+y)\,dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x22C6;<!-- ⋆ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)=(f\star g)(x)=\int _{-\infty }^{\infty }{\overline {f(y)}}g(x+y)\,dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/534d8aff2c110a1aea481ecd85ec0aeda44359bd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.414ex; height:6.009ex;" alt="{\displaystyle h(x)=(f\star g)(x)=\int _{-\infty }^{\infty }{\overline {f(y)}}g(x+y)\,dy}"></span> then the Fourier transform of <span class="texhtml"><i>h</i>(<i>x</i>)</span> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(\xi )}}\,{\hat {g}}(\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>h</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(\xi )}}\,{\hat {g}}(\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b38fea6ae5129649f926e7d4e53da21d43f6a3d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.035ex; height:4.176ex;" alt="{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(\xi )}}\,{\hat {g}}(\xi ).}"></span> </p><p>As a special case, the <a href="/wiki/Autocorrelation" title="Autocorrelation">autocorrelation</a> of function <span class="texhtml"><i>f</i>(<i>x</i>)</span> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)=(f\star f)(x)=\int _{-\infty }^{\infty }{\overline {f(y)}}f(x+y)\,dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x22C6;<!-- ⋆ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)=(f\star f)(x)=\int _{-\infty }^{\infty }{\overline {f(y)}}f(x+y)\,dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/489182638602996366a4c1e71b523cf5639e6c4b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.739ex; height:6.009ex;" alt="{\displaystyle h(x)=(f\star f)(x)=\int _{-\infty }^{\infty }{\overline {f(y)}}f(x+y)\,dy}"></span> for which <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(\xi )}}{\hat {f}}(\xi )=\left|{\hat {f}}(\xi )\right|^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>h</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(\xi )}}{\hat {f}}(\xi )=\left|{\hat {f}}(\xi )\right|^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d1a1e654ca57c995d4ef5c53fbbed3bb38f0ded" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:27.1ex; height:4.676ex;" alt="{\displaystyle {\hat {h}}(\xi )={\overline {{\hat {f}}(\xi )}}{\hat {f}}(\xi )=\left|{\hat {f}}(\xi )\right|^{2}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Eigenfunctions">Eigenfunctions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=31" title="Edit section: Eigenfunctions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Mehler_kernel" title="Mehler kernel">Mehler kernel</a> and <a href="/wiki/Hermite_polynomials#Hermite_functions_as_eigenfunctions_of_the_Fourier_transform" title="Hermite polynomials">Hermite polynomials §&#160;Hermite functions as eigenfunctions of the Fourier transform</a></div> <p>The Fourier transform is a linear transform which has eigenfunctions obeying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}[\psi ]=\lambda \psi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}[\psi ]=\lambda \psi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb312a1e0c7fe50ae6f17f3b157e13671bdd307e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.347ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}[\psi ]=\lambda \psi ,}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \in \mathbb {C} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \in \mathbb {C} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ecf7e833a4d086969a19cc5ca8e8ecdb35f517" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.521ex; height:2.176ex;" alt="{\displaystyle \lambda \in \mathbb {C} .}"></span> </p><p>A set of eigenfunctions is found by noting that the homogeneous differential equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[U\left({\frac {1}{2\pi }}{\frac {d}{dx}}\right)+U(x)\right]\psi (x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[U\left({\frac {1}{2\pi }}{\frac {d}{dx}}\right)+U(x)\right]\psi (x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbdeac78597b20e0cc63dafce13269df2332ca31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.82ex; height:6.176ex;" alt="{\displaystyle \left[U\left({\frac {1}{2\pi }}{\frac {d}{dx}}\right)+U(x)\right]\psi (x)=0}"></span> leads to eigenfunctions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a596a1fb4130a47f6b88c66150497338bd6cbccc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.652ex; height:2.843ex;" alt="{\displaystyle \psi (x)}"></span> of the Fourier transform <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span> as long as the form of the equation remains invariant under Fourier transform.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>note 5<span class="cite-bracket">&#93;</span></a></sup> In other words, every solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a596a1fb4130a47f6b88c66150497338bd6cbccc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.652ex; height:2.843ex;" alt="{\displaystyle \psi (x)}"></span> and its Fourier transform <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\psi }}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\psi }}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4167cc0bec54180d942279048e0d3260f8e45bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.435ex; height:3.343ex;" alt="{\displaystyle {\hat {\psi }}(\xi )}"></span> obey the same equation. Assuming <a href="/wiki/Ordinary_differential_equation#Existence_and_uniqueness_of_solutions" title="Ordinary differential equation">uniqueness</a> of the solutions, every solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a596a1fb4130a47f6b88c66150497338bd6cbccc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.652ex; height:2.843ex;" alt="{\displaystyle \psi (x)}"></span> must therefore be an eigenfunction of the Fourier transform. The form of the equation remains unchanged under Fourier transform if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d626d3a1e65c94535c811c73fa83389cfb76683" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.922ex; height:2.843ex;" alt="{\displaystyle U(x)}"></span> can be expanded in a power series in which for all terms the same factor of either one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm 1,\pm i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00B1;<!-- ± --></mo> <mn>1</mn> <mo>,</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm 1,\pm i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab0b1c6c9b0d9c23f32d1a856110c08c9be255c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.615ex; height:2.509ex;" alt="{\displaystyle \pm 1,\pm i}"></span> arises from the factors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f830f9a31861a4ce907be6802000083ac31dc6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.021ex; height:2.343ex;" alt="{\displaystyle i^{n}}"></span> introduced by the <a href="#Differentiation">differentiation</a> rules upon Fourier transforming the homogeneous differential equation because this factor may then be cancelled. The simplest allowable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U(x)=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U(x)=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e25f3a96880931a1e003f3331c30d83eb0b758b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.35ex; height:2.843ex;" alt="{\displaystyle U(x)=x}"></span> leads to the <a href="/wiki/Normal_distribution#Fourier_transform_and_characteristic_function" title="Normal distribution">standard normal distribution</a>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>More generally, a set of eigenfunctions is also found by noting that the <a href="#Differentiation">differentiation</a> rules imply that the <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[W\left({\frac {i}{2\pi }}{\frac {d}{dx}}\right)+W(x)\right]\psi (x)=C\psi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>W</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>C</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[W\left({\frac {i}{2\pi }}{\frac {d}{dx}}\right)+W(x)\right]\psi (x)=C\psi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d064e51b07fbf1e010b2aacf43bf894c516e0c92" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.382ex; height:6.176ex;" alt="{\displaystyle \left[W\left({\frac {i}{2\pi }}{\frac {d}{dx}}\right)+W(x)\right]\psi (x)=C\psi (x)}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> constant and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86ead36b42ec68c542b267f9e6bb62cf911a764b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.574ex; height:2.843ex;" alt="{\displaystyle W(x)}"></span> being a non-constant even function remains invariant in form when applying the Fourier transform <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span> to both sides of the equation. The simplest example is provided by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W(x)=x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W(x)=x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b23988b78e48d2d08b0386e423ded47e4380981" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.057ex; height:3.176ex;" alt="{\displaystyle W(x)=x^{2}}"></span> which is equivalent to considering the Schrödinger equation for the <a href="/wiki/Quantum_harmonic_oscillator#Natural_length_and_energy_scales" title="Quantum harmonic oscillator">quantum harmonic oscillator</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> The corresponding solutions provide an important choice of an orthonormal basis for <span class="texhtml"><a href="/wiki/Square-integrable_function" title="Square-integrable function"><i>L</i><sup>2</sup>(<b>R</b>)</a></span> and are given by the "physicist's" <a href="/wiki/Hermite_polynomials#Hermite_functions_as_eigenfunctions_of_the_Fourier_transform" title="Hermite polynomials">Hermite functions</a>. Equivalently one may use <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{n}(x)={\frac {\sqrt[{4}]{2}}{\sqrt {n!}}}e^{-\pi x^{2}}\mathrm {He} _{n}\left(2x{\sqrt {\pi }}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> <msqrt> <mi>n</mi> <mo>!</mo> </msqrt> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{n}(x)={\frac {\sqrt[{4}]{2}}{\sqrt {n!}}}e^{-\pi x^{2}}\mathrm {He} _{n}\left(2x{\sqrt {\pi }}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9121f54a3fdbb0eedecf2aef5a379bdfae414b7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:32.395ex; height:6.843ex;" alt="{\displaystyle \psi _{n}(x)={\frac {\sqrt[{4}]{2}}{\sqrt {n!}}}e^{-\pi x^{2}}\mathrm {He} _{n}\left(2x{\sqrt {\pi }}\right),}"></span> where <span class="texhtml">He<sub><i>n</i></sub>(<i>x</i>)</span> are the "probabilist's" <a href="/wiki/Hermite_polynomial" class="mw-redirect" title="Hermite polynomial">Hermite polynomials</a>, defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {He} _{n}(x)=(-1)^{n}e^{{\frac {1}{2}}x^{2}}\left({\frac {d}{dx}}\right)^{n}e^{-{\frac {1}{2}}x^{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {He} _{n}(x)=(-1)^{n}e^{{\frac {1}{2}}x^{2}}\left({\frac {d}{dx}}\right)^{n}e^{-{\frac {1}{2}}x^{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0f936217fee607ce3d6ce393246bf9e1541316a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.358ex; height:6.176ex;" alt="{\displaystyle \mathrm {He} _{n}(x)=(-1)^{n}e^{{\frac {1}{2}}x^{2}}\left({\frac {d}{dx}}\right)^{n}e^{-{\frac {1}{2}}x^{2}}.}"></span> </p><p>Under this convention for the Fourier transform, we have that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\psi }}_{n}(\xi )=(-i)^{n}\psi _{n}(\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\psi }}_{n}(\xi )=(-i)^{n}\psi _{n}(\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/095d2a5cb5865fbd3a1898cc90d47be841be4f99" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.608ex; height:3.343ex;" alt="{\displaystyle {\hat {\psi }}_{n}(\xi )=(-i)^{n}\psi _{n}(\xi ).}"></span> </p><p>In other words, the Hermite functions form a complete <a href="/wiki/Orthonormal" class="mw-redirect" title="Orthonormal">orthonormal</a> system of <a href="/wiki/Eigenfunctions" class="mw-redirect" title="Eigenfunctions">eigenfunctions</a> for the Fourier transform on <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b>)</span>.<sup id="cite_ref-Pinsky-2002_18-1" class="reference"><a href="#cite_note-Pinsky-2002-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> However, this choice of eigenfunctions is not unique. Because of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}^{4}=\mathrm {id} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">d</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}^{4}=\mathrm {id} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/175ad9d60cb40cf229dda2e01a3cd08fbf924158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.095ex; height:2.676ex;" alt="{\displaystyle {\mathcal {F}}^{4}=\mathrm {id} }"></span> there are only four different <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> of the Fourier transform (the fourth roots of unity ±1 and ±<span class="texhtml mvar" style="font-style:italic;">i</span>) and any linear combination of eigenfunctions with the same eigenvalue gives another eigenfunction.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> As a consequence of this, it is possible to decompose <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b>)</span> as a direct sum of four spaces <span class="texhtml"><i>H</i><sub>0</sub></span>, <span class="texhtml"><i>H</i><sub>1</sub></span>, <span class="texhtml"><i>H</i><sub>2</sub></span>, and <span class="texhtml"><i>H</i><sub>3</sub></span> where the Fourier transform acts on <span class="texhtml">He<sub><i>k</i></sub></span> simply by multiplication by <span class="texhtml"><i>i</i><sup><i>k</i></sup></span>. </p><p>Since the complete set of Hermite functions <span class="texhtml"><i>ψ<sub>n</sub></i></span> provides a resolution of the identity they diagonalize the Fourier operator, i.e. the Fourier transform can be represented by such a sum of terms weighted by the above eigenvalues, and these sums can be explicitly summed: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}[f](\xi )=\int dxf(x)\sum _{n\geq 0}(-i)^{n}\psi _{n}(x)\psi _{n}(\xi )~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mi>d</mi> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}[f](\xi )=\int dxf(x)\sum _{n\geq 0}(-i)^{n}\psi _{n}(x)\psi _{n}(\xi )~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eada95a2763cb70e97d43afd2f1f557fd2f046b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.03ex; height:6.509ex;" alt="{\displaystyle {\mathcal {F}}[f](\xi )=\int dxf(x)\sum _{n\geq 0}(-i)^{n}\psi _{n}(x)\psi _{n}(\xi )~.}"></span> </p><p>This approach to define the Fourier transform was first proposed by <a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Norbert Wiener</a>.<sup id="cite_ref-Duoandikoetxea-2001_28-0" class="reference"><a href="#cite_note-Duoandikoetxea-2001-28"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Among other properties, Hermite functions decrease exponentially fast in both frequency and time domains, and they are thus used to define a generalization of the Fourier transform, namely the <a href="/wiki/Fractional_Fourier_transform" title="Fractional Fourier transform">fractional Fourier transform</a> used in time–frequency analysis.<sup id="cite_ref-Boashash-2003_29-0" class="reference"><a href="#cite_note-Boashash-2003-29"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> In <a href="/wiki/Physics" title="Physics">physics</a>, this transform was introduced by <a href="/wiki/Edward_Condon" title="Edward Condon">Edward Condon</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> This change of basis functions becomes possible because the Fourier transform is a unitary transform when using the right <a href="#Other_conventions">conventions</a>. Consequently, under the proper conditions it may be expected to result from a self-adjoint generator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> via<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}[\psi ]=e^{-itN}\psi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>t</mi> <mi>N</mi> </mrow> </msup> <mi>&#x03C8;<!-- ψ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}[\psi ]=e^{-itN}\psi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/271ffa7285358aed34c7ccbdadcc08d3da01dd90" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.207ex; height:3.176ex;" alt="{\displaystyle {\mathcal {F}}[\psi ]=e^{-itN}\psi .}"></span> </p><p>The operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> is the <a href="/wiki/Quantum_harmonic_oscillator#Ladder_operator_method" title="Quantum harmonic oscillator">number operator</a> of the quantum harmonic oscillator written as<sup id="cite_ref-auto_32-0" class="reference"><a href="#cite_note-auto-32"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\equiv {\frac {1}{2}}\left(x-{\frac {\partial }{\partial x}}\right)\left(x+{\frac {\partial }{\partial x}}\right)={\frac {1}{2}}\left(-{\frac {\partial ^{2}}{\partial x^{2}}}+x^{2}-1\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\equiv {\frac {1}{2}}\left(x-{\frac {\partial }{\partial x}}\right)\left(x+{\frac {\partial }{\partial x}}\right)={\frac {1}{2}}\left(-{\frac {\partial ^{2}}{\partial x^{2}}}+x^{2}-1\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39e88b9540ce58cff6b8ecc677b2c7508bbc37ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:55.598ex; height:6.343ex;" alt="{\displaystyle N\equiv {\frac {1}{2}}\left(x-{\frac {\partial }{\partial x}}\right)\left(x+{\frac {\partial }{\partial x}}\right)={\frac {1}{2}}\left(-{\frac {\partial ^{2}}{\partial x^{2}}}+x^{2}-1\right).}"></span> </p><p>It can be interpreted as the <a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">generator</a> of <a href="/wiki/Mehler_kernel#Fractional_Fourier_transform" title="Mehler kernel">fractional Fourier transforms</a> for arbitrary values of <span class="texhtml mvar" style="font-style:italic;">t</span>, and of the conventional continuous Fourier transform <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span> for the particular value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=\pi /2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=\pi /2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6d8d37287242db7fc4f83c16bbfae81379fd692" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.242ex; height:2.843ex;" alt="{\displaystyle t=\pi /2,}"></span> with the <a href="/wiki/Mehler_kernel#Physics_version" title="Mehler kernel">Mehler kernel</a> implementing the corresponding <a href="/wiki/Active_and_passive_transformation#In_abstract_vector_spaces" title="Active and passive transformation">active transform</a>. The eigenfunctions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> are the <a href="/wiki/Hermite_polynomials#Hermite_functions" title="Hermite polynomials">Hermite functions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{n}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{n}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c06a3b81927b2e45c3f68630083c5c2d9626d9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.871ex; height:2.843ex;" alt="{\displaystyle \psi _{n}(x)}"></span> which are therefore also eigenfunctions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e1656ae73ede684468b360e948a8a38e6e2c461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.573ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}.}"></span> </p><p>Upon extending the Fourier transform to <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a> the <a href="/wiki/Dirac_comb#Fourier_transform" title="Dirac comb">Dirac comb</a> is also an eigenfunction of the Fourier transform. </p> <div class="mw-heading mw-heading3"><h3 id="Connection_with_the_Heisenberg_group">Connection with the Heisenberg group</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=32" title="Edit section: Connection with the Heisenberg group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Heisenberg_group" title="Heisenberg group">Heisenberg group</a> is a certain <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> of <a href="/wiki/Unitary_operator" title="Unitary operator">unitary operators</a> on the <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b>)</span> of square integrable complex valued functions <span class="texhtml mvar" style="font-style:italic;">f</span> on the real line, generated by the translations <span class="texhtml">(<i>T<sub>y</sub> f</i>)(<i>x</i>) = <i>f</i> (<i>x</i> + <i>y</i>)</span> and multiplication by <span class="texhtml"><i>e</i><sup><i>i</i>2π<i>ξx</i></sup></span>, <span class="texhtml">(<i>M<sub>ξ</sub> f</i>)(<i>x</i>) = <i>e</i><sup><i>i</i>2π<i>ξx</i></sup> <i>f</i> (<i>x</i>)</span>. These operators do not commute, as their (group) commutator is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(M_{\xi }^{-1}T_{y}^{-1}M_{\xi }T_{y}f\right)(x)=e^{i2\pi \xi y}f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BE;<!-- ξ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>y</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(M_{\xi }^{-1}T_{y}^{-1}M_{\xi }T_{y}f\right)(x)=e^{i2\pi \xi y}f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7aeeb609dc9677398e748ac8600d5d08cb5c9cfd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.795ex; height:4.843ex;" alt="{\displaystyle \left(M_{\xi }^{-1}T_{y}^{-1}M_{\xi }T_{y}f\right)(x)=e^{i2\pi \xi y}f(x)}"></span> which is multiplication by the constant (independent of <span class="texhtml mvar" style="font-style:italic;">x</span>) <span class="texhtml"><i>e</i><sup><i>i</i>2π<i>ξy</i></sup> ∈ <i>U</i>(1)</span> (the <a href="/wiki/Circle_group" title="Circle group">circle group</a> of unit modulus complex numbers). As an abstract group, the Heisenberg group is the three-dimensional <a href="/wiki/Lie_group" title="Lie group">Lie group</a> of triples <span class="texhtml">(<i>x</i>, <i>ξ</i>, <i>z</i>) ∈ <b>R</b><sup>2</sup> × <i>U</i>(1)</span>, with the group law <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(x_{1},\xi _{1},t_{1}\right)\cdot \left(x_{2},\xi _{2},t_{2}\right)=\left(x_{1}+x_{2},\xi _{1}+\xi _{2},t_{1}t_{2}e^{i2\pi \left(x_{1}\xi _{1}+x_{2}\xi _{2}+x_{1}\xi _{2}\right)}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(x_{1},\xi _{1},t_{1}\right)\cdot \left(x_{2},\xi _{2},t_{2}\right)=\left(x_{1}+x_{2},\xi _{1}+\xi _{2},t_{1}t_{2}e^{i2\pi \left(x_{1}\xi _{1}+x_{2}\xi _{2}+x_{1}\xi _{2}\right)}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc0872cfb68f46051a588261f4178ff3b2470b85" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:66.946ex; height:4.843ex;" alt="{\displaystyle \left(x_{1},\xi _{1},t_{1}\right)\cdot \left(x_{2},\xi _{2},t_{2}\right)=\left(x_{1}+x_{2},\xi _{1}+\xi _{2},t_{1}t_{2}e^{i2\pi \left(x_{1}\xi _{1}+x_{2}\xi _{2}+x_{1}\xi _{2}\right)}\right).}"></span> </p><p>Denote the Heisenberg group by <span class="texhtml"><i>H</i><sub>1</sub></span>. The above procedure describes not only the group structure, but also a standard <a href="/wiki/Unitary_representation" title="Unitary representation">unitary representation</a> of <span class="texhtml"><i>H</i><sub>1</sub></span> on a Hilbert space, which we denote by <span class="texhtml"><i>ρ</i>&#160;: <i>H</i><sub>1</sub> → <i>B</i>(<i>L</i><sup>2</sup>(<b>R</b>))</span>. Define the linear automorphism of <span class="texhtml"><b>R</b><sup>2</sup></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J{\begin{pmatrix}x\\\xi \end{pmatrix}}={\begin{pmatrix}-\xi \\x\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03BE;<!-- ξ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J{\begin{pmatrix}x\\\xi \end{pmatrix}}={\begin{pmatrix}-\xi \\x\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e889cc64538a6abe0aa9e795dd76bceb7ef5298c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.083ex; height:6.176ex;" alt="{\displaystyle J{\begin{pmatrix}x\\\xi \end{pmatrix}}={\begin{pmatrix}-\xi \\x\end{pmatrix}}}"></span> so that <span class="texhtml"><i>J</i><span style="padding-left:0.12em;"><sup>2</sup></span> = −<i>I</i></span>. This <span class="texhtml mvar" style="font-style:italic;">J</span> can be extended to a unique automorphism of <span class="texhtml"><i>H</i><sub>1</sub></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\left(x,\xi ,t\right)=\left(-\xi ,x,te^{-i2\pi \xi x}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\left(x,\xi ,t\right)=\left(-\xi ,x,te^{-i2\pi \xi x}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dac55fa24013137da9820eb768639a21827ea12f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.027ex; width:28.38ex; height:3.343ex;" alt="{\displaystyle j\left(x,\xi ,t\right)=\left(-\xi ,x,te^{-i2\pi \xi x}\right).}"></span> </p><p>According to the <a href="/wiki/Stone%E2%80%93von_Neumann_theorem" title="Stone–von Neumann theorem">Stone–von Neumann theorem</a>, the unitary representations <span class="texhtml mvar" style="font-style:italic;">ρ</span> and <span class="texhtml"><i>ρ</i> ∘ <i>j</i></span> are unitarily equivalent, so there is a unique intertwiner <span class="texhtml"><i>W</i> ∈ <i>U</i>(<i>L</i><sup>2</sup>(<b>R</b>))</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho \circ j=W\rho W^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>j</mi> <mo>=</mo> <mi>W</mi> <mi>&#x03C1;<!-- ρ --></mi> <msup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho \circ j=W\rho W^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b7bf392905b0d5cf9902075b6bc17cd576e5105" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.299ex; height:2.843ex;" alt="{\displaystyle \rho \circ j=W\rho W^{*}.}"></span> This operator <span class="texhtml mvar" style="font-style:italic;">W</span> is the Fourier transform. </p><p>Many of the standard properties of the Fourier transform are immediate consequences of this more general framework.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> For example, the square of the Fourier transform, <span class="texhtml"><i>W</i><span style="padding-left:0.12em;"><sup>2</sup></span></span>, is an intertwiner associated with <span class="texhtml"><i>J</i><span style="padding-left:0.12em;"><sup>2</sup></span> = −<i>I</i></span>, and so we have <span class="texhtml">(<i>W</i><span style="padding-left:0.12em;"><sup>2</sup></span><i>f</i>)(<i>x</i>) = <i>f</i> (−<i>x</i>)</span> is the reflection of the original function <span class="texhtml mvar" style="font-style:italic;">f</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Complex_domain">Complex domain</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=33" title="Edit section: Complex domain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Integral" title="Integral">integral</a> for the Fourier transform <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }e^{-i2\pi \xi t}f(t)\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }e^{-i2\pi \xi t}f(t)\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62e8d983c90ce3311b6f64ab3ba03471ab21fbe0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.088ex; height:6.009ex;" alt="{\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }e^{-i2\pi \xi t}f(t)\,dt}"></span> can be studied for <a href="/wiki/Complex_number" title="Complex number">complex</a> values of its argument <span class="texhtml mvar" style="font-style:italic;">ξ</span>. Depending on the properties of <span class="texhtml mvar" style="font-style:italic;">f</span>, this might not converge off the real axis at all, or it might converge to a <a href="/wiki/Complex_analysis" title="Complex analysis">complex</a> <a href="/wiki/Analytic_function" title="Analytic function">analytic function</a> for all values of <span class="texhtml"><i>ξ</i> = <i>σ</i> + <i>iτ</i></span>, or something in between.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Paley%E2%80%93Wiener_theorem" title="Paley–Wiener theorem">Paley–Wiener theorem</a> says that <span class="texhtml mvar" style="font-style:italic;">f</span> is smooth (i.e., <span class="texhtml mvar" style="font-style:italic;">n</span>-times differentiable for all positive integers <span class="texhtml mvar" style="font-style:italic;">n</span>) and compactly supported if and only if <span class="texhtml"><i>f̂</i> (<i>σ</i> + <i>iτ</i>)</span> is a <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic function</a> for which there exists a <a href="/wiki/Constant_(mathematics)" title="Constant (mathematics)">constant</a> <span class="texhtml"><i>a</i> &gt; 0</span> such that for any <a href="/wiki/Integer" title="Integer">integer</a> <span class="texhtml"><i>n</i> ≥ 0</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\vert \xi ^{n}{\hat {f}}(\xi )\right\vert \leq Ce^{a\vert \tau \vert }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo fence="false" stretchy="false">|</mo> <mi>&#x03C4;<!-- τ --></mi> <mo fence="false" stretchy="false">|</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\vert \xi ^{n}{\hat {f}}(\xi )\right\vert \leq Ce^{a\vert \tau \vert }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6764f97499417d2f1605b31562c5c0c78b93d8dc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:16.899ex; height:3.843ex;" alt="{\displaystyle \left\vert \xi ^{n}{\hat {f}}(\xi )\right\vert \leq Ce^{a\vert \tau \vert }}"></span> for some constant <span class="texhtml mvar" style="font-style:italic;">C</span>. (In this case, <span class="texhtml mvar" style="font-style:italic;">f</span> is supported on <span class="texhtml">[−<i>a</i>, <i>a</i>]</span>.) This can be expressed by saying that <span class="texhtml"><i>f̂</i></span> is an <a href="/wiki/Entire_function" title="Entire function">entire function</a> which is <a href="/wiki/Rapidly_decreasing" class="mw-redirect" title="Rapidly decreasing">rapidly decreasing</a> in <span class="texhtml mvar" style="font-style:italic;">σ</span> (for fixed <span class="texhtml mvar" style="font-style:italic;">τ</span>) and of exponential growth in <span class="texhtml mvar" style="font-style:italic;">τ</span> (uniformly in <span class="texhtml mvar" style="font-style:italic;">σ</span>).<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>(If <span class="texhtml mvar" style="font-style:italic;">f</span> is not smooth, but only <span class="texhtml"><i>L</i><sup>2</sup></span>, the statement still holds provided <span class="texhtml"><i>n</i> = 0</span>.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup>) The space of such functions of a <a href="/wiki/Complex_analysis" title="Complex analysis">complex variable</a> is called the Paley—Wiener space. This theorem has been generalised to semisimple <a href="/wiki/Lie_group" title="Lie group">Lie groups</a>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>If <span class="texhtml mvar" style="font-style:italic;">f</span> is supported on the half-line <span class="texhtml"><i>t</i> ≥ 0</span>, then <span class="texhtml mvar" style="font-style:italic;">f</span> is said to be "causal" because the <a href="/wiki/Impulse_response_function" class="mw-redirect" title="Impulse response function">impulse response function</a> of a physically realisable <a href="/wiki/Filter_(mathematics)" title="Filter (mathematics)">filter</a> must have this property, as no effect can precede its cause. <a href="/wiki/Raymond_Paley" title="Raymond Paley">Paley</a> and Wiener showed that then <span class="texhtml"><i>f̂</i></span> extends to a <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic function</a> on the complex lower half-plane <span class="texhtml"><i>τ</i> &lt; 0</span> which tends to zero as <span class="texhtml mvar" style="font-style:italic;">τ</span> goes to infinity.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> The converse is false and it is not known how to characterise the Fourier transform of a causal function.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Laplace_transform">Laplace transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=34" title="Edit section: Laplace transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Laplace_transform#Fourier_transform" title="Laplace transform">Laplace transform §&#160;Fourier transform</a></div> <p>The Fourier transform <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> is related to the <a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a> <span class="texhtml"><i>F</i>(<i>s</i>)</span>, which is also used for the solution of <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a> and the analysis of <a href="/wiki/Filter_(signal_processing)" title="Filter (signal processing)">filters</a>. </p><p>It may happen that a function <span class="texhtml mvar" style="font-style:italic;">f</span> for which the Fourier integral does not converge on the real axis at all, nevertheless has a complex Fourier transform defined in some region of the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>. </p><p>For example, if <span class="texhtml"><i>f</i>(<i>t</i>)</span> is of exponential growth, i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vert f(t)\vert &lt;Ce^{a\vert t\vert }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">|</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">|</mo> <mo>&lt;</mo> <mi>C</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo fence="false" stretchy="false">|</mo> <mi>t</mi> <mo fence="false" stretchy="false">|</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vert f(t)\vert &lt;Ce^{a\vert t\vert }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87d33764327f151fbea74b86ccb215e5447b5a4f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.78ex; height:3.343ex;" alt="{\displaystyle \vert f(t)\vert &lt;Ce^{a\vert t\vert }}"></span> for some constants <span class="texhtml"><i>C</i>, <i>a</i> ≥ 0</span>, then<sup id="cite_ref-Kolmogorov-Fomin-1999_41-0" class="reference"><a href="#cite_note-Kolmogorov-Fomin-1999-41"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(i\tau )=\int _{-\infty }^{\infty }e^{2\pi \tau t}f(t)\,dt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03C4;<!-- τ --></mi> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(i\tau )=\int _{-\infty }^{\infty }e^{2\pi \tau t}f(t)\,dt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52c86638fd1d69c8521cfc2905b786006f54f5e5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.985ex; height:6.009ex;" alt="{\displaystyle {\hat {f}}(i\tau )=\int _{-\infty }^{\infty }e^{2\pi \tau t}f(t)\,dt,}"></span> convergent for all <span class="texhtml">2π<i>τ</i> &lt; −<i>a</i></span>, is the <a href="/wiki/Two-sided_Laplace_transform" title="Two-sided Laplace transform">two-sided Laplace transform</a> of <span class="texhtml mvar" style="font-style:italic;">f</span>. </p><p>The more usual version ("one-sided") of the Laplace transform is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac408c7ea5f7799e185a4e8d66e69fb0964e2c02" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.442ex; height:5.843ex;" alt="{\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt.}"></span> </p><p>If <span class="texhtml mvar" style="font-style:italic;">f</span> is also causal, and analytical, then: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(i\tau )=F(-2\pi \tau ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(i\tau )=F(-2\pi \tau ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8717ea6905f51fa694be64df7f62d2e6fe17cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.313ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}(i\tau )=F(-2\pi \tau ).}"></span> Thus, extending the Fourier transform to the complex domain means it includes the Laplace transform as a special case in the case of causal functions—but with the change of variable <span class="texhtml"><i>s</i> = <i>i</i>2π<i>ξ</i></span>. </p><p>From another, perhaps more classical viewpoint, the Laplace transform by its form involves an additional exponential regulating term which lets it converge outside of the imaginary line where the Fourier transform is defined. As such it can converge for at most exponentially divergent series and integrals, whereas the original Fourier decomposition cannot, enabling analysis of systems with divergent or critical elements. Two particular examples from linear signal processing are the construction of allpass filter networks from critical comb and mitigating filters via exact pole-zero cancellation on the unit circle. Such designs are common in audio processing, where highly nonlinear phase response is sought for, as in reverb. </p><p>Furthermore, when extended pulselike impulse responses are sought for signal processing work, the easiest way to produce them is to have one circuit which produces a divergent time response, and then to cancel its divergence through a delayed opposite and compensatory response. There, only the delay circuit in-between admits a classical Fourier description, which is critical. Both the circuits to the side are unstable, and do not admit a convergent Fourier decomposition. However, they do admit a Laplace domain description, with identical half-planes of convergence in the complex plane (or in the discrete case, the Z-plane), wherein their effects cancel. </p><p>In modern mathematics the Laplace transform is conventionally subsumed under the aegis Fourier methods. Both of them are subsumed by the far more general, and more abstract, idea of <a href="/wiki/Harmonic_analysis" title="Harmonic analysis">harmonic analysis</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Inversion">Inversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=35" title="Edit section: Inversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Still with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi =\sigma +i\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>i</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi =\sigma +i\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab740eeb5f591cc7f0eaa40dfa60ecf184aa6ca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.303ex; height:2.509ex;" alt="{\displaystyle \xi =\sigma +i\tau }"></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/153a4a4d50ef7099fc5f8804e34dccc539f08743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.019ex; width:1.79ex; height:3.343ex;" alt="{\displaystyle {\widehat {f}}}"></span> is complex analytic for <span class="texhtml"><i>a</i> ≤ <i>τ</i> ≤ <i>b</i></span>, then </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }{\hat {f}}(\sigma +ia)e^{i2\pi \xi t}\,d\sigma =\int _{-\infty }^{\infty }{\hat {f}}(\sigma +ib)e^{i2\pi \xi t}\,d\sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>i</mi> <mi>a</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }{\hat {f}}(\sigma +ia)e^{i2\pi \xi t}\,d\sigma =\int _{-\infty }^{\infty }{\hat {f}}(\sigma +ib)e^{i2\pi \xi t}\,d\sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5756eed77aca41be595193c4ce49a73965aec8e4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.758ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }{\hat {f}}(\sigma +ia)e^{i2\pi \xi t}\,d\sigma =\int _{-\infty }^{\infty }{\hat {f}}(\sigma +ib)e^{i2\pi \xi t}\,d\sigma }"></span> by <a href="/wiki/Cauchy%27s_integral_theorem" title="Cauchy&#39;s integral theorem">Cauchy's integral theorem</a>. Therefore, the Fourier inversion formula can use integration along different lines, parallel to the real axis.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p><p>Theorem: If <span class="texhtml"><i>f</i>(<i>t</i>) = 0</span> for <span class="texhtml"><i>t</i> &lt; 0</span>, and <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>(<i>t</i>)</span>&#124; &lt; <i>Ce</i><sup><i>a</i>&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>t</i></span>&#124;</sup></span> for some constants <span class="texhtml"><i>C</i>, <i>a</i> &gt; 0</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)=\int _{-\infty }^{\infty }{\hat {f}}(\sigma +i\tau )e^{i2\pi \xi t}\,d\sigma ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>i</mi> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)=\int _{-\infty }^{\infty }{\hat {f}}(\sigma +i\tau )e^{i2\pi \xi t}\,d\sigma ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50751082b13c152801259ea5bb4d8e42eec335c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.091ex; height:6.009ex;" alt="{\displaystyle f(t)=\int _{-\infty }^{\infty }{\hat {f}}(\sigma +i\tau )e^{i2\pi \xi t}\,d\sigma ,}"></span> for any <span class="texhtml"><i>τ</i> &lt; −<style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>a</i></span><span class="sr-only">/</span><span class="den">2π</span></span>&#8288;</span></span>. </p><p>This theorem implies the <a href="/wiki/Inverse_Laplace_transform#Mellin&#39;s_inverse_formula" title="Inverse Laplace transform">Mellin inversion formula</a> for the Laplace transformation,<sup id="cite_ref-Kolmogorov-Fomin-1999_41-1" class="reference"><a href="#cite_note-Kolmogorov-Fomin-1999-41"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)={\frac {1}{i2\pi }}\int _{b-i\infty }^{b+i\infty }F(s)e^{st}\,ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>+</mo> <mi>i</mi> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)={\frac {1}{i2\pi }}\int _{b-i\infty }^{b+i\infty }F(s)e^{st}\,ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89e741ad150bf7e8af7f0aa3ce899b0387cd9aba" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.839ex; height:6.509ex;" alt="{\displaystyle f(t)={\frac {1}{i2\pi }}\int _{b-i\infty }^{b+i\infty }F(s)e^{st}\,ds}"></span> for any <span class="texhtml"><i>b</i> &gt; <i>a</i></span>, where <span class="texhtml"><i>F</i>(<i>s</i>)</span> is the Laplace transform of <span class="texhtml"><i>f</i>(<i>t</i>)</span>. </p><p>The hypotheses can be weakened, as in the results of Carleson and Hunt, to <span class="texhtml"><i>f</i>(<i>t</i>) <i>e</i><sup>−<i>at</i></sup></span> being <span class="texhtml"><i>L</i><sup>1</sup></span>, provided that <span class="texhtml mvar" style="font-style:italic;">f</span> be of bounded variation in a closed neighborhood of <span class="texhtml mvar" style="font-style:italic;">t</span> (cf. <a href="/wiki/Dini_test" title="Dini test">Dini test</a>), the value of <span class="texhtml mvar" style="font-style:italic;">f</span> at <span class="texhtml mvar" style="font-style:italic;">t</span> be taken to be the <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic mean</a> of the left and right limits, and that the integrals be taken in the sense of Cauchy principal values.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="texhtml"><i>L</i><sup>2</sup></span> versions of these inversion formulas are also available.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Fourier_transform_on_Euclidean_space">Fourier transform on Euclidean space</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=36" title="Edit section: Fourier transform on Euclidean space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform can be defined in any arbitrary number of dimensions <span class="texhtml mvar" style="font-style:italic;">n</span>. As with the one-dimensional case, there are many conventions. For an integrable function <span class="texhtml"><i>f</i>(<b>x</b>)</span>, this article takes the definition: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}({\boldsymbol {\xi }})={\mathcal {F}}(f)({\boldsymbol {\xi }})=\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i2\pi {\boldsymbol {\xi }}\cdot \mathbf {x} }\,d\mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}({\boldsymbol {\xi }})={\mathcal {F}}(f)({\boldsymbol {\xi }})=\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i2\pi {\boldsymbol {\xi }}\cdot \mathbf {x} }\,d\mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20a344746a58841c00190588c0d0f4a5d7a09df5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:37.683ex; height:5.676ex;" alt="{\displaystyle {\hat {f}}({\boldsymbol {\xi }})={\mathcal {F}}(f)({\boldsymbol {\xi }})=\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i2\pi {\boldsymbol {\xi }}\cdot \mathbf {x} }\,d\mathbf {x} }"></span> where <span class="texhtml"><b>x</b></span> and <span class="texhtml"><b>ξ</b></span> are <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional <a href="/wiki/Vector_(mathematics)" class="mw-redirect" title="Vector (mathematics)">vectors</a>, and <span class="texhtml"><b>x</b> · <b>ξ</b></span> is the <a href="/wiki/Dot_product" title="Dot product">dot product</a> of the vectors. Alternatively, <span class="texhtml"><b>ξ</b></span> can be viewed as belonging to the <a href="/wiki/Dual_space" title="Dual space">dual vector space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n\star }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x22C6;<!-- ⋆ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n\star }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cca3797ce87e7fcb30722dd571fb8adb0e278a2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.719ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n\star }}"></span>, in which case the dot product becomes the <a href="/wiki/Tensor_contraction" title="Tensor contraction">contraction</a> of <span class="texhtml"><b>x</b></span> and <span class="texhtml"><b>ξ</b></span>, usually written as <span class="texhtml"><span class="nowrap">&#x27e8;<b>x</b>, <b>ξ</b>&#x27e9;</span></span>. </p><p>All of the basic properties listed above hold for the <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional Fourier transform, as do Plancherel's and Parseval's theorem. When the function is integrable, the Fourier transform is still uniformly continuous and the <a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue lemma</a> holds.<sup id="cite_ref-Stein-Weiss-1971_15-2" class="reference"><a href="#cite_note-Stein-Weiss-1971-15"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Uncertainty_principle">Uncertainty principle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=37" title="Edit section: Uncertainty principle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty principle</a></div> <p>Generally speaking, the more concentrated <span class="texhtml"><i>f</i>(<i>x</i>)</span> is, the more spread out its Fourier transform <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> must be. In particular, the scaling property of the Fourier transform may be seen as saying: if we squeeze a function in <span class="texhtml mvar" style="font-style:italic;">x</span>, its Fourier transform stretches out in <span class="texhtml mvar" style="font-style:italic;">ξ</span>. It is not possible to arbitrarily concentrate both a function and its Fourier transform. </p><p>The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an <a href="/wiki/Uncertainty_principle" title="Uncertainty principle">uncertainty principle</a> by viewing a function and its Fourier transform as <a href="/wiki/Conjugate_variables" title="Conjugate variables">conjugate variables</a> with respect to the <a href="/wiki/Symplectic_form" class="mw-redirect" title="Symplectic form">symplectic form</a> on the <a href="/wiki/Time%E2%80%93frequency_representation" title="Time–frequency representation">time–frequency domain</a>: from the point of view of the <a href="/wiki/Linear_canonical_transformation" title="Linear canonical transformation">linear canonical transformation</a>, the Fourier transform is rotation by 90° in the time–frequency domain, and preserves the <a href="/wiki/Symplectic_vector_space" title="Symplectic vector space">symplectic form</a>. </p><p>Suppose <span class="texhtml"><i>f</i>(<i>x</i>)</span> is an integrable and <a href="/wiki/Square-integrable" class="mw-redirect" title="Square-integrable">square-integrable</a> function. Without loss of generality, assume that <span class="texhtml"><i>f</i>(<i>x</i>)</span> is normalized: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }|f(x)|^{2}\,dx=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }|f(x)|^{2}\,dx=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/412ed9826b5feef23ab814a47116c40a73c03654" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.439ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }|f(x)|^{2}\,dx=1.