CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 485 results for author: <span class="mathjax">Liu, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Liu%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08925">arXiv:2412.08925</a> <span> [<a href="https://arxiv.org/pdf/2412.08925">pdf</a>, <a href="https://arxiv.org/ps/2412.08925">ps</a>, <a href="https://arxiv.org/format/2412.08925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The generalized CV conjecture of Krylov complexity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K">Ke-Hong Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lei-Hua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hai-Qing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08925v1-abstract-short" style="display: inline;"> We extend the ``complexity=volume" (CV) conjecture in the wormhole to the quantum states in the framework of information geometry. In particular, we conjecture that Krylov complexity equals the volume of the Fubini-Study metric in the information geometry. In order to test our conjecture, we study the general Hermitian two-mode Hamiltonian according to the Weyl algebra both in the closed and open… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08925v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08925v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08925v1-abstract-full" style="display: none;"> We extend the ``complexity=volume" (CV) conjecture in the wormhole to the quantum states in the framework of information geometry. In particular, we conjecture that Krylov complexity equals the volume of the Fubini-Study metric in the information geometry. In order to test our conjecture, we study the general Hermitian two-mode Hamiltonian according to the Weyl algebra both in the closed and open systems. By employing the displacement operator, we find that the wave function for a closed system corresponds to the well-known two-mode squeezed state. For an open system, we can create a wave function known as the open two-mode squeezed state by using the second kind of Meixner polynomials. Remarkably, in both cases, the resulting volume of the corresponding Fubini-Study metric provides strong evidence for the validity of the generalized CV conjecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08925v1-abstract-full').style.display = 'none'; document.getElementById('2412.08925v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07190">arXiv:2412.07190</a> <span> [<a href="https://arxiv.org/pdf/2412.07190">pdf</a>, <a href="https://arxiv.org/ps/2412.07190">ps</a>, <a href="https://arxiv.org/format/2412.07190">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Absence of ferromagnetic instability and weak spin-orbit coupling effect in AV$_3$Sb$_5$ (A = Cs, Rb, and K) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chongze Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+S">Shichang Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shuyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Bing Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liangliang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+Y">Yu Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+J">Jun-Hyung Cho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07190v1-abstract-short" style="display: inline;"> A family of V-based kagome metals AV$_3$Sb$_5$ (A = Cs, Rb, K) presents an intriguing platform for exploring the interplay of time-reversal symmetry breaking, nontrivial topological bands, and electron correlations, resulting in a range of exotic quantum states, including the anomalous Hall effect, unconventional charge density waves, and superconductivity. These features prompt critical questions… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07190v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07190v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07190v1-abstract-full" style="display: none;"> A family of V-based kagome metals AV$_3$Sb$_5$ (A = Cs, Rb, K) presents an intriguing platform for exploring the interplay of time-reversal symmetry breaking, nontrivial topological bands, and electron correlations, resulting in a range of exotic quantum states, including the anomalous Hall effect, unconventional charge density waves, and superconductivity. These features prompt critical questions regarding the roles of magnetism and spin-orbit coupling (SOC) in these systems. Our density functional theory (DFT) calculations demonstrate a notable sensitivity of the magnetic properties to the choice of $k$-point mesh used in Brillouin zone integrations. Specifically, we find that using a dense $k$-point mesh yields a nonmagnetic pristine phase characterized by paramagnetic susceptibility, consistent with the recently observed Pauli paramagnetic behavior in single crystalline samples at high temperatures. In contrast, a coarser $k$-point mesh significantly increases the density of states at the Fermi level, inducing a ferromagnetic instability that satisfies the Stoner criterion. Moreover, our results show that the effect of SOC on both the geometric and electronic structures is minimal, with only a slight gap opening at the Dirac points, indicating a weak SOC influence in these materials. Importantly, our DFT band structure calculations closely align with angle-resolved photoemission spectroscopy data, reinforcing the notion of weak electron correlations in these kagome metals. This refined understanding challenges recent theoretical assertions that the interplay of magnetism, SOC, and electron correlations is essential for determining the nature of charge density waves in AV$_3$Sb$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07190v1-abstract-full').style.display = 'none'; document.getElementById('2412.07190v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06476">arXiv:2412.06476</a> <span> [<a href="https://arxiv.org/pdf/2412.06476">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Real-space study of zero-field correlation in tetralayer rhombohedral graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Shudan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Min Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Guorui Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Can Li</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06476v1-abstract-short" style="display: inline;"> Rhombohedral graphene (RG) has emerged as a promising platform for exploring exotic quantum phenomena, such as quantum magnetism, unconventional superconductivity, and fractional quantum anomalous