CINXE.COM
Search results for: Alginate
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Alginate</title> <meta name="description" content="Search results for: Alginate"> <meta name="keywords" content="Alginate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Alginate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Alginate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 112</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Alginate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> The Effect of Cassava Starch on Compressive Strength and Tear Strength of Alginate Impression Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of problem. Alginate impression material is an imported material and a dentist always used this material to make impression of teeth and oral cavity tissues. Purpose. The aim of this study was to compare about compressive strength and tear strength of alginate impression material and alginate impression material combined with cassava. Material and methods.Property measured included compressive strength and tear strength. Results.The compressive strength and tear strength of the impression materials tested of a comparable ANSI/ADA standard no.18.The compressive strength and tear strength alginate impression material combined with cassava have lower than the compressive strength and tear strength alginate impression material. The alginate impression material combined with cassava has more water and silica content more decrease than alginate impression material. Conclusions.We concluded that compressive strength and tear strength of alginate impression material combined with cassava has lower than alginate impression material without cassava starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20strength" title=" tear strength"> tear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava%20starch" title=" Cassava starch"> Cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a> </p> <a href="https://publications.waset.org/abstracts/64938/the-effect-of-cassava-starch-on-compressive-strength-and-tear-strength-of-alginate-impression-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> The Role of Sodium Alginate in the Selective Flotation of Chalcopyrite Against Pyrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufan%20Mu">Yufan Mu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The selective depression of pyrite in the flotation of copper minerals is difficult due to the activation of pyrite surface by copper ions. Novel depressants for pyrite are needed to responsibly extract copper resources for a greener and cleaner future. In this paper, the non-toxic sodium alginate was employed as a depressant to selectively separate chalcopyrite from pyrite in flotation using potassium amyl xanthate as the collector. The results from flotation tests showed that sodium alginate significantly depressed pyrite flotation while had slight influence on chalcopyrite flotation. The adsorption tests showed that the adsorption amount of sodium alginate on pyrite surface was much higher than that on chalcopyrite surface. The pre-adsorbed sodium alginate could effectively hinder the subsequent adsorption of collector on pyrite surface, thereby inhibiting pyrite flotation. The selective adsorption of sodium alginate on pyrite surface was caused by the interactions between the activating cuprous ions on pyrite surface and the carboxyl groups in sodium alginate. The paper shows that sodium alginate is a promising depressant for pyrite in the flotation of chalcopyrite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chalcopyrite%20flotation" title="chalcopyrite flotation">chalcopyrite flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20depression" title=" pyrite depression"> pyrite depression</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-activated%20pyrite" title=" copper-activated pyrite"> copper-activated pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/165954/the-role-of-sodium-alginate-in-the-selective-flotation-of-chalcopyrite-against-pyrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Effect of Alginate and Surfactant on Physical Properties of Oil Entrapped Alginate Bead Formulation of Curcumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpa%20Petchsomrit">Arpa Petchsomrit</a>, <a href="https://publications.waset.org/abstracts/search?q=Namfa%20Sermkaew"> Namfa Sermkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruedeekorn%20Wiwattanapatapee"> Ruedeekorn Wiwattanapatapee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil entrapped floating alginate beads of curcumin were developed and characterized. Cremophor EL, Cremophor RH and Tween 80 were utilized to improve the solubility of the drug. The oil-loaded floating gel beads prepared by emulsion gelation method contained sodium alginate, mineral oil and surfactant. The drug content and % encapsulation declined as the ratio of surfactant was increased. The release of curcumin from 1% alginate beads was significantly more than for the 2% alginate beads. The drug released from the beads containing 25% of tween 80 was about 70% while a higher drug release was observed with the beads containing Cremophor EL or Cremohor RH (approximately 90%). The developed floating beads of curcumin powder with surfactant provided a superior drug release than those without surfactant. Floating beads based on oil entrapment containing the drug solubilized in surfactants is a new delivery system to enhance the dissolution of poorly soluble drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20drug%20delivery" title=" floating drug delivery"> floating drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20entrapped%20bead" title=" oil entrapped bead"> oil entrapped bead</a> </p> <a href="https://publications.waset.org/abstracts/3633/effect-of-alginate-and-surfactant-on-physical-properties-of-oil-entrapped-alginate-bead-formulation-of-curcumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Improving Alginate Bioink by Recombinant Spider-Silk Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dean%20Robinson">Dean Robinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Gublebank"> Miriam Gublebank</a>, <a href="https://publications.waset.org/abstracts/search?q=Ella%20Sklan"> Ella Sklan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tali%20Tavor%20Re%27em"> Tali Tavor Re'em</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alginate, a natural linear polysaccharide polymer extracted from brown seaweed, is extensively applied due to its biocompatibility, all- aqueous ease of handling, and