}"></span> </p><p>It follows from the <a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a> that <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> is also normalized. </p><p>The spread around <span class="texhtml"><i>x</i> = 0</span> may be measured by the <i>dispersion about zero</i><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{0}(f)=\int _{-\infty }^{\infty }x^{2}|f(x)|^{2}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{0}(f)=\int _{-\infty }^{\infty }x^{2}|f(x)|^{2}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd8971d09bc6b8d2ef7830ef77554bb4c1075b0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.727ex; height:6.009ex;" alt="{\displaystyle D_{0}(f)=\int _{-\infty }^{\infty }x^{2}|f(x)|^{2}\,dx.}"></span> </p><p>In probability terms, this is the <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">second moment</a> of <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>(<i>x</i>)</span>&#124;<sup>2</sup></span> about zero. </p><p>The uncertainty principle states that, if <span class="texhtml"><i>f</i>(<i>x</i>)</span> is absolutely continuous and the functions <span class="texhtml"><i>x</i>·<i>f</i>(<i>x</i>)</span> and <span class="texhtml"><i>f</i><span class="nowrap" style="padding-left:0.15em;">′</span>(<i>x</i>)</span> are square integrable, then<sup id="cite_ref-Pinsky-2002_18-2" class="reference"><a href="#cite_note-Pinsky-2002-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{0}(f)D_{0}({\hat {f}})\geq {\frac {1}{16\pi ^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>16</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{0}(f)D_{0}({\hat {f}})\geq {\frac {1}{16\pi ^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6503aa600c5cfe1925fea1161d9bed941b9c186" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.848ex; height:5.509ex;" alt="{\displaystyle D_{0}(f)D_{0}({\hat {f}})\geq {\frac {1}{16\pi ^{2}}}.}"></span> </p><p>The equality is attained only in the case <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f(x)&amp;=C_{1}\,e^{-\pi {\frac {x^{2}}{\sigma ^{2}}}}\\\therefore {\hat {f}}(\xi )&amp;=\sigma C_{1}\,e^{-\pi \sigma ^{2}\xi ^{2}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&#x2234;<!-- ∴ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f(x)&amp;=C_{1}\,e^{-\pi {\frac {x^{2}}{\sigma ^{2}}}}\\\therefore {\hat {f}}(\xi )&amp;=\sigma C_{1}\,e^{-\pi \sigma ^{2}\xi ^{2}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1509eaf1024b829e9dec04924b690b296545930" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:21.888ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}f(x)&amp;=C_{1}\,e^{-\pi {\frac {x^{2}}{\sigma ^{2}}}}\\\therefore {\hat {f}}(\xi )&amp;=\sigma C_{1}\,e^{-\pi \sigma ^{2}\xi ^{2}}\end{aligned}}}"></span> where <span class="texhtml"><i>σ</i> &gt; 0</span> is arbitrary and <span class="texhtml"><i>C</i><sub>1</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><span class="nowrap"><sup style="margin-right: -0.5em; vertical-align: 0.8em;">4</sup>&#8730;<span style="border-top:1px solid; padding:0 0.1em;">2</span></span></span><span class="sr-only">/</span><span class="den"><span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;"><i>σ</i></span></span></span></span>&#8288;</span></span> so that <span class="texhtml mvar" style="font-style:italic;">f</span> is <span class="texhtml"><i>L</i><sup>2</sup></span>-normalized.<sup id="cite_ref-Pinsky-2002_18-3" class="reference"><a href="#cite_note-Pinsky-2002-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> In other words, where <span class="texhtml mvar" style="font-style:italic;">f</span> is a (normalized) <a href="/wiki/Gaussian_function" title="Gaussian function">Gaussian function</a> with variance <span class="texhtml"><i>σ</i><sup>2</sup>/2<span class="texhtml mvar" style="font-style:italic;">π</span></span>, centered at zero, and its Fourier transform is a Gaussian function with variance <span class="texhtml"><i>σ</i><sup>−2</sup>/2<span class="texhtml mvar" style="font-style:italic;">π</span></span>. </p><p>In fact, this inequality implies that: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\int _{-\infty }^{\infty }(x-x_{0})^{2}|f(x)|^{2}\,dx\right)\left(\int _{-\infty }^{\infty }(\xi -\xi _{0})^{2}\left|{\hat {f}}(\xi )\right|^{2}\,d\xi \right)\geq {\frac {1}{16\pi ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>16</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\int _{-\infty }^{\infty }(x-x_{0})^{2}|f(x)|^{2}\,dx\right)\left(\int _{-\infty }^{\infty }(\xi -\xi _{0})^{2}\left|{\hat {f}}(\xi )\right|^{2}\,d\xi \right)\geq {\frac {1}{16\pi ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7e275f58314e6f2dae0b56d7b41f4e047241c6b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:62.212ex; height:6.176ex;" alt="{\displaystyle \left(\int _{-\infty }^{\infty }(x-x_{0})^{2}|f(x)|^{2}\,dx\right)\left(\int _{-\infty }^{\infty }(\xi -\xi _{0})^{2}\left|{\hat {f}}(\xi )\right|^{2}\,d\xi \right)\geq {\frac {1}{16\pi ^{2}}}}"></span> for any <span class="texhtml"><i>x</i><sub>0</sub></span>, <span class="texhtml"><i>ξ</i><sub>0</sub> ∈ <b>R</b></span>.<sup id="cite_ref-Stein-Shakarchi-2003_46-0" class="reference"><a href="#cite_note-Stein-Shakarchi-2003-46"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>In <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, the <a href="/wiki/Momentum" title="Momentum">momentum</a> and position <a href="/wiki/Wave_function" title="Wave function">wave functions</a> are Fourier transform pairs, up to a factor of the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a>. With this constant properly taken into account, the inequality above becomes the statement of the <a href="/wiki/Heisenberg_uncertainty_principle" class="mw-redirect" title="Heisenberg uncertainty principle">Heisenberg uncertainty principle</a>.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>A stronger uncertainty principle is the <a href="/wiki/Hirschman_uncertainty" class="mw-redirect" title="Hirschman uncertainty">Hirschman uncertainty principle</a>, which is expressed as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\left(\left|f\right|^{2}\right)+H\left(\left|{\hat {f}}\right|^{2}\right)\geq \log \left({\frac {e}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>|</mo> <mi>f</mi> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mi>H</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>e</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\left(\left|f\right|^{2}\right)+H\left(\left|{\hat {f}}\right|^{2}\right)\geq \log \left({\frac {e}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d48da72dddb524aa18ebd5112150fe9c2eabb0ee" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.811ex; height:4.843ex;" alt="{\displaystyle H\left(\left|f\right|^{2}\right)+H\left(\left|{\hat {f}}\right|^{2}\right)\geq \log \left({\frac {e}{2}}\right)}"></span> where <span class="texhtml"><i>H</i>(<i>p</i>)</span> is the <a href="/wiki/Differential_entropy" title="Differential entropy">differential entropy</a> of the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> <span class="texhtml"><i>p</i>(<i>x</i>)</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(p)=-\int _{-\infty }^{\infty }p(x)\log {\bigl (}p(x){\bigr )}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(p)=-\int _{-\infty }^{\infty }p(x)\log {\bigl (}p(x){\bigr )}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f76d04f1462438452951fe9a983fcc2291b94c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.595ex; height:6.009ex;" alt="{\displaystyle H(p)=-\int _{-\infty }^{\infty }p(x)\log {\bigl (}p(x){\bigr )}\,dx}"></span> where the logarithms may be in any base that is consistent. The equality is attained for a Gaussian, as in the previous case. </p> <div class="mw-heading mw-heading3"><h3 id="Sine_and_cosine_transforms">Sine and cosine transforms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=38" title="Edit section: Sine and cosine transforms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Sine_and_cosine_transforms" title="Sine and cosine transforms">Sine and cosine transforms</a></div> <p>Fourier's original formulation of the transform did not use complex numbers, but rather sines and cosines. Statisticians and others still use this form. An absolutely integrable function <span class="texhtml mvar" style="font-style:italic;">f</span> for which Fourier inversion holds can be expanded in terms of genuine frequencies (avoiding negative frequencies, which are sometimes considered hard to interpret physically<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup>) <span class="texhtml mvar" style="font-style:italic;">λ</span> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)=\int _{0}^{\infty }{\bigl (}a(\lambda )\cos(2\pi \lambda t)+b(\lambda )\sin(2\pi \lambda t){\bigr )}\,d\lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BB;<!-- λ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BB;<!-- λ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)=\int _{0}^{\infty }{\bigl (}a(\lambda )\cos(2\pi \lambda t)+b(\lambda )\sin(2\pi \lambda t){\bigr )}\,d\lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/999af366b1feb6c82c8fe06b12aa4d323700514e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:48.622ex; height:5.843ex;" alt="{\displaystyle f(t)=\int _{0}^{\infty }{\bigl (}a(\lambda )\cos(2\pi \lambda t)+b(\lambda )\sin(2\pi \lambda t){\bigr )}\,d\lambda .}"></span> </p><p>This is called an expansion as a trigonometric integral, or a Fourier integral expansion. The coefficient functions <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> can be found by using variants of the Fourier cosine transform and the Fourier sine transform (the normalisations are, again, not standardised): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(\lambda )=2\int _{-\infty }^{\infty }f(t)\cos(2\pi \lambda t)\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BB;<!-- λ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(\lambda )=2\int _{-\infty }^{\infty }f(t)\cos(2\pi \lambda t)\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c2f2e8ba2f6913c2694b0577f5b05435ee802f2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.243ex; height:6.009ex;" alt="{\displaystyle a(\lambda )=2\int _{-\infty }^{\infty }f(t)\cos(2\pi \lambda t)\,dt}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b(\lambda )=2\int _{-\infty }^{\infty }f(t)\sin(2\pi \lambda t)\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BB;<!-- λ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b(\lambda )=2\int _{-\infty }^{\infty }f(t)\sin(2\pi \lambda t)\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18f6c23738fd13cc35b95e242c291f2790855053" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.402ex; height:6.009ex;" alt="{\displaystyle b(\lambda )=2\int _{-\infty }^{\infty }f(t)\sin(2\pi \lambda t)\,dt.}"></span> </p><p>Older literature refers to the two transform functions, the Fourier cosine transform, <span class="texhtml mvar" style="font-style:italic;">a</span>, and the Fourier sine transform, <span class="texhtml mvar" style="font-style:italic;">b</span>. </p><p>The function <span class="texhtml mvar" style="font-style:italic;">f</span> can be recovered from the sine and cosine transform using <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)=2\int _{0}^{\infty }\int _{-\infty }^{\infty }f(\tau )\cos {\bigl (}2\pi \lambda (\tau -t){\bigr )}\,d\tau \,d\lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)=2\int _{0}^{\infty }\int _{-\infty }^{\infty }f(\tau )\cos {\bigl (}2\pi \lambda (\tau -t){\bigr )}\,d\tau \,d\lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ed114828d7d53a20ce083a47a2ef22d6c5fbcb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.392ex; height:6.009ex;" alt="{\displaystyle f(t)=2\int _{0}^{\infty }\int _{-\infty }^{\infty }f(\tau )\cos {\bigl (}2\pi \lambda (\tau -t){\bigr )}\,d\tau \,d\lambda .}"></span> together with trigonometric identities. This is referred to as Fourier's integral formula.<sup id="cite_ref-Kolmogorov-Fomin-1999_41-2" class="reference"><a href="#cite_note-Kolmogorov-Fomin-1999-41"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Spherical_harmonics">Spherical harmonics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=39" title="Edit section: Spherical harmonics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let the set of <a href="/wiki/Homogeneous_polynomial" title="Homogeneous polynomial">homogeneous</a> <a href="/wiki/Harmonic_function" title="Harmonic function">harmonic</a> <a href="/wiki/Polynomial" title="Polynomial">polynomials</a> of degree <span class="texhtml mvar" style="font-style:italic;">k</span> on <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> be denoted by <span class="texhtml"><b>A</b><sub><i>k</i></sub></span>. The set <span class="texhtml"><b>A</b><sub><i>k</i></sub></span> consists of the <a href="/wiki/Solid_spherical_harmonics" class="mw-redirect" title="Solid spherical harmonics">solid spherical harmonics</a> of degree <span class="texhtml mvar" style="font-style:italic;">k</span>. The solid spherical harmonics play a similar role in higher dimensions to the Hermite polynomials in dimension one. Specifically, if <span class="texhtml"><i>f</i>(<i>x</i>) = <i>e</i><sup>−π&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124;<sup>2</sup></sup><i>P</i>(<i>x</i>)</span> for some <span class="texhtml"><i>P</i>(<i>x</i>)</span> in <span class="texhtml"><b>A</b><sub><i>k</i></sub></span>, then <span class="texhtml"><i>f̂</i>(<i>ξ</i>) = <i>i</i><span style="padding-left:0.12em;"><sup>−<i>k</i></sup></span> <i>f</i>(<i>ξ</i>)</span>. Let the set <span class="texhtml"><b>H</b><sub><i>k</i></sub></span> be the closure in <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span> of linear combinations of functions of the form <span class="texhtml"><i>f</i>(&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124;)<i>P</i>(<i>x</i>)</span> where <span class="texhtml"><i>P</i>(<i>x</i>)</span> is in <span class="texhtml"><b>A</b><sub><i>k</i></sub></span>. The space <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span> is then a direct sum of the spaces <span class="texhtml"><b>H</b><sub><i>k</i></sub></span> and the Fourier transform maps each space <span class="texhtml"><b>H</b><sub><i>k</i></sub></span> to itself and is possible to characterize the action of the Fourier transform on each space <span class="texhtml"><b>H</b><sub><i>k</i></sub></span>.<sup id="cite_ref-Stein-Weiss-1971_15-3" class="reference"><a href="#cite_note-Stein-Weiss-1971-15"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Let <span class="texhtml"><i>f</i>(<i>x</i>) = <i>f</i><sub>0</sub>(&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124;)<i>P</i>(<i>x</i>)</span> (with <span class="texhtml"><i>P</i>(<i>x</i>)</span> in <span class="texhtml"><b>A</b><sub><i>k</i></sub></span>), then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )=F_{0}(|\xi |)P(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )=F_{0}(|\xi |)P(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef7c5e156a6b5bfb0d393732ffb831fa32efa78e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.904ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}(\xi )=F_{0}(|\xi |)P(\xi )}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{0}(r)=2\pi i^{-k}r^{-{\frac {n+2k-2}{2}}}\int _{0}^{\infty }f_{0}(s)J_{\frac {n+2k-2}{2}}(2\pi rs)s^{\frac {n+2k}{2}}\,ds.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>r</mi> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{0}(r)=2\pi i^{-k}r^{-{\frac {n+2k-2}{2}}}\int _{0}^{\infty }f_{0}(s)J_{\frac {n+2k-2}{2}}(2\pi rs)s^{\frac {n+2k}{2}}\,ds.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81a708c74339047ce9b557330cce02c84fa38ad9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:55.087ex; height:5.843ex;" alt="{\displaystyle F_{0}(r)=2\pi i^{-k}r^{-{\frac {n+2k-2}{2}}}\int _{0}^{\infty }f_{0}(s)J_{\frac {n+2k-2}{2}}(2\pi rs)s^{\frac {n+2k}{2}}\,ds.}"></span> </p><p>Here <span class="texhtml"><i>J</i><sub>(<i>n</i> + 2<i>k</i> − 2)/2</sub></span> denotes the <a href="/wiki/Bessel_function" title="Bessel function">Bessel function</a> of the first kind with order <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>n</i> + 2<i>k</i> − 2</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>. When <span class="texhtml"><i>k</i> = 0</span> this gives a useful formula for the Fourier transform of a radial function.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> This is essentially the <a href="/wiki/Hankel_transform" title="Hankel transform">Hankel transform</a>. Moreover, there is a simple recursion relating the cases <span class="texhtml"><i>n</i> + 2</span> and <span class="texhtml mvar" style="font-style:italic;">n</span><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> allowing to compute, e.g., the three-dimensional Fourier transform of a radial function from the one-dimensional one. </p> <div class="mw-heading mw-heading3"><h3 id="Restriction_problems">Restriction problems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=40" title="Edit section: Restriction problems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In higher dimensions it becomes interesting to study <i>restriction problems</i> for the Fourier transform. The Fourier transform of an integrable function is continuous and the restriction of this function to any set is defined. But for a square-integrable function the Fourier transform could be a general <i>class</i> of square integrable functions. As such, the restriction of the Fourier transform of an <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span> function cannot be defined on sets of measure 0. It is still an active area of study to understand restriction problems in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span> for <span class="texhtml">1 &lt; <i>p</i> &lt; 2</span>. It is possible in some cases to define the restriction of a Fourier transform to a set <span class="texhtml mvar" style="font-style:italic;">S</span>, provided <span class="texhtml mvar" style="font-style:italic;">S</span> has non-zero curvature. The case when <span class="texhtml mvar" style="font-style:italic;">S</span> is the unit sphere in <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> is of particular interest. In this case the Tomas–<a href="/wiki/Elias_Stein" class="mw-redirect" title="Elias Stein">Stein</a> restriction theorem states that the restriction of the Fourier transform to the unit sphere in <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> is a bounded operator on <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span> provided <span class="texhtml">1 ≤ <i>p</i> ≤ <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">2<i>n</i> + 2</span><span class="sr-only">/</span><span class="den"><i>n</i> + 3</span></span>&#8288;</span></span>. </p><p>One notable difference between the Fourier transform in 1 dimension versus higher dimensions concerns the partial sum operator. Consider an increasing collection of measurable sets <span class="texhtml"><i>E</i><sub><i>R</i></sub></span> indexed by <span class="texhtml"><i>R</i> ∈ (0,∞)</span>: such as balls of radius <span class="texhtml mvar" style="font-style:italic;">R</span> centered at the origin, or cubes of side <span class="texhtml">2<i>R</i></span>. For a given integrable function <span class="texhtml mvar" style="font-style:italic;">f</span>, consider the function <span class="texhtml mvar" style="font-style:italic;">f<sub>R</sub></span> defined by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{R}(x)=\int _{E_{R}}{\hat {f}}(\xi )e^{i2\pi x\cdot \xi }\,d\xi ,\quad x\in \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mspace width="1em" /> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{R}(x)=\int _{E_{R}}{\hat {f}}(\xi )e^{i2\pi x\cdot \xi }\,d\xi ,\quad x\in \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/942e2a9fb97ac1f7109150d1908e44185b45aa95" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:37.173ex; height:6.009ex;" alt="{\displaystyle f_{R}(x)=\int _{E_{R}}{\hat {f}}(\xi )e^{i2\pi x\cdot \xi }\,d\xi ,\quad x\in \mathbb {R} ^{n}.}"></span> </p><p>Suppose in addition that <span class="texhtml"><i>f</i> ∈ <i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span>(<b>R</b><sup><i>n</i></sup>)</span>. For <span class="texhtml"><i>n</i> = 1</span> and <span class="texhtml">1 &lt; <i>p</i> &lt; ∞</span>, if one takes <span class="texhtml"><i>E<sub>R</sub></i> = (−<i>R</i>, <i>R</i>)</span>, then <span class="texhtml mvar" style="font-style:italic;">f<sub>R</sub></span> converges to <span class="texhtml mvar" style="font-style:italic;">f</span> in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span> as <span class="texhtml mvar" style="font-style:italic;">R</span> tends to infinity, by the boundedness of the <a href="/wiki/Hilbert_transform" title="Hilbert transform">Hilbert transform</a>. Naively one may hope the same holds true for <span class="texhtml"><i>n</i> &gt; 1</span>. In the case that <span class="texhtml mvar" style="font-style:italic;">E<sub>R</sub></span> is taken to be a cube with side length <span class="texhtml mvar" style="font-style:italic;">R</span>, then convergence still holds. Another natural candidate is the Euclidean ball <span class="texhtml"><i>E</i><sub><i>R</i></sub> = {<i>ξ</i>&#160;: &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>ξ</i></span>&#124; &lt; <i>R</i>}</span>. In order for this partial sum operator to converge, it is necessary that the multiplier for the unit ball be bounded in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span>(<b>R</b><sup><i>n</i></sup>)</span>. For <span class="texhtml"><i>n</i> ≥ 2</span> it is a celebrated theorem of <a href="/wiki/Charles_Fefferman" title="Charles Fefferman">Charles Fefferman</a> that the multiplier for the unit ball is never bounded unless <span class="texhtml"><i>p</i> = 2</span>.<sup id="cite_ref-Duoandikoetxea-2001_28-1" class="reference"><a href="#cite_note-Duoandikoetxea-2001-28"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> In fact, when <span class="texhtml"><i>p</i> ≠ 2</span>, this shows that not only may <span class="texhtml mvar" style="font-style:italic;">f<sub>R</sub></span> fail to converge to <span class="texhtml mvar" style="font-style:italic;">f</span> in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span>, but for some functions <span class="texhtml"><i>f</i> ∈ <i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span>(<b>R</b><sup><i>n</i></sup>)</span>, <span class="texhtml mvar" style="font-style:italic;">f<sub>R</sub></span> is not even an element of <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Fourier_transform_on_function_spaces">Fourier transform on function spaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=41" title="Edit section: Fourier transform on function spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="On_Lp_spaces">On <i>L</i><sup><i>p</i></sup> spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=42" title="Edit section: On Lp spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="On_L1">On <i>L</i><sup>1</sup></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=43" title="Edit section: On L1"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The definition of the Fourier transform by the integral formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )=\int _{\mathbb {R} ^{n}}f(x)e^{-i2\pi \xi \cdot x}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )=\int _{\mathbb {R} ^{n}}f(x)e^{-i2\pi \xi \cdot x}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4646e8289845c34e138fef8ce15d6d93d21ccd8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.102ex; height:5.676ex;" alt="{\displaystyle {\hat {f}}(\xi )=\int _{\mathbb {R} ^{n}}f(x)e^{-i2\pi \xi \cdot x}\,dx}"></span> is valid for Lebesgue integrable functions <span class="texhtml mvar" style="font-style:italic;">f</span>; that is, <span class="texhtml"><i>f</i> ∈ <i>L</i><sup>1</sup>(<b>R</b><sup><i>n</i></sup>)</span>. </p><p>The Fourier transform <span class="texhtml"><span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span>&#160;: <i>L</i><sup>1</sup>(<b>R</b><sup><i>n</i></sup>) → <i>L</i><sup>∞</sup>(<b>R</b><sup><i>n</i></sup>)</span> is a <a href="/wiki/Bounded_operator" title="Bounded operator">bounded operator</a>. This follows from the observation that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\vert {\hat {f}}(\xi )\right\vert \leq \int _{\mathbb {R} ^{n}}\vert f(x)\vert \,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mo fence="false" stretchy="false">|</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">|</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\vert {\hat {f}}(\xi )\right\vert \leq \int _{\mathbb {R} ^{n}}\vert f(x)\vert \,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a3603df5f6dccabf060829631c7ad0556a33539" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.285ex; height:5.676ex;" alt="{\displaystyle \left\vert {\hat {f}}(\xi )\right\vert \leq \int _{\mathbb {R} ^{n}}\vert f(x)\vert \,dx,}"></span> which shows that its <a href="/wiki/Operator_norm" title="Operator norm">operator norm</a> is bounded by 1. Indeed, it equals 1, which can be seen, for example, from the <a href="#rect">transform of the rect function</a>. The image of <span class="texhtml"><i>L</i><sup>1</sup></span> is a subset of the space <span class="texhtml"><i>C</i><sub>0</sub>(<b>R</b><sup><i>n</i></sup>)</span> of continuous functions that tend to zero at infinity (the <a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue lemma</a>), although it is not the entire space. Indeed, there is no simple characterization of the image. </p> <div class="mw-heading mw-heading4"><h4 id="On_L2">On <i>L</i><sup>2</sup></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=44" title="Edit section: On L2"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since compactly supported smooth functions are integrable and dense in <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span>, the <a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a> allows one to extend the definition of the Fourier transform to general functions in <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span> by continuity arguments. The Fourier transform in <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span> is no longer given by an ordinary Lebesgue integral, although it can be computed by an <a href="/wiki/Improper_integral" title="Improper integral">improper integral</a>, here meaning that for an <span class="texhtml"><i>L</i><sup>2</sup></span> function <span class="texhtml mvar" style="font-style:italic;">f</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )=\lim _{R\to \infty }\int _{|x|\leq R}f(x)e^{-i2\pi \xi \cdot x}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>R</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )=\lim _{R\to \infty }\int _{|x|\leq R}f(x)e^{-i2\pi \xi \cdot x}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b07196d1802125c7b4a2a82ca2f5f4c0dae2eef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.252ex; height:6.009ex;" alt="{\displaystyle {\hat {f}}(\xi )=\lim _{R\to \infty }\int _{|x|\leq R}f(x)e^{-i2\pi \xi \cdot x}\,dx}"></span> where the limit is taken in the <span class="texhtml"><i>L</i><sup>2</sup></span> sense.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup>) </p><p>Many of the properties of the Fourier transform in <span class="texhtml"><i>L</i><sup>1</sup></span> carry over to <span class="texhtml"><i>L</i><sup>2</sup></span>, by a suitable limiting argument. </p><p>Furthermore, <span class="texhtml"><span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span>&#160;: <i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>) → <i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span> is a <a href="/wiki/Unitary_operator" title="Unitary operator">unitary operator</a>.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> For an operator to be unitary it is sufficient to show that it is bijective and preserves the inner product, so in this case these follow from the Fourier inversion theorem combined with the fact that for any <span class="texhtml"><i>f</i>, <i>g</i> ∈ <i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\mathbb {R} ^{n}}f(x){\mathcal {F}}g(x)\,dx=\int _{\mathbb {R} ^{n}}{\mathcal {F}}f(x)g(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\mathbb {R} ^{n}}f(x){\mathcal {F}}g(x)\,dx=\int _{\mathbb {R} ^{n}}{\mathcal {F}}f(x)g(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ef488ab107e752cda01a5d83d80d462b630536a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.936ex; height:5.676ex;" alt="{\displaystyle \int _{\mathbb {R} ^{n}}f(x){\mathcal {F}}g(x)\,dx=\int _{\mathbb {R} ^{n}}{\mathcal {F}}f(x)g(x)\,dx.}"></span> </p><p>In particular, the image of <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b><sup><i>n</i></sup>)</span> is itself under the Fourier transform. </p> <div class="mw-heading mw-heading4"><h4 id="On_other_Lp">On other <i>L</i><sup><i>p</i></sup></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=45" title="Edit section: On other Lp"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The definition of the Fourier transform can be extended to functions in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span>(<b>R</b><sup><i>n</i></sup>)</span> for <span class="texhtml">1 ≤ <i>p</i> ≤ 2</span> by decomposing such functions into a fat tail part in <span class="texhtml"><i>L</i><sup>2</sup></span> plus a fat body part in <span class="texhtml"><i>L</i><sup>1</sup></span>. In each of these spaces, the Fourier transform of a function in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span>(<b>R</b><sup><i>n</i></sup>)</span> is in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>q</i></sup></span>(<b>R</b><sup><i>n</i></sup>)</span>, where <span class="texhtml"><i>q</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>p</i></span><span class="sr-only">/</span><span class="den"><i>p</i> − 1</span></span>&#8288;</span></span> is the <a href="/wiki/H%C3%B6lder_conjugate" class="mw-redirect" title="Hölder conjugate">Hölder conjugate</a> of <span class="texhtml mvar" style="font-style:italic;">p</span> (by the <a href="/wiki/Hausdorff%E2%80%93Young_inequality" title="Hausdorff–Young inequality">Hausdorff–Young inequality</a>). However, except for <span class="texhtml"><i>p</i> = 2</span>, the image is not easily characterized. Further extensions become more technical. The Fourier transform of functions in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span> for the range <span class="texhtml">2 &lt; <i>p</i> &lt; ∞</span> requires the study of distributions.<sup id="cite_ref-Katznelson-1976_20-1" class="reference"><a href="#cite_note-Katznelson-1976-20"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> In fact, it can be shown that there are functions in <span class="texhtml"><i>L</i><span style="padding-left:0.12em;"><sup><i>p</i></sup></span></span> with <span class="texhtml"><i>p</i> &gt; 2</span> so that the Fourier transform is not defined as a function.<sup id="cite_ref-Stein-Weiss-1971_15-4" class="reference"><a href="#cite_note-Stein-Weiss-1971-15"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Tempered_distributions">Tempered distributions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=46" title="Edit section: Tempered distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Distribution_(mathematics)#Tempered_distributions_and_Fourier_transform" title="Distribution (mathematics)">Distribution (mathematics) §&#160;Tempered distributions and Fourier transform</a></div> <p>One might consider enlarging the domain of the Fourier transform from <span class="texhtml"><i>L</i><sup>1</sup> + <i>L</i><sup>2</sup></span> by considering <a href="/wiki/Generalized_function" title="Generalized function">generalized functions</a>, or distributions. A distribution on <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> is a continuous linear functional on the space <span class="texhtml"><i>C</i><sub>c</sub>(<b>R</b><sup><i>n</i></sup>)</span> of compactly supported smooth functions, equipped with a suitable topology. The strategy is then to consider the action of the Fourier transform on <span class="texhtml"><i>C</i><sub>c</sub>(<b>R</b><sup><i>n</i></sup>)</span> and pass to distributions by duality. The obstruction to doing this is that the Fourier transform does not map <span class="texhtml"><i>C</i><sub>c</sub>(<b>R</b><sup><i>n</i></sup>)</span> to <span class="texhtml"><i>C</i><sub>c</sub>(<b>R</b><sup><i>n</i></sup>)</span>. In fact the Fourier transform of an element in <span class="texhtml"><i>C</i><sub>c</sub>(<b>R</b><sup><i>n</i></sup>)</span> can not vanish on an open set; see the above discussion on the uncertainty principle. The right space here is the slightly larger space of <a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz functions</a>. The Fourier transform is an automorphism on the Schwartz space, as a topological vector space, and thus induces an automorphism on its dual, the space of tempered distributions.<sup id="cite_ref-Stein-Weiss-1971_15-5" class="reference"><a href="#cite_note-Stein-Weiss-1971-15"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> The tempered distributions include all the integrable functions mentioned above, as well as well-behaved functions of polynomial growth and distributions of compact support. </p><p>For the definition of the Fourier transform of a tempered distribution, let <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> be integrable functions, and let <span class="texhtml"><i>f̂</i></span> and <span class="texhtml"><i>ĝ</i></span> be their Fourier transforms respectively. Then the Fourier transform obeys the following multiplication formula,<sup id="cite_ref-Stein-Weiss-1971_15-6" class="reference"><a href="#cite_note-Stein-Weiss-1971-15"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\mathbb {R} ^{n}}{\hat {f}}(x)g(x)\,dx=\int _{\mathbb {R} ^{n}}f(x){\hat {g}}(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\mathbb {R} ^{n}}{\hat {f}}(x)g(x)\,dx=\int _{\mathbb {R} ^{n}}f(x){\hat {g}}(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16e845d28f005056b87fad44dbe1be28aad88009" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.618ex; height:5.676ex;" alt="{\displaystyle \int _{\mathbb {R} ^{n}}{\hat {f}}(x)g(x)\,dx=\int _{\mathbb {R} ^{n}}f(x){\hat {g}}(x)\,dx.}"></span> </p><p>Every integrable function <span class="texhtml mvar" style="font-style:italic;">f</span> defines (induces) a distribution <span class="texhtml mvar" style="font-style:italic;">T<sub>f</sub></span> by the relation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{f}(\varphi )=\int _{\mathbb {R} ^{n}}f(x)\varphi (x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{f}(\varphi )=\int _{\mathbb {R} ^{n}}f(x)\varphi (x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96ad9d916c0f54bf66d7a659da6bca0898cab856" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.994ex; height:5.676ex;" alt="{\displaystyle T_{f}(\varphi )=\int _{\mathbb {R} ^{n}}f(x)\varphi (x)\,dx}"></span> for all Schwartz functions <span class="texhtml mvar" style="font-style:italic;">φ</span>. So it makes sense to define Fourier transform <span class="texhtml"><i>T̂<sub>f</sub></i></span> of <span class="texhtml"><i>T<sub>f</sub></i></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {T}}_{f}(\varphi )=T_{f}\left({\hat {\varphi }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {T}}_{f}(\varphi )=T_{f}\left({\hat {\varphi }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/415a074080a4176132df20ecb0c3a14b94aa763b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.563ex; height:3.509ex;" alt="{\displaystyle {\hat {T}}_{f}(\varphi )=T_{f}\left({\hat {\varphi }}\right)}"></span> for all Schwartz functions <span class="texhtml mvar" style="font-style:italic;">φ</span>. Extending this to all tempered distributions <span class="texhtml mvar" style="font-style:italic;">T</span> gives the general definition of the Fourier transform. </p><p>Distributions can be differentiated and the above-mentioned compatibility of the Fourier transform with differentiation and convolution remains true for tempered distributions. </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=47" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Fourier–Stieltjes_transform"><span id="Fourier.E2.80.93Stieltjes_transform"></span>Fourier–Stieltjes transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=48" title="Edit section: Fourier–Stieltjes transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform of a <a href="/wiki/Finite_measure" title="Finite measure">finite</a> <a href="/wiki/Borel_measure" title="Borel measure">Borel measure</a> <span class="texhtml mvar" style="font-style:italic;">μ</span> on <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> is given by:<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mu }}(\xi )=\int _{\mathbb {R} ^{n}}e^{-i2\pi x\cdot \xi }\,d\mu .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mu }}(\xi )=\int _{\mathbb {R} ^{n}}e^{-i2\pi x\cdot \xi }\,d\mu .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/475f060402cb2377015a5d87407cdc9a6ce2d5c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.106ex; height:5.676ex;" alt="{\displaystyle {\hat {\mu }}(\xi )=\int _{\mathbb {R} ^{n}}e^{-i2\pi x\cdot \xi }\,d\mu .}"></span> </p><p>This transform continues to enjoy many of the properties of the Fourier transform of integrable functions. One notable difference is that the <a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue lemma</a> fails for measures.<sup id="cite_ref-Katznelson-1976_20-2" class="reference"><a href="#cite_note-Katznelson-1976-20"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> In the case that <span class="texhtml"><i>dμ</i> = <i>f</i>(<i>x</i>) <i>dx</i></span>, then the formula above reduces to the usual definition for the Fourier transform of <span class="texhtml mvar" style="font-style:italic;">f</span>. In the case that <span class="texhtml mvar" style="font-style:italic;">μ</span> is the probability distribution associated to a random variable <span class="texhtml mvar" style="font-style:italic;">X</span>, the Fourier–Stieltjes transform is closely related to the <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a>, but the typical conventions in probability theory take <span class="texhtml"><i>e</i><sup><i>iξx</i></sup></span> instead of <span class="texhtml"><i>e</i><sup>−<i>i</i>2π<i>ξx</i></sup></span>.<sup id="cite_ref-Pinsky-2002_18-4" class="reference"><a href="#cite_note-Pinsky-2002-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> In the case when the distribution has a <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> this definition reduces to the Fourier transform applied to the probability density function, again with a different choice of constants. </p><p>The Fourier transform may be used to give a characterization of measures. <a href="/wiki/Bochner%27s_theorem" title="Bochner&#39;s theorem">Bochner's theorem</a> characterizes which functions may arise as the Fourier–Stieltjes transform of a positive measure on the circle.<sup id="cite_ref-Katznelson-1976_20-3" class="reference"><a href="#cite_note-Katznelson-1976-20"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>Furthermore, the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a>, although not a function, is a finite Borel measure. Its Fourier transform is a constant function (whose specific value depends upon the form of the Fourier transform used). </p> <div class="mw-heading mw-heading3"><h3 id="Locally_compact_abelian_groups">Locally compact abelian groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=49" title="Edit section: Locally compact abelian groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Pontryagin_duality" title="Pontryagin duality">Pontryagin duality</a></div> <p>The Fourier transform may be generalized to any locally compact abelian group. A locally compact abelian group is an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> that is at the same time a <a href="/wiki/Locally_compact" class="mw-redirect" title="Locally compact">locally compact</a> <a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff topological space</a> so that the group operation is continuous. If <span class="texhtml mvar" style="font-style:italic;">G</span> is a locally compact abelian group, it has a translation invariant measure <span class="texhtml mvar" style="font-style:italic;">μ</span>, called <a href="/wiki/Haar_measure" title="Haar measure">Haar measure</a>. For a locally compact abelian group <span class="texhtml mvar" style="font-style:italic;">G</span>, the set of irreducible, i.e. one-dimensional, unitary representations are called its <a href="/wiki/Character_group" title="Character group">characters</a>. With its natural group structure and the topology of uniform convergence on compact sets (that is, the topology induced by the <a href="/wiki/Compact-open_topology" title="Compact-open topology">compact-open topology</a> on the space of all continuous functions from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> to the <a href="/wiki/Circle_group" title="Circle group">circle group</a>), the set of characters <span class="texhtml mvar" style="font-style:italic;">Ĝ</span> is itself a locally compact abelian group, called the <i>Pontryagin dual</i> of <span class="texhtml mvar" style="font-style:italic;">G</span>. For a function <span class="texhtml mvar" style="font-style:italic;">f</span> in <span class="texhtml"><i>L</i><sup>1</sup>(<i>G</i>)</span>, its Fourier transform is defined by<sup id="cite_ref-Katznelson-1976_20-4" class="reference"><a href="#cite_note-Katznelson-1976-20"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )=\int _{G}\xi (x)f(x)\,d\mu \quad {\text{for any }}\xi \in {\hat {G}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for any&#xA0;</mtext> </mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )=\int _{G}\xi (x)f(x)\,d\mu \quad {\text{for any }}\xi \in {\hat {G}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52bacdebd5d321f785d6b07a139417a957a9e631" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.728ex; height:5.676ex;" alt="{\displaystyle {\hat {f}}(\xi )=\int _{G}\xi (x)f(x)\,d\mu \quad {\text{for any }}\xi \in {\hat {G}}.}"></span> </p><p>The Riemann–Lebesgue lemma holds in this case; <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> is a function vanishing at infinity on <span class="texhtml mvar" style="font-style:italic;">Ĝ</span>. </p><p>The Fourier transform on <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">T</span> = R/Z</span> is an example; here <span class="texhtml mvar" style="font-style:italic;">T</span> is a locally compact abelian group, and the Haar measure <span class="texhtml mvar" style="font-style:italic;">μ</span> on <span class="texhtml mvar" style="font-style:italic;">T</span> can be thought of as the Lebesgue measure on [0,1). Consider the representation of <span class="texhtml mvar" style="font-style:italic;">T</span> on the complex plane <span class="texhtml mvar" style="font-style:italic;">C</span> that is a 1-dimensional complex vector space. There are a group of representations (which are irreducible since <span class="texhtml mvar" style="font-style:italic;">C</span> is 1-dim) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{e_{k}:T\rightarrow GL_{1}(C)=C^{*}\mid k\in Z\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>:</mo> <mi>T</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2223;<!-- ∣ --></mo> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Z</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{e_{k}:T\rightarrow GL_{1}(C)=C^{*}\mid k\in Z\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b4230197b57f7677661499335a67ae501f229a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.344ex; height:2.843ex;" alt="{\displaystyle \{e_{k}:T\rightarrow GL_{1}(C)=C^{*}\mid k\in Z\}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{k}(x)=e^{i2\pi kx}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{k}(x)=e^{i2\pi kx}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f919c131e19de33ee92a27d40ec1c0006ffbca88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.853ex; height:3.176ex;" alt="{\displaystyle e_{k}(x)=e^{i2\pi kx}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7c507e969d5146c8e2343bb2bc383a3b13b1a6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.807ex; height:2.176ex;" alt="{\displaystyle x\in T}"></span>. </p><p>The character of such representation, that is the trace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{k}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{k}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3800dbabcd39c3c777e5306d6f1f6702015d5f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.311ex; height:2.843ex;" alt="{\displaystyle e_{k}(x)}"></span> for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7c507e969d5146c8e2343bb2bc383a3b13b1a6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.807ex; height:2.176ex;" alt="{\displaystyle x\in T}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b31dbc35d9679701dc30d70faf1784b1a4b2dccb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.732ex; height:2.176ex;" alt="{\displaystyle k\in Z}"></span>, is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i2\pi kx}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i2\pi kx}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/626eb811d1e0d4863c64594748669014d2364fce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.444ex; height:2.676ex;" alt="{\displaystyle e^{i2\pi kx}}"></span> itself. In the case of representation of finite group, the character table of the group <span class="texhtml mvar" style="font-style:italic;">G</span> are rows of vectors such that each row is the character of one irreducible representation of <span class="texhtml mvar" style="font-style:italic;">G</span>, and these vectors form an orthonormal basis of the space of class functions that map from <span class="texhtml mvar" style="font-style:italic;">G</span> to <span class="texhtml mvar" style="font-style:italic;">C</span> by Schur's lemma. Now the group <span class="texhtml mvar" style="font-style:italic;">T</span> is no longer finite but still compact, and it preserves the orthonormality of character table. Each row of the table is the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{k}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{k}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3800dbabcd39c3c777e5306d6f1f6702015d5f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.311ex; height:2.843ex;" alt="{\displaystyle e_{k}(x)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd0f2f879f5bba67beb1df0ba698b36c433312de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.453ex; height:2.509ex;" alt="{\displaystyle x\in T,}"></span> and the inner product between two class functions (all functions being class functions since <span class="texhtml mvar" style="font-style:italic;">T</span> is abelian) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g\in L^{2}(T,d\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>T</mi> <mo>,</mo> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g\in L^{2}(T,d\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f08a3b39c9a85ee3439964cc07060c159ec85d0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.003ex; height:3.176ex;" alt="{\displaystyle f,g\in L^{2}(T,d\mu )}"></span> is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \langle f,g\rangle ={\frac {1}{|T|}}\int _{[0,1)}f(y){\overline {g}}(y)d\mu (y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \langle f,g\rangle ={\frac {1}{|T|}}\int _{[0,1)}f(y){\overline {g}}(y)d\mu (y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47b336a412429a159a78cdb8cdeea2f67365bb73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.573ex; height:4.176ex;" alt="{\textstyle \langle f,g\rangle ={\frac {1}{|T|}}\int _{[0,1)}f(y){\overline {g}}(y)d\mu (y)}"></span> with the normalizing factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |T|=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |T|=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6adf5981e662836f3a29882b5dc49c2ff7cf9511" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.191ex; height:2.843ex;" alt="{\displaystyle |T|=1}"></span>. The sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{e_{k}\mid k\in Z\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Z</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{e_{k}\mid k\in Z\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/513174f5f17c4ae40047a0a65f51d039472b13a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.167ex; height:2.843ex;" alt="{\displaystyle \{e_{k}\mid k\in Z\}}"></span> is an orthonormal basis of the space of class functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(T,d\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>T</mi> <mo>,</mo> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(T,d\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d38e4dd33334a88bde90cc837eb46c207417215" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.734ex; height:3.176ex;" alt="{\displaystyle L^{2}(T,d\mu )}"></span>. </p><p>For any representation <span class="texhtml mvar" style="font-style:italic;">V</span> of a finite group <span class="texhtml mvar" style="font-style:italic;">G</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{v}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{v}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b32faa75b318d420fcea4f44307a1a25b3ebd628" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle \chi _{v}}"></span> can be expressed as the span <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{i}\left\langle \chi _{v},\chi _{v_{i}}\right\rangle \chi _{v_{i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mrow> <mo>&#x27E9;</mo> </mrow> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{i}\left\langle \chi _{v},\chi _{v_{i}}\right\rangle \chi _{v_{i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fea192dcd3b1507fdbe6982ec05499ea0ba72f02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.575ex; height:3.009ex;" alt="{\textstyle \sum _{i}\left\langle \chi _{v},\chi _{v_{i}}\right\rangle \chi _{v_{i}}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f300b83673e961a9d48f3862216b167f94e5668c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle V_{i}}"></span> are the irreps of <span class="texhtml mvar" style="font-style:italic;">G</span>), such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left\langle \chi _{v},\chi _{v_{i}}\right\rangle ={\frac {1}{|G|}}\sum _{g\in G}\chi _{v}(g){\overline {\chi }}_{v_{i}}(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mrow> </munder> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C7;<!