relatively low costs. Alginate easily forms a hydrogel when crosslinked with a divalent ion, such as calcium. However, Alginate hydrogel holds low mechanical properties and is cell-inert. To overcome these drawbacks and to improve alginate as a bio-ink for bioprinting, we produced a new alginate matrix combined with spider silk, one of the most resilient, elastic, strong materials known to men. Recombinant spider silk biopolymer has a sponge-like structure and is known to be biocompatible and non-immunogenic. Our results indicated that combining synthetic spider-silk into bio-printed cell-seeded alginate hydrogels resulted in improved properties compared to alginate: improved mechanical properties of the matrix, achieving a tunable gel viscosity and high printability, alongside prolonged and higher cell viability in culture, probably due to the improved cell-matrix interactions. The new bio-ink was then used for bilayer bioprinting of epithelial and stromal endometrial cells. Such a co-culture model will be used for the formation of the complex endometrial tissue for studying the embryo implantation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title="cell culture">cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=spider%20silk" title=" spider silk"> spider silk</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title=" bioprinting"> bioprinting</a> </p> <a href="https://publications.waset.org/abstracts/148116/improving-alginate-bioink-by-recombinant-spider-silk-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Preparation and Characterizations of Hydroxyapatite-Sodium Alginate Nanocomposites for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friday%20Godwin%20Okibe">Friday Godwin Okibe</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Chinweuba%20Onoyima"> Christian Chinweuba Onoyima</a>, <a href="https://publications.waset.org/abstracts/search?q=Edith%20Bolanle%20Agbaji"> Edith Bolanle Agbaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Olatunji%20Ajibola"> Victor Olatunji Ajibola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer-inorganic nanocomposites are presently impacting diverse areas, specifically in biomedical sciences. In this research, hydroxyapatite-sodium alginate has been prepared, and characterized, with emphasis on the influence of sodium alginate on its characteristics. In situ wet chemical precipitation method was used in the preparation. The prepared nanocomposite was characterized with Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), with image analysis, and X-Ray Diffraction (XRD). The FTIR study shows peaks characteristics of hydroxyapatite and confirmed formation of the nanocomposite via chemical interaction between sodium alginate and hydroxyapatite. Image analysis shows the nanocomposites to be of irregular morphologies which did not show significant change with increasing sodium alginate addition, while particle size decreased with increase in sodium alginate addition (359.46 nm to 109.98 nm). From the XRD data, both the crystallite size and degree of crystallinity also decreased with increasing sodium alginate composition (32.36 nm to 9.47 nm and 72.87% to 1.82% respectively), while the specific surface area and microstrain increased with increasing sodium alginate composition (0.0041 to 0.0139 and 58.99 m²/g to 201.58 m²/g respectively). The results show that the formulation with 50%wt of sodium alginate (HASA-50%wt), possess exceptional characteristics for biomedical applications such as drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical" title=" biomedical"> biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/66789/preparation-and-characterizations-of-hydroxyapatite-sodium-alginate-nanocomposites-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ghizellaoui">Samira Ghizellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Boumagoura"> Manel Boumagoura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20inhibitor" title=" green inhibitor"> green inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/167612/application-of-chemical-tests-for-the-inhibition-of-scaling-from-hamma-hard-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> The Influence of Alginate Microspheres Modified with DAT on the Proliferation and Adipogenic Differentiation of ASCs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shin-Yi%20Mao">Shin-Yi Mao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiashing%20Yu"> Jiashing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decellularized adipose tissue (DAT) has received lots of attention as biological scaffolds recently. DAT that extracted from the extracellular matrix (ECM) of adipose tissues holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. In our study, 2-D DATsol film was fabricated to enhance cell adhesion, proliferation, and differentiation of ASCs in vitro. DAT was also used to modify alginate for improvement of cell adhesion. Alginate microspheres modified with DAT were prepared by Nisco. These microspheres could provide a highly supportive 3-D environment for ASCs. In our works, ASCs were immobilized in alginate microspheres modified with DAT to promoted cell adhesion and adipogenic differentiation. Accordingly, we hypothesize that tissue regeneration in vivo could be promoted with the aid of modified microspheres in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adipose%20stem%20cells" title="adipose stem cells">adipose stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=decellularize%20adipose%20tissue" title=" decellularize adipose tissue"> decellularize adipose tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=Alginate" title=" Alginate"> Alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=microcarries" title=" microcarries"> microcarries</a> </p> <a href="https://publications.waset.org/abstracts/13276/the-influence-of-alginate-microspheres-modified-with-dat-on-the-proliferation-and-adipogenic-differentiation-of-ascs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Orthophthalic Polyester Composite Reinforced with Sodium Alginate-Treated Anahaw (Saribus rotundifolius) Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terence%20Tumolva">Terence Tumolva</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Kristoff%20Vito"> Johannes Kristoff Vito</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Crystelle%20Ragasa"> Joanna Crystelle Ragasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Renz%20Marion%20Dela%20Cruz"> Renz Marion Dela Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fiber reinforced polymer (NFRP) composites have been the focus of various research projects due to their advantages over synthetic fiber-reinforced composites. For this study, ana haw is used as the fiber source due to its abundance throughout the Philippines. A problem addressed in this study is the need for an environment-friendly method of fiber treatment. The use of sodium alginate to treat fibers was thus investigated. The fibers were immersed in a sodium alginate solution and then in a calcium chloride solution afterwards. The treated fibers were used to reinforce orthophthalic unsaturated polyester (ortho-UP) resin. The mechanical properties were tested using a universal testing machine (UTM), and the fracture surfaces were characterized using scanning electron microscope (SEM). Results showed that the sodium alginate treatment had increased the tensile and flexural strength of the composite. The increase in fiber load had also been found to increase the stiffness of the composite. However, sodium alginate treatment did not provide any significant improvement in the wet mechanical properties of the NFRP. The composite is comparable to some commercially available polymeric materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NFRP" title="NFRP">NFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=anahaw" title=" anahaw"> anahaw</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a> </p> <a href="https://publications.waset.org/abstracts/52227/orthophthalic-polyester-composite-reinforced-with-sodium-alginate-treated-anahaw-saribus-rotundifolius-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Cd2+ Ions Removal from Aqueous Solutions Using Alginite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADr%20Fri%C5%A1t%C3%A1k">Vladimír Frišták</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Pip%C3%AD%C5%A1ka"> Martin Pipíška</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Lesn%C3%BD"> Juraj Lesný</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alginate has been evaluated as an efficient pollution control material. In this paper, alginate from maar Pinciná (SR) for removal of Cd2+ ions from aqueous solution was studied. The potential sorbent was characterized by X-Ray Fluorescence Analysis (RFA) analysis, Fourier Transform Infrared Spectral Analysis (FT-IR) and Specific Surface Area (SSA) was also determined. The sorption process was optimized from the point of initial cadmium concentration effect and effect of pH value. The Freundlich and Langmuir models were used to interpret the sorption behaviour of Cd2+ ions, and the results showed that experimental data were well fitted by the Langmuir equation. Alginate maximal sorption capacity (QMAX) for Cd2+ ions calculated from Langmuir isotherm was 34 mg/g. Sorption process was significantly affected by initial pH value in the range from 4.0-7.0. Alginate is a comparable sorbent with other materials for toxic metals removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginates" title="alginates">alginates</a>, <a href="https://publications.waset.org/abstracts/search?q=Cd2%2B" title=" Cd2+"> Cd2+</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=QMAX" title=" QMAX"> QMAX</a> </p> <a href="https://publications.waset.org/abstracts/3505/cd2-ions-removal-from-aqueous-solutions-using-alginite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Preparation, Characterization, and in-Vitro Drug Release Study of Methotrexate-Loaded Hydroxyapatite-Sodium Alginate Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friday%20G.%20Okibe">Friday G. Okibe</a>, <a href="https://publications.waset.org/abstracts/search?q=Edit%20B.%20Agbaji"> Edit B. Agbaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20O.%20Ajibola"> Victor O. Ajibola</a>, <a href="https://publications.waset.org/abstracts/search?q=Christain%20C.%20Onoyima"> Christain C. Onoyima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlled drug delivery systems reduce dose-dependent toxicity associated with potent drugs, including anticancer drugs. In this research, hydroxyapatite (HA) and hydroxyapatite-sodium alginate nanocomposites (HASA) were successfully prepared and characterized using Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The FTIR result showed absorption peaks characteristics of pure hydroxyapatite (HA), and also confirmed the chemical interaction between hydroxyapatite and sodium alginate in the formation of the composite. Image analysis from SEM revealed nano-sized hydroxyapatite and hydroxyapatite-sodium alginate nanocomposites with irregular morphologies. Particle size increased with the formation of the nanocomposites relative to pure hydroxyapatite, with no significant change in particles morphologies. Drug loading and in-vitro drug release study were carried out using synthetic body fluid as the release medium, at pH 7.4 and 37 °C and under perfect sink conditions. The result shows that drug loading is highest for pure hydroxyapatite and decreased with increasing quantity of sodium alginate. However, the release study revealed that HASA-5%wt and HASA-20%wt presented better release profile than pure hydroxyapatite, while HASA-33%wt and HASA-50%wt have poor release profiles. This shows that Methotrexate-loaded hydroxyapatite-sodium alginate if prepared under optimal conditions is a potential carrier for effective delivery of Methotrexate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug-delivery" title="drug-delivery">drug-delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=methotrexate" title=" methotrexate"> methotrexate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a> </p> <a href="https://publications.waset.org/abstracts/53235/preparation-characterization-and-in-vitro-drug-release-study-of-methotrexate-loaded-hydroxyapatite-sodium-alginate-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Impact of Dairy Polysaccharides on Caloric Intake and Postprandial Metabolic Responses in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair%20Arshad">Muhammad Umair Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Ishtiaq"> Saima Ishtiaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Imran"> Ali Imran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different polysaccharides contribute towards the management of glycemic and satiety and consequently manage the metabolic syndrome. In the present study, we compared the postprandial glycemic and satiety responses of different dietary polysaccharides when added to milk (2% Milk Fat). The objective of this study was to evaluate different polysaccharides against postprandial glucose, appetite responses, and