-- χ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left\langle \chi _{v},\chi _{v_{i}}\right\rangle ={\frac {1}{|G|}}\sum _{g\in G}\chi _{v}(g){\overline {\chi }}_{v_{i}}(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c29fe5aa194d10170324d295066eeb5c8f57ea9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.776ex; height:4.176ex;" alt="{\textstyle \left\langle \chi _{v},\chi _{v_{i}}\right\rangle ={\frac {1}{|G|}}\sum _{g\in G}\chi _{v}(g){\overline {\chi }}_{v_{i}}(g)}"></span>. Similarly for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bdf476974c6479fb53155364337cd48b2fe4266" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.561ex; height:2.176ex;" alt="{\displaystyle G=T}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in L^{2}(T,d\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>T</mi> <mo>,</mo> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in L^{2}(T,d\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dcb1a86c24f7132e7fb991027e3438c73ebab81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.853ex; height:3.176ex;" alt="{\displaystyle f\in L^{2}(T,d\mu )}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f(x)=\sum _{k\in Z}{\hat {f}}(k)e_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Z</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f(x)=\sum _{k\in Z}{\hat {f}}(k)e_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e570cfb499d1447cbe20e9d532a69d463ec4730" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.622ex; height:3.509ex;" alt="{\textstyle f(x)=\sum _{k\in Z}{\hat {f}}(k)e_{k}}"></span>. The Pontriagin dual <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37fed66c5d4e05d936ce71a8feea9a7509b8cb1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.774ex; height:2.843ex;" alt="{\displaystyle {\hat {T}}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{e_{k}\}(k\in Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{e_{k}\}(k\in Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f85e8c4f54411af1ee568c1190c9865214f9b275" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.039ex; height:2.843ex;" alt="{\displaystyle \{e_{k}\}(k\in Z)}"></span> and for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in L^{2}(T,d\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>T</mi> <mo>,</mo> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in L^{2}(T,d\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dcb1a86c24f7132e7fb991027e3438c73ebab81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.853ex; height:3.176ex;" alt="{\displaystyle f\in L^{2}(T,d\mu )}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\hat {f}}(k)={\frac {1}{|T|}}\int _{[0,1)}f(y)e^{-i2\pi ky}dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> <mi>y</mi> </mrow> </msup> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\hat {f}}(k)={\frac {1}{|T|}}\int _{[0,1)}f(y)e^{-i2\pi ky}dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d53b088c267eb1450e2fc5c0115848f8d61256eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.242ex; height:4.343ex;" alt="{\textstyle {\hat {f}}(k)={\frac {1}{|T|}}\int _{[0,1)}f(y)e^{-i2\pi ky}dy}"></span> is its Fourier transform for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{k}\in {\hat {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{k}\in {\hat {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e705b0965259254a86dffe26390df55cc8cc8a46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.787ex; height:3.176ex;" alt="{\displaystyle e_{k}\in {\hat {T}}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Gelfand_transform">Gelfand transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=50" title="Edit section: Gelfand transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Gelfand_representation" title="Gelfand representation">Gelfand representation</a></div> <p>The Fourier transform is also a special case of <a href="/wiki/Gelfand_transform" class="mw-redirect" title="Gelfand transform">Gelfand transform</a>. In this particular context, it is closely related to the Pontryagin duality map defined above. </p><p>Given an abelian <a href="/wiki/Locally_compact_space" title="Locally compact space">locally compact</a> <a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a> <a href="/wiki/Topological_group" title="Topological group">topological group</a> <span class="texhtml mvar" style="font-style:italic;">G</span>, as before we consider space <span class="texhtml"><i>L</i><sup>1</sup>(<i>G</i>)</span>, defined using a Haar measure. With convolution as multiplication, <span class="texhtml"><i>L</i><sup>1</sup>(<i>G</i>)</span> is an abelian <a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a>. It also has an <a href="/wiki/Involution_(mathematics)" title="Involution (mathematics)">involution</a> * given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}(g)={\overline {f\left(g^{-1}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}(g)={\overline {f\left(g^{-1}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54da9720f17956be1bdd293e34e56eb730f1d2c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.407ex; height:4.009ex;" alt="{\displaystyle f^{*}(g)={\overline {f\left(g^{-1}\right)}}.}"></span> </p><p>Taking the completion with respect to the largest possibly <span class="texhtml"><i>C</i>*</span>-norm gives its enveloping <span class="texhtml"><i>C</i>*</span>-algebra, called the group <span class="texhtml"><i>C</i>*</span>-algebra <span class="texhtml"><i>C</i>*(<i>G</i>)</span> of <span class="texhtml mvar" style="font-style:italic;">G</span>. (Any <span class="texhtml"><i>C</i>*</span>-norm on <span class="texhtml"><i>L</i><sup>1</sup>(<i>G</i>)</span> is bounded by the <span class="texhtml"><i>L</i><sup>1</sup></span> norm, therefore their supremum exists.) </p><p>Given any abelian <span class="texhtml"><i>C</i>*</span>-algebra <span class="texhtml mvar" style="font-style:italic;">A</span>, the Gelfand transform gives an isomorphism between <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml"><i>C</i><sub>0</sub>(<i>A</i>^)</span>, where <span class="texhtml"><i>A</i>^</span> is the multiplicative linear functionals, i.e. one-dimensional representations, on <span class="texhtml mvar" style="font-style:italic;">A</span> with the weak-* topology. The map is simply given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\mapsto {\bigl (}\varphi \mapsto \varphi (a){\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\mapsto {\bigl (}\varphi \mapsto \varphi (a){\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4882f9cf9ce29c39fbb42ef3cc7f46b5291436db" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.667ex; height:3.176ex;" alt="{\displaystyle a\mapsto {\bigl (}\varphi \mapsto \varphi (a){\bigr )}}"></span> It turns out that the multiplicative linear functionals of <span class="texhtml"><i>C</i>*(<i>G</i>)</span>, after suitable identification, are exactly the characters of <span class="texhtml mvar" style="font-style:italic;">G</span>, and the Gelfand transform, when restricted to the dense subset <span class="texhtml"><i>L</i><sup>1</sup>(<i>G</i>)</span> is the Fourier–Pontryagin transform. </p> <div class="mw-heading mw-heading3"><h3 id="Compact_non-abelian_groups">Compact non-abelian groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=51" title="Edit section: Compact non-abelian groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform can also be defined for functions on a non-abelian group, provided that the group is <a href="/wiki/Compact_space" title="Compact space">compact</a>. Removing the assumption that the underlying group is abelian, irreducible unitary representations need not always be one-dimensional. This means the Fourier transform on a non-abelian group takes values as Hilbert space operators.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> The Fourier transform on compact groups is a major tool in <a href="/wiki/Representation_theory" title="Representation theory">representation theory</a><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Non-commutative_harmonic_analysis" class="mw-redirect" title="Non-commutative harmonic analysis">non-commutative harmonic analysis</a>. </p><p>Let <span class="texhtml mvar" style="font-style:italic;">G</span> be a compact <a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a> <a href="/wiki/Topological_group" title="Topological group">topological group</a>. Let <span class="texhtml">Σ</span> denote the collection of all isomorphism classes of finite-dimensional irreducible <a href="/wiki/Unitary_representation" title="Unitary representation">unitary representations</a>, along with a definite choice of representation <span class="texhtml"><i>U</i><span style="padding-left:0.12em;"><sup>(<i>σ</i>)</sup></span></span> on the <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> <span class="texhtml"><i>H<sub>σ</sub></i></span> of finite dimension <span class="texhtml"><i>d<sub>σ</sub></i></span> for each <span class="texhtml"><i>σ</i> ∈ Σ</span>. If <span class="texhtml mvar" style="font-style:italic;">μ</span> is a finite <a href="/wiki/Borel_measure" title="Borel measure">Borel measure</a> on <span class="texhtml mvar" style="font-style:italic;">G</span>, then the Fourier–Stieltjes transform of <span class="texhtml mvar" style="font-style:italic;">μ</span> is the operator on <span class="texhtml"><i>H<sub>σ</sub></i></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle {\hat {\mu }}\xi ,\eta \right\rangle _{H_{\sigma }}=\int _{G}\left\langle {\overline {U}}_{g}^{(\sigma )}\xi ,\eta \right\rangle \,d\mu (g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>&#x27E8;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>&#x03B7;<!-- η --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow> <mo>&#x27E8;</mo> <mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>&#x03B7;<!-- η --></mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle {\hat {\mu }}\xi ,\eta \right\rangle _{H_{\sigma }}=\int _{G}\left\langle {\overline {U}}_{g}^{(\sigma )}\xi ,\eta \right\rangle \,d\mu (g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f89aa861c57a0e8bf1c5d1055eb0005ec12bb71" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.785ex; height:6.176ex;" alt="{\displaystyle \left\langle {\hat {\mu }}\xi ,\eta \right\rangle _{H_{\sigma }}=\int _{G}\left\langle {\overline {U}}_{g}^{(\sigma )}\xi ,\eta \right\rangle \,d\mu (g)}"></span> where <span class="texhtml"><span style="text-decoration:overline;"><i>U</i></span><span style="padding-left:0.12em;"><sup>(<i>σ</i>)</sup></span></span> is the complex-conjugate representation of <span class="texhtml"><i>U</i><sup>(<i>σ</i>)</sup></span> acting on <span class="texhtml"><i>H<sub>σ</sub></i></span>. If <span class="texhtml mvar" style="font-style:italic;">μ</span> is <a href="/wiki/Absolutely_continuous" class="mw-redirect" title="Absolutely continuous">absolutely continuous</a> with respect to the <a href="/wiki/Haar_measure" title="Haar measure">left-invariant probability measure</a> <span class="texhtml mvar" style="font-style:italic;">λ</span> on <span class="texhtml mvar" style="font-style:italic;">G</span>, <a href="/wiki/Radon%E2%80%93Nikodym_theorem" title="Radon–Nikodym theorem">represented</a> as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mu =f\,d\lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mu =f\,d\lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae057c70b708cff31dd3dbb1522560286fe9fc46" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.953ex; height:2.676ex;" alt="{\displaystyle d\mu =f\,d\lambda }"></span> for some <span class="texhtml"><i>f</i> ∈ <a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup>1</sup>(<i>λ</i>)</a></span>, one identifies the Fourier transform of <span class="texhtml mvar" style="font-style:italic;">f</span> with the Fourier–Stieltjes transform of <span class="texhtml mvar" style="font-style:italic;">μ</span>. </p><p>The mapping <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu \mapsto {\hat {\mu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu \mapsto {\hat {\mu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c7c0a8e3150bed329d13c2fe3f35144418917d0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.417ex; height:2.676ex;" alt="{\displaystyle \mu \mapsto {\hat {\mu }}}"></span> defines an isomorphism between the <a href="/wiki/Banach_space" title="Banach space">Banach space</a> <span class="texhtml"><i>M</i>(<i>G</i>)</span> of finite Borel measures (see <a href="/wiki/Rca_space" class="mw-redirect" title="Rca space">rca space</a>) and a closed subspace of the Banach space <span class="texhtml"><b>C</b><sub>∞</sub>(Σ)</span> consisting of all sequences <span class="texhtml"><i>E</i> = (<i>E<sub>σ</sub></i>)</span> indexed by <span class="texhtml">Σ</span> of (bounded) linear operators <span class="texhtml"><i>E<sub>σ</sub></i>&#160;: <i>H<sub>σ</sub></i> → <i>H<sub>σ</sub></i></span> for which the norm <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|E\|=\sup _{\sigma \in \Sigma }\left\|E_{\sigma }\right\|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>E</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mrow> </munder> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|E\|=\sup _{\sigma \in \Sigma }\left\|E_{\sigma }\right\|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ab5e97c6d80c90b5ce3b5e8da808b2399a3f8d5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.3ex; height:4.509ex;" alt="{\displaystyle \|E\|=\sup _{\sigma \in \Sigma }\left\|E_{\sigma }\right\|}"></span> is finite. The "<a href="/wiki/Convolution_theorem" title="Convolution theorem">convolution theorem</a>" asserts that, furthermore, this isomorphism of Banach spaces is in fact an isometric isomorphism of <a href="/wiki/C*-algebra" title="C*-algebra">C*-algebras</a> into a subspace of <span class="texhtml"><b>C</b><sub>∞</sub>(Σ)</span>. Multiplication on <span class="texhtml"><i>M</i>(<i>G</i>)</span> is given by <a href="/wiki/Convolution" title="Convolution">convolution</a> of measures and the involution * defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}(g)={\overline {f\left(g^{-1}\right)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}(g)={\overline {f\left(g^{-1}\right)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1bbf3b1e9a5f193f4ad7ec24f3034071700b003" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.407ex; height:4.009ex;" alt="{\displaystyle f^{*}(g)={\overline {f\left(g^{-1}\right)}},}"></span> and <span class="texhtml"><b>C</b><sub>∞</sub>(Σ)</span> has a natural <span class="texhtml"><i>C</i>*</span>-algebra structure as Hilbert space operators. </p><p>The <a href="/wiki/Peter%E2%80%93Weyl_theorem" title="Peter–Weyl theorem">Peter–Weyl theorem</a> holds, and a version of the Fourier inversion formula (<a href="/wiki/Plancherel%27s_theorem" class="mw-redirect" title="Plancherel&#39;s theorem">Plancherel's theorem</a>) follows: if <span class="texhtml"><i>f</i> ∈ <i>L</i><sup>2</sup>(<i>G</i>)</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(g)=\sum _{\sigma \in \Sigma }d_{\sigma }\operatorname {tr} \left({\hat {f}}(\sigma )U_{g}^{(\sigma )}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mrow> </munder> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <msubsup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(g)=\sum _{\sigma \in \Sigma }d_{\sigma }\operatorname {tr} \left({\hat {f}}(\sigma )U_{g}^{(\sigma )}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad95b47fb425be4071a4be2293e5e641f4658d9b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.536ex; height:6.176ex;" alt="{\displaystyle f(g)=\sum _{\sigma \in \Sigma }d_{\sigma }\operatorname {tr} \left({\hat {f}}(\sigma )U_{g}^{(\sigma )}\right)}"></span> where the summation is understood as convergent in the <span class="texhtml"><i>L</i><sup>2</sup></span> sense. </p><p>The generalization of the Fourier transform to the noncommutative situation has also in part contributed to the development of <a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">noncommutative geometry</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2009)">citation needed</span></a></i>&#93;</sup> In this context, a categorical generalization of the Fourier transform to noncommutative groups is <a href="/wiki/Tannaka%E2%80%93Krein_duality" title="Tannaka–Krein duality">Tannaka–Krein duality</a>, which replaces the group of characters with the category of representations. However, this loses the connection with harmonic functions. </p> <div class="mw-heading mw-heading2"><h2 id="Alternatives">Alternatives</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=52" title="Edit section: Alternatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a> terms, a function (of time) is a representation of a signal with perfect <i>time resolution</i>, but no frequency information, while the Fourier transform has perfect <i>frequency resolution</i>, but no time information: the magnitude of the Fourier transform at a point is how much frequency content there is, but location is only given by phase (argument of the Fourier transform at a point), and <a href="/wiki/Standing_wave" title="Standing wave">standing waves</a> are not localized in time – a sine wave continues out to infinity, without decaying. This limits the usefulness of the Fourier transform for analyzing signals that are localized in time, notably <a href="/wiki/Transient_(acoustics)" title="Transient (acoustics)">transients</a>, or any signal of finite extent. </p><p>As alternatives to the Fourier transform, in <a href="/wiki/Time%E2%80%93frequency_analysis" title="Time–frequency analysis">time–frequency analysis</a>, one uses time–frequency transforms or time–frequency distributions to represent signals in a form that has some time information and some frequency information – by the uncertainty principle, there is a trade-off between these. These can be generalizations of the Fourier transform, such as the <a href="/wiki/Short-time_Fourier_transform" title="Short-time Fourier transform">short-time Fourier transform</a>, <a href="/wiki/Fractional_Fourier_transform" title="Fractional Fourier transform">fractional Fourier transform</a>, Synchrosqueezing Fourier transform,<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> or other functions to represent signals, as in <a href="/wiki/Wavelet_transform" title="Wavelet transform">wavelet transforms</a> and <a href="/wiki/Chirplet_transform" title="Chirplet transform">chirplet transforms</a>, with the wavelet analog of the (continuous) Fourier transform being the <a href="/wiki/Continuous_wavelet_transform" title="Continuous wavelet transform">continuous wavelet transform</a>.<sup id="cite_ref-Boashash-2003_29-1" class="reference"><a href="#cite_note-Boashash-2003-29"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=53" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Spectral_density#Applications" title="Spectral density">Spectral density §&#160;Applications</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Commutative_diagram_illustrating_problem_solving_via_the_Fourier_transform.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Commutative_diagram_illustrating_problem_solving_via_the_Fourier_transform.svg/400px-Commutative_diagram_illustrating_problem_solving_via_the_Fourier_transform.svg.png" decoding="async" width="400" height="86" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Commutative_diagram_illustrating_problem_solving_via_the_Fourier_transform.svg/600px-Commutative_diagram_illustrating_problem_solving_via_the_Fourier_transform.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Commutative_diagram_illustrating_problem_solving_via_the_Fourier_transform.svg/800px-Commutative_diagram_illustrating_problem_solving_via_the_Fourier_transform.svg.png 2x" data-file-width="308" data-file-height="66" /></a><figcaption>Some problems, such as certain differential equations, become easier to solve when the Fourier transform is applied. In that case the solution to the original problem is recovered using the inverse Fourier transform.</figcaption></figure> <p>Linear operations performed in one domain (time or frequency) have corresponding operations in the other domain, which are sometimes easier to perform. The operation of <a href="/wiki/Derivative" title="Derivative">differentiation</a> in the time domain corresponds to multiplication by the frequency,<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>note 6<span class="cite-bracket">&#93;</span></a></sup> so some <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a> are easier to analyze in the frequency domain. Also, <a href="/wiki/Convolution" title="Convolution">convolution</a> in the time domain corresponds to ordinary multiplication in the frequency domain (see <a href="/wiki/Convolution_theorem" title="Convolution theorem">Convolution theorem</a>). After performing the desired operations, transformation of the result can be made back to the time domain. <a href="/wiki/Harmonic_analysis" title="Harmonic analysis">Harmonic analysis</a> is the systematic study of the relationship between the frequency and time domains, including the kinds of functions or operations that are "simpler" in one or the other, and has deep connections to many areas of modern mathematics. </p> <div class="mw-heading mw-heading3"><h3 id="Analysis_of_differential_equations">Analysis of differential equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=54" title="Edit section: Analysis of differential equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Perhaps the most important use of the Fourier transformation is to solve <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a>. Many of the equations of the mathematical physics of the nineteenth century can be treated this way. Fourier studied the heat equation, which in one dimension and in dimensionless units is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}y(x,t)}{\partial ^{2}x}}={\frac {\partial y(x,t)}{\partial t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}y(x,t)}{\partial ^{2}x}}={\frac {\partial y(x,t)}{\partial t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a62c16f4d83ef3917ed9bd39ef6ba7d4d4ab09fb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.469ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial ^{2}y(x,t)}{\partial ^{2}x}}={\frac {\partial y(x,t)}{\partial t}}.}"></span> The example we will give, a slightly more difficult one, is the wave equation in one dimension, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}y(x,t)}{\partial ^{2}x}}={\frac {\partial ^{2}y(x,t)}{\partial ^{2}t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}y(x,t)}{\partial ^{2}x}}={\frac {\partial ^{2}y(x,t)}{\partial ^{2}t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e29fe6140726b3e3c9755d81c87ce36c6c2308d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:22.549ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial ^{2}y(x,t)}{\partial ^{2}x}}={\frac {\partial ^{2}y(x,t)}{\partial ^{2}t}}.}"></span> </p><p>As usual, the problem is not to find a solution: there are infinitely many. The problem is that of the so-called "boundary problem": find a solution which satisfies the "boundary conditions" <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(x,0)=f(x),\qquad {\frac {\partial y(x,0)}{\partial t}}=g(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(x,0)=f(x),\qquad {\frac {\partial y(x,0)}{\partial t}}=g(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f533141d6e5d0482eba54d0c42631ac7233e91b8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:36.331ex; height:5.843ex;" alt="{\displaystyle y(x,0)=f(x),\qquad {\frac {\partial y(x,0)}{\partial t}}=g(x).}"></span> </p><p>Here, <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are given functions. For the heat equation, only one boundary condition can be required (usually the first one). But for the wave equation, there are still infinitely many solutions <span class="texhtml mvar" style="font-style:italic;">y</span> which satisfy the first boundary condition. But when one imposes both conditions, there is only one possible solution. </p><p>It is easier to find the Fourier transform <span class="texhtml mvar" style="font-style:italic;">ŷ</span> of the solution than to find the solution directly. This is because the Fourier transformation takes differentiation into multiplication by the Fourier-dual variable, and so a partial differential equation applied to the original function is transformed into multiplication by polynomial functions of the dual variables applied to the transformed function. After <span class="texhtml mvar" style="font-style:italic;">ŷ</span> is determined, we can apply the inverse Fourier transformation to find <span class="texhtml mvar" style="font-style:italic;">y</span>. </p><p>Fourier's method is as follows. First, note that any function of the forms <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos {\bigl (}2\pi \xi (x\pm t){\bigr )}{\text{ or }}\sin {\bigl (}2\pi \xi (x\pm t){\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;or&#xA0;</mtext> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos {\bigl (}2\pi \xi (x\pm t){\bigr )}{\text{ or }}\sin {\bigl (}2\pi \xi (x\pm t){\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f41fd833504333cb414206e733f9acd8413ee658" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.31ex; height:3.176ex;" alt="{\displaystyle \cos {\bigl (}2\pi \xi (x\pm t){\bigr )}{\text{ or }}\sin {\bigl (}2\pi \xi (x\pm t){\bigr )}}"></span> satisfies the wave equation. These are called the elementary solutions. </p><p>Second, note that therefore any integral <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}y(x,t)=\int _{0}^{\infty }d\xi {\Bigl [}&amp;a_{+}(\xi )\cos {\bigl (}2\pi \xi (x+t){\bigr )}+a_{-}(\xi )\cos {\bigl (}2\pi \xi (x-t){\bigr )}+{}\\&amp;b_{+}(\xi )\sin {\bigl (}2\pi \xi (x+t){\bigr )}+b_{-}(\xi )\sin \left(2\pi \xi (x-t)\right){\Bigr ]}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em">[</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em">]</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}y(x,t)=\int _{0}^{\infty }d\xi {\Bigl [}&amp;a_{+}(\xi )\cos {\bigl (}2\pi \xi (x+t){\bigr )}+a_{-}(\xi )\cos {\bigl (}2\pi \xi (x-t){\bigr )}+{}\\&amp;b_{+}(\xi )\sin {\bigl (}2\pi \xi (x+t){\bigr )}+b_{-}(\xi )\sin \left(2\pi \xi (x-t)\right){\Bigr ]}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a65c9bf34f6bc5abac0d29243bda58f8c3310c2d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:67.646ex; height:10.843ex;" alt="{\displaystyle {\begin{aligned}y(x,t)=\int _{0}^{\infty }d\xi {\Bigl [}&amp;a_{+}(\xi )\cos {\bigl (}2\pi \xi (x+t){\bigr )}+a_{-}(\xi )\cos {\bigl (}2\pi \xi (x-t){\bigr )}+{}\\&amp;b_{+}(\xi )\sin {\bigl (}2\pi \xi (x+t){\bigr )}+b_{-}(\xi )\sin \left(2\pi \xi (x-t)\right){\Bigr ]}\end{aligned}}}"></span> satisfies the wave equation for arbitrary <span class="texhtml"><i>a</i><sub>+</sub>, <i>a</i><sub>−</sub>, <i>b</i><sub>+</sub>, <i>b</i><sub>−</sub></span>. This integral may be interpreted as a continuous linear combination of solutions for the linear equation. </p><p>Now this resembles the formula for the Fourier synthesis of a function. In fact, this is the real inverse Fourier transform of <span class="texhtml"><i>a</i><sub>±</sub></span> and <span class="texhtml"><i>b</i><sub>±</sub></span> in the variable <span class="texhtml mvar" style="font-style:italic;">x</span>. </p><p>The third step is to examine how to find the specific unknown coefficient functions <span class="texhtml"><i>a</i><sub>±</sub></span> and <span class="texhtml"><i>b</i><sub>±</sub></span> that will lead to <span class="texhtml mvar" style="font-style:italic;">y</span> satisfying the boundary conditions. We are interested in the values of these solutions at <span class="texhtml"><i>t</i> = 0</span>. So we will set <span class="texhtml"><i>t</i> = 0</span>. Assuming that the conditions needed for Fourier inversion are satisfied, we can then find the Fourier sine and cosine transforms (in the variable <span class="texhtml mvar" style="font-style:italic;">x</span>) of both sides and obtain <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\int _{-\infty }^{\infty }y(x,0)\cos(2\pi \xi x)\,dx=a_{+}+a_{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\int _{-\infty }^{\infty }y(x,0)\cos(2\pi \xi x)\,dx=a_{+}+a_{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9693cf22844d9148a76946c8052c057eb01223c3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.388ex; height:6.009ex;" alt="{\displaystyle 2\int _{-\infty }^{\infty }y(x,0)\cos(2\pi \xi x)\,dx=a_{+}+a_{-}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\int _{-\infty }^{\infty }y(x,0)\sin(2\pi \xi x)\,dx=b_{+}+b_{-}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\int _{-\infty }^{\infty }y(x,0)\sin(2\pi \xi x)\,dx=b_{+}+b_{-}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ca66228897ef241c9a66452596b1658b8f45afc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.315ex; height:6.009ex;" alt="{\displaystyle 2\int _{-\infty }^{\infty }y(x,0)\sin(2\pi \xi x)\,dx=b_{+}+b_{-}.}"></span> </p><p>Similarly, taking the derivative of <span class="texhtml mvar" style="font-style:italic;">y</span> with respect to <span class="texhtml mvar" style="font-style:italic;">t</span> and then applying the Fourier sine and cosine transformations yields <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\int _{-\infty }^{\infty }{\frac {\partial y(u,0)}{\partial t}}\sin(2\pi \xi x)\,dx=(2\pi \xi )\left(-a_{+}+a_{-}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\int _{-\infty }^{\infty }{\frac {\partial y(u,0)}{\partial t}}\sin(2\pi \xi x)\,dx=(2\pi \xi )\left(-a_{+}+a_{-}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23d48f65f5ff203f32f4d7070244e84d0fc2853f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:48.626ex; height:6.343ex;" alt="{\displaystyle 2\int _{-\infty }^{\infty }{\frac {\partial y(u,0)}{\partial t}}\sin(2\pi \xi x)\,dx=(2\pi \xi )\left(-a_{+}+a_{-}\right)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\int _{-\infty }^{\infty }{\frac {\partial y(u,0)}{\partial t}}\cos(2\pi \xi x)\,dx=(2\pi \xi )\left(b_{+}-b_{-}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\int _{-\infty }^{\infty }{\frac {\partial y(u,0)}{\partial t}}\cos(2\pi \xi x)\,dx=(2\pi \xi )\left(b_{+}-b_{-}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe669ddeb80ef4dfc9860a010af298df7e774497" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.642ex; height:6.343ex;" alt="{\displaystyle 2\int _{-\infty }^{\infty }{\frac {\partial y(u,0)}{\partial t}}\cos(2\pi \xi x)\,dx=(2\pi \xi )\left(b_{+}-b_{-}\right).}"></span> </p><p>These are four linear equations for the four unknowns <span class="texhtml"><i>a</i><sub>±</sub></span> and <span class="texhtml"><i>b</i><sub>±</sub></span>, in terms of the Fourier sine and cosine transforms of the boundary conditions, which are easily solved by elementary algebra, provided that these transforms can be found. </p><p>In summary, we chose a set of elementary solutions, parametrized by <span class="texhtml mvar" style="font-style:italic;">ξ</span>, of which the general solution would be a (continuous) linear combination in the form of an integral over the parameter <span class="texhtml mvar" style="font-style:italic;">ξ</span>. But this integral was in the form of a Fourier integral. The next step was to express the boundary conditions in terms of these integrals, and set them equal to the given functions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span>. But these expressions also took the form of a Fourier integral because of the properties of the Fourier transform of a derivative. The last step was to exploit Fourier inversion by applying the Fourier transformation to both sides, thus obtaining expressions for the coefficient functions <span class="texhtml"><i>a</i><sub>±</sub></span> and <span class="texhtml"><i>b</i><sub>±</sub></span> in terms of the given boundary conditions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span>. </p><p>From a higher point of view, Fourier's procedure can be reformulated more conceptually. Since there are two variables, we will use the Fourier transformation in both <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">t</span> rather than operate as Fourier did, who only transformed in the spatial variables. Note that <span class="texhtml mvar" style="font-style:italic;">ŷ</span> must be considered in the sense of a distribution since <span class="texhtml"><i>y</i>(<i>x</i>, <i>t</i>)</span> is not going to be <span class="texhtml"><i>L</i><sup>1</sup></span>: as a wave, it will persist through time and thus is not a transient phenomenon. But it will be bounded and so its Fourier transform can be defined as a distribution. The operational properties of the Fourier transformation that are relevant to this equation are that it takes differentiation in <span class="texhtml mvar" style="font-style:italic;">x</span> to multiplication by <span class="texhtml"><i>i</i>2π<i>ξ</i></span> and differentiation with respect to <span class="texhtml mvar" style="font-style:italic;">t</span> to multiplication by <span class="texhtml"><i>i</i>2π<i>f</i></span> where <span class="texhtml mvar" style="font-style:italic;">f</span> is the frequency. Then the wave equation becomes an algebraic equation in <span class="texhtml mvar" style="font-style:italic;">ŷ</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi ^{2}{\hat {y}}(\xi ,f)=f^{2}{\hat {y}}(\xi ,f).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi ^{2}{\hat {y}}(\xi ,f)=f^{2}{\hat {y}}(\xi ,f).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ebb20cf08a4a72cc16821bd05147484b1ff7814" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.116ex; height:3.176ex;" alt="{\displaystyle \xi ^{2}{\hat {y}}(\xi ,f)=f^{2}{\hat {y}}(\xi ,f).}"></span> This is equivalent to requiring <span class="texhtml"><i>ŷ</i>(<i>ξ</i>, <i>f</i>) = 0</span> unless <span class="texhtml"><i>ξ</i> = ±<i>f</i></span>. Right away, this explains why the choice of elementary solutions we made earlier worked so well: obviously <span class="texhtml"><i>f̂</i> = <i>δ</i>(<i>ξ</i> ± <i>f</i>)</span> will be solutions. Applying Fourier inversion to these delta functions, we obtain the elementary solutions we picked earlier. But from the higher point of view, one does not pick elementary solutions, but rather considers the space of all distributions which are supported on the (degenerate) conic <span class="texhtml"><i>ξ</i><span style="padding-left:0.12em;"><sup>2</sup></span> − <i>f</i><span style="padding-left:0.12em;"><sup>2</sup></span> = 0</span>. </p><p>We may as well consider the distributions supported on the conic that are given by distributions of one variable on the line <span class="texhtml"><i>ξ</i> = <i>f</i></span> plus distributions on the line <span class="texhtml"><i>ξ</i> = −<i>f</i></span> as follows: if <span class="texhtml mvar" style="font-style:italic;">Φ</span> is any test function, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \iint {\hat {y}}\phi (\xi ,f)\,d\xi \,df=\int s_{+}\phi (\xi ,\xi )\,d\xi +\int s_{-}\phi (\xi ,-\xi )\,d\xi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222C;<!-- ∬ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>f</mi> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \iint {\hat {y}}\phi (\xi ,f)\,d\xi \,df=\int s_{+}\phi (\xi ,\xi )\,d\xi +\int s_{-}\phi (\xi ,-\xi )\,d\xi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdc1dc16d94e02f92e90426fe898070fa2bbbfaa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:53.763ex; height:5.676ex;" alt="{\displaystyle \iint {\hat {y}}\phi (\xi ,f)\,d\xi \,df=\int s_{+}\phi (\xi ,\xi )\,d\xi +\int s_{-}\phi (\xi ,-\xi )\,d\xi ,}"></span> where <span class="texhtml"><i>s</i><sub>+</sub></span>, and <span class="texhtml"><i>s</i><sub>−</sub></span>, are distributions of one variable. </p><p>Then Fourier inversion gives, for the boundary conditions, something very similar to what we had more concretely above (put <span class="texhtml"><i>Φ</i>(<i>ξ</i>, <i>f</i>) = <i>e</i><sup><i>i</i>2π(<i>xξ</i>+<i>tf</i>)</sup></span>, which is clearly of polynomial growth): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(x,0)=\int {\bigl \{}s_{+}(\xi )+s_{-}(\xi ){\bigr \}}e^{i2\pi \xi x+0}\,d\xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">{</mo> </mrow> </mrow> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">}</mo> </mrow> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo>+</mo> <mn>0</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(x,0)=\int {\bigl \{}s_{+}(\xi )+s_{-}(\xi ){\bigr \}}e^{i2\pi \xi x+0}\,d\xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a28d85b1667159af9fa50469da1e516005c06f3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.651ex; height:5.676ex;" alt="{\displaystyle y(x,0)=\int {\bigl \{}s_{+}(\xi )+s_{-}(\xi ){\bigr \}}e^{i2\pi \xi x+0}\,d\xi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial y(x,0)}{\partial t}}=\int {\bigl \{}s_{+}(\xi )-s_{-}(\xi ){\bigr \}}i2\pi \xi e^{i2\pi \xi x+0}\,d\xi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">{</mo> </mrow> </mrow> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">}</mo> </mrow> </mrow> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo>+</mo> <mn>0</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial y(x,0)}{\partial t}}=\int {\bigl \{}s_{+}(\xi )-s_{-}(\xi ){\bigr \}}i2\pi \xi e^{i2\pi \xi x+0}\,d\xi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/874a569545cdfc209e0aa0f08fd813fc3bb75817" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:45.779ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial y(x,0)}{\partial t}}=\int {\bigl \{}s_{+}(\xi )-s_{-}(\xi ){\bigr \}}i2\pi \xi e^{i2\pi \xi x+0}\,d\xi .}"></span> </p><p>Now, as before, applying the one-variable Fourier transformation in the variable <span class="texhtml mvar" style="font-style:italic;">x</span> to these functions of <span class="texhtml mvar" style="font-style:italic;">x</span> yields two equations in the two unknown distributions <span class="texhtml"><i>s</i><sub>±</sub></span> (which can be taken to be ordinary functions if the boundary conditions are <span class="texhtml"><i>L</i><sup>1</sup></span> or <span class="texhtml"><i>L</i><sup>2</sup></span>). </p><p>From a calculational point of view, the drawback of course is that one must first calculate the Fourier transforms of the boundary conditions, then assemble the solution from these, and then calculate an inverse Fourier transform. Closed form formulas are rare, except when there is some geometric symmetry that can be exploited, and the numerical calculations are difficult because of the oscillatory nature of the integrals, which makes convergence slow and hard to estimate. For practical calculations, other methods are often used. </p><p>The twentieth century has seen the extension of these methods to all linear partial differential equations with polynomial coefficients, and by extending the notion of Fourier transformation to include Fourier integral operators, some non-linear equations as well. </p> <div class="mw-heading mw-heading3"><h3 id="Fourier-transform_spectroscopy">Fourier-transform spectroscopy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=55" title="Edit section: Fourier-transform spectroscopy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Fourier-transform_spectroscopy" title="Fourier-transform spectroscopy">Fourier-transform spectroscopy</a></div> <p>The Fourier transform is also used in <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">nuclear magnetic resonance</a> (NMR) and in other kinds of <a href="/wiki/Spectroscopy" title="Spectroscopy">spectroscopy</a>, e.g. infrared (<a href="/wiki/Fourier-transform_infrared_spectroscopy" title="Fourier-transform infrared spectroscopy">FTIR</a>). In NMR an exponentially shaped free induction decay (FID) signal is acquired in the time domain and Fourier-transformed to a Lorentzian line-shape in the frequency domain. The Fourier transform is also used in <a href="/wiki/Magnetic_resonance_imaging" title="Magnetic resonance imaging">magnetic resonance imaging</a> (MRI) and <a href="/wiki/Mass_spectrometry" title="Mass spectrometry">mass spectrometry</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_mechanics">Quantum mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=56" title="Edit section: Quantum mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform is useful in <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> in at least two different ways. To begin with, the basic conceptual structure of quantum mechanics postulates the existence of pairs of <a href="/wiki/Complementary_variables" class="mw-redirect" title="Complementary variables">complementary variables</a>, connected by the <a href="/wiki/Heisenberg_uncertainty_principle" class="mw-redirect" title="Heisenberg uncertainty principle">Heisenberg uncertainty principle</a>. For example, in one dimension, the spatial variable <span class="texhtml mvar" style="font-style:italic;">q</span> of, say, a particle, can only be measured by the quantum mechanical "<a href="/wiki/Position_operator" title="Position operator">position operator</a>" at the cost of losing information about the momentum <span class="texhtml mvar" style="font-style:italic;">p</span> of the particle. Therefore, the physical state of the particle can either be described by a function, called "the wave function", of <span class="texhtml mvar" style="font-style:italic;">q</span> or by a function of <span class="texhtml mvar" style="font-style:italic;">p</span> but not by a function of both variables. The variable <span class="texhtml mvar" style="font-style:italic;">p</span> is called the conjugate variable to <span class="texhtml mvar" style="font-style:italic;">q</span>. In classical mechanics, the physical state of a particle (existing in one dimension, for simplicity of exposition) would be given by assigning definite values to both <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span> simultaneously. Thus, the set of all possible physical states is the two-dimensional real vector space with a <span class="texhtml mvar" style="font-style:italic;">p</span>-axis and a <span class="texhtml mvar" style="font-style:italic;">q</span>-axis called the <a href="/wiki/Phase_space" title="Phase space">phase space</a>. </p><p>In contrast, quantum mechanics chooses a polarisation of this space in the sense that it picks a subspace of one-half the dimension, for example, the <span class="texhtml mvar" style="font-style:italic;">q</span>-axis alone, but instead of considering only points, takes the set of all complex-valued "wave functions" on this axis. Nevertheless, choosing the <span class="texhtml mvar" style="font-style:italic;">p</span>-axis is an equally valid polarisation, yielding a different representation of the set of possible physical states of the particle. Both representations of the wavefunction are related by a Fourier transform, such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (p)=\int dq\,\psi (q)e^{-ipq/h},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mi>d</mi> <mi>q</mi> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>p</mi> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>h</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (p)=\int dq\,\psi (q)e^{-ipq/h},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/584edfbf8d7fb67d88198f57cb04d10cf763ebc4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.268ex; height:5.676ex;" alt="{\displaystyle \phi (p)=\int dq\,\psi (q)e^{-ipq/h},}"></span> or, equivalently, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (q)=\int dp\,\phi (p)e^{ipq/h}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mi>d</mi> <mi>p</mi> <mspace width="thinmathspace" /> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>p</mi> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>h</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (q)=\int dp\,\phi (p)e^{ipq/h}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d110dcd432f32d3af4d738b2b569766f1ceb15bc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.09ex; height:5.676ex;" alt="{\displaystyle \psi (q)=\int dp\,\phi (p)e^{ipq/h}.