food intake at subsequent meals. In a repeated measures crossover design, 30 females (18–30 years) consumed 250 ml milk with 2% M.F. (control), or milk with carrageenan (2.5 g), guar gum (2.5 g) and alginate (2.5 g), followed by an ad libitum pizza meal after 120 min. Alginate and guar gum addition resulted in lower caloric intake at subsequent pizza meal. The post-treatment (0–120 min) glucose and average appetite were suppressed by alginate and guar gum (p < 0.0001), with a more pronounced effect of guar gum. However, alginate resulted in lower blood glucose (p < 0.0001) compared with control and carrageenan during post-treatment. Alginate and guar gum, added milk, and other beverages would be beneficial in the short-term regulation of postprandial glycemia and satiety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satiety" title="satiety">satiety</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20control" title=" glycemic control"> glycemic control</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20polysaccharides" title=" milk polysaccharides"> milk polysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20intake" title=" food intake"> food intake</a> </p> <a href="https://publications.waset.org/abstracts/167098/impact-of-dairy-polysaccharides-on-caloric-intake-and-postprandial-metabolic-responses-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Keratin Fiber Fabrication from Biowaste for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashmita%20Mukherjee">Ashmita Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Harishchandra%20Kabutare"> Yogesh Harishchandra Kabutare</a>, <a href="https://publications.waset.org/abstracts/search?q=Suritra%20Bandyopadhyay"> Suritra Bandyopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulomi%20Ghosh"> Paulomi Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=biowaste" title=" biowaste"> biowaste</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=keratin" title=" keratin"> keratin</a> </p> <a href="https://publications.waset.org/abstracts/105510/keratin-fiber-fabrication-from-biowaste-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Pectin Degrading Enzyme: Entrapment of Pectinase Using Different Synthetic and Non-Synthetic Polymers for Continuous Degradation of Pectin Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haneef%20Ur%20Rehman">Haneef Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Afsheen%20Aman"> Afsheen Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hameed%20Baloch"> Abdul Hameed Baloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Ali%20Ul%20Qader"> Shah Ali Ul Qader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectinase is a heterogeneous group of enzymes that catalyze the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, pectinase from B. licheniformis KIBGE-IB21 was immobilized within different polymers (calcium alginate beads, polyacrylamide gel and agar-agar matrix) to enhance its catalytic properties. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield. While less immobilization yield was observed in case of calcium alginate beads that only retained 46 % activity. The reaction time for maximum pectinolytic activity was increased from 5.0 to 10 minutes after immobilization. The temperature of pectinase for maximum enzyme activity was increased from 45 °C to 50 °C and 55 °C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH of pectinase didn’t alter when it was immobilized within polyacrylamide gel and calcium alginate beads, but in case of agar-agar it was changed from pH 10 to pH 9.0. Thermal stability of pectinase was improved after immobilization and immobilized pectinase showed higher toleration against different temperatures as compared to free enzyme. It can be concluded that the entrapment is a simple, single step and promising procedure to immobilized pectinase within different synthetic and non-synthetic polymers and enhanced its catalytic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pectinase" title="pectinase">pectinase</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization%20immobilization" title=" characterization immobilization"> characterization immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylamide" title=" polyacrylamide"> polyacrylamide</a>, <a href="https://publications.waset.org/abstracts/search?q=agar-agar" title=" agar-agar"> agar-agar</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20alginate%20beads" title=" calcium alginate beads"> calcium alginate beads</a> </p> <a href="https://publications.waset.org/abstracts/21905/pectin-degrading-enzyme-entrapment-of-pectinase-using-different-synthetic-and-non-synthetic-polymers-for-continuous-degradation-of-pectin-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtisam%20A.%20Abbas%20Al-Darkazly"> Ibtisam A. Abbas Al-Darkazly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl<sub>2</sub>) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl<sub>2</sub> solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for <em>in vitro</em> and <em>in vivo</em> tissue engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20chloride" title=" calcium chloride"> calcium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20bio-printing" title=" 3D bio-printing"> 3D bio-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion" title=" extrusion"> extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/132067/optimization-of-mechanical-properties-of-alginate-hydrogel-for-3d-bio-printing-self-standing-scaffold-architecture-for-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> A Novel Alginate/Tea Waste Complex for Restoration and Conservation of Historical Textiles Using Immobilized Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Hassan">Mohamed E. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through numerous chemical linkages, historical textiles in burial contexts or in museums are exposed to many different forms of stains and filth. The cleaning procedure must be carried out carefully without causing any irreparable harm, and sediments must be removed without damaging the surface's original material. Science and technology continue to develop novel methods for cleaning historical textiles and artistic surfaces biologically (using enzymes). Lipase and α-amylase were immobilized on nanoparticles of alginate/tea waste nanoparticle complex and used in historical textile cleaning. The preparation of nanoparticles, activation, and enzyme immobilization were characterized. Optimization of loading times and units of the two enzymes was done. It was found that the optimum time and units of amylase were 3 hours and 30 U, respectively. While the optimum time and units of lipase were 2.5 hours and 20 U, respectively, FT-IR and TGA instruments were used in proving the preparation of nanoparticles and the immobilization process. SEM was used to examine the fibres before and after treatment. In conclusion, a new carrier was prepared from alginate/Tea waste and optimized to be used in the restoration and conservation of historical textiles using immobilized lipase and α-amylase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate%2Ftea%20waste" title="alginate/tea waste">alginate/tea waste</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title=" immobilized enzymes"> immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20textiles" title=" historical textiles"> historical textiles</a> </p> <a href="https://publications.waset.org/abstracts/166235/a-novel-alginatetea-waste-complex-for-restoration-and-conservation-of-historical-textiles-using-immobilized-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> PLGA Nanoparticles Entrapping dual anti-TB drugs of Amikacin and Moxifloxacin as a Potential Host-Directed Therapy for Multidrug Resistant Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharif%20Abdelghany">Sharif Abdelghany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric nanoparticles have been widely investigated as a controlled release drug delivery platform for the treatment of tuberculosis (TB). These nanoparticles were also readily internalised into macrophages, leading to high intracellular drug concentration. In this study two anti-TB drugs, amikacin and moxifloxacin were encapsulated into PLGA nanoparticles. The novelty of this work appears in: (1) the efficient encapsulation of two hydrophilic second-line anti-TB drugs, and (2) intramacrophage delivery of this synergistic combination potentially for rapid treatment of multi-drug resistant TB (MDR-TB). Two water-oil-water (w/o/w) emulsion strategies were employed in this study: (1) alginate coated PLGA nanoparticles, and (2) alginate entrapped PLGA nanoparticles. The average particle size and polydispersity index (PDI) of the alginate coated PLGA nanoparticles were found to be unfavourably high with values of 640 ± 32 nm and 0.63 ± 0.09, respectively. In contrast, the alginate entrapped PLGA nanoparticles were within the desirable particle size range of 282 - 315 nm and the PDI was 0.08 - 0.16, and therefore were chosen for subsequent studies. Alginate entrapped PLGA nanoparticles yielded a drug loading of over 10 µg/mg powder for amikacin, and more than 5 µg/mg for moxifloxacin and entrapment efficiencies range of approximately 25-31% for moxifloxacin and 51-59% for amikacin. To study macrophage uptake efficiency, the nanoparticles of alginate entrapped nanoparticle formulation were loaded with acridine orange as a marker, seeded to THP-1 derived macrophages and viewed under confocal microscopy. The particles were readily internalised into the macrophages and highly concentrated in the nucleus region. Furthermore, the anti-mycobacterial activity of the drug-loaded particles was evaluated using M. tuberculosis-infected macrophages, which revealed a significant reduction (4 log reduction) of viable bacterial count compared to the untreated group. In conclusion, the amikacin-moxifloxacin alginate entrapped PLGA nanoparticles are promising for further in vivo studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moxifloxacin%20and%20amikacin" title="moxifloxacin and amikacin">moxifloxacin and amikacin</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistant%20TB" title=" multidrug resistant TB"> multidrug resistant TB</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA" title=" PLGA"> PLGA</a> </p> <a href="https://publications.waset.org/abstracts/60433/plga-nanoparticles-entrapping-dual-anti-tb-drugs-of-amikacin-and-moxifloxacin-as-a-potential-host-directed-therapy-for-multidrug-resistant-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Magnetic Biomaterials for Removing Organic Pollutants from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Obeid">L. Obeid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bee"> A. Bee</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Talbot"> D. Talbot</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Abramson"> S. Abramson</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Welschbillig"> M. Welschbillig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=magsorbent" title=" magsorbent"> magsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutant" title=" organic pollutant"> organic pollutant</a> </p> <a href="https://publications.waset.org/abstracts/2514/magnetic-biomaterials-for-removing-organic-pollutants-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Microencapsulation for Enhancing the Survival of S. thermophilus and L. bulgaricus during Spray Drying of Sweetened Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibyakanta%20Seth">Dibyakanta Seth</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Niwas%20Mishra"> Hari Niwas Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankar%20Chandra%20Deka"> Sankar Chandra Deka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microencapsulation is an established method of protecting bacteria from the adverse conditions. An improved extrusion spraying technique was used to encapsulate mixed bacteria culture of S. thermophilus and L. bulgaricus using sodium alginate as the coating material. The effect of nozzle air pressure (200, 300, 400 and 500 kPa), sodium alginate concentration (1%, 1.5%, 2%, 2.5% and 3% w/v), different concentration of calcium chloride (0.1, 0.2, 1 M) and initial cell loads (10⁷, 10⁸, 10⁹ cfu/ml) on the viability of encapsulated bacteria were investigated. With the increase in air pressure the size of microcapsules decreased, however the effect was non-significant. There was no significant difference (p > 0.05) in the viability of encapsulated cells when the concentration of calcium chloride was increased. Increased level of sodium alginate significantly increased the survival ratio of encapsulated bacteria (P < 0.01). Encapsulation with 3% alginate was treated as optimum since a higher concentration of alginate increased the gel strength of the solution and thus was difficult to spray. Under optimal conditions 3% alginate, 10⁹ cfu/ml cell load, 20 min hardening time in 0.1 M CaCl2 and 400 kPa nozzle air pressure, the viability of bacteria cells was maximum compared to the free cells. The microcapsules made at the optimal condition when mixed