}"></span> </p><p>Physically realisable states are <span class="texhtml"><i>L</i><sup>2</sup></span>, and so by the <a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a>, their Fourier transforms are also <span class="texhtml"><i>L</i><sup>2</sup></span>. (Note that since <span class="texhtml mvar" style="font-style:italic;">q</span> is in units of distance and <span class="texhtml mvar" style="font-style:italic;">p</span> is in units of momentum, the presence of the Planck constant in the exponent makes the exponent <a href="/wiki/Nondimensionalization" title="Nondimensionalization">dimensionless</a>, as it should be.) </p><p>Therefore, the Fourier transform can be used to pass from one way of representing the state of the particle, by a wave function of position, to another way of representing the state of the particle: by a wave function of momentum. Infinitely many different polarisations are possible, and all are equally valid. Being able to transform states from one representation to another by the Fourier transform is not only convenient but also the underlying reason of the Heisenberg <a href="#Uncertainty_principle">uncertainty principle</a>. </p><p>The other use of the Fourier transform in both quantum mechanics and <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a> is to solve the applicable wave equation. In non-relativistic quantum mechanics, <a href="/wiki/Schr%C3%B6dinger%27s_equation" class="mw-redirect" title="Schrödinger&#39;s equation">Schrödinger's equation</a> for a time-varying wave function in one-dimension, not subject to external forces, is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial ^{2}}{\partial x^{2}}}\psi (x,t)=i{\frac {h}{2\pi }}{\frac {\partial }{\partial t}}\psi (x,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial ^{2}}{\partial x^{2}}}\psi (x,t)=i{\frac {h}{2\pi }}{\frac {\partial }{\partial t}}\psi (x,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef8dfca86d44876c96db0b73927ae2ec97f20f6c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:30.27ex; height:6.009ex;" alt="{\displaystyle -{\frac {\partial ^{2}}{\partial x^{2}}}\psi (x,t)=i{\frac {h}{2\pi }}{\frac {\partial }{\partial t}}\psi (x,t).}"></span> </p><p>This is the same as the heat equation except for the presence of the imaginary unit <span class="texhtml mvar" style="font-style:italic;">i</span>. Fourier methods can be used to solve this equation. </p><p>In the presence of a potential, given by the potential energy function <span class="texhtml"><i>V</i>(<i>x</i>)</span>, the equation becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial ^{2}}{\partial x^{2}}}\psi (x,t)+V(x)\psi (x,t)=i{\frac {h}{2\pi }}{\frac {\partial }{\partial t}}\psi (x,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial ^{2}}{\partial x^{2}}}\psi (x,t)+V(x)\psi (x,t)=i{\frac {h}{2\pi }}{\frac {\partial }{\partial t}}\psi (x,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/010bed8fcaa500618b36fbabd66bd57fced5ffe1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:44.562ex; height:6.009ex;" alt="{\displaystyle -{\frac {\partial ^{2}}{\partial x^{2}}}\psi (x,t)+V(x)\psi (x,t)=i{\frac {h}{2\pi }}{\frac {\partial }{\partial t}}\psi (x,t).}"></span> </p><p>The "elementary solutions", as we referred to them above, are the so-called "stationary states" of the particle, and Fourier's algorithm, as described above, can still be used to solve the boundary value problem of the future evolution of <span class="texhtml mvar" style="font-style:italic;">ψ</span> given its values for <span class="texhtml"><i>t</i> = 0</span>. Neither of these approaches is of much practical use in quantum mechanics. Boundary value problems and the time-evolution of the wave function is not of much practical interest: it is the stationary states that are most important. </p><p>In relativistic quantum mechanics, Schrödinger's equation becomes a wave equation as was usual in classical physics, except that complex-valued waves are considered. A simple example, in the absence of interactions with other particles or fields, is the free one-dimensional Klein–Gordon–Schrödinger–Fock equation, this time in dimensionless units, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {\partial ^{2}}{\partial x^{2}}}+1\right)\psi (x,t)={\frac {\partial ^{2}}{\partial t^{2}}}\psi (x,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {\partial ^{2}}{\partial x^{2}}}+1\right)\psi (x,t)={\frac {\partial ^{2}}{\partial t^{2}}}\psi (x,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/356c1d560b7872590dfcf4fbacf885e84ad341a6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.194ex; height:6.343ex;" alt="{\displaystyle \left({\frac {\partial ^{2}}{\partial x^{2}}}+1\right)\psi (x,t)={\frac {\partial ^{2}}{\partial t^{2}}}\psi (x,t).}"></span> </p><p>This is, from the mathematical point of view, the same as the wave equation of classical physics solved above (but with a complex-valued wave, which makes no difference in the methods). This is of great use in quantum field theory: each separate Fourier component of a wave can be treated as a separate harmonic oscillator and then quantized, a procedure known as "second quantization". Fourier methods have been adapted to also deal with non-trivial interactions. </p><p>Finally, the <a href="/wiki/Quantum_harmonic_oscillator#Ladder_operator_method" title="Quantum harmonic oscillator">number operator</a> of the <a href="/wiki/Quantum_harmonic_oscillator" title="Quantum harmonic oscillator">quantum harmonic oscillator</a> can be interpreted, for example via the <a href="/wiki/Mehler_kernel#Physics_version" title="Mehler kernel">Mehler kernel</a>, as the <a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">generator</a> of the <a href="#Eigenfunctions">Fourier transform</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>.<sup id="cite_ref-auto_32-1" class="reference"><a href="#cite_note-auto-32"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Signal_processing">Signal processing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=57" title="Edit section: Signal processing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transform is used for the spectral analysis of time-series. The subject of statistical signal processing does not, however, usually apply the Fourier transformation to the signal itself. Even if a real signal is indeed transient, it has been found in practice advisable to model a signal by a function (or, alternatively, a stochastic process) which is stationary in the sense that its characteristic properties are constant over all time. The Fourier transform of such a function does not exist in the usual sense, and it has been found more useful for the analysis of signals to instead take the Fourier transform of its autocorrelation function. </p><p>The autocorrelation function <span class="texhtml mvar" style="font-style:italic;">R</span> of a function <span class="texhtml mvar" style="font-style:italic;">f</span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{f}(\tau )=\lim _{T\rightarrow \infty }{\frac {1}{2T}}\int _{-T}^{T}f(t)f(t+\tau )\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>T</mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{f}(\tau )=\lim _{T\rightarrow \infty }{\frac {1}{2T}}\int _{-T}^{T}f(t)f(t+\tau )\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5fc92d80f09707e5ee1c46f241cf9fbb50a547f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.197ex; height:6.343ex;" alt="{\displaystyle R_{f}(\tau )=\lim _{T\rightarrow \infty }{\frac {1}{2T}}\int _{-T}^{T}f(t)f(t+\tau )\,dt.}"></span> </p><p>This function is a function of the time-lag <span class="texhtml mvar" style="font-style:italic;">τ</span> elapsing between the values of <span class="texhtml mvar" style="font-style:italic;">f</span> to be correlated. </p><p>For most functions <span class="texhtml mvar" style="font-style:italic;">f</span> that occur in practice, <span class="texhtml mvar" style="font-style:italic;">R</span> is a bounded even function of the time-lag <span class="texhtml mvar" style="font-style:italic;">τ</span> and for typical noisy signals it turns out to be uniformly continuous with a maximum at <span class="texhtml"><i>τ</i> = 0</span>. </p><p>The autocorrelation function, more properly called the autocovariance function unless it is normalized in some appropriate fashion, measures the strength of the correlation between the values of <span class="texhtml mvar" style="font-style:italic;">f</span> separated by a time lag. This is a way of searching for the correlation of <span class="texhtml mvar" style="font-style:italic;">f</span> with its own past. It is useful even for other statistical tasks besides the analysis of signals. For example, if <span class="texhtml"><i>f</i>(<i>t</i>)</span> represents the temperature at time <span class="texhtml mvar" style="font-style:italic;">t</span>, one expects a strong correlation with the temperature at a time lag of 24 hours. </p><p>It possesses a Fourier transform, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{f}(\xi )=\int _{-\infty }^{\infty }R_{f}(\tau )e^{-i2\pi \xi \tau }\,d\tau .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{f}(\xi )=\int _{-\infty }^{\infty }R_{f}(\tau )e^{-i2\pi \xi \tau }\,d\tau .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5585cc5177d458dca7abfa5e9b8b7fb515e9b1cb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.267ex; height:6.009ex;" alt="{\displaystyle P_{f}(\xi )=\int _{-\infty }^{\infty }R_{f}(\tau )e^{-i2\pi \xi \tau }\,d\tau .}"></span> </p><p>This Fourier transform is called the <a href="/wiki/Spectral_density#Power_spectral_density" title="Spectral density">power spectral density</a> function of <span class="texhtml mvar" style="font-style:italic;">f</span>. (Unless all periodic components are first filtered out from <span class="texhtml mvar" style="font-style:italic;">f</span>, this integral will diverge, but it is easy to filter out such periodicities.) </p><p>The power spectrum, as indicated by this density function <span class="texhtml mvar" style="font-style:italic;">P</span>, measures the amount of variance contributed to the data by the frequency <span class="texhtml mvar" style="font-style:italic;">ξ</span>. In electrical signals, the variance is proportional to the average power (energy per unit time), and so the power spectrum describes how much the different frequencies contribute to the average power of the signal. This process is called the spectral analysis of time-series and is analogous to the usual analysis of variance of data that is not a time-series (<a href="/wiki/ANOVA" class="mw-redirect" title="ANOVA">ANOVA</a>). </p><p>Knowledge of which frequencies are "important" in this sense is crucial for the proper design of filters and for the proper evaluation of measuring apparatuses. It can also be useful for the scientific analysis of the phenomena responsible for producing the data. </p><p>The power spectrum of a signal can also be approximately measured directly by measuring the average power that remains in a signal after all the frequencies outside a narrow band have been filtered out. </p><p>Spectral analysis is carried out for visual signals as well. The power spectrum ignores all phase relations, which is good enough for many purposes, but for video signals other types of spectral analysis must also be employed, still using the Fourier transform as a tool. </p> <div class="mw-heading mw-heading2"><h2 id="Other_notations">Other notations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=58" title="Edit section: Other notations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Other common notations for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c12179a82497132d68a556a537ef57b46cbbf83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.538ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}(\xi )}"></span> include: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {f}}(\xi ),\ F(\xi ),\ {\mathcal {F}}\left(f\right)(\xi ),\ \left({\mathcal {F}}f\right)(\xi ),\ {\mathcal {F}}(f),\ {\mathcal {F}}\{f\},\ {\mathcal {F}}{\bigl (}f(t){\bigr )},\ {\mathcal {F}}{\bigl \{}f(t){\bigr \}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">{</mo> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">}</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {f}}(\xi ),\ F(\xi ),\ {\mathcal {F}}\left(f\right)(\xi ),\ \left({\mathcal {F}}f\right)(\xi ),\ {\mathcal {F}}(f),\ {\mathcal {F}}\{f\},\ {\mathcal {F}}{\bigl (}f(t){\bigr )},\ {\mathcal {F}}{\bigl \{}f(t){\bigr \}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c626f6f979558bd9084c00012956920952beb137" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:65.417ex; height:3.343ex;" alt="{\displaystyle {\tilde {f}}(\xi ),\ F(\xi ),\ {\mathcal {F}}\left(f\right)(\xi ),\ \left({\mathcal {F}}f\right)(\xi ),\ {\mathcal {F}}(f),\ {\mathcal {F}}\{f\},\ {\mathcal {F}}{\bigl (}f(t){\bigr )},\ {\mathcal {F}}{\bigl \{}f(t){\bigr \}}.}"></span> </p><p>In the sciences and engineering it is also common to make substitutions like these: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi \rightarrow f,\quad x\rightarrow t,\quad f\rightarrow x,\quad {\hat {f}}\rightarrow X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>f</mi> <mo>,</mo> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>t</mi> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi \rightarrow f,\quad x\rightarrow t,\quad f\rightarrow x,\quad {\hat {f}}\rightarrow X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99a7421704e52e9e335ec8166eb177a7210d6cc6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:35.938ex; height:3.176ex;" alt="{\displaystyle \xi \rightarrow f,\quad x\rightarrow t,\quad f\rightarrow x,\quad {\hat {f}}\rightarrow X.}"></span> </p><p>So the transform pair <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ {\hat {f}}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ {\hat {f}}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cb38d71da2c23f03006b608a37cae2fa26e6d41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.434ex; height:4.176ex;" alt="{\displaystyle f(x)\ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ {\hat {f}}(\xi )}"></span> can become <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)\ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ X(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>X</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)\ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ X(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/858a3b88136ceceebe84bc5f9486003c9a41a8ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.524ex; height:4.176ex;" alt="{\displaystyle x(t)\ {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\ X(f)}"></span> </p><p>A disadvantage of the capital letter notation is when expressing a transform such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f\cdot g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f\cdot g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7958fc7cccb80dbeee2f9b9d7f01622d38f309e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.074ex; height:3.343ex;" alt="{\displaystyle {\widehat {f\cdot g}}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f'}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f'}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a49770579012f63235d959305a6c5fc2a82dce1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.01ex; width:2.981ex; height:3.509ex;" alt="{\displaystyle {\widehat {f&#039;}},}"></span> which become the more awkward <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{f\cdot g\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{f\cdot g\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06208068776598b397c039b385dd541c75cafcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.325ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}\{f\cdot g\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{f'\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{f'\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5974e5904c4447aac2f04376ff607eedb8aa4174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.904ex; height:3.009ex;" alt="{\displaystyle {\mathcal {F}}\{f&#039;\}.}"></span> </p><p>In some contexts such as particle physics, the same symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> may be used for both for a function as well as it Fourier transform, with the two only distinguished by their <a href="/wiki/Argument_of_a_function" title="Argument of a function">argument</a> I.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k_{1}+k_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k_{1}+k_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67bcce27ed30ce33b34a1968c804b307d2f18e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.459ex; height:2.843ex;" alt="{\displaystyle f(k_{1}+k_{2})}"></span> would refer to the Fourier transform because of the momentum argument, while <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{0}+\pi {\vec {r}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{0}+\pi {\vec {r}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8a3241124d1886d982128c6d45a9b4454d807eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.867ex; height:2.843ex;" alt="{\displaystyle f(x_{0}+\pi {\vec {r}})}"></span> would refer to the original function because of the positional argument. Although tildes may be used as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6cb99679a4b79cb5ca3c242811bd91220c91f2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.009ex;" alt="{\displaystyle {\tilde {f}}}"></span> to indicate Fourier transforms, tildes may also be used to indicate a modification of a quantity with a more <a href="/wiki/Lorentz_invariant" class="mw-redirect" title="Lorentz invariant">Lorentz invariant</a> form, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {dk}}={\frac {dk}{(2\pi )^{3}2\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>d</mi> <mi>k</mi> </mrow> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>k</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mn>2</mn> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {dk}}={\frac {dk}{(2\pi )^{3}2\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/752aee376c172cd8f45590c7c9e779a293cb05e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.328ex; height:6.176ex;" alt="{\displaystyle {\tilde {dk}}={\frac {dk}{(2\pi )^{3}2\omega }}}"></span>, so care must be taken. Similarly, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span> often denotes the <a href="/wiki/Hilbert_transform" title="Hilbert transform">Hilbert transform</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. </p><p>The interpretation of the complex function <span class="texhtml"><i>f̂</i>(<i>ξ</i>)</span> may be aided by expressing it in <a href="/wiki/Polar_coordinate" class="mw-redirect" title="Polar coordinate">polar coordinate</a> form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\xi )=A(\xi )e^{i\varphi (\xi )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\xi )=A(\xi )e^{i\varphi (\xi )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0055a14c74932c1b4d8cea21eeebe53f832b5efe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.185ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}(\xi )=A(\xi )e^{i\varphi (\xi )}}"></span> in terms of the two real functions <span class="texhtml"><i>A</i>(<i>ξ</i>)</span> and <span class="texhtml"><i>φ</i>(<i>ξ</i>)</span> where: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(\xi )=\left|{\hat {f}}(\xi )\right|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(\xi )=\left|{\hat {f}}(\xi )\right|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51fd7058b1090db104e3220ec98e4f480b7edece" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.547ex; height:3.843ex;" alt="{\displaystyle A(\xi )=\left|{\hat {f}}(\xi )\right|,}"></span> is the <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (\xi )=\arg \left({\hat {f}}(\xi )\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>arg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (\xi )=\arg \left({\hat {f}}(\xi )\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d498b50a32866a93cb61d44b63b2e6a81fbcd75" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.655ex; height:4.843ex;" alt="{\displaystyle \varphi (\xi )=\arg \left({\hat {f}}(\xi )\right),}"></span> is the <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase</a> (see <a href="/wiki/Arg_(mathematics)" class="mw-redirect" title="Arg (mathematics)">arg function</a>). </p><p>Then the inverse transform can be written: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\int _{-\infty }^{\infty }A(\xi )\ e^{i{\bigl (}2\pi \xi x+\varphi (\xi ){\bigr )}}\,d\xi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>A</mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> <mo>+</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\int _{-\infty }^{\infty }A(\xi )\ e^{i{\bigl (}2\pi \xi x+\varphi (\xi ){\bigr )}}\,d\xi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3f9516925ac72f194e912b0f603281afc0e2a0b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.432ex; height:6.009ex;" alt="{\displaystyle f(x)=\int _{-\infty }^{\infty }A(\xi )\ e^{i{\bigl (}2\pi \xi x+\varphi (\xi ){\bigr )}}\,d\xi ,}"></span> which is a recombination of all the frequency components of <span class="texhtml"><i>f</i>(<i>x</i>)</span>. Each component is a complex <a href="/wiki/Sinusoid" class="mw-redirect" title="Sinusoid">sinusoid</a> of the form <span class="texhtml"><i>e</i><sup>2π<i>ixξ</i></sup></span> whose amplitude is <span class="texhtml"><i>A</i>(<i>ξ</i>)</span> and whose initial <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase angle</a> (at <span class="texhtml"><i>x</i> = 0</span>) is <span class="texhtml"><i>φ</i>(<i>ξ</i>)</span>. </p><p>The Fourier transform may be thought of as a mapping on function spaces. This mapping is here denoted <span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span> and <span class="texhtml"><span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span>(<i>f</i>)</span> is used to denote the Fourier transform of the function <span class="texhtml mvar" style="font-style:italic;">f</span>. This mapping is linear, which means that <span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span> can also be seen as a linear transformation on the function space and implies that the standard notation in linear algebra of applying a linear transformation to a vector (here the function <span class="texhtml"><i>f</i></span>) can be used to write <span class="texhtml"><span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span> <i>f</i></span> instead of <span class="texhtml"><span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span>(<i>f</i>)</span>. Since the result of applying the Fourier transform is again a function, we can be interested in the value of this function evaluated at the value <span class="texhtml mvar" style="font-style:italic;">ξ</span> for its variable, and this is denoted either as <span class="texhtml"><span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span> <i>f</i>(<i>ξ</i>)</span> or as <span class="texhtml">(<span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span> <i>f</i>)(<i>ξ</i>)</span>. Notice that in the former case, it is implicitly understood that <span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span> is applied first to <span class="texhtml mvar" style="font-style:italic;">f</span> and then the resulting function is evaluated at <span class="texhtml mvar" style="font-style:italic;">ξ</span>, not the other way around. </p><p>In mathematics and various applied sciences, it is often necessary to distinguish between a function <span class="texhtml mvar" style="font-style:italic;">f</span> and the value of <span class="texhtml mvar" style="font-style:italic;">f</span> when its variable equals <span class="texhtml mvar" style="font-style:italic;">x</span>, denoted <span class="texhtml"><i>f</i>(<i>x</i>)</span>. This means that a notation like <span class="texhtml"><span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span>(<i>f</i>(<i>x</i>))</span> formally can be interpreted as the Fourier transform of the values of <span class="texhtml mvar" style="font-style:italic;">f</span> at <span class="texhtml mvar" style="font-style:italic;">x</span>. Despite this flaw, the previous notation appears frequently, often when a particular function or a function of a particular variable is to be transformed. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}{\bigl (}\operatorname {rect} (x){\bigr )}=\operatorname {sinc} (\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mi>sinc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}{\bigl (}\operatorname {rect} (x){\bigr )}=\operatorname {sinc} (\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e835a41babdadd8485f4841769c216edff7bbef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.289ex; height:3.176ex;" alt="{\displaystyle {\mathcal {F}}{\bigl (}\operatorname {rect} (x){\bigr )}=\operatorname {sinc} (\xi )}"></span> is sometimes used to express that the Fourier transform of a <a href="/wiki/Rectangular_function" title="Rectangular function">rectangular function</a> is a <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a>, or <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}{\bigl (}f(x+x_{0}){\bigr )}={\mathcal {F}}{\bigl (}f(x){\bigr )}\,e^{i2\pi x_{0}\xi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}{\bigl (}f(x+x_{0}){\bigr )}={\mathcal {F}}{\bigl (}f(x){\bigr )}\,e^{i2\pi x_{0}\xi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bead7983a3d2aa5bcf5fefd721a1f82299df7de0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.805ex; height:3.343ex;" alt="{\displaystyle {\mathcal {F}}{\bigl (}f(x+x_{0}){\bigr )}={\mathcal {F}}{\bigl (}f(x){\bigr )}\,e^{i2\pi x_{0}\xi }}"></span> is used to express the shift property of the Fourier transform. </p><p>Notice, that the last example is only correct under the assumption that the transformed function is a function of <span class="texhtml mvar" style="font-style:italic;">x</span>, not of <span class="texhtml"><i>x</i><sub>0</sub></span>. </p><p>As discussed above, the <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> of a random variable is the same as the <a href="#Fourier–Stieltjes_transform">Fourier–Stieltjes transform</a> of its distribution measure, but in this context it is typical to take a different convention for the constants. Typically characteristic function is defined <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\left(e^{it\cdot X}\right)=\int e^{it\cdot x}\,d\mu _{X}(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>t</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>X</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>t</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\left(e^{it\cdot X}\right)=\int e^{it\cdot x}\,d\mu _{X}(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2910084ada38e0029db77258571d6f99323f33" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.603ex; height:5.676ex;" alt="{\displaystyle E\left(e^{it\cdot X}\right)=\int e^{it\cdot x}\,d\mu _{X}(x).}"></span> </p><p>As in the case of the "non-unitary angular frequency" convention above, the factor of 2<span class="texhtml mvar" style="font-style:italic;">π</span> appears in neither the normalizing constant nor the exponent. Unlike any of the conventions appearing above, this convention takes the opposite sign in the exponent. </p> <div class="mw-heading mw-heading2"><h2 id="Computation_methods">Computation methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=59" title="Edit section: Computation methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The appropriate computation method largely depends how the original mathematical function is represented and the desired form of the output function. In this section we consider both functions of a continuous variable, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10535d1a7a971ffeeb216605cb846099fab2e653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.064ex; height:2.843ex;" alt="{\displaystyle f(x),}"></span> and functions of a discrete variable (i.e. ordered pairs of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> values). For discrete-valued <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> the transform integral becomes a summation of sinusoids, which is still a continuous function of frequency (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span>). When the sinusoids are harmonically-related (i.e. when the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-values are spaced at integer multiples of an interval), the transform is called <a href="/wiki/Discrete-time_Fourier_transform" title="Discrete-time Fourier transform">discrete-time Fourier transform</a> (DTFT). </p> <div class="mw-heading mw-heading3"><h3 id="Discrete_Fourier_transforms_and_fast_Fourier_transforms">Discrete Fourier transforms and fast Fourier transforms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=60" title="Edit section: Discrete Fourier transforms and fast Fourier transforms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sampling the DTFT at equally-spaced values of frequency is the most common modern method of computation. Efficient procedures, depending on the frequency resolution needed, are described at <a href="/wiki/Discrete-time_Fourier_transform#Sampling_the_DTFT" title="Discrete-time Fourier transform">Discrete-time Fourier transform §&#160;Sampling the DTFT</a>. The <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a> (DFT), used there, is usually computed by a <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a> (FFT) algorithm. </p> <div class="mw-heading mw-heading3"><h3 id="Analytic_integration_of_closed-form_functions">Analytic integration of closed-form functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=61" title="Edit section: Analytic integration of closed-form functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tables of <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed-form</a> Fourier transforms, such as <a href="#Square-integrable_functions,_one-dimensional">§&#160;Square-integrable functions, one-dimensional</a> and <a href="/wiki/Discrete-time_Fourier_transform#Table_of_discrete-time_Fourier_transforms" title="Discrete-time Fourier transform">§&#160;Table of discrete-time Fourier transforms</a>, are created by mathematically evaluating the Fourier analysis integral (or summation) into another closed-form function of frequency (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span>).<sup id="cite_ref-Zwillinger-2014_62-0" class="reference"><a href="#cite_note-Zwillinger-2014-62"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> When mathematically possible, this provides a transform for a continuum of frequency values. </p><p>Many computer algebra systems such as <a href="/wiki/Matlab" class="mw-redirect" title="Matlab">Matlab</a> and <a href="/wiki/Mathematica" class="mw-redirect" title="Mathematica">Mathematica</a> that are capable of <a href="/wiki/Symbolic_integration" title="Symbolic integration">symbolic integration</a> are capable of computing Fourier transforms analytically. For example, to compute the Fourier transform of <span class="texhtml">cos(6π<i>t</i>) <i>e</i><sup>−π<i>t</i><sup>2</sup></sup></span> one might enter the command <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">integrate cos(6*pi*t) exp(−pi*t^2) exp(-i*2*pi*f*t) from -inf to inf</code> into <a href="/wiki/Wolfram_Alpha" class="mw-redirect" title="Wolfram Alpha">Wolfram Alpha</a>.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>note 7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Numerical_integration_of_closed-form_continuous_functions">Numerical integration of closed-form continuous functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=62" title="Edit section: Numerical integration of closed-form continuous functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Discrete sampling of the Fourier transform can also be done by <a href="/wiki/Numerical_integration" title="Numerical integration">numerical integration</a> of the definition at each value of frequency for which transform is desired.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> The numerical integration approach works on a much broader class of functions than the analytic approach. </p> <div class="mw-heading mw-heading3"><h3 id="Numerical_integration_of_a_series_of_ordered_pairs">Numerical integration of a series of ordered pairs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=63" title="Edit section: Numerical integration of a series of ordered pairs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the input function is a series of ordered pairs, numerical integration reduces to just a summation over the set of data pairs.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> The DTFT is a common subcase of this more general situation. </p> <div class="mw-heading mw-heading2"><h2 id="Tables_of_important_Fourier_transforms">Tables of important Fourier transforms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=64" title="Edit section: Tables of important Fourier transforms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following tables record some closed-form Fourier transforms. For functions <span class="texhtml"><i>f</i>(<i>x</i>)</span> and <span class="texhtml"><i>g</i>(<i>x</i>)</span> denote their Fourier transforms by <span class="texhtml"><i>f̂</i></span> and <span class="texhtml"><i>ĝ</i></span>. Only the three most common conventions are included. It may be useful to notice that entry 105 gives a relationship between the Fourier transform of a function and the original function, which can be seen as relating the Fourier transform and its inverse. </p> <div class="mw-heading mw-heading3"><h3 id="Functional_relationships,_one-dimensional"><span id="Functional_relationships.2C_one-dimensional"></span>Functional relationships, one-dimensional</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=65" title="Edit section: Functional relationships, one-dimensional"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transforms in this table may be found in <a href="#CITEREFErdélyi1954">Erdélyi (1954)</a> or <a href="#CITEREFKammler2000">Kammler (2000</a>, appendix). </p> <table class="wikitable"> <tbody><tr> <th></th> <th>Function</th> <th>Fourier transform <br /> unitary, ordinary frequency</th> <th>Fourier transform <br /> unitary, angular frequency</th> <th>Fourier transform <br /> non-unitary, angular frequency</th> <th>Remarks </th></tr> <tr> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78b2b66021c2cac2b5654495678c63ff142952e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.805ex; height:2.843ex;" alt="{\displaystyle f(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\xi )\triangleq {\widehat {f_{1}}}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\xi )\triangleq {\widehat {f_{1}}}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d39935a56ec3b5a6e8933dbba043189874ea941" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.987ex; margin-bottom: -0.185ex; width:22.628ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\xi )\triangleq {\widehat {f_{1}}}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\omega )\triangleq {\widehat {f_{2}}}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\omega )\triangleq {\widehat {f_{2}}}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/031d4f07e364b1bb4b429ce2cfcb669121808faa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:26.812ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\omega )\triangleq {\widehat {f_{2}}}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\omega )\triangleq {\widehat {f_{3}}}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\omega )\triangleq {\widehat {f_{3}}}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/900caef6aeeef7d97ca479d8fd6602fd8e0c030b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.987ex; margin-bottom: -0.185ex; width:21.158ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}&amp;{\widehat {f}}(\omega )\triangleq {\widehat {f_{3}}}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"></span> </td> <td>Definitions </td></tr> <tr> <td>101 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\,f(x)+b\,g(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\,f(x)+b\,g(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9424bce4a1d7a6bbe0e802e8627f7ddd13256381" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.902ex; height:2.843ex;" alt="{\displaystyle a\,f(x)+b\,g(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\,{\widehat {f}}(\xi )+b\,{\widehat {g}}(\xi )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\,{\widehat {f}}(\xi )+b\,{\widehat {g}}(\xi )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dc08b3a12d22b1f1000ce6db9cc4aa8556de75e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.91ex; height:3.509ex;" alt="{\displaystyle a\,{\widehat {f}}(\xi )+b\,{\widehat {g}}(\xi )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\,{\widehat {f}}(\omega )+b\,{\widehat {g}}(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\,{\widehat {f}}(\omega )+b\,{\widehat {g}}(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a528c84510360232e791d11cd97ea60b3db3103" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.742ex; height:3.509ex;" alt="{\displaystyle a\,{\widehat {f}}(\omega )+b\,{\widehat {g}}(\omega )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\,{\widehat {f}}(\omega )+b\,{\widehat {g}}(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\,{\widehat {f}}(\omega )+b\,{\widehat {g}}(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a528c84510360232e791d11cd97ea60b3db3103" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.742ex; height:3.509ex;" alt="{\displaystyle a\,{\widehat {f}}(\omega )+b\,{\widehat {g}}(\omega )\,}"></span> </td> <td>Linearity </td></tr> <tr> <td>102 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x-a)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x-a)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df7715e034cf2f100e5e18cd179d13f39414c8de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.875ex; height:2.843ex;" alt="{\displaystyle f(x-a)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-i2\pi \xi a}{\widehat {f}}(\xi )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>a</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-i2\pi \xi a}{\widehat {f}}(\xi )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7fb0a4bdcf8855cad006777d27a2e0461efb681" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.521ex; height:3.509ex;" alt="{\displaystyle e^{-i2\pi \xi a}{\widehat {f}}(\xi )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-ia\omega }{\widehat {f}}(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>a</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-ia\omega }{\widehat {f}}(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2bdd39d1518ca5fcd9a09de93138e80a49199ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.467ex; height:3.509ex;" alt="{\displaystyle e^{-ia\omega }{\widehat {f}}(\omega )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-ia\omega }{\widehat {f}}(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>a</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-ia\omega }{\widehat {f}}(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2bdd39d1518ca5fcd9a09de93138e80a49199ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.467ex; height:3.509ex;" alt="{\displaystyle e^{-ia\omega }{\widehat {f}}(\omega )\,}"></span> </td> <td>Shift in time domain </td></tr> <tr> <td>103 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)e^{iax}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)e^{iax}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b5a5c5939d4d7a4be7e34167d6b30ea2a760020" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.498ex; height:3.176ex;" alt="{\displaystyle f(x)e^{iax}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/922505ea0a8bf929cd037aed8c11d651d11f010e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.522ex; height:4.843ex;" alt="{\displaystyle {\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\omega -a)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\omega -a)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8631bc96e99bfb42de530ad9a8dfd62a38ef00dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.483ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\omega -a)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\omega -a)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\omega -a)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8631bc96e99bfb42de530ad9a8dfd62a38ef00dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.483ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\omega -a)\,}"></span> </td> <td>Shift in frequency domain, dual of 102 </td></tr> <tr> <td>104 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(ax)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(ax)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/111bb5a0bfcace9d4bda71be32da87798f5c1cb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.034ex; height:2.843ex;" alt="{\displaystyle f(ax)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\xi }{a}}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BE;<!-- ξ --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\xi }{a}}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99ae2be1a25afc9018e30da0ae4c139fb568cf9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.392ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\xi }{a}}\right)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\omega }{a}}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\omega }{a}}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c28ff9bc66d8c50205881392d1e34c0ee9a532e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.962ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\omega }{a}}\right)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\omega }{a}}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\omega }{a}}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c28ff9bc66d8c50205881392d1e34c0ee9a532e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.962ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{|a|}}{\widehat {f}}\left({\frac {\omega }{a}}\right)\,}"></span> </td> <td>Scaling in the time domain. If <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>a</i></span>&#124;</span> is large, then <span class="texhtml"><i>f</i>(<i>ax</i>)</span> is concentrated around 0 and<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\omega }{a}}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\omega }{a}}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be2f1a48f9dcd01e0322f2cc8dbf6f79b31954e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.89ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\omega }{a}}\right)\,}"></span><br />spreads out and flattens. </td></tr> <tr> <td>105 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f_{n}}}(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f_{n}}}(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7dd1477c790a184ab8ec9ca5da4cddbf33ebf08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.884ex; height:3.509ex;" alt="{\displaystyle {\widehat {f_{n}}}(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f_{1}}}(x)\ {\stackrel {{\mathcal {F}}_{1}}{\longleftrightarrow }}\ f(-\xi )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f_{1}}}(x)\ {\stackrel {{\mathcal {F}}_{1}}{\longleftrightarrow }}\ f(-\xi )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0704f808ad7d6cebe128f9a172a9754423a5ebb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.01ex; width:17.267ex; height:4.176ex;" alt="{\displaystyle {\widehat {f_{1}}}(x)\ {\stackrel {{\mathcal {F}}_{1}}{\longleftrightarrow }}\ f(-\xi )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f_{2}}}(x)\ {\stackrel {{\mathcal {F}}_{2}}{\longleftrightarrow }}\ f(-\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f_{2}}}(x)\ {\stackrel {{\mathcal {F}}_{2}}{\longleftrightarrow }}\ f(-\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b74ea3e8e5ba2e98f61156c02ee89462a69ab9a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.01ex; width:17.682ex; height:4.176ex;" alt="{\displaystyle {\widehat {f_{2}}}(x)\ {\stackrel {{\mathcal {F}}_{2}}{\longleftrightarrow }}\ f(-\omega )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f_{3}}}(x)\ {\stackrel {{\mathcal {F}}_{3}}{\longleftrightarrow }}\ 2\pi f(-\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f_{3}}}(x)\ {\stackrel {{\mathcal {F}}_{3}}{\longleftrightarrow }}\ 2\pi f(-\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3b16c12ff2fdbb745d4ffa06e486754c0875907" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.01ex; width:20.177ex; height:4.176ex;" alt="{\displaystyle {\widehat {f_{3}}}(x)\ {\stackrel {{\mathcal {F}}_{3}}{\longleftrightarrow }}\ 2\pi f(-\omega )\,}"></span> </td> <td>The same transform is applied twice, but <i>x</i> replaces the frequency variable (<i>ξ</i> or <i>ω</i>) after the first transform. </td></tr> <tr> <td>106 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{n}f(x)}{dx^{n}}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{n}f(x)}{dx^{n}}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d0a54d8e55c6c2bf3fbdc50891df151c2dfcce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.077ex; height:5.843ex;" alt="{\displaystyle {\frac {d^{n}f(x)}{dx^{n}}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i2\pi \xi )^{n}{\widehat {f}}(\xi )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i2\pi \xi )^{n}{\widehat {f}}(\xi )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/014d73aef42d5b6f17d65cb17981088bdc40f113" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.352ex; height:3.509ex;" alt="{\displaystyle (i2\pi \xi )^{n}{\widehat {f}}(\xi )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i\omega )^{n}{\widehat {f}}(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i\omega )^{n}{\widehat {f}}(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb7067214c7c442df051c39f7a3c80185ddb0dd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.689ex; height:3.509ex;" alt="{\displaystyle (i\omega )^{n}{\widehat {f}}(\omega )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i\omega )^{n}{\widehat {f}}(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i\omega )^{n}{\widehat {f}}(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb7067214c7c442df051c39f7a3c80185ddb0dd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.689ex; height:3.509ex;" alt="{\displaystyle (i\omega )^{n}{\widehat {f}}(\omega )\,}"></span> </td> <td>n<sup>th</sup>-order derivative. <p>As <span class="texhtml"><i>f</i></span> is a <a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz function</a> </p> </td></tr> <tr> <td>106.5 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{x}f(\tau )d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{x}f(\tau )d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13f68020f554eeb49cc58a188ae622a54bde5102" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.541ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{x}f(\tau )d\tau }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}(\xi )}{i2\pi \xi }}+C\,\delta (\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> <mspace width="thinmathspace" /> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}(\xi )}{i2\pi \xi }}+C\,\delta (\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3103b12fd1929645ba4eca63efab3118e696a4ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.328ex; height:6.676ex;" alt="{\displaystyle {\frac {{\widehat {f}}(\xi )}{i2\pi \xi }}+C\,\delta (\xi )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}(\omega )}{i\omega }}+{\sqrt {2\pi }}C\delta (\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mi>C</mi> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}(\omega )}{i\omega }}+{\sqrt {2\pi }}C\delta (\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47a68e813680cf13afbf82eaa08af679b147886b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.203ex; height:6.176ex;" alt="{\displaystyle {\frac {{\widehat {f}}(\omega )}{i\omega }}+{\sqrt {2\pi }}C\delta (\omega )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}(\omega )}{i\omega }}+2\pi C\delta (\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>C</mi> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}(\omega )}{i\omega }}+2\pi C\delta (\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f47d25eacccc83e6fa7a8acd32a0f5fff6abba25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.267ex; height:6.176ex;" alt="{\displaystyle {\frac {{\widehat {f}}(\omega )}{i\omega }}+2\pi C\delta (\omega )}"></span> </td> <td>Integration.