with yoghurt and subjected to spray drying at 148°C, the survival ratio was 2.48×10⁻¹ for S. thermophilus and 7.26×10⁻¹ for L. bulgaricus. In contrast, the survival ratio of free cells of S. thermophilus and L. bulgaricus were 2.36×10⁻³ and 8.27×10⁻³, respectively. This study showed a decline in viable cells count of about 0.5 log over a period of 7 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. Microencapsulation provided better protection at higher acidity compared to free cells. This study demonstrated that microencapsulation of yoghurt culture in sodium alginate is an effective technique of protection against extreme drying conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=sweetened%20yoghurt" title=" sweetened yoghurt"> sweetened yoghurt</a> </p> <a href="https://publications.waset.org/abstracts/60735/microencapsulation-for-enhancing-the-survival-of-s-thermophilus-and-l-bulgaricus-during-spray-drying-of-sweetened-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20T%C3%BCre">Hasan Türe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kader%20Terzioglu"> Kader Terzioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Evren%20Tunca"> Evren Tunca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=beads" title=" beads"> beads</a>, <a href="https://publications.waset.org/abstracts/search?q=perlite" title=" perlite"> perlite</a> </p> <a href="https://publications.waset.org/abstracts/46495/preparation-of-composite-alginateperlite-beads-for-pb-ii-removal-in-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brenda%20O.%20Mazzola">Brenda O. Mazzola</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriel%20Larsen"> Adriel Larsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Romina%20P.%20Ollier"> Romina P. Ollier</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20N.%20Ludue%C3%B1a"> Leandro N. Ludueña</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20A.%20Alvarez"> Vera A. Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimena%20S.%20Gonzalez"> Jimena S. Gonzalez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20nutrition" title=" plant nutrition"> plant nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=seaweed" title=" seaweed"> seaweed</a> </p> <a href="https://publications.waset.org/abstracts/46769/hydrogels-beads-of-alginateseaweed-powder-for-plants-nutrition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Biodegradation of Chlorpyrifos in Real Wastewater by Acromobacter xylosoxidans SRK5 Immobilized in Calcium Alginate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saira%20Khalid">Saira Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Hashmi"> Imran Hashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agrochemical industries produce huge amount of wastewater containing pesticides and other harmful residues. Environmental regulations make it compulsory to bring pesticides to a minimum level before releasing wastewater from industrial units.The present study was designed with the objective to investigate biodegradation of CP in real wastewater using bacterial cells immobilized in calcium alginate. Bacterial strain identified as Acromobacter xylosoxidans SRK5 (KT013092) using 16S rRNA nucleotide sequence analysis was used. SRK5 was immobilized in calcium alginate to make calcium alginate microspheres (CAMs). Real wastewater from industry having 50 mg L⁻¹ of CP was inoculated with free cells or CAMs and incubated for 96 h at 37˚C. CP removal efficiency with CAMs was 98% after 72 h of incubation, and no lag phase was observed. With free cells, 12h of lag phase was observed. After 96 h of incubation 87% of CP removal was observed when inoculated with free cells. No adsorption was observed on vacant CAMs. Phytotoxicity assay demonstrated considerable loss in toxicity. Almost complete COD removal was achieved at 96 h with CAMs. Study suggests the use of immobilized cells of SRK5 for bioaugmentation of industrial wastewater for CP degradation instead of free cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorpyrifos" title=" chlorpyrifos"> chlorpyrifos</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/93028/biodegradation-of-chlorpyrifos-in-real-wastewater-by-acromobacter-xylosoxidans-srk5-immobilized-in-calcium-alginate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Electrospun Alginate Nanofibers Containing Spirulina Extract Double-Layered with Polycaprolactone Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Yeong%20Byeon">Seon Yeong Byeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwa%20Sung%20Shin"> Hwa Sung Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanofibrous sheets are of interest in the beauty industries due to the properties of moisturizing, adhesion to skin and delivery of nutrient materials. The benefit and function of the cosmetic products should not be considered without safety thus a non-toxic manufacturing process is ideal when fabricating the products. In this study, we have developed cosmetic patches consisting of alginate and Spirulina extract, a marine resource which has antibacterial and antioxidant effects, without addition of harmful cross-linkers. The patches obtained their structural stabilities by layer-upon-layer electrospinning of an alginate layer on a formerly spread polycaprolactone (PCL) layer instead of crosslinking method. The morphological characteristics, release of Spirulina extract, water absorption, skin adhesiveness and cytotoxicity of the double-layered patches were assessed. The image of scanning electron microscopy (SEM) showed that the addition of Spirulina extract has made the fiber diameter of alginate layers thinner. Impregnation of Spirulina extract increased their hydrophilicity, moisture absorption ability and skin adhesive ability. In addition, wetting the pre-dried patches resulted in releasing the Spirulina extract within 30 min. The patches were detected to have no cytotoxicity in the human keratinocyte cell-based MTT assay, but rather showed increased cell viability. All the results indicate the bioactive and hydro-adhesive double-layered patches have an excellent applicability to bioproducts for personal skin care in the trend of ‘A mask pack a day’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmetic%20patch" title=" cosmetic patch"> cosmetic patch</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospun%20nanofiber" title=" electrospun nanofiber"> electrospun nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title=" polycaprolactone"> polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=Spirulina%20extract" title=" Spirulina extract"> Spirulina extract</a> </p> <a href="https://publications.waset.org/abstracts/75884/electrospun-alginate-nanofibers-containing-spirulina-extract-double-layered-with-polycaprolactone-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lazhar%20mouloud">Lazhar mouloud</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemat%20Zoubida"> Chemat Zoubida</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouhoumna%20Faiza"> Ouhoumna Faiza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20column" title="adsorption column">adsorption column</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title=" malachite green"> malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=pillared%20clays" title=" pillared clays"> pillared clays</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematic%20models" title=" mathematic models"> mathematic models</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation." title=" encapsulation."> encapsulation.</a> </p> <a href="https://publications.waset.org/abstracts/22852/fixed-bed-column-studies-of-green-malachite-removal-by-use-of-alginate-encapsulated-aluminium-pillared-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Preparation and Characterization of Calcium Phosphate Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Thepsuwan">W. Thepsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Monmaturapoj"> N. Monmaturapoj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate%20cements" title="calcium phosphate cements">calcium phosphate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=TTCP" title=" TTCP"> TTCP</a>, <a href="https://publications.waset.org/abstracts/search?q=DCPA" title=" DCPA"> DCPA</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/17449/preparation-and-characterization-of-calcium-phosphate-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Adam%20Abakar">Mohamed A. Adam Abakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20M.%20Asiri"> Abdullah M. Asiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sher%20Bahadar%20Khan"> Sher Bahadar Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alginate" title="Alginate">Alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxides" title=" metal oxides"> metal oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites-based" title=" nanocomposites-based"> nanocomposites-based</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/169064/alginate-wrapped-nio-zno-nanocomposites-based-catalyst-for-the-reduction-of-methylene-blue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Extraction of Rice Bran Protein Using Enzymes and Polysaccharide Precipitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudarat%20Jiamyangyuen">Sudarat Jiamyangyuen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tipawan%20Thongsook"> Tipawan Thongsook</a>, <a href="https://publications.waset.org/abstracts/search?q=Riantong%20Singanusong"> Riantong Singanusong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanida%20Saengtubtim"> Chanida Saengtubtim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice is a staple food as well as exported commodity of Thailand. Rice bran, a 10.5% constituent of rice grain, is a by-product of rice milling process. Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Therefore, this study aimed to increase value of defatted rice bran as obtained after extracting of rice bran oil. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which results in reduction of nutritious components in rice bran. Rice bran protein concentrate is suitable for those who are allergenic of protein from other sources eg. milk, wheat. In addition to its hypoallergenic property, rice bran protein also contains good quantity of lysine. Thus it may act as a suitable ingredient for infant food formulations while adding variety to the restricted diets of children with food allergies. The objectives of this study were to compare properties of rice bran protein concentrate (RBPC) extracted from defatted rice bran using enzymes together with precipitation step using polysaccharides (alginate and carrageenan) to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.006) exhibited the highest protein (27.55%) and yield (6.62%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming and lower foam stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products eg. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=carrageenan" title=" carrageenan"> carrageenan</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran" title=" rice bran"> rice bran</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20protein" title=" rice bran protein "> rice bran protein </a> </p> <a href="https://publications.waset.org/abstracts/26710/extraction-of-rice-bran-protein-using-enzymes-and-polysaccharide-precipitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Preliminary Design, Production and Characterization of a Coral and Alginate Composite for Bone Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sthephanie%20A.%20Colmenares">Sthephanie A. Colmenares</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20A.%20Rojas"> Fabio A. Rojas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20A.%20Arbel%C3%A1ez"> Pablo A. Arbeláez</a>, <a href="https://publications.waset.org/abstracts/search?q=Johann%20F.%20Osma"> Johann F. Osma</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Narvaez"> Diana Narvaez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The loss of functional tissue is a ubiquitous and expensive health care problem, with very limited treatment options for these patients. The golden standard for large bone damage is a cadaveric bone as an allograft with stainless steel support; however, this solution only applies to bones with simple morphologies (long bones), has a limited material supply and presents long term problems regarding mechanical strength, integration, differentiation and induction of native bone tissue. Therefore, the fabrication of a scaffold with biological, physical and chemical properties similar to the human bone with a fabrication method for morphology manipulation is the focus of this investigation. Towards this goal, an alginate and coral matrix was created using two production techniques; the coral was chosen because of its chemical composition and the alginate due to its compatibility and mechanical properties. In order to construct the coral alginate scaffold the following methodology was employed; cleaning of the coral, its pulverization, scaffold fabrication and finally the mechanical and biological characterization. The experimental design had: mill