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Note: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> is the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is the average (<a href="/wiki/DC_component" class="mw-redirect" title="DC component">DC</a>) value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }(f(x)-C)\,dx=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }(f(x)-C)\,dx=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8091d15a283d7c8a2961ebba9ab15ad576006f0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.474ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }(f(x)-C)\,dx=0}"></span> </td></tr> <tr> <td>107 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}f(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}f(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a3b71dbeac2bea1f8a23a0a53bed91f11141bdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.353ex; height:2.843ex;" alt="{\displaystyle x^{n}f(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}{\widehat {f}}(\xi )}{d\xi ^{n}}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}{\widehat {f}}(\xi )}{d\xi ^{n}}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f8f215cadc8e2fed661eb973991038dd29f99d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.24ex; height:6.843ex;" alt="{\displaystyle \left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}{\widehat {f}}(\xi )}{d\xi ^{n}}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{n}{\frac {d^{n}{\widehat {f}}(\omega )}{d\omega ^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{n}{\frac {d^{n}{\widehat {f}}(\omega )}{d\omega ^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb2dbcf7d5096502b5650ca453321402e2db0c54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.32ex; height:6.343ex;" alt="{\displaystyle i^{n}{\frac {d^{n}{\widehat {f}}(\omega )}{d\omega ^{n}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{n}{\frac {d^{n}{\widehat {f}}(\omega )}{d\omega ^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{n}{\frac {d^{n}{\widehat {f}}(\omega )}{d\omega ^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb2dbcf7d5096502b5650ca453321402e2db0c54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.32ex; height:6.343ex;" alt="{\displaystyle i^{n}{\frac {d^{n}{\widehat {f}}(\omega )}{d\omega ^{n}}}}"></span> </td> <td>This is the dual of 106 </td></tr> <tr> <td>108 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/434a18852bf258f44f2e3b4f4c687b33e37102f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.925ex; height:2.843ex;" alt="{\displaystyle (f*g)(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi ){\widehat {g}}(\xi )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi ){\widehat {g}}(\xi )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6698c9ffc5ebba936125c3a09e86a3b256084f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.068ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\xi ){\widehat {g}}(\xi )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}\ {\widehat {f}}(\omega ){\widehat {g}}(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}\ {\widehat {f}}(\omega ){\widehat {g}}(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9d1fd0a5f01c2e7a28cabe33eba88b45404fdb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.911ex; height:3.509ex;" alt="{\displaystyle {\sqrt {2\pi }}\ {\widehat {f}}(\omega ){\widehat {g}}(\omega )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\omega ){\widehat {g}}(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\omega ){\widehat {g}}(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/febc07d3226c12030e627d9ff92b703a206b6b0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.9ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\omega ){\widehat {g}}(\omega )\,}"></span> </td> <td>The notation <span class="texhtml"><i>f</i> ∗ <i>g</i></span> denotes the <a href="/wiki/Convolution" title="Convolution">convolution</a> of <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> — this rule is the <a href="/wiki/Convolution_theorem" title="Convolution theorem">convolution theorem</a> </td></tr> <tr> <td>109 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)g(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)g(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0793a5d394df8f22dc913ab9fd856cc869f20440" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.06ex; height:2.843ex;" alt="{\displaystyle f(x)g(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\widehat {f}}*{\widehat {g}}\right)(\xi )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\widehat {f}}*{\widehat {g}}\right)(\xi )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/974a30f4cda0b28fe407843391b0f18d8219b8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.586ex; height:4.843ex;" alt="{\displaystyle \left({\widehat {f}}*{\widehat {g}}\right)(\xi )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2\pi }}}\left({\widehat {f}}*{\widehat {g}}\right)(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2\pi }}}\left({\widehat {f}}*{\widehat {g}}\right)(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/161655edf2131f9c32eb58002a066f675ac168fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:17.656ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {2\pi }}}\left({\widehat {f}}*{\widehat {g}}\right)(\omega )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2\pi }}\left({\widehat {f}}*{\widehat {g}}\right)(\omega )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2\pi }}\left({\widehat {f}}*{\widehat {g}}\right)(\omega )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c99f1091da8efc3f07f5647dc699b77abbe5f5de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.72ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{2\pi }}\left({\widehat {f}}*{\widehat {g}}\right)(\omega )\,}"></span> </td> <td>This is the dual of 108 </td></tr> <tr> <td>110 </td> <td>For <span class="texhtml"><i>f</i>(<i>x</i>)</span> purely real </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\xi )={\overline {{\widehat {f}}(\xi )}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\xi )={\overline {{\widehat {f}}(\xi )}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eaa03948fc6041a0cf979e2eb5a219bb5d457b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.629ex; height:4.176ex;" alt="{\displaystyle {\widehat {f}}(-\xi )={\overline {{\widehat {f}}(\xi )}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\omega )={\overline {{\widehat {f}}(\omega )}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\omega )={\overline {{\widehat {f}}(\omega )}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2f26c94c42eca741887346d75c1a4f4173ca22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.461ex; height:4.176ex;" alt="{\displaystyle {\widehat {f}}(-\omega )={\overline {{\widehat {f}}(\omega )}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\omega )={\overline {{\widehat {f}}(\omega )}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\omega )={\overline {{\widehat {f}}(\omega )}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2f26c94c42eca741887346d75c1a4f4173ca22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.461ex; height:4.176ex;" alt="{\displaystyle {\widehat {f}}(-\omega )={\overline {{\widehat {f}}(\omega )}}\,}"></span> </td> <td>Hermitian symmetry. <span class="texhtml"><span style="text-decoration:overline;"><i>z</i></span></span> indicates the <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a>. </td></tr> <tr> <td>113 </td> <td>For <span class="texhtml"><i>f</i>(<i>x</i>)</span> purely imaginary </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\xi )=-{\overline {{\widehat {f}}(\xi )}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\xi )=-{\overline {{\widehat {f}}(\xi )}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aee0b2e7dd5f52f7d8b3a9fc724d83bce1cf107d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.438ex; height:4.176ex;" alt="{\displaystyle {\widehat {f}}(-\xi )=-{\overline {{\widehat {f}}(\xi )}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\omega )=-{\overline {{\widehat {f}}(\omega )}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\omega )=-{\overline {{\widehat {f}}(\omega )}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f495f0543a14d0594d2a8c7d1426b92c1154a52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.269ex; height:4.176ex;" alt="{\displaystyle {\widehat {f}}(-\omega )=-{\overline {{\widehat {f}}(\omega )}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(-\omega )=-{\overline {{\widehat {f}}(\omega )}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(-\omega )=-{\overline {{\widehat {f}}(\omega )}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f495f0543a14d0594d2a8c7d1426b92c1154a52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.269ex; height:4.176ex;" alt="{\displaystyle {\widehat {f}}(-\omega )=-{\overline {{\widehat {f}}(\omega )}}\,}"></span> </td> <td><span class="texhtml"><span style="text-decoration:overline;"><i>z</i></span></span> indicates the <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a>. </td></tr> <tr> <td>114 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f(x)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f(x)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d24103646428feba4311115a4dd47e947f44358f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.533ex; height:3.676ex;" alt="{\displaystyle {\overline {f(x)}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {{\widehat {f}}(-\xi )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {{\widehat {f}}(-\xi )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbfe1d544e95803de8a04e5dc9c9a06817e3975a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.533ex; height:4.176ex;" alt="{\displaystyle {\overline {{\widehat {f}}(-\xi )}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {{\widehat {f}}(-\omega )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {{\widehat {f}}(-\omega )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/998a8cce7bb5d33c45ce5450c6f4f0cf90ae2cb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.949ex; height:4.176ex;" alt="{\displaystyle {\overline {{\widehat {f}}(-\omega )}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {{\widehat {f}}(-\omega )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {{\widehat {f}}(-\omega )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/998a8cce7bb5d33c45ce5450c6f4f0cf90ae2cb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.949ex; height:4.176ex;" alt="{\displaystyle {\overline {{\widehat {f}}(-\omega )}}}"></span></td> <td><a href="/wiki/Complex_conjugate" title="Complex conjugate">Complex conjugation</a>, generalization of 110 and 113 </td></tr> <tr> <td>115 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\cos(ax)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\cos(ax)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c68500e07727bcc43d62d70726c172c21e7f49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.285ex; height:2.843ex;" alt="{\displaystyle f(x)\cos(ax)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)+{\widehat {f}}\left(\xi +{\frac {a}{2\pi }}\right)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)+{\widehat {f}}\left(\xi +{\frac {a}{2\pi }}\right)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e00b2f8192bdcc70471d24d9731d62bfb5d4069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.485ex; height:7.509ex;" alt="{\displaystyle {\frac {{\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)+{\widehat {f}}\left(\xi +{\frac {a}{2\pi }}\right)}{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}(\omega -a)+{\widehat {f}}(\omega +a)}{2}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}(\omega -a)+{\widehat {f}}(\omega +a)}{2}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07055b374f928c482c9fa4f4ba3ff056a3e5ff58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.256ex; height:6.176ex;" alt="{\displaystyle {\frac {{\widehat {f}}(\omega -a)+{\widehat {f}}(\omega +a)}{2}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}(\omega -a)+{\widehat {f}}(\omega +a)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}(\omega -a)+{\widehat {f}}(\omega +a)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d47504104332ce0ad3c43b793676078a7093b986" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.869ex; height:6.176ex;" alt="{\displaystyle {\frac {{\widehat {f}}(\omega -a)+{\widehat {f}}(\omega +a)}{2}}}"></span> </td> <td>This follows from rules 101 and 103 using <a href="/wiki/Euler%27s_formula" title="Euler&#39;s formula">Euler's formula</a>:<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(ax)={\frac {e^{iax}+e^{-iax}}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(ax)={\frac {e^{iax}+e^{-iax}}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c32bc4f95d1c7d0df1421d0cd3c842b040302d17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.566ex; height:5.676ex;" alt="{\displaystyle \cos(ax)={\frac {e^{iax}+e^{-iax}}{2}}.}"></span> </td></tr> <tr> <td>116 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\sin(ax)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\sin(ax)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db0ac7705e63a91a332ff572ba2d821f6a390fee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.029ex; height:2.843ex;" alt="{\displaystyle f(x)\sin(ax)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)-{\widehat {f}}\left(\xi +{\frac {a}{2\pi }}\right)}{2i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)-{\widehat {f}}\left(\xi +{\frac {a}{2\pi }}\right)}{2i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eee6cb36ceb490addc3240c7516bc2db1765297" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.485ex; height:7.509ex;" alt="{\displaystyle {\frac {{\widehat {f}}\left(\xi -{\frac {a}{2\pi }}\right)-{\widehat {f}}\left(\xi +{\frac {a}{2\pi }}\right)}{2i}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}(\omega -a)-{\widehat {f}}(\omega +a)}{2i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}(\omega -a)-{\widehat {f}}(\omega +a)}{2i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed33230bcd180d4ce535de5086d16b7cc4d4395e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.869ex; height:6.176ex;" alt="{\displaystyle {\frac {{\widehat {f}}(\omega -a)-{\widehat {f}}(\omega +a)}{2i}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {f}}(\omega -a)-{\widehat {f}}(\omega +a)}{2i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {f}}(\omega -a)-{\widehat {f}}(\omega +a)}{2i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed33230bcd180d4ce535de5086d16b7cc4d4395e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.869ex; height:6.176ex;" alt="{\displaystyle {\frac {{\widehat {f}}(\omega -a)-{\widehat {f}}(\omega +a)}{2i}}}"></span> </td> <td>This follows from 101 and 103 using <a href="/wiki/Euler%27s_formula" title="Euler&#39;s formula">Euler's formula</a>:<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(ax)={\frac {e^{iax}-e^{-iax}}{2i}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(ax)={\frac {e^{iax}-e^{-iax}}{2i}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2aebcf3f2435da6664e2bd570be8cb5e65373c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.311ex; height:5.676ex;" alt="{\displaystyle \sin(ax)={\frac {e^{iax}-e^{-iax}}{2i}}.}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Square-integrable_functions,_one-dimensional"><span id="Square-integrable_functions.2C_one-dimensional"></span>Square-integrable functions, one-dimensional</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=66" title="Edit section: Square-integrable functions, one-dimensional"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transforms in this table may be found in <a href="#CITEREFCampbellFoster1948">Campbell &amp; Foster (1948)</a>, <a href="#CITEREFErdélyi1954">Erdélyi (1954)</a>, or <a href="#CITEREFKammler2000">Kammler (2000</a>, appendix). </p> <table class="wikitable"> <tbody><tr> <th></th> <th>Function</th> <th>Fourier transform <br /> unitary, ordinary frequency</th> <th>Fourier transform <br /> unitary, angular frequency</th> <th>Fourier transform <br /> non-unitary, angular frequency</th> <th>Remarks </th></tr> <tr> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78b2b66021c2cac2b5654495678c63ff142952e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.805ex; height:2.843ex;" alt="{\displaystyle f(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi )\triangleq {\hat {f}}_{1}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi )\triangleq {\hat {f}}_{1}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/969a95df9806ad1eb9f1c854afaba1f947d81f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.936ex; margin-bottom: -0.236ex; width:22.628ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi )\triangleq {\hat {f}}_{1}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{2}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{2}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52ddf1bb65cf4f6667e4c97dd701404f26308cb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:26.812ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{2}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{3}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{3}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f10016c4aacf29d824cab8af653e0e21157785fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:21.158ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{3}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"></span> </td> <td>Definitions </td></tr> <tr> <td><span class="anchor" id="rect"></span> 201 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rect} (ax)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rect} (ax)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5900b8bd21aea1c79721b6c64b5c15d64a3fe7d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.637ex; height:2.843ex;" alt="{\displaystyle \operatorname {rect} (ax)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} \left({\frac {\xi }{a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>sinc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BE;<!-- ξ --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} \left({\frac {\xi }{a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a21396b9d9506b857fe48319c7f4df02b887ad87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.509ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} \left({\frac {\xi }{a}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {sinc} \left({\frac {\omega }{2\pi a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>sinc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {sinc} \left({\frac {\omega }{2\pi a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90fef38dc70790cf5eea41b8904652fb21a0d6e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.549ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {sinc} \left({\frac {\omega }{2\pi a}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} \left({\frac {\omega }{2\pi a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>sinc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} \left({\frac {\omega }{2\pi a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98a8502c5b8cd577814a0e2b11762b135e814a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.358ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} \left({\frac {\omega }{2\pi a}}\right)}"></span> </td> <td>The <a href="/wiki/Rectangular_function" title="Rectangular function">rectangular pulse</a> and the <i>normalized</i> <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a>, here defined as <span class="texhtml">sinc(<i>x</i>) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">sin(π<i>x</i>)</span><span class="sr-only">/</span><span class="den">π<i>x</i></span></span>&#8288;</span></span> </td></tr> <tr> <td>202 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sinc} (ax)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sinc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sinc} (ax)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85c9929c0b369303061aa6e2b09861ba6e95d6d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.644ex; height:2.843ex;" alt="{\displaystyle \operatorname {sinc} (ax)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}\,\operatorname {rect} \left({\frac {\xi }{a}}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BE;<!-- ξ --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}\,\operatorname {rect} \left({\frac {\xi }{a}}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb0335a2fa05d837219325879919e7840b4b0b84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.889ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{|a|}}\,\operatorname {rect} \left({\frac {\xi }{a}}\right)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {rect} \left({\frac {\omega }{2\pi a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {rect} \left({\frac {\omega }{2\pi a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e2bfe98add459fd340dfec05688ff1816245ed8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.542ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {rect} \left({\frac {\omega }{2\pi a}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}\,\operatorname {rect} \left({\frac {\omega }{2\pi a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}\,\operatorname {rect} \left({\frac {\omega }{2\pi a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1ac2580dcf156a90cbde09aeabcc98ffad32daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.351ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{|a|}}\,\operatorname {rect} \left({\frac {\omega }{2\pi a}}\right)}"></span> </td> <td>Dual of rule 201. The <a href="/wiki/Rectangular_function" title="Rectangular function">rectangular function</a> is an ideal <a href="/wiki/Low-pass_filter" title="Low-pass filter">low-pass filter</a>, and the <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a> is the <a href="/wiki/Anticausal_system" title="Anticausal system">non-causal</a> impulse response of such a filter. The <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a> is defined here as <span class="texhtml">sinc(<i>x</i>) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">sin(π<i>x</i>)</span><span class="sr-only">/</span><span class="den">π<i>x</i></span></span>&#8288;</span></span> </td></tr> <tr> <td>203 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sinc} ^{2}(ax)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sinc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sinc} ^{2}(ax)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a3eeb048450332ce0e09cad3b29ed1b61aee0a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.311ex; height:3.176ex;" alt="{\displaystyle \operatorname {sinc} ^{2}(ax)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}\,\operatorname {tri} \left({\frac {\xi }{a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>tri</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BE;<!-- ξ --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}\,\operatorname {tri} \left({\frac {\xi }{a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/050bfec21019bfff8c558722f1015bb328386f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:12.084ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{|a|}}\,\operatorname {tri} \left({\frac {\xi }{a}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {tri} \left({\frac {\omega }{2\pi a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>tri</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {tri} \left({\frac {\omega }{2\pi a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4580555650f0afa976e11a1c79aa6ce4040dea4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:18.124ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {tri} \left({\frac {\omega }{2\pi a}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}\,\operatorname {tri} \left({\frac {\omega }{2\pi a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>tri</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}\,\operatorname {tri} \left({\frac {\omega }{2\pi a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/792f5aab14288abbbe689c3274d076310e5765f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.933ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{|a|}}\,\operatorname {tri} \left({\frac {\omega }{2\pi a}}\right)}"></span> </td> <td>The function <span class="texhtml">tri(<i>x</i>)</span> is the <a href="/wiki/Triangular_function" title="Triangular function">triangular function</a> </td></tr> <tr> <td>204 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tri} (ax)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tri</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tri} (ax)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdee9659d4f8987bfd5e15058b5a2c84e4b76e1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.832ex; height:2.843ex;" alt="{\displaystyle \operatorname {tri} (ax)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} ^{2}\left({\frac {\xi }{a}}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>sinc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BE;<!-- ξ --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} ^{2}\left({\frac {\xi }{a}}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22aa0aa78cd8d4fde331001c8e259af045663a45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.95ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} ^{2}\left({\frac {\xi }{a}}\right)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>sinc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b17f28846951e5996c3f4a6fde32cab790d36c6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:20.603ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\,\operatorname {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>sinc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/549028ce18204042505ef79553031bd1fa34d346" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.412ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{|a|}}\,\operatorname {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)}"></span> </td> <td>Dual of rule 203. </td></tr> <tr> <td>205 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-ax}u(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mi>u</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-ax}u(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86ea3ebffabbae1fa3dd9d273a703ba5370a8fb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.26ex; height:3.009ex;" alt="{\displaystyle e^{-ax}u(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a+i2\pi \xi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a+i2\pi \xi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b04f51f9bfbddebbafead47309bf61b834ed19e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.233ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{a+i2\pi \xi }}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{{\sqrt {2\pi }}(a+i\omega )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{{\sqrt {2\pi }}(a+i\omega )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66e3cb590825e1f490e4ef00ac0f4788ad8be458" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.394ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{{\sqrt {2\pi }}(a+i\omega )}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a+i\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a+i\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1942220350b002e38eee6326512bb2479ebc0098" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.155ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{a+i\omega }}}"></span> </td> <td>The function <span class="texhtml"><i>u</i>(<i>x</i>)</span> is the <a href="/wiki/Heaviside_step_function" title="Heaviside step function">Heaviside unit step function</a> and <span class="texhtml"><i>a</i> &gt; 0</span>. </td></tr> <tr> <td>206 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\alpha x^{2}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\alpha x^{2}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38b752d2bcf4b8a8ee01e78ae77a2ad24d896ee6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.805ex; height:3.009ex;" alt="{\displaystyle e^{-\alpha x^{2}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\,e^{-{\frac {(\pi \xi )^{2}}{\alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03B1;<!-- α --></mi> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\,e^{-{\frac {(\pi \xi )^{2}}{\alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b95277378a6e90ccb0a82a26f5e3a791ab96180" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.66ex; height:6.509ex;" alt="{\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\,e^{-{\frac {(\pi \xi )^{2}}{\alpha }}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2\alpha }}}\,e^{-{\frac {\omega ^{2}}{4\alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03B1;<!-- α --></mi> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2\alpha }}}\,e^{-{\frac {\omega ^{2}}{4\alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721f0753fe72636915afb21102a03d737420b044" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:10.87ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {2\alpha }}}\,e^{-{\frac {\omega ^{2}}{4\alpha }}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\,e^{-{\frac {\omega ^{2}}{4\alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\,e^{-{\frac {\omega ^{2}}{4\alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/096ecb69bc8c8137c17376e365a8941228fb97bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.096ex; height:6.343ex;" alt="{\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\,e^{-{\frac {\omega ^{2}}{4\alpha }}}}"></span> </td> <td>This shows that, for the unitary Fourier transforms, the <a href="/wiki/Gaussian_function" title="Gaussian function">Gaussian function</a> <span class="texhtml"><i>e</i><sup>−<i>αx</i><sup>2</sup></sup></span> is its own Fourier transform for some choice of <span class="texhtml mvar" style="font-style:italic;">α</span>. For this to be integrable we must have <span class="texhtml">Re(<i>α</i>) &gt; 0</span>. </td></tr> <tr> <td>208 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-a|x|}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-a|x|}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1da7129dd682ad860a73fd3145aab20e001fadf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.706ex; height:2.843ex;" alt="{\displaystyle e^{-a|x|}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2a}{a^{2}+4\pi ^{2}\xi ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> </mrow> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2a}{a^{2}+4\pi ^{2}\xi ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d40a975d764eb9941a9f5f4858c9b09bb74e385b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.599ex; height:5.843ex;" alt="{\displaystyle {\frac {2a}{a^{2}+4\pi ^{2}\xi ^{2}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {2}{\pi }}}\,{\frac {a}{a^{2}+\omega ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {2}{\pi }}}\,{\frac {a}{a^{2}+\omega ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43d18739930da1c504f6b5302ab794f8f5f7b02b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.34ex; height:6.176ex;" alt="{\displaystyle {\sqrt {\frac {2}{\pi }}}\,{\frac {a}{a^{2}+\omega ^{2}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2a}{a^{2}+\omega ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> </mrow> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2a}{a^{2}+\omega ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/160b3490d077cf0ce5afbddf809f01a0e2cf39ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.461ex; height:5.676ex;" alt="{\displaystyle {\frac {2a}{a^{2}+\omega ^{2}}}}"></span> </td> <td>For <span class="texhtml">Re(<i>a</i>) &gt; 0</span>. That is, the Fourier transform of a <a href="/wiki/Laplace_distribution" title="Laplace distribution">two-sided decaying exponential function</a> is a <a href="/wiki/Lorentzian_function" class="mw-redirect" title="Lorentzian function">Lorentzian function</a>. </td></tr> <tr> <td>209 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sech} (ax)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sech</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sech} (ax)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f2e18489a8cf729be1acc54e94e00280cb4666d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.029ex; height:2.843ex;" alt="{\displaystyle \operatorname {sech} (ax)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi ^{2}}{a}}\xi \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mfrac> </mrow> <mi>sech</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>a</mi> </mfrac> </mrow> <mi>&#x03BE;<!-- ξ --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi ^{2}}{a}}\xi \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab639d17bcb51b9f42fd84e757e4e93777159bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.505ex; height:6.343ex;" alt="{\displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi ^{2}}{a}}\xi \right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a}}{\sqrt {\frac {\pi }{2}}}\operatorname {sech} \left({\frac {\pi }{2a}}\omega \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mi>sech</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>&#x03C9;<!-- ω --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a}}{\sqrt {\frac {\pi }{2}}}\operatorname {sech} \left({\frac {\pi }{2a}}\omega \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a7c391502f9cfdac6976a5dc84a32c7cbc1585b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.668ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{a}}{\sqrt {\frac {\pi }{2}}}\operatorname {sech} \left({\frac {\pi }{2a}}\omega \right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi }{2a}}\omega \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mfrac> </mrow> <mi>sech</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>&#x03C9;<!-- ω --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi }{2a}}\omega \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba0492081bed48b09186bf1fc88b22b3e88cf9ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.279ex; height:4.843ex;" alt="{\displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi }{2a}}\omega \right)}"></span> </td> <td><a href="/wiki/Hyperbolic_function" class="mw-redirect" title="Hyperbolic function">Hyperbolic secant</a> is its own Fourier transform </td></tr> <tr> <td>210 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-{\frac {a^{2}x^{2}}{2}}}H_{n}(ax)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-{\frac {a^{2}x^{2}}{2}}}H_{n}(ax)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98a1fe6cca47234d10ad440541ea2ec46b6029fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.407ex; height:4.509ex;" alt="{\displaystyle e^{-{\frac {a^{2}x^{2}}{2}}}H_{n}(ax)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\sqrt {2\pi }}(-i)^{n}}{a}}e^{-{\frac {2\pi ^{2}\xi ^{2}}{a^{2}}}}H_{n}\left({\frac {2\pi \xi }{a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mi>a</mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> </msup> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\sqrt {2\pi }}(-i)^{n}}{a}}e^{-{\frac {2\pi ^{2}\xi ^{2}}{a^{2}}}}H_{n}\left({\frac {2\pi \xi }{a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b2ba5272eb233049cb545d0772c9430f7fa88d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.282ex; height:6.843ex;" alt="{\displaystyle {\frac {{\sqrt {2\pi }}(-i)^{n}}{a}}e^{-{\frac {2\pi ^{2}\xi ^{2}}{a^{2}}}}H_{n}\left({\frac {2\pi \xi }{a}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(-i)^{n}}{a}}e^{-{\frac {\omega ^{2}}{2a^{2}}}}H_{n}\left({\frac {\omega }{a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mi>a</mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </msup> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(-i)^{n}}{a}}e^{-{\frac {\omega ^{2}}{2a^{2}}}}H_{n}\left({\frac {\omega }{a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42306c2bf9928bc4f9a0b6045444936e3d1dd9fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.673ex; height:6.009ex;" alt="{\displaystyle {\frac {(-i)^{n}}{a}}e^{-{\frac {\omega ^{2}}{2a^{2}}}}H_{n}\left({\frac {\omega }{a}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(-i)^{n}{\sqrt {2\pi }}}{a}}e^{-{\frac {\omega ^{2}}{2a^{2}}}}H_{n}\left({\frac {\omega }{a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> <mi>a</mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </msup> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(-i)^{n}{\sqrt {2\pi }}}{a}}e^{-{\frac {\omega ^{2}}{2a^{2}}}}H_{n}\left({\frac {\omega }{a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a4aa7015f0a2dbc22d57729ea8b69e0b3ad369f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.103ex; height:6.009ex;" alt="{\displaystyle {\frac {(-i)^{n}{\sqrt {2\pi }}}{a}}e^{-{\frac {\omega ^{2}}{2a^{2}}}}H_{n}\left({\frac {\omega }{a}}\right)}"></span> </td> <td><span class="texhtml"><i>H<sub>n</sub></i></span> is the <span class="texhtml mvar" style="font-style:italic;">n</span>th-order <a href="/wiki/Hermite_polynomial" class="mw-redirect" title="Hermite polynomial">Hermite polynomial</a>. If <span class="texhtml"><i>a</i> = 1</span> then the Gauss–Hermite functions are <a href="/wiki/Eigenfunction" title="Eigenfunction">eigenfunctions</a> of the Fourier transform operator. For a derivation, see <a href="/wiki/Hermite_polynomials#Hermite_functions_as_eigenfunctions_of_the_Fourier_transform" title="Hermite polynomials">Hermite polynomial</a>. The formula reduces to 206 for <span class="texhtml"><i>n</i> = 0</span>. </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Distributions,_one-dimensional"><span id="Distributions.2C_one-dimensional"></span>Distributions, one-dimensional</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=67" title="Edit section: Distributions, one-dimensional"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Fourier transforms in this table may be found in <a href="#CITEREFErdélyi1954">Erdélyi (1954)</a> or <a href="#CITEREFKammler2000">Kammler (2000</a>, appendix). </p> <table class="wikitable"> <tbody><tr> <th></th> <th>Function</th> <th>Fourier transform <br /> unitary, ordinary frequency</th> <th>Fourier transform <br /> unitary, angular frequency</th> <th>Fourier transform <br /> non-unitary, angular frequency</th> <th>Remarks </th></tr> <tr> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78b2b66021c2cac2b5654495678c63ff142952e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.805ex; height:2.843ex;" alt="{\displaystyle f(x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi )\triangleq {\hat {f}}_{1}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi )\triangleq {\hat {f}}_{1}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/969a95df9806ad1eb9f1c854afaba1f947d81f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.936ex; margin-bottom: -0.236ex; width:22.628ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi )\triangleq {\hat {f}}_{1}(\xi )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i2\pi \xi x}\,dx\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{2}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{2}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52ddf1bb65cf4f6667e4c97dd701404f26308cb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:26.812ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{2}(\omega )\\&amp;={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{3}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{3}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f10016c4aacf29d824cab8af653e0e21157785fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:21.158ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega )\triangleq {\hat {f}}_{3}(\omega )\\&amp;=\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx\end{aligned}}}"></span> </td> <td>Definitions </td></tr> <tr> <td>301 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfa1ae8fa7201e02499b48401ed1721b63d24d55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.888ex; height:2.843ex;" alt="{\displaystyle \delta (\xi )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}\,\delta (\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}\,\delta (\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6ac6261db3731f0c452500736f896d59c7a2ee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.121ex; height:3.176ex;" alt="{\displaystyle {\sqrt {2\pi }}\,\delta (\omega )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi \delta (\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi \delta (\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef675b4d7f05d2a0bba815c317dd2b36b3ec9db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.798ex; height:2.843ex;" alt="{\displaystyle 2\pi \delta (\omega )}"></span> </td> <td>The distribution <span class="texhtml"><i>δ</i>(<i>ξ</i>)</span> denotes the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a>. </td></tr> <tr> <td>302 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d32aa9afb3c45ae68c262ffa1089d8e9143e003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.575ex; height:2.843ex;" alt="{\displaystyle \delta (x)\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2\pi }}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2\pi }}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2adeddfedc8362c827aca3ae9efa7a82534c7acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:5.654ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {2\pi }}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td>Dual of rule 301. </td></tr> <tr> <td>303 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{iax}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{iax}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ad804a48ac2131e0928b33201545fd5a0e383ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.693ex; height:2.676ex;" alt="{\displaystyle e^{iax}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \left(\xi -{\frac {a}{2\pi }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \left(\xi -{\frac {a}{2\pi }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfaa5a9907b7a5f3472c495c40222927c35ce67e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.412ex; height:4.843ex;" alt="{\displaystyle \delta \left(\xi -{\frac {a}{2\pi }}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}\,\delta (\omega -a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}\,\delta (\omega -a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88171723f408cc38a6e5bcea862247f9ec0ec4c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.191ex; height:3.176ex;" alt="{\displaystyle {\sqrt {2\pi }}\,\delta (\omega -a)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi \delta (\omega -a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi \delta (\omega -a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f920ee7fa7610fb8efc43751c12597c4aa9192c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.868ex; height:2.843ex;" alt="{\displaystyle 2\pi \delta (\omega -a)}"></span> </td> <td>This follows from 103 and 301. </td></tr> <tr> <td>304 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(ax)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(ax)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3346b52ce56b4d7dacfd6628f42bf200c81b483" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.48ex; height:2.843ex;" alt="{\displaystyle \cos(ax)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\delta \left(\xi -{\frac {a}{2\pi }}\right)+\delta \left(\xi +{\frac {a}{2\pi }}\right)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\delta \left(\xi -{\frac {a}{2\pi }}\right)+\delta \left(\xi +{\frac {a}{2\pi }}\right)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77818020961ff8051d065f665936718ee17bbc41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.04ex; height:7.509ex;" alt="{\displaystyle {\frac {\delta \left(\xi -{\frac {a}{2\pi }}\right)+\delta \left(\xi +{\frac {a}{2\pi }}\right)}{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}\,{\frac {\delta (\omega -a)+\delta (\omega +a)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}\,{\frac {\delta (\omega -a)+\delta (\omega +a)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/362327460f5cf628f2a71b9e63e19968c011766f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.242ex; height:5.676ex;" alt="{\displaystyle {\sqrt {2\pi }}\,{\frac {\delta (\omega -a)+\delta (\omega +a)}{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi \left(\delta (\omega -a)+\delta (\omega +a)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi \left(\delta (\omega -a)+\delta (\omega +a)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9b94ca3c80dbce9a4a6017a727a4e02561858e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.117ex; height:2.843ex;" alt="{\displaystyle \pi \left(\delta (\omega -a)+\delta (\omega +a)\right)}"></span> </td> <td>This follows from rules 101 and 303 using <a href="/wiki/Euler%27s_formula" title="Euler&#39;s formula">Euler's formula</a>:<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(ax)={\frac {e^{iax}+e^{-iax}}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(ax)={\frac {e^{iax}+e^{-iax}}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c32bc4f95d1c7d0df1421d0cd3c842b040302d17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.566ex; height:5.676ex;" alt="{\displaystyle \cos(ax)={\frac {e^{iax}+e^{-iax}}{2}}.}"></span> </td></tr> <tr> <td>305 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(ax)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(ax)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30a2961dd2164afd52abcc2f13d7d73badb41af3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.224ex; height:2.843ex;" alt="{\displaystyle \sin(ax)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\delta \left(\xi -{\frac {a}{2\pi }}\right)-\delta \left(\xi +{\frac {a}{2\pi }}\right)}{2i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\delta \left(\xi -{\frac {a}{2\pi }}\right)-\delta \left(\xi +{\frac {a}{2\pi }}\right)}{2i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79c5328cadbccdac20dddb5a5f9daacab0ca7ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.04ex; height:7.509ex;" alt="{\displaystyle {\frac {\delta \left(\xi -{\frac {a}{2\pi }}\right)-\delta \left(\xi +{\frac {a}{2\pi }}\right)}{2i}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}\,{\frac {\delta (\omega -a)-\delta (\omega +a)}{2i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}\,{\frac {\delta (\omega -a)-\delta (\omega +a)}{2i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50ce01018930f51b6502c2340f225fbcbe6f071b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.242ex; height:5.676ex;" alt="{\displaystyle {\sqrt {2\pi }}\,{\frac {\delta (\omega -a)-\delta (\omega +a)}{2i}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i\pi {\bigl (}\delta (\omega -a)-\delta (\omega +a){\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i\pi {\bigl (}\delta (\omega -a)-\delta (\omega +a){\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/859efd1c6138adee06277007bf5ed8dc370c0715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.661ex; height:3.176ex;" alt="{\displaystyle -i\pi {\bigl (}\delta (\omega -a)-\delta (\omega +a){\bigr )}}"></span> </td> <td>This follows from 101 and 303 using<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(ax)={\frac {e^{iax}-e^{-iax}}{2i}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(ax)={\frac {e^{iax}-e^{-iax}}{2i}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2aebcf3f2435da6664e2bd570be8cb5e65373c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.311ex; height:5.676ex;" alt="{\displaystyle \sin(ax)={\frac {e^{iax}-e^{-iax}}{2i}}.}"></span> </td></tr> <tr> <td>306 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \left(ax^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \left(ax^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ce1cff2a07e5f748f5b2be45142b75f36e7e53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.855ex; height:3.343ex;" alt="{\displaystyle \cos \left(ax^{2}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\pi ^{2}\xi ^{2}}{a}}-{\frac {\pi }{4}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mfrac> </msqrt> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\pi ^{2}\xi ^{2}}{a}}-{\frac {\pi }{4}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06772eaa33b02fa7285a25b37d6850d6a6588574" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.732ex; height:6.509ex;" alt="{\displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\pi ^{2}\xi ^{2}}{a}}-{\frac {\pi }{4}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2a}}}\cos \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>a</mi> </msqrt> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2a}}}\cos \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c228f28a31e9fafe2405643f6260533ec17033a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:20.428ex; height:6.676ex;" alt="{\displaystyle {\frac {1}{\sqrt {2a}}}\cos \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mfrac> </msqrt> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40ddf1e97d0f2194579fd9e021d986e7296f8523" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.756ex; height:6.509ex;" alt="{\displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}"></span> </td> <td>This follows from 101 and 207 using<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(ax^{2})={\frac {e^{iax^{2}}+e^{-iax^{2}}}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(ax^{2})={\frac {e^{iax^{2}}+e^{-iax^{2}}}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bb2373b87886338d4bbd1a43d96d3e39539a8c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.284ex; height:6.009ex;" alt="{\displaystyle \cos(ax^{2})={\frac {e^{iax^{2}}+e^{-iax^{2}}}{2}}.}"></span> </td></tr> <tr> <td>307 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \left(ax^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \left(ax^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4b8e011870f6d51b39617ccd71fda9374cf5bb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.599ex; height:3.343ex;" alt="{\displaystyle \sin \left(ax^{2}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\pi ^{2}\xi ^{2}}{a}}-{\frac {\pi }{4}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mfrac> </msqrt> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\pi ^{2}\xi ^{2}}{a}}-{\frac {\pi }{4}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4284102942b0fec287c718cc8ca87fbc5531fec4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.285ex; height:6.509ex;" alt="{\displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\pi ^{2}\xi ^{2}}{a}}-{\frac {\pi }{4}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {-1}{\sqrt {2a}}}\sin \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <msqrt> <mn>2</mn> <mi>a</mi> </msqrt> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {-1}{\sqrt {2a}}}\sin \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0bc64ccfdd567f97fc914fb1adb53c19099b559" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:20.173ex; height:6.676ex;" alt="{\displaystyle {\frac {-1}{\sqrt {2a}}}\sin \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> </mfrac> </msqrt> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d601e49d8e43653f0627c8c07fe418e36cdf29f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.309ex; height:6.509ex;" alt="{\displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}"></span> </td> <td>This follows from 101 and 207 using<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(ax^{2})={\frac {e^{iax^{2}}-e^{-iax^{2}}}{2i}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(ax^{2})={\frac {e^{iax^{2}}-e^{-iax^{2}}}{2i}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/185b9de6b40219504af663171d369085cb29c602" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.028ex; height:6.009ex;" alt="{\displaystyle \sin(ax^{2})={\frac {e^{iax^{2}}-e^{-iax^{2}}}{2i}}.}"></span> </td></tr> <tr> <td>308 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\pi i\alpha x^{2}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\pi i\alpha x^{2}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec0cbfc5cfcce4a056af0745fc84b6ec7d41f1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.314ex; height:3.009ex;" alt="{\displaystyle e^{-\pi i\alpha x^{2}}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {\alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\pi \xi ^{2}}{\alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>&#x03B1;<!-- α --></mi> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03B1;<!-- α --></mi> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {\alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\pi \xi ^{2}}{\alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/639d641b1673e7dc96726453f99769e6f5f3fbb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:14.287ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {\alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\pi \xi ^{2}}{\alpha }}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2\pi \alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\omega ^{2}}{4\pi \alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2\pi \alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\omega ^{2}}{4\pi \alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b39a6147c57f9d96b7753fee86301d5b20cf6fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:16.909ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {2\pi \alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\omega ^{2}}{4\pi \alpha }}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {\alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\omega ^{2}}{4\pi \alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>&#x03B1;<!-- α --></mi> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {\alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\omega ^{2}}{4\pi \alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301a6e25e1214b1c8e905d10938560794c188d2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:14.415ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {\alpha }}}\,e^{-i{\frac {\pi }{4}}}e^{i{\frac {\omega ^{2}}{4\pi \alpha }}}}"></span> </td> <td>Here it is assumed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> is real. For the case that alpha is complex see table entry 206 above. </td></tr> <tr> <td>309 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f3d915f89551e1d02eb03af9b8b0a0a41622cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.935ex; height:2.343ex;" alt="{\displaystyle x^{n}\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {i}{2\pi }}\right)^{n}\delta ^{(n)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {i}{2\pi }}\right)^{n}\delta ^{(n)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a87cb4b07489344585f769b71361360213cfba3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.361ex; height:6.176ex;" alt="{\displaystyle \left({\frac {i}{2\pi }}\right)^{n}\delta ^{(n)}(\xi )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{n}{\sqrt {2\pi }}\delta ^{(n)}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{n}{\sqrt {2\pi }}\delta ^{(n)}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d776a55ffac33eecc15f9977ddff7affc6404fd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.258ex; height:3.343ex;" alt="{\displaystyle i^{n}{\sqrt {2\pi }}\delta ^{(n)}(\omega )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi i^{n}\delta ^{(n)}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi i^{n}\delta ^{(n)}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eb301f0d79e1ca7a1d3b7d615d1601c01354e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.322ex; height:3.343ex;" alt="{\displaystyle 2\pi i^{n}\delta ^{(n)}(\omega )}"></span> </td> <td>Here, <span class="texhtml mvar" style="font-style:italic;">n</span> is a <a href="/wiki/Natural_number" title="Natural number">natural number</a> and <span class="texhtml"><i>δ</i><span style="padding-left:0.12em;"><sup>(<i>n</i>)</sup></span>(<i>ξ</i>)</span> is the <span class="texhtml mvar" style="font-style:italic;">n</span>th distribution derivative of the Dirac delta function. This rule follows from rules 107 and 301. Combining this rule with 101, we can transform all <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>. </td></tr> <tr> <td>310 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ^{(n)}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ^{(n)}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76e3a1ff0aa1bc20652548e764a48e54d626cdb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.69ex; height:3.343ex;" alt="{\displaystyle \delta ^{(n)}(x)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i2\pi \xi )^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i2\pi \xi )^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8589a73e3468a4b6987e30c6e06f7a9cb711d48e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.355ex; height:2.843ex;" alt="{\displaystyle (i2\pi \xi )^{n}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(i\omega )^{n}}{\sqrt {2\pi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(i\omega )^{n}}{\sqrt {2\pi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9ee6c574b19bcae84068e61460405ec5689049d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:6.112ex; height:6.676ex;" alt="{\displaystyle {\frac {(i\omega )^{n}}{\sqrt {2\pi }}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i\omega )^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i\omega )^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4f46fb8ed5e8a6ad1404c5675d4fb960ab9e011" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.276ex; height:2.843ex;" alt="{\displaystyle (i\omega )^{n}}"></span> </td> <td>Dual of rule 309. <span class="texhtml"><i>δ</i><span style="padding-left:0.12em;"><sup>(<i>n</i>)</sup></span>(<i>ξ</i>)</span> is the <span class="texhtml mvar" style="font-style:italic;">n</span>th distribution derivative of the Dirac delta function. This rule follows from 106 and 302. </td></tr> <tr> <td>311 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68f89eaf83a3811c69adb4bf1119bafd661a4c08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.166ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{x}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i\pi \operatorname {sgn}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i\pi \operatorname {sgn}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfab5cfc834886d4f1c688b3bc3005b56c0fef8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.54ex; height:2.843ex;" alt="{\displaystyle -i\pi \operatorname {sgn}(\xi )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i{\sqrt {\frac {\pi }{2}}}\operatorname {sgn}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i{\sqrt {\frac {\pi }{2}}}\operatorname {sgn}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5e26398cebc36545cb60095f1c0db49877f06d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.116ex; height:6.343ex;" alt="{\displaystyle -i{\sqrt {\frac {\pi }{2}}}\operatorname {sgn}(\omega )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i\pi \operatorname {sgn}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i\pi \operatorname {sgn}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8ce5791b8ee08d2830f6b08709fbe359ae401a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.956ex; height:2.843ex;" alt="{\displaystyle -i\pi \operatorname {sgn}(\omega )}"></span> </td> <td>Here <span class="texhtml">sgn(<i>ξ</i>)</span> is the <a href="/wiki/Sign_function" title="Sign function">sign function</a>. Note that <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>x</i></span></span>&#8288;</span></span> is not a distribution. It is necessary to use the <a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">Cauchy principal value</a> when testing against <a href="/wiki/Schwartz_functions" class="mw-redirect" title="Schwartz functions">Schwartz functions</a>. This rule is useful in studying the <a href="/wiki/Hilbert_transform" title="Hilbert transform">Hilbert transform</a>. </td></tr> <tr> <td>312 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\frac {1}{x^{n}}}\\&amp;:={\frac {(-1)^{n-1}}{(n-1)!}}{\frac {d^{n}}{dx^{n}}}\log |x|\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\frac {1}{x^{n}}}\\&amp;:={\frac {(-1)^{n-1}}{(n-1)!}}{\frac {d^{n}}{dx^{n}}}\log |x|\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38d4f501418438356dae9c3a37d9d44ee8764def" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:24.401ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\frac {1}{x^{n}}}\\&amp;:={\frac {(-1)^{n-1}}{(n-1)!}}{\frac {d^{n}}{dx^{n}}}\log |x|\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i\pi {\frac {(-i2\pi \xi )^{n-1}}{(n-1)!}}\operatorname {sgn}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i\pi {\frac {(-i2\pi \xi )^{n-1}}{(n-1)!}}\operatorname {sgn}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bec16b4d5c255a5960cc082714ce3d0cd2339d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.64ex; height:6.676ex;" alt="{\displaystyle -i\pi {\frac {(-i2\pi \xi )^{n-1}}{(n-1)!}}\operatorname {sgn}(\xi )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i{\sqrt {\frac {\pi }{2}}}\,{\frac {(-i\omega )^{n-1}}{(n-1)!}}\operatorname {sgn}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i{\sqrt {\frac {\pi }{2}}}\,{\frac {(-i\omega )^{n-1}}{(n-1)!}}\operatorname {sgn}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de00cddc208537e4840bc81bed07bf1853564731" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.524ex; height:6.676ex;" alt="{\displaystyle -i{\sqrt {\frac {\pi }{2}}}\,{\frac {(-i\omega )^{n-1}}{(n-1)!}}\operatorname {sgn}(\omega )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i\pi {\frac {(-i\omega )^{n-1}}{(n-1)!}}\operatorname {sgn}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i\pi {\frac {(-i\omega )^{n-1}}{(n-1)!}}\operatorname {sgn}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87601694edfe415336420462eadb425ac12b518" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.977ex; height:6.676ex;" alt="{\displaystyle -i\pi {\frac {(-i\omega )^{n-1}}{(n-1)!}}\operatorname {sgn}(\omega )}"></span> </td> <td><span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>x</i><sup><i>n</i></sup></span></span>&#8288;</span></span> is the <a href="/wiki/Homogeneous_distribution" title="Homogeneous distribution">homogeneous distribution</a> defined by the distributional derivative<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(-1)^{n-1}}{(n-1)!}}{\frac {d^{n}}{dx^{n}}}\log |x|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(-1)^{n-1}}{(n-1)!}}{\frac {d^{n}}{dx^{n}}}\log |x|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fbd046db23b0faae96a6808db96f0451730adaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.904ex; height:6.676ex;" alt="{\displaystyle {\frac {(-1)^{n-1}}{(n-1)!}}{\frac {d^{n}}{dx^{n}}}\log |x|}"></span> </td></tr> <tr> <td>313 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|^{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|^{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f04c512b1f3f2fa023a6c7d6ee0f4f90fc42ca4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.908ex; height:3.009ex;" alt="{\displaystyle |x|^{\alpha }}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {2\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|2\pi \xi |^{\alpha +1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {2\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|2\pi \xi |^{\alpha +1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43dc1bf1e41052cbd2ac55281696a8ddc081a898" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.762ex; height:7.343ex;" alt="{\displaystyle -{\frac {2\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|2\pi \xi |^{\alpha +1}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {-2}{\sqrt {2\pi }}}\,{\frac {\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|\omega |^{\alpha +1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C9;<!-- ω --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {-2}{\sqrt {2\pi }}}\,{\frac {\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|\omega |^{\alpha +1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec127ff3da123a91d9aa791d424b9332b14eacf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.058ex; height:7.343ex;" alt="{\displaystyle {\frac {-2}{\sqrt {2\pi }}}\,{\frac {\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|\omega |^{\alpha +1}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {2\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|\omega |^{\alpha +1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C9;<!-- ω --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {2\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|\omega |^{\alpha +1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddcd6f243a60ed70686efac80b290f8107bd79bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.762ex; height:7.343ex;" alt="{\displaystyle -{\frac {2\sin \left({\frac {\pi \alpha }{2}}\right)\Gamma (\alpha +1)}{|\omega |^{\alpha +1}}}}"></span> </td> <td>This formula is valid for <span class="texhtml">0 &gt; <i>α</i> &gt; −1</span>. For <span class="texhtml"><i>α</i> &gt; 0</span> some singular terms arise at the origin that can be found by differentiating 320. If <span class="texhtml">Re <i>α</i> &gt; −1</span>, then <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124;<sup><i>α</i></sup></span> is a locally integrable function, and so a tempered distribution. The function <span class="texhtml"><i>α</i> ↦ &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124;<sup><i>α</i></sup></span> is a holomorphic function from the right half-plane to the space of tempered distributions. It admits a unique meromorphic extension to a tempered distribution, also denoted <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124;<sup><i>α</i></sup></span> for <span class="texhtml"><i>α</i> ≠ −1, −3, ...</span> (See <a href="/wiki/Homogeneous_distribution" title="Homogeneous distribution">homogeneous distribution</a>.) </td></tr> <tr> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {|x|}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {|x|}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95fb21321232c7e90cbb324acba03b7c77558bdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:5.783ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {|x|}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {|\xi |}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {|\xi |}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01c596184c0acad38884181ece1721296cea871d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:5.484ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {|\xi |}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {|\omega |}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {|\omega |}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afc23f885bf55932dec98c455c757a31b33e32ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:5.899ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {|\omega |}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {2\pi }}{\sqrt {|\omega |}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {2\pi }}{\sqrt {|\omega |}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b9b6aca220b242f77aeba0486ff895a32fd5cb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:5.899ex; height:7.176ex;" alt="{\displaystyle {\frac {\sqrt {2\pi }}{\sqrt {|\omega |}}}}"></span> </td> <td>Special case of 313. </td></tr> <tr> <td>314 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sgn}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sgn}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69139aa98adb4695acf691e7a04060fcd40b255c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.51ex; height:2.843ex;" alt="{\displaystyle \operatorname {sgn}(x)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{i\pi \xi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{i\pi \xi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4873557be2b4f85a6924fdd36b38773cadbe347d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:4.001ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{i\pi \xi }}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {1}{i\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {1}{i\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a9be13f4a32fd974f9b7a4c5738198cd75b50ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:7.576ex; height:6.176ex;" alt="{\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {1}{i\omega }}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2}{i\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2}{i\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/148ea2fe841a6e651044bd13a4e3fa99abf5aa51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:3.084ex; height:5.176ex;" alt="{\displaystyle {\frac {2}{i\omega }}}"></span> </td> <td>The dual of rule 311. This time the Fourier transforms need to be considered as a <a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">Cauchy principal value</a>. </td></tr> <tr> <td>315 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1e5ff65a28eed29d36ddae9c6ae3b596fd14370" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.469ex; height:2.843ex;" alt="{\displaystyle u(x)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}\left({\frac {1}{i\pi \xi }}+\delta (\xi )\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}\left({\frac {1}{i\pi \xi }}+\delta (\xi )\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/014b632cebbe8a42b6be7ff1a1b2e3223c5ef96a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.536ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{2}}\left({\frac {1}{i\pi \xi }}+\delta (\xi )\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {\pi }{2}}}\left({\frac {1}{i\pi \omega }}+\delta (\omega )\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {\pi }{2}}}\left({\frac {1}{i\pi \omega }}+\delta (\omega )\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e7dbac00766aae0a6aa1acc11b2b57b539cd72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.861ex; height:6.343ex;" alt="{\displaystyle {\sqrt {\frac {\pi }{2}}}\left({\frac {1}{i\pi \omega }}+\delta (\omega )\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi \left({\frac {1}{i\pi \omega }}+\delta (\omega )\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi \left({\frac {1}{i\pi \omega }}+\delta (\omega )\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5690a870654d0a187663e5836d664cdc5cda1ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.701ex; height:6.176ex;" alt="{\displaystyle \pi \left({\frac {1}{i\pi \omega }}+\delta (\omega )\right)}"></span> </td> <td>The function <span class="texhtml"><i>u</i>(<i>x</i>)</span> is the Heaviside <a href="/wiki/Heaviside_step_function" title="Heaviside step function">unit step function</a>; this follows from rules 101, 301, and 314. </td></tr> <tr> <td>316 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=-\infty }^{\infty }\delta (x-nT)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=-\infty }^{\infty }\delta (x-nT)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84f2a50240abb18299cbaca53184b99059e193d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.633ex; height:6.843ex;" alt="{\displaystyle \sum _{n=-\infty }^{\infty }\delta (x-nT)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{T}}\sum _{k=-\infty }^{\infty }\delta \left(\xi -{\frac {k}{T}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>T</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{T}}\sum _{k=-\infty }^{\infty }\delta \left(\xi -{\frac {k}{T}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04545ff52d1cd0814744d791fa4fd2de72a2ebf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:19.503ex; height:7.009ex;" alt="{\displaystyle {\frac {1}{T}}\sum _{k=-\infty }^{\infty }\delta \left(\xi -{\frac {k}{T}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {2\pi }}{T}}\sum _{k=-\infty }^{\infty }\delta \left(\omega -{\frac {2\pi k}{T}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> <mi>T</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> </mrow> <mi>T</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {2\pi }}{T}}\sum _{k=-\infty }^{\infty }\delta \left(\omega -{\frac {2\pi k}{T}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d9cf0ccf0fcfd9f40fc623e70e2024385662506" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.782ex; height:7.176ex;" alt="{\displaystyle {\frac {\sqrt {2\pi }}{T}}\sum _{k=-\infty }^{\infty }\delta \left(\omega -{\frac {2\pi k}{T}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\pi }{T}}\sum _{k=-\infty }^{\infty }\delta \left(\omega -{\frac {2\pi k}{T}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mi>T</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> </mrow> <mi>T</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\pi }{T}}\sum _{k=-\infty }^{\infty }\delta \left(\omega -{\frac {2\pi k}{T}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bda3cea94175b1e35e4fcbd10178db9489e87f0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.846ex; height:7.009ex;" alt="{\displaystyle {\frac {2\pi }{T}}\sum _{k=-\infty }^{\infty }\delta \left(\omega -{\frac {2\pi k}{T}}\right)}"></span> </td> <td>This function is known as the <a href="/wiki/Dirac_comb" title="Dirac comb">Dirac comb</a> function. This result can be derived from 302 and 102, together with the fact that<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\sum _{n=-\infty }^{\infty }e^{inx}\\={}&amp;2\pi \sum _{k=-\infty }^{\infty }\delta (x+2\pi k)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> <mi>x</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\sum _{n=-\infty }^{\infty }e^{inx}\\={}&amp;2\pi \sum _{k=-\infty }^{\infty }\delta (x+2\pi k)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9555424e0a2524a5a550494dd982ea2ef4829b89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:22.264ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}&amp;\sum _{n=-\infty }^{\infty }e^{inx}\\={}&amp;2\pi \sum _{k=-\infty }^{\infty }\delta (x+2\pi k)\end{aligned}}}"></span><br />as distributions. </td></tr> <tr> <td>317 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{0}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J_{0}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47cd840d13c953bbfc6368b978e6cfc263d74b62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.483ex; height:2.843ex;" alt="{\displaystyle J_{0}(x)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\,\operatorname {rect} (\pi \xi )}{\sqrt {1-4\pi ^{2}\xi ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\,\operatorname {rect} (\pi \xi )}{\sqrt {1-4\pi ^{2}\xi ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0ef776ebd01da50f4beb0f41f1f053a25edd8c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:12.802ex; height:7.009ex;" alt="{\displaystyle {\frac {2\,\operatorname {rect} (\pi \xi )}{\sqrt {1-4\pi ^{2}\xi ^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {2}{\pi }}}\,{\frac {\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {2}{\pi }}}\,{\frac {\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee3345a1b9adc3949fe9cd4e1b2a3abdeac8946a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:14.542ex; height:7.509ex;" alt="{\displaystyle {\sqrt {\frac {2}{\pi }}}\,{\frac {\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\,\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\,\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13678aff482c423a56a3a0e3d1f4423eb955dd99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:10.642ex; height:7.509ex;" alt="{\displaystyle {\frac {2\,\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}"></span> </td> <td>The function <span class="texhtml"><i>J</i><sub>0</sub>(<i>x</i>)</span> is the zeroth order <a href="/wiki/Bessel_function" title="Bessel function">Bessel function</a> of first kind. </td></tr> <tr> <td>318 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{n}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J_{n}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3462eec70865e8698d6ae2f4a576a3bb949661e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.648ex; height:2.843ex;" alt="{\displaystyle J_{n}(x)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2(-i)^{n}T_{n}(2\pi \xi )\operatorname {rect} (\pi \xi )}{\sqrt {1-4\pi ^{2}\xi ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2(-i)^{n}T_{n}(2\pi \xi )\operatorname {rect} (\pi \xi )}{\sqrt {1-4\pi ^{2}\xi ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/812322a9acd5224b2bb53b5f97cfd052fae19b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.986ex; height:7.009ex;" alt="{\displaystyle {\frac {2(-i)^{n}T_{n}(2\pi \xi )\operatorname {rect} (\pi \xi )}{\sqrt {1-4\pi ^{2}\xi ^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {(-i)^{n}T_{n}(\omega )\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {(-i)^{n}T_{n}(\omega )\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f848e07d6632d2d41de1d345e4f5bba0e35190c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:25.054ex; height:7.509ex;" alt="{\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {(-i)^{n}T_{n}(\omega )\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2(-i)^{n}T_{n}(\omega )\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mi>rect</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2(-i)^{n}T_{n}(\omega )\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1b11b628b30a5cc442f1b6339e3fe8e77acfd29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.725ex; height:7.509ex;" alt="{\displaystyle {\frac {2(-i)^{n}T_{n}(\omega )\operatorname {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}"></span> </td> <td>This is a generalization of 317. The function <span class="texhtml"><i>J<sub>n</sub></i>(<i>x</i>)</span> is the <span class="texhtml mvar" style="font-style:italic;">n</span>th order <a href="/wiki/Bessel_function" title="Bessel function">Bessel function</a> of first kind. The function <span class="texhtml"><i>T<sub>n</sub></i>(<i>x</i>)</span> is the <a href="/wiki/Chebyshev_polynomials" title="Chebyshev polynomials">Chebyshev polynomial of the first kind</a>. </td></tr> <tr> <td>319 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log \left|x\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log \left|x\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ec0a4ec727f20be990730ae16d091d7294db928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.595ex; height:2.843ex;" alt="{\displaystyle \log \left|x\right|}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {1}{2}}{\frac {1}{\left|\xi \right|}}-\gamma \delta \left(\xi \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {1}{2}}{\frac {1}{\left|\xi \right|}}-\gamma \delta \left(\xi \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d599f3ac03cf0c6017d990a1a3fa896d9b4e5d0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.344ex; height:6.009ex;" alt="{\displaystyle -{\frac {1}{2}}{\frac {1}{\left|\xi \right|}}-\gamma \delta \left(\xi \right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\sqrt {\frac {\pi }{2}}}{\left|\omega \right|}}-{\sqrt {2\pi }}\gamma \delta \left(\omega \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> <mrow> <mo>|</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\sqrt {\frac {\pi }{2}}}{\left|\omega \right|}}-{\sqrt {2\pi }}\gamma \delta \left(\omega \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d9b838516bbddcd564808e40a2537e1d36f60ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.97ex; height:8.509ex;" alt="{\displaystyle -{\frac {\sqrt {\frac {\pi }{2}}}{\left|\omega \right|}}-{\sqrt {2\pi }}\gamma \delta \left(\omega \right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\pi }{\left|\omega \right|}}-2\pi \gamma \delta \left(\omega \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>|</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mrow> <mo>(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\pi }{\left|\omega \right|}}-2\pi \gamma \delta \left(\omega \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/299d4c4c6c3b9265864219f6a352d584e7a84580" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.672ex; height:5.509ex;" alt="{\displaystyle -{\frac {\pi }{\left|\omega \right|}}-2\pi \gamma \delta \left(\omega \right)}"></span> </td> <td><span class="texhtml mvar" style="font-style:italic;">γ</span> is the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a>. It is necessary to use a finite part integral when testing <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>ξ</i></span>&#124;</span></span>&#8288;</span></span> or <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>ω</i></span>&#124;</span></span>&#8288;</span></span>against <a href="/wiki/Schwartz_functions" class="mw-redirect" title="Schwartz functions">Schwartz functions</a>. The details of this might change the coefficient of the delta function. </td></tr> <tr> <td>320 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\mp ix\right)^{-\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x2213;<!-- ∓ --></mo> <mi>i</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\mp ix\right)^{-\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8eaa905c2c311c09d212ac02bc9f1abeb16c7f79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.312ex; height:3.176ex;" alt="{\displaystyle \left(\mp ix\right)^{-\alpha }}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\left(2\pi \right)^{\alpha }}{\Gamma \left(\alpha \right)}}u\left(\pm \xi \right)\left(\pm \xi \right)^{\alpha -1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>&#x03BE;<!-- ξ --></mi> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>&#x03BE;<!-- ξ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\left(2\pi \right)^{\alpha }}{\Gamma \left(\alpha \right)}}u\left(\pm \xi \right)\left(\pm \xi \right)^{\alpha -1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43cb439bbb2854dc959cb371062e800ad4ec445f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.208ex; height:6.509ex;" alt="{\displaystyle {\frac {\left(2\pi \right)^{\alpha }}{\Gamma \left(\alpha \right)}}u\left(\pm \xi \right)\left(\pm \xi \right)^{\alpha -1}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {2\pi }}{\Gamma \left(\alpha \right)}}u\left(\pm \omega \right)\left(\pm \omega \right)^{\alpha -1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>&#x03C9;<!-- ω --></mi> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>&#x03C9;<!-- ω --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {2\pi }}{\Gamma \left(\alpha \right)}}u\left(\pm \omega \right)\left(\pm \omega \right)^{\alpha -1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b712e54fd61d238be311203712563874a6dadca9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.588ex; height:6.676ex;" alt="{\displaystyle {\frac {\sqrt {2\pi }}{\Gamma \left(\alpha \right)}}u\left(\pm \omega \right)\left(\pm \omega \right)^{\alpha -1}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\pi }{\Gamma \left(\alpha \right)}}u\left(\pm \omega \right)\left(\pm \omega \right)^{\alpha -1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>&#x03C9;<!-- ω --></mi> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>&#x03C9;<!-- ω --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\pi }{\Gamma \left(\alpha \right)}}u\left(\pm \omega \right)\left(\pm \omega \right)^{\alpha -1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44ee0129dfeb09d83ec680bd24d87a50d50e4e45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.588ex; height:6.009ex;" alt="{\displaystyle {\frac {2\pi }{\Gamma \left(\alpha \right)}}u\left(\pm \omega \right)\left(\pm \omega \right)^{\alpha -1}}"></span> </td> <td>This formula is valid for <span class="texhtml">1 &gt; <i>α</i> &gt; 0</span>. Use differentiation to derive formula for higher exponents. <span class="texhtml mvar" style="font-style:italic;">u</span> is the Heaviside function. </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Two-dimensional_functions">Two-dimensional functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=68" title="Edit section: Two-dimensional functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th></th> <th>Function</th> <th>Fourier transform <br /> unitary, ordinary frequency</th> <th>Fourier transform <br /> unitary, angular frequency</th> <th>Fourier transform <br /> non-unitary, angular frequency</th> <th>Remarks </th></tr> <tr> <td>400 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29473ed0c4e838ac9dbe074535e507166c0e9101" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.607ex; height:2.843ex;" alt="{\displaystyle f(x,y)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi _{x},\xi _{y})\triangleq \\&amp;\iint f(x,y)e^{-i2\pi (\xi _{x}x+\xi _{y}y)}\,dx\,dy\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x222C;<!-- ∬ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi _{x},\xi _{y})\triangleq \\&amp;\iint f(x,y)e^{-i2\pi (\xi _{x}x+\xi _{y}y)}\,dx\,dy\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2899da4b6973722695b019903fb62469823c2ea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:29.68ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\xi _{x},\xi _{y})\triangleq \\&amp;\iint f(x,y)e^{-i2\pi (\xi _{x}x+\xi _{y}y)}\,dx\,dy\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega _{x},\omega _{y})\triangleq \\&amp;{\frac {1}{2\pi }}\iint f(x,y)e^{-i(\omega _{x}x+\omega _{y}y)}\,dx\,dy\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>&#x222C;<!-- ∬ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega _{x},\omega _{y})\triangleq \\&amp;{\frac {1}{2\pi }}\iint f(x,y)e^{-i(\omega _{x}x+\omega _{y}y)}\,dx\,dy\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d94be98fbb460a4f095d0c5fff914fbb284d3c67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:31.851ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega _{x},\omega _{y})\triangleq \\&amp;{\frac {1}{2\pi }}\iint f(x,y)e^{-i(\omega _{x}x+\omega _{y}y)}\,dx\,dy\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega _{x},\omega _{y})\triangleq \\&amp;\iint f(x,y)e^{-i(\omega _{x}x+\omega _{y}y)}\,dx\,dy\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x222C;<!-- ∬ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega _{x},\omega _{y})\triangleq \\&amp;\iint f(x,y)e^{-i(\omega _{x}x+\omega _{y}y)}\,dx\,dy\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/234f53ff01216f1898f7ee08ae776bd446022ca0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:28.521ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f}}(\omega _{x},\omega _{y})\triangleq \\&amp;\iint f(x,y)e^{-i(\omega _{x}x+\omega _{y}y)}\,dx\,dy\end{aligned}}}"></span> </td> <td>The variables <span class="texhtml mvar" style="font-style:italic;">ξ<sub>x</sub></span>, <span class="texhtml mvar" style="font-style:italic;">ξ<sub>y</sub></span>, <span class="texhtml mvar" style="font-style:italic;">ω<sub>x</sub></span>, <span class="texhtml mvar" style="font-style:italic;">ω<sub>y</sub></span> are real numbers. The integrals are taken over the entire plane. </td></tr> <tr> <td>401 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\pi \left(a^{2}x^{2}+b^{2}y^{2}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\pi \left(a^{2}x^{2}+b^{2}y^{2}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb4f8f3c045f9a22297609de1e9e274ec58c44cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.983ex; height:3.009ex;" alt="{\displaystyle e^{-\pi \left(a^{2}x^{2}+b^{2}y^{2}\right)}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|ab|}}e^{-\pi \left({\frac {\xi _{x}^{2}}{a^{2}}}+{\frac {\xi _{y}^{2}}{b^{2}}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|ab|}}e^{-\pi \left({\frac {\xi _{x}^{2}}{a^{2}}}+{\frac {\xi _{y}^{2}}{b^{2}}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/905d3a1aeabf1e8d1e678b863fc183c81062227f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.348ex; height:8.176ex;" alt="{\displaystyle {\frac {1}{|ab|}}e^{-\pi \left({\frac {\xi _{x}^{2}}{a^{2}}}+{\frac {\xi _{y}^{2}}{b^{2}}}\right)}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2\pi \,|ab|}}e^{-{\frac {1}{4\pi }}\left({\frac {\omega _{x}^{2}}{a^{2}}}+{\frac {\omega _{y}^{2}}{b^{2}}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2\pi \,|ab|}}e^{-{\frac {1}{4\pi }}\left({\frac {\omega _{x}^{2}}{a^{2}}}+{\frac {\omega _{y}^{2}}{b^{2}}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/577434a7d6912a252a68154c7475b48d7b1d1ef4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.012ex; height:8.176ex;" alt="{\displaystyle {\frac {1}{2\pi \,|ab|}}e^{-{\frac {1}{4\pi }}\left({\frac {\omega _{x}^{2}}{a^{2}}}+{\frac {\omega _{y}^{2}}{b^{2}}}\right)}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{|ab|}}e^{-{\frac {1}{4\pi }}\left({\frac {\omega _{x}^{2}}{a^{2}}}+{\frac {\omega _{y}^{2}}{b^{2}}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{|ab|}}e^{-{\frac {1}{4\pi }}\left({\frac {\omega _{x}^{2}}{a^{2}}}+{\frac {\omega _{y}^{2}}{b^{2}}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e33d3c589a415847a3e20d60c00ab5804510ba8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.131ex; height:8.176ex;" alt="{\displaystyle {\frac {1}{|ab|}}e^{-{\frac {1}{4\pi }}\left({\frac {\omega _{x}^{2}}{a^{2}}}+{\frac {\omega _{y}^{2}}{b^{2}}}\right)}}"></span> </td> <td>Both functions are Gaussians, which may not have unit volume. </td></tr> <tr> <td>402 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {circ} \left({\sqrt {x^{2}+y^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>circ</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {circ} \left({\sqrt {x^{2}+y^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7940a021169ddedca51c2f488e949cda1e6c53fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.807ex; height:6.176ex;" alt="{\displaystyle \operatorname {circ} \left({\sqrt {x^{2}+y^{2}}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {J_{1}\left(2\pi {\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}\right)}{\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {J_{1}\left(2\pi {\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}\right)}{\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/065eaf8362f73d3ea644114070af6e363cefb5d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:18.281ex; height:10.509ex;" alt="{\displaystyle {\frac {J_{1}\left(2\pi {\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}\right)}{\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {J_{1}\left({\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}\right)}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {J_{1}\left({\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}\right)}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88d25e9b6b9132a070907221a9452e6a67831214" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:16.626ex; height:10.509ex;" alt="{\displaystyle {\frac {J_{1}\left({\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}\right)}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\pi J_{1}\left({\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}\right)}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\pi J_{1}\left({\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}\right)}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1191d7202f17388e29c6a4d83e774fea8bc8d46f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:19.12ex; height:10.509ex;" alt="{\displaystyle {\frac {2\pi J_{1}\left({\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}\right)}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}"></span> </td> <td>The function is defined by <span class="texhtml">circ(<i>r</i>) = 1</span> for <span class="texhtml">0 ≤ <i>r</i> ≤ 1</span>, and is 0 otherwise. The result is the amplitude distribution of the <a href="/wiki/Airy_disk" title="Airy disk">Airy disk</a>, and is expressed using <span class="texhtml"><i>J</i><sub>1</sub></span> (the order-1 <a href="/wiki/Bessel_function" title="Bessel function">Bessel function</a> of the first kind).<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>403 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {x^{2}+y^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {x^{2}+y^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95d46b586238687d4c8013877435bff44ebe9229" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:10.599ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {x^{2}+y^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5c395d3e2d8f6c94f3a92243e355bbc14841a19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:10.279ex; height:8.009ex;" alt="{\displaystyle {\frac {1}{\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0312e2f77615bd5e6676c147820b0b59705042ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:11.119ex; height:8.009ex;" alt="{\displaystyle {\frac {1}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\pi }{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <msqrt> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\pi }{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46955e00ddb16f2217868bb636e99be3215eac66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:11.119ex; height:8.009ex;" alt="{\displaystyle {\frac {2\pi }{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}"></span> </td> <td>This is the <a href="/wiki/Hankel_transform" title="Hankel transform">Hankel transform</a> of <span class="texhtml"><i>r</i><sup>−1</sup></span>, a 2-D Fourier "self-transform".