method and proportion of alginate and coral, as the two factors, with two and three levels each, using 5 replicates. The coral was cleaned with sodium hypochlorite and hydrogen peroxide in an ultrasonic bath. Then, it was milled with both a horizontal and a ball mill in order to evaluate the morphology of the particles obtained. After this, using a combination of alginate and coral powder and water as a binder, scaffolds of 1cm3 were printed with a SpectrumTM Z510 3D printer. This resulted in solid cubes that were resistant to small compression stress. Then, using a ESQUIM DP-143 silicon mold, constructs used for the mechanical and biological assays were made. An INSTRON 2267® was implemented for the compression tests; the density and porosity were calculated with an analytical balance and the biological tests were performed using cell cultures with VERO fibroblast, and Scanning Electron Microscope (SEM) as visualization tool. The Young’s moduli were dependent of the pulverization method, the proportion of coral and alginate and the interaction between these factors. The maximum value was 5,4MPa for the 50/50 proportion of alginate and horizontally milled coral. The biological assay showed more extracellular matrix in the scaffolds consisting of more alginate and less coral. The density and porosity were proportional to the amount of coral in the powder mix. These results showed that this composite has potential as a biomaterial, but its behavior is elastic with a small Young’s Modulus, which leads to the conclusion that the application may not be for long bones but for tissues similar to cartilage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title=" biomaterial"> biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20engineering" title=" bone engineering"> bone engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=coral" title=" coral"> coral</a>, <a href="https://publications.waset.org/abstracts/search?q=Porites%20asteroids" title=" Porites asteroids"> Porites asteroids</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/42579/preliminary-design-production-and-characterization-of-a-coral-and-alginate-composite-for-bone-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Artificial Seed Production in Stipagrostis pennata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Asadi%20Aghbolaghi">Masoumeh Asadi Aghbolaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Beata%20Dedicova"> Beata Dedicova</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Sharifzadeh"> Farzad Sharifzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Omidi"> Mansoor Omidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrika%20Egertsdotter"> Ulrika Egertsdotter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stipagrostis pennata is one of the valuable fodder plants and is very resistant to drought, due to the low capacity of seed production, the use of asexual reproduction methods, including somatic embryogenesis and artificial seed, can increase its reproduction on a large scale. This study was conducted in order to obtain optimal treatments for the production of artificial seeds of this plant through the somatic embryo encapsulating. Embryonic calluses were encapsulated using sodium alginate and calcium chloride and then sowed in a germination medium. The experiment was conducted as a factorial based on a completely randomized design with three replications. The treatments include three concentrations of sodium alginate (1.5, 2.5, and 3.5 percent), two ion exchange times (20 and 30 minutes,) and two artificial seed germination media (hormone free MS and MS containing zeatin riboside and L-proline). Germination percentage and number of days until the beginning of germination were investigated. The highest percentage of artificial seed germination was obtained when 2.5% sodium alginate was used for 30 minutes (ion exchange time) and the seeds were placed on the germination medium containing zeatin riboside and L-proline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=somatic%20embryogenesis" title="somatic embryogenesis">somatic embryogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Stipagrostis%20pennata" title=" Stipagrostis pennata"> Stipagrostis pennata</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20seed" title=" synthetic seed"> synthetic seed</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20culture" title=" tissue culture"> tissue culture</a> </p> <a href="https://publications.waset.org/abstracts/154985/artificial-seed-production-in-stipagrostis-pennata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Polymerization: An Alternative Technology for Heavy Metal Removal </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mahmoud">M. S. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution are reported on. Batch equilibrium studies were carried out to evaluate the adsorption capacity and process parameters such as pH, adsorbent dosages, initial metal ion concentrations, stirring rates and contact times. It was observed that the optimum pH for maximum copper ions adsorption was at pH 5.0. For all contact times, an increase in copper ions concentration resulted in decrease in the percent of copper ions removal. Langmuir and Freundlich's isothermal models were used to describe the experimental adsorption. Adsorbent was characterization using Fourier transform-infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate%20polymer" title=" alginate polymer"> alginate polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20models" title=" isothermal models"> isothermal models</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/18708/polymerization-an-alternative-technology-for-heavy-metal-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-An%20Wang">Dong-An Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=microsphere" title=" microsphere"> microsphere</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=porogen" title=" porogen"> porogen</a>, <a href="https://publications.waset.org/abstracts/search?q=anchorage%20dependence" title=" anchorage dependence"> anchorage dependence</a> </p> <a href="https://publications.waset.org/abstracts/4056/hydrogel-hybridizing-temperature-cured-dissolvable-gelatin-microspheres-as-non-anchorage-dependent-cell-carriers-for-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Alginate&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Alginate&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Alginate&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Alginate&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>