<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>404 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {i}{x+iy}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mrow> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {i}{x+iy}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6ad47e2b3007223bbd9f83a61c6c997b39b610d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:6.964ex; height:5.676ex;" alt="{\displaystyle {\frac {i}{x+iy}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\xi _{x}+i\xi _{y}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\xi _{x}+i\xi _{y}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27bdfbdd4e34d440a3e675e087416b64a55b24e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:8.738ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{\xi _{x}+i\xi _{y}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\omega _{x}+i\omega _{y}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\omega _{x}+i\omega _{y}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2723a388362a0db43b70b60a8d816a0d04e7c6a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.592ex; height:5.843ex;" alt="{\displaystyle {\frac {1}{\omega _{x}+i\omega _{y}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\pi }{\omega _{x}+i\omega _{y}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\pi }{\omega _{x}+i\omega _{y}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e25523a04f09744d3711182ad724243e955397df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.592ex; height:5.843ex;" alt="{\displaystyle {\frac {2\pi }{\omega _{x}+i\omega _{y}}}}"></span> </td> <td> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Formulas_for_general_n-dimensional_functions">Formulas for general <span class="texhtml"><i>n</i></span>-dimensional functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=69" title="Edit section: Formulas for general n-dimensional functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th></th> <th>Function</th> <th>Fourier transform <br /> unitary, ordinary frequency</th> <th>Fourier transform <br /> unitary, angular frequency</th> <th>Fourier transform <br /> non-unitary, angular frequency</th> <th>Remarks </th></tr> <tr> <td>500 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathbf {x} )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathbf {x} )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6804844c0ec78cba3f20dfff63a8fd8693cfbaf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.886ex; height:2.843ex;" alt="{\displaystyle f(\mathbf {x} )\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f_{1}}}({\boldsymbol {\xi }})\triangleq \\&amp;\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i2\pi {\boldsymbol {\xi }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f_{1}}}({\boldsymbol {\xi }})\triangleq \\&amp;\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i2\pi {\boldsymbol {\xi }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c90f2d3c9dccaa275dbc517faf244573986f0a03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.822ex; margin-bottom: -0.182ex; width:19.93ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f_{1}}}({\boldsymbol {\xi }})\triangleq \\&amp;\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i2\pi {\boldsymbol {\xi }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f_{2}}}({\boldsymbol {\omega }})\triangleq \\&amp;{\frac {1}{{(2\pi )}^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i{\boldsymbol {\omega }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f_{2}}}({\boldsymbol {\omega }})\triangleq \\&amp;{\frac {1}{{(2\pi )}^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i{\boldsymbol {\omega }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b18bf17c06d5bbaa51cbdb939ba9f0a19bd2cab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:25.52ex; height:10.509ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f_{2}}}({\boldsymbol {\omega }})\triangleq \\&amp;{\frac {1}{{(2\pi )}^{\frac {n}{2}}}}\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i{\boldsymbol {\omega }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {f_{3}}}({\boldsymbol {\omega }})\triangleq \\&amp;\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i{\boldsymbol {\omega }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {f_{3}}}({\boldsymbol {\omega }})\triangleq \\&amp;\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i{\boldsymbol {\omega }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd543522b92ac770c5be2a9048f015663bfb405f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.822ex; margin-bottom: -0.182ex; width:18.512ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {f_{3}}}({\boldsymbol {\omega }})\triangleq \\&amp;\int _{\mathbb {R} ^{n}}f(\mathbf {x} )e^{-i{\boldsymbol {\omega }}\cdot \mathbf {x} }\,d\mathbf {x} \end{aligned}}}"></span> </td> <td> </td></tr> <tr> <td>501 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{[0,1]}(|\mathbf {x} |)\left(1-|\mathbf {x} |^{2}\right)^{\delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{[0,1]}(|\mathbf {x} |)\left(1-|\mathbf {x} |^{2}\right)^{\delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1f3e6c1f52f0ee9366c40ee6f67c65f11dbd03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.728ex; height:5.343ex;" alt="{\displaystyle \chi _{[0,1]}(|\mathbf {x} |)\left(1-|\mathbf {x} |^{2}\right)^{\delta }}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Gamma (\delta +1)}{\pi ^{\delta }\,|{\boldsymbol {\xi }}|^{{\frac {n}{2}}+\delta }}}J_{{\frac {n}{2}}+\delta }(2\pi |{\boldsymbol {\xi }}|)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Gamma (\delta +1)}{\pi ^{\delta }\,|{\boldsymbol {\xi }}|^{{\frac {n}{2}}+\delta }}}J_{{\frac {n}{2}}+\delta }(2\pi |{\boldsymbol {\xi }}|)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a595c322b60e1d89d10bd55f0cfa60bcf136f022" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:21.853ex; height:7.343ex;" alt="{\displaystyle {\frac {\Gamma (\delta +1)}{\pi ^{\delta }\,|{\boldsymbol {\xi }}|^{{\frac {n}{2}}+\delta }}}J_{{\frac {n}{2}}+\delta }(2\pi |{\boldsymbol {\xi }}|)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\delta }\,{\frac {\Gamma (\delta +1)}{\left|{\boldsymbol {\omega }}\right|^{{\frac {n}{2}}+\delta }}}J_{{\frac {n}{2}}+\delta }(|{\boldsymbol {\omega }}|)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> </mfrac> </mrow> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\delta }\,{\frac {\Gamma (\delta +1)}{\left|{\boldsymbol {\omega }}\right|^{{\frac {n}{2}}+\delta }}}J_{{\frac {n}{2}}+\delta }(|{\boldsymbol {\omega }}|)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0807ac06201171751e53ca547eaee058f3767e3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:21.624ex; height:7.343ex;" alt="{\displaystyle 2^{\delta }\,{\frac {\Gamma (\delta +1)}{\left|{\boldsymbol {\omega }}\right|^{{\frac {n}{2}}+\delta }}}J_{{\frac {n}{2}}+\delta }(|{\boldsymbol {\omega }}|)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Gamma (\delta +1)}{\pi ^{\delta }}}\left|{\frac {\boldsymbol {\omega }}{2\pi }}\right|^{-{\frac {n}{2}}-\delta }J_{{\frac {n}{2}}+\delta }(\!|{\boldsymbol {\omega }}|\!)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> </mfrac> </mrow> <msup> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="negativethinmathspace" /> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Gamma (\delta +1)}{\pi ^{\delta }}}\left|{\frac {\boldsymbol {\omega }}{2\pi }}\right|^{-{\frac {n}{2}}-\delta }J_{{\frac {n}{2}}+\delta }(\!|{\boldsymbol {\omega }}|\!)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76dd95223605db27c11603e15eb0da9ca588455e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:28.119ex; height:6.009ex;" alt="{\displaystyle {\frac {\Gamma (\delta +1)}{\pi ^{\delta }}}\left|{\frac {\boldsymbol {\omega }}{2\pi }}\right|^{-{\frac {n}{2}}-\delta }J_{{\frac {n}{2}}+\delta }(\!|{\boldsymbol {\omega }}|\!)}"></span> </td> <td>The function <span class="texhtml"><i>χ</i><sub>[0, 1]</sub></span> is the <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a> of the interval <span class="texhtml">[0, 1]</span>. The function <span class="texhtml">Γ(<i>x</i>)</span> is the gamma function. The function <span class="texhtml"><i>J</i><sub><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>n</i></span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + <i>δ</i></sub></span> is a Bessel function of the first kind, with order <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>n</i></span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + <i>δ</i></span>. Taking <span class="texhtml"><i>n</i> = 2</span> and <span class="texhtml"><i>δ</i> = 0</span> produces 402.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>502 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {x} |^{-\alpha },\quad 0&lt;\operatorname {Re} \alpha &lt;n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mn>0</mn> <mo>&lt;</mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>&lt;</mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {x} |^{-\alpha },\quad 0&lt;\operatorname {Re} \alpha &lt;n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55904386b79dd5115c8e9ab7166c5346ae783f23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.643ex; height:3.176ex;" alt="{\displaystyle |\mathbf {x} |^{-\alpha },\quad 0&lt;\operatorname {Re} \alpha &lt;n.}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(2\pi )^{\alpha }}{c_{n,\alpha }}}|{\boldsymbol {\xi }}|^{-(n-\alpha )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(2\pi )^{\alpha }}{c_{n,\alpha }}}|{\boldsymbol {\xi }}|^{-(n-\alpha )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79f934c42cbe93a1f80d3ca9e28295d74599ae04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.006ex; height:6.343ex;" alt="{\displaystyle {\frac {(2\pi )^{\alpha }}{c_{n,\alpha }}}|{\boldsymbol {\xi }}|^{-(n-\alpha )}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(2\pi )^{\frac {n}{2}}}{c_{n,\alpha }}}|{\boldsymbol {\omega }}|^{-(n-\alpha )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(2\pi )^{\frac {n}{2}}}{c_{n,\alpha }}}|{\boldsymbol {\omega }}|^{-(n-\alpha )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4817d3c29a8e2dc2ad5217dcec637ff1ce90984e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.078ex; height:7.176ex;" alt="{\displaystyle {\frac {(2\pi )^{\frac {n}{2}}}{c_{n,\alpha }}}|{\boldsymbol {\omega }}|^{-(n-\alpha )}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(2\pi )^{n}}{c_{n,\alpha }}}|{\boldsymbol {\omega }}|^{-(n-\alpha )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(2\pi )^{n}}{c_{n,\alpha }}}|{\boldsymbol {\omega }}|^{-(n-\alpha )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d8f1daf526cba1892b45ac3060bf79b27991302" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.428ex; height:6.343ex;" alt="{\displaystyle {\frac {(2\pi )^{n}}{c_{n,\alpha }}}|{\boldsymbol {\omega }}|^{-(n-\alpha )}}"></span> </td> <td>See <a href="/wiki/Riesz_potential" title="Riesz potential">Riesz potential</a> where the constant is given by<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{n,\alpha }=\pi ^{\frac {n}{2}}2^{\alpha }{\frac {\Gamma \left({\frac {\alpha }{2}}\right)}{\Gamma \left({\frac {n-\alpha }{2}}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{n,\alpha }=\pi ^{\frac {n}{2}}2^{\alpha }{\frac {\Gamma \left({\frac {\alpha }{2}}\right)}{\Gamma \left({\frac {n-\alpha }{2}}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe860f695602037bbe5189bba5fbaadcb748728f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:22.088ex; height:7.676ex;" alt="{\displaystyle c_{n,\alpha }=\pi ^{\frac {n}{2}}2^{\alpha }{\frac {\Gamma \left({\frac {\alpha }{2}}\right)}{\Gamma \left({\frac {n-\alpha }{2}}\right)}}.}"></span><br />The formula also holds for all <span class="texhtml"><i>α</i> ≠ <i>n</i>, <i>n</i> + 2, ...</span> by analytic continuation, but then the function and its Fourier transforms need to be understood as suitably regularized tempered distributions. See <a href="/wiki/Homogeneous_distribution" title="Homogeneous distribution">homogeneous distribution</a>.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>note 8<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>503 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\left|{\boldsymbol {\sigma }}\right|\left(2\pi \right)^{\frac {n}{2}}}}e^{-{\frac {1}{2}}\mathbf {x} ^{\mathrm {T} }{\boldsymbol {\sigma }}^{-\mathrm {T} }{\boldsymbol {\sigma }}^{-1}\mathbf {x} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mo>|</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\left|{\boldsymbol {\sigma }}\right|\left(2\pi \right)^{\frac {n}{2}}}}e^{-{\frac {1}{2}}\mathbf {x} ^{\mathrm {T} }{\boldsymbol {\sigma }}^{-\mathrm {T} }{\boldsymbol {\sigma }}^{-1}\mathbf {x} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a963d44dec0f15b8a0401661c290b63d5a7284f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:23.795ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{\left|{\boldsymbol {\sigma }}\right|\left(2\pi \right)^{\frac {n}{2}}}}e^{-{\frac {1}{2}}\mathbf {x} ^{\mathrm {T} }{\boldsymbol {\sigma }}^{-\mathrm {T} }{\boldsymbol {\sigma }}^{-1}\mathbf {x} }}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-2\pi ^{2}{\boldsymbol {\xi }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\xi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-2\pi ^{2}{\boldsymbol {\xi }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\xi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd8d4433cb9705bd48f188c5124edaf24feb3362" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.372ex; height:3.176ex;" alt="{\displaystyle e^{-2\pi ^{2}{\boldsymbol {\xi }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\xi }}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2\pi )^{-{\frac {n}{2}}}e^{-{\frac {1}{2}}{\boldsymbol {\omega }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\omega }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2\pi )^{-{\frac {n}{2}}}e^{-{\frac {1}{2}}{\boldsymbol {\omega }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\omega }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73e793fc7fe30b21bd87aff3ca525fbb81aea6fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.419ex; height:4.009ex;" alt="{\displaystyle (2\pi )^{-{\frac {n}{2}}}e^{-{\frac {1}{2}}{\boldsymbol {\omega }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\omega }}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-{\frac {1}{2}}{\boldsymbol {\omega }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\omega }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-{\frac {1}{2}}{\boldsymbol {\omega }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\omega }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3249ae8c9606a681192bbb36cdf0bcbe3e9068b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.968ex; height:3.509ex;" alt="{\displaystyle e^{-{\frac {1}{2}}{\boldsymbol {\omega }}^{\mathrm {T} }{\boldsymbol {\sigma }}{\boldsymbol {\sigma }}^{\mathrm {T} }{\boldsymbol {\omega }}}}"></span> </td> <td>This is the formula for a <a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">multivariate normal distribution</a> normalized to 1 with a mean of 0. Bold variables are vectors or matrices. Following the notation of the aforementioned page, <span class="texhtml"><b>Σ</b> = <b>σ</b> <b>σ</b><sup>T</sup></span> and <span class="texhtml"><b>Σ</b><sup>−1</sup> = <b>σ</b><sup>−T</sup> <b>σ</b><sup>−1</sup></span> </td></tr> <tr> <td>504 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-2\pi \alpha |\mathbf {x} |}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-2\pi \alpha |\mathbf {x} |}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79d7ee7b274c84c901fbb259abcdb5a51659d61e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.323ex; height:2.843ex;" alt="{\displaystyle e^{-2\pi \alpha |\mathbf {x} |}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {c_{n}\alpha }{\left(\alpha ^{2}+|{\boldsymbol {\xi }}|^{2}\right)^{\frac {n+1}{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>&#x03B1;<!-- α --></mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BE;<!-- ξ --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {c_{n}\alpha }{\left(\alpha ^{2}+|{\boldsymbol {\xi }}|^{2}\right)^{\frac {n+1}{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2120868a79ff1d62a7e0bcc8ff3165e5f9b8931" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:16.097ex; height:8.509ex;" alt="{\displaystyle {\frac {c_{n}\alpha }{\left(\alpha ^{2}+|{\boldsymbol {\xi }}|^{2}\right)^{\frac {n+1}{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {c_{n}(2\pi )^{\frac {n+2}{2}}\alpha }{\left(4\pi ^{2}\alpha ^{2}+|{\boldsymbol {\omega }}|^{2}\right)^{\frac {n+1}{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mi>&#x03B1;<!-- α --></mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {c_{n}(2\pi )^{\frac {n+2}{2}}\alpha }{\left(4\pi ^{2}\alpha ^{2}+|{\boldsymbol {\omega }}|^{2}\right)^{\frac {n+1}{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d5075c88d64b73eb060137055874cc04281525b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:20.136ex; height:10.843ex;" alt="{\displaystyle {\frac {c_{n}(2\pi )^{\frac {n+2}{2}}\alpha }{\left(4\pi ^{2}\alpha ^{2}+|{\boldsymbol {\omega }}|^{2}\right)^{\frac {n+1}{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {c_{n}(2\pi )^{n+1}\alpha }{\left(4\pi ^{2}\alpha ^{2}+|{\boldsymbol {\omega }}|^{2}\right)^{\frac {n+1}{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>&#x03B1;<!-- α --></mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {c_{n}(2\pi )^{n+1}\alpha }{\left(4\pi ^{2}\alpha ^{2}+|{\boldsymbol {\omega }}|^{2}\right)^{\frac {n+1}{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b18ba76f3aa9a3b7021a73b34350927249b81b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:20.136ex; height:9.676ex;" alt="{\displaystyle {\frac {c_{n}(2\pi )^{n+1}\alpha }{\left(4\pi ^{2}\alpha ^{2}+|{\boldsymbol {\omega }}|^{2}\right)^{\frac {n+1}{2}}}}}"></span> </td> <td>Here<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{n}={\frac {\Gamma \left({\frac {n+1}{2}}\right)}{\pi ^{\frac {n+1}{2}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{n}={\frac {\Gamma \left({\frac {n+1}{2}}\right)}{\pi ^{\frac {n+1}{2}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19086748c5f00add34d5a41e1c9bef9915cef136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:15.345ex; height:9.009ex;" alt="{\displaystyle c_{n}={\frac {\Gamma \left({\frac {n+1}{2}}\right)}{\pi ^{\frac {n+1}{2}}}},}"></span> <span class="texhtml">Re(<i>α</i>) &gt; 0</span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=70" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/Analog_signal_processing" title="Analog signal processing">Analog signal processing</a></li> <li><a href="/wiki/Beevers%E2%80%93Lipson_strip" title="Beevers–Lipson strip">Beevers–Lipson strip</a></li> <li><a href="/wiki/Constant-Q_transform" title="Constant-Q transform">Constant-Q transform</a></li> <li><a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">Discrete Fourier transform</a></li> <li><a href="/wiki/DFT_matrix" title="DFT matrix">DFT matrix</a></li> <li><a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">Fast Fourier transform</a></li> <li><a href="/wiki/Fourier_integral_operator" title="Fourier integral operator">Fourier integral operator</a></li> <li><a href="/wiki/Fourier_inversion_theorem" title="Fourier inversion theorem">Fourier inversion theorem</a></li> <li><a href="/wiki/Fourier_multiplier" class="mw-redirect" title="Fourier multiplier">Fourier multiplier</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a></li> <li><a href="/wiki/Fourier_sine_transform" class="mw-redirect" title="Fourier sine transform">Fourier sine transform</a></li> <li><a href="/wiki/Fourier%E2%80%93Deligne_transform" title="Fourier–Deligne transform">Fourier–Deligne transform</a></li> <li><a href="/wiki/Fourier%E2%80%93Mukai_transform" title="Fourier–Mukai transform">Fourier–Mukai transform</a></li> <li><a href="/wiki/Fractional_Fourier_transform" title="Fractional Fourier transform">Fractional Fourier transform</a></li> <li><a href="/wiki/Indirect_Fourier_transform" class="mw-redirect" title="Indirect Fourier transform">Indirect Fourier transform</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a> <ul><li><a href="/wiki/Hankel_transform" title="Hankel transform">Hankel transform</a></li> <li><a href="/wiki/Hartley_transform" title="Hartley transform">Hartley transform</a></li></ul></li> <li><a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a></li> <li><a href="/wiki/Linear_canonical_transform" class="mw-redirect" title="Linear canonical transform">Linear canonical transform</a></li> <li><a href="/wiki/List_of_Fourier-related_transforms" title="List of Fourier-related transforms">List of Fourier-related transforms</a></li> <li><a href="/wiki/Mellin_transform" title="Mellin transform">Mellin transform</a></li> <li><a href="/wiki/Multidimensional_transform" title="Multidimensional transform">Multidimensional transform</a></li> <li><a href="/wiki/NGC_4622" title="NGC 4622">NGC 4622</a>, especially the image NGC 4622 Fourier transform <span class="texhtml"><i>m</i> = 2</span>.</li> <li><a href="/wiki/Nonlocal_operator" title="Nonlocal operator">Nonlocal operator</a></li> <li><a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">Quantum Fourier transform</a></li> <li><a href="/wiki/Quadratic_Fourier_transform" title="Quadratic Fourier transform">Quadratic Fourier transform</a></li> <li><a href="/wiki/Short-time_Fourier_transform" title="Short-time Fourier transform">Short-time Fourier transform</a></li> <li><a href="/wiki/Spectral_density" title="Spectral density">Spectral density</a> <ul><li><a href="/wiki/Spectral_density_estimation" title="Spectral density estimation">Spectral density estimation</a></li></ul></li> <li><a href="/wiki/Symbolic_integration" title="Symbolic integration">Symbolic integration</a></li> <li><a href="/wiki/Time_stretch_dispersive_Fourier_transform" title="Time stretch dispersive Fourier transform">Time stretch dispersive Fourier transform</a></li> <li><a href="/wiki/Transform_(mathematics)" class="mw-redirect" title="Transform (mathematics)">Transform (mathematics)</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=71" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Depending on the application a <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue integral</a>, <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributional</a>, or other approach may be most appropriate.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFVretblad2000">Vretblad (2000)</a> provides solid justification for these formal procedures without going too deeply into <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> or the <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">theory of distributions</a>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">In <a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">relativistic quantum mechanics</a> one encounters vector-valued Fourier transforms of multi-component wave functions. In <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, operator-valued Fourier transforms of operator-valued functions of spacetime are in frequent use, see for example <a href="#CITEREFGreinerReinhardt1996">Greiner &amp; Reinhardt (1996)</a>.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">A possible source of confusion is the <a href="#Frequency_shifting">frequency-shifting property</a>; i.e. the transform of function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)e^{-i2\pi \xi _{0}x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)e^{-i2\pi \xi _{0}x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/783c0a7783daa653cc12b6feea7e173c51ca30a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.835ex; height:3.176ex;" alt="{\displaystyle f(x)e^{-i2\pi \xi _{0}x}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi +\xi _{0}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>+</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi +\xi _{0}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d564de4ba3f83e1e0a141b69175e17423313901c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.17ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\xi +\xi _{0}).}"></span>&#160; The value of this function at &#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da5354e193004a0e2f16e7d4a76ea499ffcca225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.291ex; height:2.509ex;" alt="{\displaystyle \xi =0}"></span>&#160; is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi _{0}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi _{0}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db49aeb991a6d6036cd9b50881e7e4b1f94c085e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.3ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\xi _{0}),}"></span> meaning that a frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d62e210399a8a9c64f9c534597f2acd23f2a1f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.073ex; height:2.509ex;" alt="{\displaystyle \xi _{0}}"></span> has been shifted to zero (also see <a href="/wiki/Negative_frequency#Simplifying_the_Fourier_transform" title="Negative frequency">Negative frequency</a>).</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">The operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\left({\frac {1}{2\pi }}{\frac {d}{dx}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\left({\frac {1}{2\pi }}{\frac {d}{dx}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91b3b1bd8becc97a2bd471cf90e4f3ca0aaf888a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.303ex; height:6.176ex;" alt="{\displaystyle U\left({\frac {1}{2\pi }}{\frac {d}{dx}}\right)}"></span> is defined by replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2\pi }}{\frac {d}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2\pi }}{\frac {d}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37b665c6ee1e065362b8ce50f9754d27af61b7fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.712ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{2\pi }}{\frac {d}{dx}}}"></span> in the <a href="/wiki/Taylor_series" title="Taylor series">Taylor expansion</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4d8601ed3faf8353e5d0b6c97540b46c9a4ce52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.568ex; height:2.843ex;" alt="{\displaystyle U(x).}"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text">Up to an imaginary constant factor whose magnitude depends on what Fourier transform convention is used.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text">The direct command <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">fourier transform of cos(6*pi*t) exp(−pi*t^2)</code> would also work for Wolfram Alpha, although the options for the convention (see <a href="#Other_conventions">Fourier transform §&#160;Other conventions</a>) must be changed away from the default option, which is actually equivalent to <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">integrate cos(6*pi*t) exp(−pi*t^2) exp(i*omega*t) /sqrt(2*pi) from -inf to inf</code>.</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">In <a href="#CITEREFGelfandShilov1964">Gelfand &amp; Shilov 1964</a>, p.&#160;363, with the non-unitary conventions of this table, the transform of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {x} |^{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {x} |^{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8787490b5a8753a87ae7ae60999cc6d3537357c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.895ex; height:3.343ex;" alt="{\displaystyle |\mathbf {x} |^{\lambda }}"></span> is given to be<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\lambda +n}\pi ^{{\tfrac {1}{2}}n}{\frac {\Gamma \left({\frac {\lambda +n}{2}}\right)}{\Gamma \left(-{\frac {\lambda }{2}}\right)}}|{\boldsymbol {\omega }}|^{-\lambda -n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>n</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\lambda +n}\pi ^{{\tfrac {1}{2}}n}{\frac {\Gamma \left({\frac {\lambda +n}{2}}\right)}{\Gamma \left(-{\frac {\lambda }{2}}\right)}}|{\boldsymbol {\omega }}|^{-\lambda -n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c751fd6d92b9ade3f5a627cb6270189add38edfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:26.036ex; height:10.176ex;" alt="{\displaystyle 2^{\lambda +n}\pi ^{{\tfrac {1}{2}}n}{\frac {\Gamma \left({\frac {\lambda +n}{2}}\right)}{\Gamma \left(-{\frac {\lambda }{2}}\right)}}|{\boldsymbol {\omega }}|^{-\lambda -n}}"></span><br />from which this follows, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =-\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =-\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f086450e87d9c85c6e9611e73cdd6149f496179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.749ex; height:2.343ex;" alt="{\displaystyle \lambda =-\alpha }"></span>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=72" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 22em;"> <ol class="references"> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFKhareButolaRajora2023">Khare, Butola &amp; Rajora 2023</a>, pp.&#160;13–14</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFKaiser1994">Kaiser 1994</a>, p.&#160;29</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFRahman2011">Rahman 2011</a>, p.&#160;11</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFDymMcKean1985">Dym &amp; McKean 1985</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="#CITEREFFourier1822">Fourier 1822</a>, p.&#160;525</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a href="#CITEREFFourier1878">Fourier 1878</a>, p.&#160;408</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFJordan1883">Jordan (1883)</a> proves on pp.&#160;216–226 the <a href="/wiki/Fourier_inversion_theorem#Fourier_integral_theorem" title="Fourier inversion theorem">Fourier integral theorem</a> before studying Fourier series.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><a href="#CITEREFTitchmarsh1986">Titchmarsh 1986</a>, p.&#160;1</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><a href="#CITEREFRahman2011">Rahman 2011</a>, p.&#160;10.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><a href="#CITEREFOppenheimSchaferBuck1999">Oppenheim, Schafer &amp; Buck 1999</a>, p.&#160;58</span> </li> <li id="cite_note-Stein-Weiss-1971-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stein-Weiss-1971_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stein-Weiss-1971_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Stein-Weiss-1971_15-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Stein-Weiss-1971_15-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Stein-Weiss-1971_15-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Stein-Weiss-1971_15-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Stein-Weiss-1971_15-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFSteinWeiss1971">Stein &amp; Weiss 1971</a></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="#CITEREFFolland1989">Folland 1989</a></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFFourier1822">Fourier 1822</a></span> </li> <li id="cite_note-Pinsky-2002-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pinsky-2002_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pinsky-2002_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Pinsky-2002_18-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Pinsky-2002_18-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Pinsky-2002_18-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPinsky2002">Pinsky 2002</a></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><a href="#CITEREFArfken1985">Arfken 1985</a></span> </li> <li id="cite_note-Katznelson-1976-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Katznelson-1976_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Katznelson-1976_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Katznelson-1976_20-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Katznelson-1976_20-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Katznelson-1976_20-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFKatznelson1976">Katznelson 1976</a></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1987">Rudin 1987</a>, p.&#160;187</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1987">Rudin 1987</a>, p.&#160;186</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a href="#CITEREFFolland1992">Folland 1992</a>, p.&#160;216</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><a href="#CITEREFWolf1979">Wolf 1979</a>, p.&#160;307ff</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFFolland1989">Folland 1989</a>, p.&#160;53</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="#CITEREFCeleghiniGadelladel_Olmo2021">Celeghini, Gadella &amp; del Olmo 2021</a></span> </li> <li id="cite_note-Duoandikoetxea-2001-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-Duoandikoetxea-2001_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Duoandikoetxea-2001_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFDuoandikoetxea2001">Duoandikoetxea 2001</a></span> </li> <li id="cite_note-Boashash-2003-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boashash-2003_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boashash-2003_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBoashash2003">Boashash 2003</a></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><a href="#CITEREFCondon1937">Condon 1937</a></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><a href="#CITEREFWolf1979">Wolf 1979</a>, p.&#160;320</span> </li> <li id="cite_note-auto-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFWolf1979">Wolf 1979</a>, p.&#160;312</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><a href="#CITEREFFolland1989">Folland 1989</a>, p.&#160;52</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><a href="#CITEREFHowe1980">Howe 1980</a></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><a href="#CITEREFPaleyWiener1934">Paley &amp; Wiener 1934</a></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><a href="#CITEREFGelfandVilenkin1964">Gelfand &amp; Vilenkin 1964</a></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><a href="#CITEREFKirillovGvishiani1982">Kirillov &amp; Gvishiani 1982</a></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><a href="#CITEREFClozelDelorme1985">Clozel &amp; Delorme 1985</a>, pp.&#160;331–333</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><a href="#CITEREFde_GrootMazur1984">de Groot &amp; Mazur 1984</a>, p.&#160;146</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><a href="#CITEREFChampeney1987">Champeney 1987</a>, p.&#160;80</span> </li> <li id="cite_note-Kolmogorov-Fomin-1999-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kolmogorov-Fomin-1999_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kolmogorov-Fomin-1999_41-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kolmogorov-Fomin-1999_41-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFKolmogorovFomin1999">Kolmogorov &amp; Fomin 1999</a></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><a href="#CITEREFWiener1949">Wiener 1949</a></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><a href="#CITEREFChampeney1987">Champeney 1987</a>, p.&#160;63</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><a href="#CITEREFWidderWiener1938">Widder &amp; Wiener 1938</a>, p.&#160;537</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><a href="#CITEREFPinsky2002">Pinsky 2002</a>, p.&#160;131</span> </li> <li id="cite_note-Stein-Shakarchi-2003-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stein-Shakarchi-2003_46-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinShakarchi2003">Stein &amp; Shakarchi 2003</a></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinShakarchi2003">Stein &amp; Shakarchi 2003</a>, p.&#160;158</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><a href="#CITEREFChatfield2004">Chatfield 2004</a>, p.&#160;113</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><a href="#CITEREFFourier1822">Fourier 1822</a>, p.&#160;441</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><a href="#CITEREFPoincaré1895">Poincaré 1895</a>, p.&#160;102</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><a href="#CITEREFWhittakerWatson1927">Whittaker &amp; Watson 1927</a>, p.&#160;188</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrafakos2004">Grafakos 2004</a></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrafakosTeschl2013">Grafakos &amp; Teschl 2013</a></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text">More generally, one can take a sequence of functions that are in the intersection of <span class="texhtml"><i>L</i><sup>1</sup></span> and <span class="texhtml"><i>L</i><sup>2</sup></span> and that converges to <span class="texhtml mvar" style="font-style:italic;">f</span> in the <span class="texhtml"><i>L</i><sup>2</sup></span>-norm, and define the Fourier transform of <span class="texhtml mvar" style="font-style:italic;">f</span> as the <span class="texhtml"><i>L</i><sup>2</sup></span> -limit of the Fourier transforms of these functions.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://statweb.stanford.edu/~candes/teaching/math262/Lectures/Lecture03.pdf">"Applied Fourier Analysis and Elements of Modern Signal Processing Lecture 3"</a> <span class="cs1-format">(PDF)</span>. January 12, 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-10-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Applied+Fourier+Analysis+and+Elements+of+Modern+Signal+Processing+Lecture+3&amp;rft.date=2016-01-12&amp;rft_id=https%3A%2F%2Fstatweb.stanford.edu%2F~candes%2Fteaching%2Fmath262%2FLectures%2FLecture03.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinWeiss1971">Stein &amp; Weiss 1971</a>, Thm. 2.3</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><a href="#CITEREFPinsky2002">Pinsky 2002</a>, p.&#160;256</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><a href="#CITEREFHewittRoss1970">Hewitt &amp; Ross 1970</a>, Chapter 8</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><a href="#CITEREFKnapp2001">Knapp 2001</a></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCorreiaJustoAngélico2024" class="citation journal cs1">Correia, L. B.; Justo, J. F.; Angélico, B. A. (2024). "Polynomial Adaptive Synchrosqueezing Fourier Transform: A method to optimize multiresolution". <i>Digital Signal Processing</i>. <b>150</b>: 104526. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.dsp.2024.104526">10.1016/j.dsp.2024.104526</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Digital+Signal+Processing&amp;rft.atitle=Polynomial+Adaptive+Synchrosqueezing+Fourier+Transform%3A+A+method+to+optimize+multiresolution&amp;rft.volume=150&amp;rft.pages=104526&amp;rft.date=2024&amp;rft_id=info%3Adoi%2F10.1016%2Fj.dsp.2024.104526&amp;rft.aulast=Correia&amp;rft.aufirst=L.+B.&amp;rft.au=Justo%2C+J.+F.&amp;rft.au=Ang%C3%A9lico%2C+B.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></span> </li> <li id="cite_note-Zwillinger-2014-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zwillinger-2014_62-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGradshteynRyzhikGeronimusTseytlin2015">Gradshteyn et al. 2015</a></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><a href="#CITEREFPressFlanneryTeukolskyVetterling1992">Press et al. 1992</a></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><a href="#CITEREFBaileySwarztrauber1994">Bailey &amp; Swarztrauber 1994</a></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><a href="#CITEREFLado1971">Lado 1971</a></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><a href="#CITEREFSimonenOlkkonen1985">Simonen &amp; Olkkonen 1985</a></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.thefouriertransform.com/transform/integration.php">"The Integration Property of the Fourier Transform"</a>. <i>The Fourier Transform .com</i>. 2015 [2010]. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220126171340/https://www.thefouriertransform.com/transform/integration.php">Archived</a> from the original on 2022-01-26<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-08-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Fourier+Transform+.com&amp;rft.atitle=The+Integration+Property+of+the+Fourier+Transform&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fwww.thefouriertransform.com%2Ftransform%2Fintegration.php&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinWeiss1971">Stein &amp; Weiss 1971</a>, Thm. IV.3.3</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><a href="#CITEREFEaston2010">Easton 2010</a></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinWeiss1971">Stein &amp; Weiss 1971</a>, Thm. 4.15</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinWeiss1971">Stein &amp; Weiss 1971</a>, p.&#160;6</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=73" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-hanging-indents refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArfken1985" class="citation cs2">Arfken, George (1985), <i>Mathematical Methods for Physicists</i> (3rd&#160;ed.), Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780120598205" title="Special:BookSources/9780120598205"><bdi>9780120598205</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Methods+for+Physicists&amp;rft.edition=3rd&amp;rft.pub=Academic+Press&amp;rft.date=1985&amp;rft.isbn=9780120598205&amp;rft.aulast=Arfken&amp;rft.aufirst=George&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaileySwarztrauber1994" class="citation cs2">Bailey, David H.; Swarztrauber, Paul N. (1994), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080720002714/http://crd.lbl.gov/~dhbailey/dhbpapers/fourint.pdf">"A fast method for the numerical evaluation of continuous Fourier and Laplace transforms"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/SIAM_Journal_on_Scientific_Computing" title="SIAM Journal on Scientific Computing">SIAM Journal on Scientific Computing</a></i>, <b>15</b> (5): 1105–1110, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994SJSC...15.1105B">1994SJSC...15.1105B</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.1534">10.1.1.127.1534</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F0915067">10.1137/0915067</a>, archived from <a rel="nofollow" class="external text" href="http://crd.lbl.gov/~dhbailey/dhbpapers/fourint.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2008-07-20<span class="reference-accessdate">, retrieved <span class="nowrap">2017-11-01</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Journal+on+Scientific+Computing&amp;rft.atitle=A+fast+method+for+the+numerical+evaluation+of+continuous+Fourier+and+Laplace+transforms&amp;rft.volume=15&amp;rft.issue=5&amp;rft.pages=1105-1110&amp;rft.date=1994&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.127.1534%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1137%2F0915067&amp;rft_id=info%3Abibcode%2F1994SJSC...15.1105B&amp;rft.aulast=Bailey&amp;rft.aufirst=David+H.&amp;rft.au=Swarztrauber%2C+Paul+N.&amp;rft_id=http%3A%2F%2Fcrd.lbl.gov%2F~dhbailey%2Fdhbpapers%2Ffourint.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoashash2003" class="citation cs2">Boashash, B., ed. (2003), <i>Time–Frequency Signal Analysis and Processing: A Comprehensive Reference</i>, Oxford: Elsevier Science, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-044335-5" title="Special:BookSources/978-0-08-044335-5"><bdi>978-0-08-044335-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Time%E2%80%93Frequency+Signal+Analysis+and+Processing%3A+A+Comprehensive+Reference&amp;rft.place=Oxford&amp;rft.pub=Elsevier+Science&amp;rft.date=2003&amp;rft.isbn=978-0-08-044335-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBochnerChandrasekharan1949" class="citation cs2"><a href="/wiki/Salomon_Bochner" title="Salomon Bochner">Bochner, S.</a>; <a href="/wiki/K._S._Chandrasekharan" title="K. S. Chandrasekharan">Chandrasekharan, K.</a> (1949), <i>Fourier Transforms</i>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Transforms&amp;rft.pub=Princeton+University+Press&amp;rft.date=1949&amp;rft.aulast=Bochner&amp;rft.aufirst=S.&amp;rft.au=Chandrasekharan%2C+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBracewell2000" class="citation cs2">Bracewell, R. N. (2000), <i>The Fourier Transform and Its Applications</i> (3rd&#160;ed.), Boston: McGraw-Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-116043-8" title="Special:BookSources/978-0-07-116043-8"><bdi>978-0-07-116043-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Fourier+Transform+and+Its+Applications&amp;rft.place=Boston&amp;rft.edition=3rd&amp;rft.pub=McGraw-Hill&amp;rft.date=2000&amp;rft.isbn=978-0-07-116043-8&amp;rft.aulast=Bracewell&amp;rft.aufirst=R.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCampbellFoster1948" class="citation cs2">Campbell, George; Foster, Ronald (1948), <i>Fourier Integrals for Practical Applications</i>, New York: D. Van Nostrand Company, Inc.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Integrals+for+Practical+Applications&amp;rft.place=New+York&amp;rft.pub=D.+Van+Nostrand+Company%2C+Inc.&amp;rft.date=1948&amp;rft.aulast=Campbell&amp;rft.aufirst=George&amp;rft.au=Foster%2C+Ronald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCeleghiniGadelladel_Olmo2021" class="citation cs2">Celeghini, Enrico; Gadella, Manuel; del Olmo, Mariano A. (2021), "Hermite Functions and Fourier Series", <i>Symmetry</i>, <b>13</b> (5): 853, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2007.10406">2007.10406</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Symm...13..853C">2021Symm...13..853C</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fsym13050853">10.3390/sym13050853</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Symmetry&amp;rft.atitle=Hermite+Functions+and+Fourier+Series&amp;rft.volume=13&amp;rft.issue=5&amp;rft.pages=853&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F2007.10406&amp;rft_id=info%3Adoi%2F10.3390%2Fsym13050853&amp;rft_id=info%3Abibcode%2F2021Symm...13..853C&amp;rft.aulast=Celeghini&amp;rft.aufirst=Enrico&amp;rft.au=Gadella%2C+Manuel&amp;rft.au=del+Olmo%2C+Mariano+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChampeney1987" class="citation cs2">Champeney, D.C. (1987), <i>A Handbook of Fourier Theorems</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Handbook+of+Fourier+Theorems&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1987&amp;rft.aulast=Champeney&amp;rft.aufirst=D.C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChatfield2004" class="citation cs2">Chatfield, Chris (2004), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qKzyAbdaDFAC&amp;q=%22Fourier+transform%22"><i>The Analysis of Time Series: An Introduction</i></a>, Texts in Statistical Science (6th&#160;ed.), London: Chapman &amp; Hall/CRC, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780203491683" title="Special:BookSources/9780203491683"><bdi>9780203491683</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Analysis+of+Time+Series%3A+An+Introduction&amp;rft.place=London&amp;rft.series=Texts+in+Statistical+Science&amp;rft.edition=6th&amp;rft.pub=Chapman+%26+Hall%2FCRC&amp;rft.date=2004&amp;rft.isbn=9780203491683&amp;rft.aulast=Chatfield&amp;rft.aufirst=Chris&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DqKzyAbdaDFAC%26q%3D%2522Fourier%2Btransform%2522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClozelDelorme1985" class="citation cs2">Clozel, Laurent; Delorme, Patrice (1985), "Sur le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs réels", <i>Comptes Rendus de l'Académie des Sciences, Série I</i>, <b>300</b>: 331–333</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comptes+Rendus+de+l%27Acad%C3%A9mie+des+Sciences%2C+S%C3%A9rie+I&amp;rft.atitle=Sur+le+th%C3%A9or%C3%A8me+de+Paley-Wiener+invariant+pour+les+groupes+de+Lie+r%C3%A9ductifs+r%C3%A9els&amp;rft.volume=300&amp;rft.pages=331-333&amp;rft.date=1985&amp;rft.aulast=Clozel&amp;rft.aufirst=Laurent&amp;rft.au=Delorme%2C+Patrice&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCondon1937" class="citation cs2"><a href="/wiki/Edward_Condon" title="Edward Condon">Condon, E. U.</a> (1937), "Immersion of the Fourier transform in a continuous group of functional transformations", <i><a href="/wiki/PNAS" class="mw-redirect" title="PNAS">Proc. Natl. Acad. Sci.</a></i>, <b>23</b> (3): 158–164, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1937PNAS...23..158C">1937PNAS...23..158C</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.23.3.158">10.1073/pnas.23.3.158</a></span>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076889">1076889</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16588141">16588141</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc.+Natl.+Acad.+Sci.&amp;rft.atitle=Immersion+of+the+Fourier+transform+in+a+continuous+group+of+functional+transformations&amp;rft.volume=23&amp;rft.issue=3&amp;rft.pages=158-164&amp;rft.date=1937&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1076889%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16588141&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.23.3.158&amp;rft_id=info%3Abibcode%2F1937PNAS...23..158C&amp;rft.aulast=Condon&amp;rft.aufirst=E.+U.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_GrootMazur1984" class="citation cs2">de Groot, Sybren R.; Mazur, Peter (1984), <i>Non-Equilibrium Thermodynamics</i> (2nd&#160;ed.), New York: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Non-Equilibrium+Thermodynamics&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=Dover&amp;rft.date=1984&amp;rft.aulast=de+Groot&amp;rft.aufirst=Sybren+R.&amp;rft.au=Mazur%2C+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuoandikoetxea2001" class="citation cs2">Duoandikoetxea, Javier (2001), <i>Fourier Analysis</i>, <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-2172-5" title="Special:BookSources/978-0-8218-2172-5"><bdi>978-0-8218-2172-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2001&amp;rft.isbn=978-0-8218-2172-5&amp;rft.aulast=Duoandikoetxea&amp;rft.aufirst=Javier&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDymMcKean1985" class="citation cs2"><a href="/wiki/Harry_Dym" title="Harry Dym">Dym, H.</a>; McKean, H. (1985), <i>Fourier Series and Integrals</i>, <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-226451-1" title="Special:BookSources/978-0-12-226451-1"><bdi>978-0-12-226451-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Series+and+Integrals&amp;rft.pub=Academic+Press&amp;rft.date=1985&amp;rft.isbn=978-0-12-226451-1&amp;rft.aulast=Dym&amp;rft.aufirst=H.&amp;rft.au=McKean%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEaston2010" class="citation cs2">Easton, Roger L. Jr. (2010), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wCoDDQAAQBAJ"><i>Fourier Methods in Imaging</i></a>, John Wiley &amp; Sons, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-470-68983-7" title="Special:BookSources/978-0-470-68983-7"><bdi>978-0-470-68983-7</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">26 May</span> 2020</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Methods+in+Imaging&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2010&amp;rft.isbn=978-0-470-68983-7&amp;rft.aulast=Easton&amp;rft.aufirst=Roger+L.+Jr.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwCoDDQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdélyi1954" class="citation cs2">Erdélyi, Arthur, ed. (1954), <i>Tables of Integral Transforms</i>, vol.&#160;1, McGraw-Hill</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tables+of+Integral+Transforms&amp;rft.pub=McGraw-Hill&amp;rft.date=1954&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeller1971" class="citation cs2"><a href="/wiki/William_Feller" title="William Feller">Feller, William</a> (1971), <i>An Introduction to Probability Theory and Its Applications</i>, vol.&#160;II (2nd&#160;ed.), New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">Wiley</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0270403">0270403</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Probability+Theory+and+Its+Applications&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=Wiley&amp;rft.date=1971&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0270403%23id-name%3DMR&amp;rft.aulast=Feller&amp;rft.aufirst=William&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland1989" class="citation cs2">Folland, Gerald (1989), <i>Harmonic analysis in phase space</i>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Harmonic+analysis+in+phase+space&amp;rft.pub=Princeton+University+Press&amp;rft.date=1989&amp;rft.aulast=Folland&amp;rft.aufirst=Gerald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland1992" class="citation cs2">Folland, Gerald (1992), <i>Fourier analysis and its applications</i>, <a href="/wiki/Wadsworth_%26_Brooks/Cole" class="mw-redirect" title="Wadsworth &amp; Brooks/Cole">Wadsworth &amp; Brooks/Cole</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+analysis+and+its+applications&amp;rft.pub=Wadsworth+%26+Brooks%2FCole&amp;rft.date=1992&amp;rft.aulast=Folland&amp;rft.aufirst=Gerald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFourier1822" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Fourier, J.B. Joseph</a> (1822), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TDQJAAAAIAAJ&amp;q=%22c%27est-%C3%A0-dire+qu%27on+a+l%27%C3%A9quation%22&amp;pg=PA525"><i>Théorie analytique de la chaleur</i></a> (in French), Paris: Firmin Didot, père et fils, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/2688081">2688081</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Th%C3%A9orie+analytique+de+la+chaleur&amp;rft.place=Paris&amp;rft.pub=Firmin+Didot%2C+p%C3%A8re+et+fils&amp;rft.date=1822&amp;rft_id=info%3Aoclcnum%2F2688081&amp;rft.aulast=Fourier&amp;rft.aufirst=J.B.+Joseph&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTDQJAAAAIAAJ%26q%3D%2522c%2527est-%25C3%25A0-dire%2Bqu%2527on%2Ba%2Bl%2527%25C3%25A9quation%2522%26pg%3DPA525&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFourier1878" class="citation cs2"><a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Fourier, J.B. Joseph</a> (1878) [1822], <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-N8EAAAAYAAJ&amp;q=%22that+is+to+say%2C+that+we+have+the+equation%22&amp;pg=PA408"><i>The Analytical Theory of Heat</i></a>, translated by Alexander Freeman, The University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Analytical+Theory+of+Heat&amp;rft.pub=The+University+Press&amp;rft.date=1878&amp;rft.aulast=Fourier&amp;rft.aufirst=J.B.+Joseph&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-N8EAAAAYAAJ%26q%3D%2522that%2Bis%2Bto%2Bsay%252C%2Bthat%2Bwe%2Bhave%2Bthe%2Bequation%2522%26pg%3DPA408&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span> (translated from French)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGradshteynRyzhikGeronimusTseytlin2015" class="citation cs2"><a href="/wiki/Izrail_Solomonovich_Gradshteyn" class="mw-redirect" title="Izrail Solomonovich Gradshteyn">Gradshteyn, Izrail Solomonovich</a>; <a href="/wiki/Iosif_Moiseevich_Ryzhik" class="mw-redirect" title="Iosif Moiseevich Ryzhik">Ryzhik, Iosif Moiseevich</a>; <a href="/wiki/Yuri_Veniaminovich_Geronimus" class="mw-redirect" title="Yuri Veniaminovich Geronimus">Geronimus, Yuri Veniaminovich</a>; <a href="/wiki/Michail_Yulyevich_Tseytlin" class="mw-redirect" title="Michail Yulyevich Tseytlin">Tseytlin, Michail Yulyevich</a>; Jeffrey, Alan (2015), Zwillinger, Daniel; <a href="/wiki/Victor_Hugo_Moll" class="mw-redirect" title="Victor Hugo Moll">Moll, Victor Hugo</a> (eds.), <a href="/wiki/Gradshteyn_and_Ryzhik" title="Gradshteyn and Ryzhik"><i>Table of Integrals, Series, and Products</i></a>, translated by Scripta Technica, Inc. (8th&#160;ed.), <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-384933-5" title="Special:BookSources/978-0-12-384933-5"><bdi>978-0-12-384933-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Table+of+Integrals%2C+Series%2C+and+Products&amp;rft.edition=8th&amp;rft.pub=Academic+Press&amp;rft.date=2015&amp;rft.isbn=978-0-12-384933-5&amp;rft.aulast=Gradshteyn&amp;rft.aufirst=Izrail+Solomonovich&amp;rft.au=Ryzhik%2C+Iosif+Moiseevich&amp;rft.au=Geronimus%2C+Yuri+Veniaminovich&amp;rft.au=Tseytlin%2C+Michail+Yulyevich&amp;rft.au=Jeffrey%2C+Alan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrafakos2004" class="citation cs2">Grafakos, Loukas (2004), <i>Classical and Modern Fourier Analysis</i>, Prentice-Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-035399-3" title="Special:BookSources/978-0-13-035399-3"><bdi>978-0-13-035399-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+and+Modern+Fourier+Analysis&amp;rft.pub=Prentice-Hall&amp;rft.date=2004&amp;rft.isbn=978-0-13-035399-3&amp;rft.aulast=Grafakos&amp;rft.aufirst=Loukas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrafakosTeschl2013" class="citation cs2">Grafakos, Loukas; <a href="/wiki/Gerald_Teschl" title="Gerald Teschl">Teschl, Gerald</a> (2013), "On Fourier transforms of radial functions and distributions", <i>J. Fourier Anal. Appl.</i>, <b>19</b>: 167–179, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1112.5469">1112.5469</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00041-012-9242-5">10.1007/s00041-012-9242-5</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1280745">1280745</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Fourier+Anal.+Appl.&amp;rft.atitle=On+Fourier+transforms+of+radial+functions+and+distributions&amp;rft.volume=19&amp;rft.pages=167-179&amp;rft.date=2013&amp;rft_id=info%3Aarxiv%2F1112.5469&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1280745%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00041-012-9242-5&amp;rft.aulast=Grafakos&amp;rft.aufirst=Loukas&amp;rft.au=Teschl%2C+Gerald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreinerReinhardt1996" class="citation cs2">Greiner, W.; Reinhardt, J. (1996), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/fieldquantizatio0000grei"><i>Field Quantization</i></a></span>, <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-59179-5" title="Special:BookSources/978-3-540-59179-5"><bdi>978-3-540-59179-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Field+Quantization&amp;rft.pub=Springer&amp;rft.date=1996&amp;rft.isbn=978-3-540-59179-5&amp;rft.aulast=Greiner&amp;rft.aufirst=W.&amp;rft.au=Reinhardt%2C+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffieldquantizatio0000grei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGelfandShilov1964" class="citation cs2"><a href="/wiki/Israel_Gelfand" title="Israel Gelfand">Gelfand, I.M.</a>; <a href="/wiki/Naum_Ya._Vilenkin" class="mw-redirect" title="Naum Ya. Vilenkin">Shilov, G.E.</a> (1964), <i>Generalized Functions</i>, vol.&#160;1, New York: <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Generalized+Functions&amp;rft.place=New+York&amp;rft.pub=Academic+Press&amp;rft.date=1964&amp;rft.aulast=Gelfand&amp;rft.aufirst=I.M.&amp;rft.au=Shilov%2C+G.E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span> (translated from Russian)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGelfandVilenkin1964" class="citation cs2"><a href="/wiki/Israel_Gelfand" title="Israel Gelfand">Gelfand, I.M.</a>; <a href="/wiki/Naum_Ya._Vilenkin" class="mw-redirect" title="Naum Ya. Vilenkin">Vilenkin, N.Y.</a> (1964), <i>Generalized Functions</i>, vol.&#160;4, New York: <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Generalized+Functions&amp;rft.place=New+York&amp;rft.pub=Academic+Press&amp;rft.date=1964&amp;rft.aulast=Gelfand&amp;rft.aufirst=I.M.&amp;rft.au=Vilenkin%2C+N.Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span> (translated from Russian)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHewittRoss1970" class="citation cs2 cs1-prop-long-vol">Hewitt, Edwin; Ross, Kenneth A. (1970), <i>Abstract harmonic analysis</i>, Die Grundlehren der mathematischen Wissenschaften, Band 152, vol.&#160;II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0262773">0262773</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Abstract+harmonic+analysis&amp;rft.series=Die+Grundlehren+der+mathematischen+Wissenschaften%2C+Band+152&amp;rft.pub=Springer&amp;rft.date=1970&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0262773%23id-name%3DMR&amp;rft.aulast=Hewitt&amp;rft.aufirst=Edwin&amp;rft.au=Ross%2C+Kenneth+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHörmander1976" class="citation cs2"><a href="/wiki/Lars_H%C3%B6rmander" title="Lars Hörmander">Hörmander, L.</a> (1976), <i>Linear Partial Differential Operators</i>, vol.&#160;1, <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-00662-6" title="Special:BookSources/978-3-540-00662-6"><bdi>978-3-540-00662-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Partial+Differential+Operators&amp;rft.pub=Springer&amp;rft.date=1976&amp;rft.isbn=978-3-540-00662-6&amp;rft.aulast=H%C3%B6rmander&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowe1980" class="citation cs2">Howe, Roger (1980), "On the role of the Heisenberg group in harmonic analysis", <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>, <b>3</b> (2): 821–844, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-1980-14825-9">10.1090/S0273-0979-1980-14825-9</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0578375">0578375</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft.atitle=On+the+role+of+the+Heisenberg+group+in+harmonic+analysis&amp;rft.volume=3&amp;rft.issue=2&amp;rft.pages=821-844&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1090%2FS0273-0979-1980-14825-9&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D578375%23id-name%3DMR&amp;rft.aulast=Howe&amp;rft.aufirst=Roger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJames2011" class="citation cs2">James, J.F. (2011), <i>A Student's Guide to Fourier Transforms</i> (3rd&#160;ed.), <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-17683-5" title="Special:BookSources/978-0-521-17683-5"><bdi>978-0-521-17683-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Student%27s+Guide+to+Fourier+Transforms&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2011&amp;rft.isbn=978-0-521-17683-5&amp;rft.aulast=James&amp;rft.aufirst=J.F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJordan1883" class="citation cs2 cs1-prop-long-vol"><a href="/wiki/Camille_Jordan" title="Camille Jordan">Jordan, Camille</a> (1883), <i>Cours d'Analyse de l'École Polytechnique</i>, vol.&#160;II, Calcul Intégral: Intégrales définies et indéfinies (2nd&#160;ed.), Paris</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cours+d%27Analyse+de+l%27%C3%89cole+Polytechnique&amp;rft.place=Paris&amp;rft.edition=2nd&amp;rft.date=1883&amp;rft.aulast=Jordan&amp;rft.aufirst=Camille&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaiser1994" class="citation cs2">Kaiser, Gerald (1994), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rfRnrhJwoloC&amp;q=%22becomes+the+Fourier+%28integral%29+transform%22&amp;pg=PA29">"A Friendly Guide to Wavelets"</a>, <i>Physics Today</i>, <b>48</b> (7): 57–58, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995PhT....48g..57K">1995PhT....48g..57K</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.2808105">10.1063/1.2808105</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8176-3711-8" title="Special:BookSources/978-0-8176-3711-8"><bdi>978-0-8176-3711-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Today&amp;rft.atitle=A+Friendly+Guide+to+Wavelets&amp;rft.volume=48&amp;rft.issue=7&amp;rft.pages=57-58&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1063%2F1.2808105&amp;rft_id=info%3Abibcode%2F1995PhT....48g..57K&amp;rft.isbn=978-0-8176-3711-8&amp;rft.aulast=Kaiser&amp;rft.aufirst=Gerald&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DrfRnrhJwoloC%26q%3D%2522becomes%2Bthe%2BFourier%2B%2528integral%2529%2Btransform%2522%26pg%3DPA29&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKammler2000" class="citation cs2">Kammler, David (2000), <i>A First Course in Fourier Analysis</i>, Prentice Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-578782-3" title="Special:BookSources/978-0-13-578782-3"><bdi>978-0-13-578782-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Fourier+Analysis&amp;rft.pub=Prentice+Hall&amp;rft.date=2000&amp;rft.isbn=978-0-13-578782-3&amp;rft.aulast=Kammler&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatznelson1976" class="citation cs2">Katznelson, Yitzhak (1976), <i>An Introduction to Harmonic Analysis</i>, <a href="/wiki/Dover_Publications" title="Dover Publications">Dover</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-63331-2" title="Special:BookSources/978-0-486-63331-2"><bdi>978-0-486-63331-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Harmonic+Analysis&amp;rft.pub=Dover&amp;rft.date=1976&amp;rft.isbn=978-0-486-63331-2&amp;rft.aulast=Katznelson&amp;rft.aufirst=Yitzhak&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhareButolaRajora2023" class="citation cs2">Khare, Kedar; Butola, Mansi; Rajora, Sunaina (2023), "Chapter 2.3 Fourier Transform as a Limiting Case of Fourier Series", <i>Fourier Optics and Computational Imaging</i> (2nd&#160;ed.), Springer, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-031-18353-9">10.1007/978-3-031-18353-9</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-031-18353-9" title="Special:BookSources/978-3-031-18353-9"><bdi>978-3-031-18353-9</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:255676773">255676773</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+2.3+Fourier+Transform+as+a+Limiting+Case+of+Fourier+Series&amp;rft.btitle=Fourier+Optics+and+Computational+Imaging&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2023&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A255676773%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-031-18353-9&amp;rft.isbn=978-3-031-18353-9&amp;rft.aulast=Khare&amp;rft.aufirst=Kedar&amp;rft.au=Butola%2C+Mansi&amp;rft.au=Rajora%2C+Sunaina&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKirillovGvishiani1982" class="citation cs2"><a href="/wiki/Alexandre_Kirillov" title="Alexandre Kirillov">Kirillov, Alexandre</a>; Gvishiani, Alexei D. (1982) [1979], <i>Theorems and Problems in Functional Analysis</i>, <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theorems+and+Problems+in+Functional+Analysis&amp;rft.pub=Springer&amp;rft.date=1982&amp;rft.aulast=Kirillov&amp;rft.aufirst=Alexandre&amp;rft.au=Gvishiani%2C+Alexei+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span> (translated from Russian)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnapp2001" class="citation cs2">Knapp, Anthony W. (2001), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QCcW1h835pwC"><i>Representation Theory of Semisimple Groups: An Overview Based on Examples</i></a>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-09089-4" title="Special:BookSources/978-0-691-09089-4"><bdi>978-0-691-09089-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Representation+Theory+of+Semisimple+Groups%3A+An+Overview+Based+on+Examples&amp;rft.pub=Princeton+University+Press&amp;rft.date=2001&amp;rft.isbn=978-0-691-09089-4&amp;rft.aulast=Knapp&amp;rft.aufirst=Anthony+W.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQCcW1h835pwC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKolmogorovFomin1999" class="citation cs2"><a href="/wiki/Andrey_Kolmogorov" title="Andrey Kolmogorov">Kolmogorov, Andrey Nikolaevich</a>; <a href="/wiki/Sergei_Fomin" title="Sergei Fomin">Fomin, Sergei Vasilyevich</a> (1999) [1957], <a rel="nofollow" class="external text" href="http://store.doverpublications.com/0486406830.html"><i>Elements of the Theory of Functions and Functional Analysis</i></a>, <a href="/wiki/Dover_Publications" title="Dover Publications">Dover</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+the+Theory+of+Functions+and+Functional+Analysis&amp;rft.pub=Dover&amp;rft.date=1999&amp;rft.aulast=Kolmogorov&amp;rft.aufirst=Andrey+Nikolaevich&amp;rft.au=Fomin%2C+Sergei+Vasilyevich&amp;rft_id=http%3A%2F%2Fstore.doverpublications.com%2F0486406830.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span> (translated from Russian)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLado1971" class="citation cs2">Lado, F. (1971), <a rel="nofollow" class="external text" href="http://www.lib.ncsu.edu/resolver/1840.2/2465">"Numerical Fourier transforms in one, two, and three dimensions for liquid state calculations"</a>, <i><a href="/wiki/Journal_of_Computational_Physics" title="Journal of Computational Physics">Journal of Computational Physics</a></i>, <b>8</b> (3): 417–433, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1971JCoPh...8..417L">1971JCoPh...8..417L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0021-9991%2871%2990021-0">10.1016/0021-9991(71)90021-0</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Computational+Physics&amp;rft.atitle=Numerical+Fourier+transforms+in+one%2C+two%2C+and+three+dimensions+for+liquid+state+calculations&amp;rft.volume=8&amp;rft.issue=3&amp;rft.pages=417-433&amp;rft.date=1971&amp;rft_id=info%3Adoi%2F10.1016%2F0021-9991%2871%2990021-0&amp;rft_id=info%3Abibcode%2F1971JCoPh...8..417L&amp;rft.aulast=Lado&amp;rft.aufirst=F.&amp;rft_id=http%3A%2F%2Fwww.lib.ncsu.edu%2Fresolver%2F1840.2%2F2465&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüller2015" class="citation cs2">Müller, Meinard (2015), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160408083515/https://www.audiolabs-erlangen.de/content/05-fau/professor/00-mueller/04-bookFMP/2015_Mueller_FundamentalsMusicProcessing_Springer_Section2-1_SamplePages.pdf"><i>The Fourier Transform in a Nutshell.</i></a> <span class="cs1-format">(PDF)</span>, <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-21945-5">10.1007/978-3-319-21945-5</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-21944-8" title="Special:BookSources/978-3-319-21944-8"><bdi>978-3-319-21944-8</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8691186">8691186</a>, archived from <a rel="nofollow" class="external text" href="https://www.audiolabs-erlangen.de/content/05-fau/professor/00-mueller/04-bookFMP/2015_Mueller_FundamentalsMusicProcessing_Springer_Section2-1_SamplePages.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-04-08<span class="reference-accessdate">, retrieved <span class="nowrap">2016-03-28</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Fourier+Transform+in+a+Nutshell.&amp;rft.pub=Springer&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8691186%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-21945-5&amp;rft.isbn=978-3-319-21944-8&amp;rft.aulast=M%C3%BCller&amp;rft.aufirst=Meinard&amp;rft_id=https%3A%2F%2Fwww.audiolabs-erlangen.de%2Fcontent%2F05-fau%2Fprofessor%2F00-mueller%2F04-bookFMP%2F2015_Mueller_FundamentalsMusicProcessing_Springer_Section2-1_SamplePages.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span>; also available at <a rel="nofollow" class="external text" href="http://www.music-processing.de">Fundamentals of Music Processing</a>, Section 2.1, pages 40–56</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOppenheimSchaferBuck1999" class="citation cs2"><a href="/wiki/Alan_V._Oppenheim" title="Alan V. Oppenheim">Oppenheim, Alan V.</a>; <a href="/wiki/Ronald_W._Schafer" title="Ronald W. Schafer">Schafer, Ronald W.</a>; Buck, John R. (1999), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/discretetimesign00alan"><i>Discrete-time signal processing</i></a></span> (2nd&#160;ed.), Upper Saddle River, N.J.: Prentice Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-13-754920-2" title="Special:BookSources/0-13-754920-2"><bdi>0-13-754920-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Discrete-time+signal+processing&amp;rft.place=Upper+Saddle+River%2C+N.J.&amp;rft.edition=2nd&amp;rft.pub=Prentice+Hall&amp;rft.date=1999&amp;rft.isbn=0-13-754920-2&amp;rft.aulast=Oppenheim&amp;rft.aufirst=Alan+V.&amp;rft.au=Schafer%2C+Ronald+W.&amp;rft.au=Buck%2C+John+R.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdiscretetimesign00alan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaleyWiener1934" class="citation cs2"><a href="/wiki/Raymond_Paley" title="Raymond Paley">Paley, R.E.A.C.</a>; <a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Wiener, Norbert</a> (1934), <i>Fourier Transforms in the Complex Domain</i>, American Mathematical Society Colloquium Publications, Providence, Rhode Island: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Transforms+in+the+Complex+Domain&amp;rft.place=Providence%2C+Rhode+Island&amp;rft.series=American+Mathematical+Society+Colloquium+Publications&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1934&amp;rft.aulast=Paley&amp;rft.aufirst=R.E.A.C.&amp;rft.au=Wiener%2C+Norbert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPinsky2002" class="citation cs2">Pinsky, Mark (2002), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PyISCgAAQBAJ&amp;q=%22The+Fourier+transform+of+the+measure%22&amp;pg=PA256"><i>Introduction to Fourier Analysis and Wavelets</i></a>, Brooks/Cole, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-534-37660-4" title="Special:BookSources/978-0-534-37660-4"><bdi>978-0-534-37660-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Fourier+Analysis+and+Wavelets&amp;rft.pub=Brooks%2FCole&amp;rft.date=2002&amp;rft.isbn=978-0-534-37660-4&amp;rft.aulast=Pinsky&amp;rft.aufirst=Mark&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPyISCgAAQBAJ%26q%3D%2522The%2BFourier%2Btransform%2Bof%2Bthe%2Bmeasure%2522%26pg%3DPA256&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoincaré1895" class="citation cs2"><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré, Henri</a> (1895), <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k5500702f"><i>Théorie analytique de la propagation de la chaleur</i></a>, Paris: Carré</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Th%C3%A9orie+analytique+de+la+propagation+de+la+chaleur&amp;rft.place=Paris&amp;rft.pub=Carr%C3%A9&amp;rft.date=1895&amp;rft.aulast=Poincar%C3%A9&amp;rft.aufirst=Henri&amp;rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k5500702f&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolyaninManzhirov1998" class="citation cs2">Polyanin, A. D.; Manzhirov, A. V. (1998), <i>Handbook of Integral Equations</i>, Boca Raton: <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-2876-3" title="Special:BookSources/978-0-8493-2876-3"><bdi>978-0-8493-2876-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Integral+Equations&amp;rft.place=Boca+Raton&amp;rft.pub=CRC+Press&amp;rft.date=1998&amp;rft.isbn=978-0-8493-2876-3&amp;rft.aulast=Polyanin&amp;rft.aufirst=A.+D.&amp;rft.au=Manzhirov%2C+A.+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPressFlanneryTeukolskyVetterling1992" class="citation cs2">Press, William H.; Flannery, Brian P.; Teukolsky, Saul A.; Vetterling, William T. (1992), <i>Numerical Recipes in C: The Art of Scientific Computing, Second Edition</i> (2nd&#160;ed.), <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+Recipes+in+C%3A+The+Art+of+Scientific+Computing%2C+Second+Edition&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1992&amp;rft.aulast=Press&amp;rft.aufirst=William+H.&amp;rft.au=Flannery%2C+Brian+P.&amp;rft.au=Teukolsky%2C+Saul+A.&amp;rft.au=Vetterling%2C+William+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFProakisManolakis1996" class="citation book cs1">Proakis, John G.; Manolakis, Dimitri G. (1996). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/digitalsignalpro00proa"><i>Digital Signal Processing: Principles, Algorithms and Applications</i></a></span> (3&#160;ed.). New Jersey: Prentice-Hall International. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996dspp.book.....P">1996dspp.book.....P</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780133942897" title="Special:BookSources/9780133942897"><bdi>9780133942897</bdi></a>. sAcfAQAAIAAJ.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Digital+Signal+Processing%3A+Principles%2C+Algorithms+and+Applications&amp;rft.place=New+Jersey&amp;rft.edition=3&amp;rft.pub=Prentice-Hall+International&amp;rft.date=1996&amp;rft_id=info%3Abibcode%2F1996dspp.book.....P&amp;rft.isbn=9780133942897&amp;rft.aulast=Proakis&amp;rft.aufirst=John+G.&amp;rft.au=Manolakis%2C+Dimitri+G.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdigitalsignalpro00proa&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRahman2011" class="citation cs2">Rahman, Matiur (2011), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=k_rdcKaUdr4C&amp;pg=PA10"><i>Applications of Fourier Transforms to Generalized Functions</i></a>, WIT Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-84564-564-9" title="Special:BookSources/978-1-84564-564-9"><bdi>978-1-84564-564-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applications+of+Fourier+Transforms+to+Generalized+Functions&amp;rft.pub=WIT+Press&amp;rft.date=2011&amp;rft.isbn=978-1-84564-564-9&amp;rft.aulast=Rahman&amp;rft.aufirst=Matiur&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dk_rdcKaUdr4C%26pg%3DPA10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1987" class="citation cs2">Rudin, Walter (1987), <i>Real and Complex Analysis</i> (3rd&#160;ed.), Singapore: McGraw Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-100276-9" title="Special:BookSources/978-0-07-100276-9"><bdi>978-0-07-100276-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+and+Complex+Analysis&amp;rft.place=Singapore&amp;rft.edition=3rd&amp;rft.pub=McGraw+Hill&amp;rft.date=1987&amp;rft.isbn=978-0-07-100276-9&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonenOlkkonen1985" class="citation cs2">Simonen, P.; Olkkonen, H. (1985), "Fast method for computing the Fourier integral transform via Simpson's numerical integration", <i>Journal of Biomedical Engineering</i>, <b>7</b> (4): 337–340, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0141-5425%2885%2990067-6">10.1016/0141-5425(85)90067-6</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/4057997">4057997</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Biomedical+Engineering&amp;rft.atitle=Fast+method+for+computing+the+Fourier+integral+transform+via+Simpson%27s+numerical+integration&amp;rft.volume=7&amp;rft.issue=4&amp;rft.pages=337-340&amp;rft.date=1985&amp;rft_id=info%3Adoi%2F10.1016%2F0141-5425%2885%2990067-6&amp;rft_id=info%3Apmid%2F4057997&amp;rft.aulast=Simonen&amp;rft.aufirst=P.&amp;rft.au=Olkkonen%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith" class="citation web cs1">Smith, Julius O. <a rel="nofollow" class="external text" href="http://ccrma.stanford.edu/~jos/mdft/Positive_Negative_Frequencies.html">"Mathematics of the Discrete Fourier Transform (DFT), with Audio Applications --- Second Edition"</a>. <i>ccrma.stanford.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-29</span></span>. <q>We may think of a real sinusoid as being the sum of a positive-frequency and a negative-frequency complex sinusoid.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ccrma.stanford.edu&amp;rft.atitle=Mathematics+of+the+Discrete+Fourier+Transform+%28DFT%29%2C+with+Audio+Applications+---+Second+Edition&amp;rft.aulast=Smith&amp;rft.aufirst=Julius+O.&amp;rft_id=http%3A%2F%2Fccrma.stanford.edu%2F~jos%2Fmdft%2FPositive_Negative_Frequencies.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinShakarchi2003" class="citation cs2">Stein, Elias; Shakarchi, Rami (2003), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FAOc24bTfGkC&amp;q=%22The+mathematical+thrust+of+the+principle%22&amp;pg=PA158"><i>Fourier Analysis: An introduction</i></a>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-11384-5" title="Special:BookSources/978-0-691-11384-5"><bdi>978-0-691-11384-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis%3A+An+introduction&amp;rft.pub=Princeton+University+Press&amp;rft.date=2003&amp;rft.isbn=978-0-691-11384-5&amp;rft.aulast=Stein&amp;rft.aufirst=Elias&amp;rft.au=Shakarchi%2C+Rami&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFAOc24bTfGkC%26q%3D%2522The%2Bmathematical%2Bthrust%2Bof%2Bthe%2Bprinciple%2522%26pg%3DPA158&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinWeiss1971" class="citation cs2"><a href="/wiki/Elias_Stein" class="mw-redirect" title="Elias Stein">Stein, Elias</a>; <a href="/wiki/Guido_Weiss" title="Guido Weiss">Weiss, Guido</a> (1971), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YUCV678MNAIC&amp;q=editions:xbArf-TFDSEC"><i>Introduction to Fourier Analysis on Euclidean Spaces</i></a>, Princeton, N.J.: <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-08078-9" title="Special:BookSources/978-0-691-08078-9"><bdi>978-0-691-08078-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Fourier+Analysis+on+Euclidean+Spaces&amp;rft.place=Princeton%2C+N.J.&amp;rft.pub=Princeton+University+Press&amp;rft.date=1971&amp;rft.isbn=978-0-691-08078-9&amp;rft.aulast=Stein&amp;rft.aufirst=Elias&amp;rft.au=Weiss%2C+Guido&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYUCV678MNAIC%26q%3Deditions%3AxbArf-TFDSEC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaneja2008" class="citation cs2">Taneja, H.C. (2008), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=X-RFRHxMzvYC&amp;q=%22The+Fourier+integral+can+be+regarded+as+an+extension+of+the+concept+of+Fourier+series%22&amp;pg=PA192">"Chapter 18: Fourier integrals and Fourier transforms"</a>, <i>Advanced Engineering Mathematics</i>, vol.&#160;2, New Delhi, India: I. K. International Pvt Ltd, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-8189866563" title="Special:BookSources/978-8189866563"><bdi>978-8189866563</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+18%3A+Fourier+integrals+and+Fourier+transforms&amp;rft.btitle=Advanced+Engineering+Mathematics&amp;rft.place=New+Delhi%2C+India&amp;rft.pub=I.+K.+International+Pvt+Ltd&amp;rft.date=2008&amp;rft.isbn=978-8189866563&amp;rft.aulast=Taneja&amp;rft.aufirst=H.C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DX-RFRHxMzvYC%26q%3D%2522The%2BFourier%2Bintegral%2Bcan%2Bbe%2Bregarded%2Bas%2Ban%2Bextension%2Bof%2Bthe%2Bconcept%2Bof%2BFourier%2Bseries%2522%26pg%3DPA192&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTitchmarsh1986" class="citation cs2"><a href="/wiki/Edward_Charles_Titchmarsh" title="Edward Charles Titchmarsh">Titchmarsh, E.</a> (1986) [1948], <i>Introduction to the theory of Fourier integrals</i> (2nd&#160;ed.), Oxford University: <a href="/wiki/Clarendon_Press" class="mw-redirect" title="Clarendon Press">Clarendon Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8284-0324-5" title="Special:BookSources/978-0-8284-0324-5"><bdi>978-0-8284-0324-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+theory+of+Fourier+integrals&amp;rft.place=Oxford+University&amp;rft.edition=2nd&amp;rft.pub=Clarendon+Press&amp;rft.date=1986&amp;rft.isbn=978-0-8284-0324-5&amp;rft.aulast=Titchmarsh&amp;rft.aufirst=E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVretblad2000" class="citation cs2">Vretblad, Anders (2000), <i>Fourier Analysis and its Applications</i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, vol.&#160;223, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-00836-3" title="Special:BookSources/978-0-387-00836-3"><bdi>978-0-387-00836-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis+and+its+Applications&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=2000&amp;rft.isbn=978-0-387-00836-3&amp;rft.aulast=Vretblad&amp;rft.aufirst=Anders&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhittakerWatson1927" class="citation cs2"><a href="/wiki/E._T._Whittaker" title="E. T. Whittaker">Whittaker, E. T.</a>; <a href="/wiki/G._N._Watson" title="G. N. Watson">Watson, G. N.</a> (1927), <a href="/wiki/A_Course_of_Modern_Analysis" title="A Course of Modern Analysis"><i>A Course of Modern Analysis</i></a> (4th&#160;ed.), <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Course+of+Modern+Analysis&amp;rft.edition=4th&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1927&amp;rft.aulast=Whittaker&amp;rft.aufirst=E.+T.&amp;rft.au=Watson%2C+G.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWidderWiener1938" class="citation cs2">Widder, David Vernon; <a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Wiener, Norbert</a> (August 1938), <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.bams/1183500627">"Remarks on the Classical Inversion Formula for the Laplace Integral"</a>, <i>Bulletin of the American Mathematical Society</i>, <b>44</b> (8): 573–575, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0002-9904-1938-06812-7">10.1090/s0002-9904-1938-06812-7</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft.atitle=Remarks+on+the+Classical+Inversion+Formula+for+the+Laplace+Integral&amp;rft.volume=44&amp;rft.issue=8&amp;rft.pages=573-575&amp;rft.date=1938-08&amp;rft_id=info%3Adoi%2F10.1090%2Fs0002-9904-1938-06812-7&amp;rft.aulast=Widder&amp;rft.aufirst=David+Vernon&amp;rft.au=Wiener%2C+Norbert&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.bams%2F1183500627&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiener1949" class="citation cs2"><a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Wiener, Norbert</a> (1949), <i>Extrapolation, Interpolation, and Smoothing of Stationary Time Series With Engineering Applications</i>, Cambridge, Mass.: Technology Press and John Wiley &amp; Sons and Chapman &amp; Hall</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Extrapolation%2C+Interpolation%2C+and+Smoothing+of+Stationary+Time+Series+With+Engineering+Applications&amp;rft.place=Cambridge%2C+Mass.&amp;rft.pub=Technology+Press+and+John+Wiley+%26+Sons+and+Chapman+%26+Hall&amp;rft.date=1949&amp;rft.aulast=Wiener&amp;rft.aufirst=Norbert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilson1995" class="citation cs2">Wilson, R. G. (1995), <i>Fourier Series and Optical Transform Techniques in Contemporary Optics</i>, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">Wiley</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-30357-2" title="Special:BookSources/978-0-471-30357-2"><bdi>978-0-471-30357-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Series+and+Optical+Transform+Techniques+in+Contemporary+Optics&amp;rft.place=New+York&amp;rft.pub=Wiley&amp;rft.date=1995&amp;rft.isbn=978-0-471-30357-2&amp;rft.aulast=Wilson&amp;rft.aufirst=R.+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolf1979" class="citation cs2">Wolf, Kurt B. (1979), <a rel="nofollow" class="external text" href="https://www.fis.unam.mx/~bwolf/integraleng.html"><i>Integral Transforms in Science and Engineering</i></a>, <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-0872-1">10.1007/978-1-4757-0872-1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4757-0874-5" title="Special:BookSources/978-1-4757-0874-5"><bdi>978-1-4757-0874-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Integral+Transforms+in+Science+and+Engineering&amp;rft.pub=Springer&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4757-0872-1&amp;rft.isbn=978-1-4757-0874-5&amp;rft.aulast=Wolf&amp;rft.aufirst=Kurt+B.&amp;rft_id=https%3A%2F%2Fwww.fis.unam.mx%2F~bwolf%2Fintegraleng.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYosida1968" class="citation cs2"><a href="/wiki/K%C5%8Dsaku_Yosida" title="Kōsaku Yosida">Yosida, K.</a> (1968), <i>Functional Analysis</i>, <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-58654-8" title="Special:BookSources/978-3-540-58654-8"><bdi>978-3-540-58654-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+Analysis&amp;rft.pub=Springer&amp;rft.date=1968&amp;rft.isbn=978-3-540-58654-8&amp;rft.aulast=Yosida&amp;rft.aufirst=K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fourier_transform&amp;action=edit&amp;section=74" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Fourier_transformation" class="extiw" title="commons:Category:Fourier transformation">Fourier transformation</a> at Wikimedia Commons</li> <li><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php/Fourier_transform">Encyclopedia of Mathematics</a></li> <li><span class="citation mathworld" id="Reference-Mathworld-Fourier_Transform"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/FourierTransform.html">"Fourier Transform"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Fourier+Transform&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FFourierTransform.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFourier+transform" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="https://www.xtal.iqf.csic.es/Cristalografia/parte_05-en.html">Fourier Transform in Crystallography</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q6520159#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4798599-9">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85051094">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fourier, Transformations de"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119793260">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fourier, Transformations de"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119793260">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00562090">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fourierova transformace"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph117565&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007548250405171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐m5pdf Cached time: 20241125133415 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.827 seconds Real time usage: 3.187 seconds Preprocessor visited node count: 30850/1000000 Post‐expand include size: 261088/2097152 bytes Template argument size: 48618/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 26/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 238294/5000000 bytes Lua time usage: 1.152/10.000 seconds Lua memory usage: 8427389/52428800 bytes Lua Profile: ? 280 ms 20.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 240 ms 17.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 180 ms 13.4% dataWrapper <mw.lua:672> 140 ms 10.4% recursiveClone <mwInit.lua:45> 120 ms 9.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::uc 40 ms 3.0% citation0 <Module:Citation/CS1:2614> 40 ms 3.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::anchorEncode 40 ms 3.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 40 ms 3.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::preprocess 20 ms 1.5% [others] 200 ms 14.9% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2012.777 1 -total 24.88% 500.710 388 Template:Math 16.24% 326.795 61 Template:Citation 12.24% 246.422 2 Template:Reflist 10.52% 211.807 1 Template:Short_description 8.93% 179.752 2 Template:Pagetype 6.51% 130.935 3 Template:Cite_web 5.73% 115.306 1 Template:Authority_control 5.16% 103.911 12 Template:Harvtxt 4.38% 88.232 397 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:52247-0!canonical and timestamp 20241125133415 and revision id 1257773298. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Fourier_transform&amp;oldid=1257773298">https://en.wikipedia.org/w/index.php?title=Fourier_transform&amp;oldid=1257773298</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Fourier_analysis" title="Category:Fourier analysis">Fourier analysis</a></li><li><a href="/wiki/Category:Integral_transforms" title="Category:Integral transforms">Integral transforms</a></li><li><a href="/wiki/Category:Unitary_operators" title="Category:Unitary operators">Unitary operators</a></li><li><a href="/wiki/Category:Joseph_Fourier" title="Category:Joseph Fourier">Joseph Fourier</a></li><li><a href="/wiki/Category:Mathematical_physics" title="Category:Mathematical physics">Mathematical physics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2009" title="Category:Articles with unsourced statements from May 2009">Articles with unsourced statements from May 2009</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 16 November 2024, at 15:44<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Fourier_transform&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b7f745dd4-vxwkl","wgBackendResponseTime":186,"wgPageParseReport":{"limitreport":{"cputime":"2.827","walltime":"3.187","ppvisitednodes":{"value":30850,"limit":1000000},"postexpandincludesize":{"value":261088,"limit":2097152},"templateargumentsize":{"value":48618,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":26,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":238294,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2012.777 1 -total"," 24.88% 500.710 388 Template:Math"," 16.24% 326.795 61 Template:Citation"," 12.24% 246.422 2 Template:Reflist"," 10.52% 211.807 1 Template:Short_description"," 8.93% 179.752 2 Template:Pagetype"," 6.51% 130.935 3 Template:Cite_web"," 5.73% 115.306 1 Template:Authority_control"," 5.16% 103.911 12 Template:Harvtxt"," 4.38% 88.232 397 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"1.152","limit":"10.000"},"limitreport-memusage":{"value":8427389,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFArfken1985\"] = 1,\n [\"CITEREFBaileySwarztrauber1994\"] = 1,\n [\"CITEREFBoashash2003\"] = 1,\n [\"CITEREFBochnerChandrasekharan1949\"] = 1,\n [\"CITEREFBracewell2000\"] = 1,\n [\"CITEREFCampbellFoster1948\"] = 1,\n [\"CITEREFCeleghiniGadelladel_Olmo2021\"] = 1,\n [\"CITEREFChampeney1987\"] = 1,\n [\"CITEREFChatfield2004\"] = 1,\n [\"CITEREFClozelDelorme1985\"] = 1,\n [\"CITEREFCondon1937\"] = 1,\n [\"CITEREFCorreiaJustoAngélico2024\"] = 1,\n [\"CITEREFDuoandikoetxea2001\"] = 1,\n [\"CITEREFDymMcKean1985\"] = 1,\n [\"CITEREFEaston2010\"] = 1,\n [\"CITEREFErdélyi1954\"] = 1,\n [\"CITEREFFeller1971\"] = 1,\n [\"CITEREFFolland1989\"] = 1,\n [\"CITEREFFolland1992\"] = 1,\n [\"CITEREFFourier1822\"] = 1,\n [\"CITEREFFourier1878\"] = 1,\n [\"CITEREFGelfandShilov1964\"] = 1,\n [\"CITEREFGelfandVilenkin1964\"] = 1,\n [\"CITEREFGradshteynRyzhikGeronimusTseytlin2015\"] = 1,\n [\"CITEREFGrafakos2004\"] = 1,\n [\"CITEREFGrafakosTeschl2013\"] = 1,\n [\"CITEREFGreinerReinhardt1996\"] = 1,\n [\"CITEREFHewittRoss1970\"] = 1,\n [\"CITEREFHowe1980\"] = 1,\n [\"CITEREFHörmander1976\"] = 1,\n [\"CITEREFJames2011\"] = 1,\n [\"CITEREFJordan1883\"] = 1,\n [\"CITEREFKaiser1994\"] = 1,\n [\"CITEREFKammler2000\"] = 1,\n [\"CITEREFKatznelson1976\"] = 1,\n [\"CITEREFKhareButolaRajora2023\"] = 1,\n [\"CITEREFKirillovGvishiani1982\"] = 1,\n [\"CITEREFKnapp2001\"] = 1,\n [\"CITEREFKolmogorovFomin1999\"] = 1,\n [\"CITEREFLado1971\"] = 1,\n [\"CITEREFMüller2015\"] = 1,\n [\"CITEREFOppenheimSchaferBuck1999\"] = 1,\n [\"CITEREFPaleyWiener1934\"] = 1,\n [\"CITEREFPinsky2002\"] = 1,\n [\"CITEREFPoincaré1895\"] = 1,\n [\"CITEREFPolyaninManzhirov1998\"] = 1,\n [\"CITEREFPressFlanneryTeukolskyVetterling1992\"] = 1,\n [\"CITEREFProakisManolakis1996\"] = 1,\n [\"CITEREFRahman2011\"] = 1,\n [\"CITEREFRudin1987\"] = 1,\n [\"CITEREFSimonenOlkkonen1985\"] = 1,\n [\"CITEREFSmith\"] = 1,\n [\"CITEREFSteinShakarchi2003\"] = 1,\n [\"CITEREFSteinWeiss1971\"] = 1,\n [\"CITEREFTaneja2008\"] = 1,\n [\"CITEREFTitchmarsh1986\"] = 1,\n [\"CITEREFVretblad2000\"] = 1,\n [\"CITEREFWhittakerWatson1927\"] = 1,\n [\"CITEREFWidderWiener1938\"] = 1,\n [\"CITEREFWiener1949\"] = 1,\n [\"CITEREFWilson1995\"] = 1,\n [\"CITEREFWolf1979\"] = 1,\n [\"CITEREFYosida1968\"] = 1,\n [\"CITEREFde_GrootMazur1984\"] = 1,\n [\"rect\"] = 1,\n}\ntemplate_list = table#1 {\n [\"(2 \\\\pi)\"] = 1,\n [\")\"] = 1,\n [\"=\"] = 20,\n [\"Abs\"] = 15,\n [\"Anchor\"] = 1,\n [\"Angbr\"] = 1,\n [\"Annotated image\"] = 1,\n [\"Annotation\"] = 8,\n [\"Authority control\"] = 1,\n [\"Br\"] = 31,\n [\"Citation\"] = 61,\n [\"Citation needed\"] = 1,\n [\"Cite book\"] = 1,\n [\"Cite journal\"] = 1,\n [\"Cite web\"] = 3,\n [\"Clear\"] = 1,\n [\"Code\"] = 3,\n [\"Commons category-inline\"] = 1,\n [\"DEFAULTSORT:Fourier Transform\"] = 1,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Equation box 1\"] = 2,\n [\"EquationNote\"] = 17,\n [\"EquationRef\"] = 2,\n [\"Fourier transforms\"] = 1,\n [\"Further\"] = 2,\n [\"Harvnb\"] = 61,\n [\"Harvtxt\"] = 12,\n [\"I sup\"] = 2,\n [\"Isup\"] = 24,\n [\"Main\"] = 9,\n [\"Math\"] = 387,\n [\"Math theorem\"] = 1,\n [\"MathWorld\"] = 1,\n [\"Mathcal\"] = 11,\n [\"Multiple image\"] = 1,\n [\"Mvar\"] = 211,\n [\"Nobr\"] = 1,\n [\"Not to be confused with\"] = 1,\n [\"Nowrap\"] = 2,\n [\"NumBlk\"] = 2,\n [\"Overline\"] = 3,\n [\"Pi\"] = 4,\n [\"Radic\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 2,\n [\"Section link\"] = 1,\n [\"See also\"] = 5,\n [\"Sfrac\"] = 13,\n [\"Short description\"] = 1,\n [\"Slink\"] = 8,\n [\"Sqrt\"] = 1,\n [\"Superscript\"] = 1,\n [\"′\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","280","20.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","240","17.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","180","13.4"],["dataWrapper \u003Cmw.lua:672\u003E","140","10.4"],["recursiveClone \u003CmwInit.lua:45\u003E","120","9.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::uc","40","3.0"],["citation0 \u003CModule:Citation/CS1:2614\u003E","40","3.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::anchorEncode","40","3.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","40","3.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::preprocess","20","1.5"],["[others]","200","14.9"]]},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-m5pdf","timestamp":"20241125133415","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Fourier transform","url":"https:\/\/en.wikipedia.org\/wiki\/Fourier_transform","sameAs":"http:\/\/www.wikidata.org\/entity\/Q6520159","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q6520159","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-05-17T05:59:52Z","dateModified":"2024-11-16T15:44:40Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/31\/CQT-piano-chord.png","headline":"mathematical transform that expresses a function of time as a function of frequency"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10