Hall effects. Despite its potential, atomic-scale investigations of RG remain limited, hindering a detailed microscopic understanding of the origins of these correlated states. In this study, we employ s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06476v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06476v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06476v1-abstract-full" style="display: none;"> Rhombohedral graphene (RG) has emerged as a promising platform for exploring exotic quantum phenomena, such as quantum magnetism, unconventional superconductivity, and fractional quantum anomalous Hall effects. Despite its potential, atomic-scale investigations of RG remain limited, hindering a detailed microscopic understanding of the origins of these correlated states. In this study, we employ scanning probe microscopy and spectroscopy to probe the intrinsic electronic states in trilayer and tetralayer RG. We identify a correlated insulating state with a 17 meV gap at the charge neutrality point in tetralayer RG, which is absent in the trilayer configuration. This gap is suppressed by applying a perpendicular magnetic field or doping the charge carrier density and does not exhibit inter-valley coherence patterns. We attribute this phenomenon to a symmetry-broken layer antiferromagnetic state, characterized by ferrimagnetic ordering in the outermost layers and antiferromagnetic coupling between them. To further investigate this magnetic correlated state, we conduct local scattering experiments. Within the correlated regime, a bound state emerges around a non-magnetic impurity but is absent near magnetic impurities, suggesting that non-magnetic doping induces a spin texture in the ferrimagnetic surface layers. Outside the correlated regime, Friedel oscillations are observed, allowing precise determination of the band dispersion in tetralayer RG. These findings provide atomic-scale evidences of zero-field correlations in RG and may be extended to study other exotic phases in RG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06476v1-abstract-full').style.display = 'none'; document.getElementById('2412.06476v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03306">arXiv:2412.03306</a> <span> [<a href="https://arxiv.org/pdf/2412.03306">pdf</a>, <a href="https://arxiv.org/format/2412.03306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Fingering instability in dewetting capillary nanosuspensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lingyue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Abbot%2C+M">Mete Abbot</a>, <a href="/search/cond-mat?searchtype=author&query=Brockmann%2C+P">Philipp Brockmann</a>, <a href="/search/cond-mat?searchtype=author&query=Roisman%2C+I+V">Ilia V. Roisman</a>, <a href="/search/cond-mat?searchtype=author&query=Hussong%2C+J">Jeanette Hussong</a>, <a href="/search/cond-mat?searchtype=author&query=Koos%2C+E">Erin Koos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03306v1-abstract-short" style="display: inline;"> This study investigates the fingering instability that forms when a capillary nanosuspension liquid bridge is stretched. The dewetting process is observed using a transparent lifted Hele-Shaw cell. The liquid bridge is stretched under constant acceleration, and the resulting instability patterns are recorded using two high-speed cameras. Finger-like structures, characteristic of the Saffman-Taylor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03306v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03306v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03306v1-abstract-full" style="display: none;"> This study investigates the fingering instability that forms when a capillary nanosuspension liquid bridge is stretched. The dewetting process is observed using a transparent lifted Hele-Shaw cell. The liquid bridge is stretched under constant acceleration, and the resulting instability patterns are recorded using two high-speed cameras. Finger-like structures, characteristic of the Saffman-Taylor instability are observed. The total length of the dendrites and the overlapped number of branches are quantified. We reveal the roles of microparticles, nanoparticles, and the secondary liquid during the fingering instability. Addition of microparticles to pure liquid enhanced finger length due to increased particle interactions and nucleation sites for bubbles. Addition of secondary fluid reduces fingering length by forming a strong interparticle network. Incorporation of Nanoparticles induces an early onset of cavitation and enhanced fingering instability. However, nanoparticles make the capillary suspensions' overall micro-structure more homogeneous, reduce the sample variation in fingering patterns, and promote the even distribution of gel on both slides during splitting. These findings highlight the complex interactions governing dewetting in capillary (nano)suspensions. This knowledge has potential applications in microfluidics, 3D printing, and thin-film coatings, where controlling dewetting is crucial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03306v1-abstract-full').style.display = 'none'; document.getElementById('2412.03306v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SI in source</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18906">arXiv:2411.18906</a> <span> [<a href="https://arxiv.org/pdf/2411.18906">pdf</a>, <a href="https://arxiv.org/format/2411.18906">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Short-Range Order Based Ultra Fast Large-Scale Modeling of High-Entropy Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Niu%2C+C">Caimei Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lifeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18906v2-abstract-short" style="display: inline;"> High-Entropy Alloys (HEAs) exhibit complex atomic interactions, with short-range order (SRO) playing a critical role in determining their properties. Traditional methods, such as Monte Carlo (MC) based ATAT and SCRAPs, and hybrid Monte Carlo-Molecular Dynamics (MC-MD), are often constrained by system size and computational inefficiency, limiting their applicability for large-scale modeling. We int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18906v2-abstract-full').style.display = 'inline'; document.getElementById('2411.18906v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18906v2-abstract-full" style="display: none;"> High-Entropy Alloys (HEAs) exhibit complex atomic interactions, with short-range order (SRO) playing a critical role in determining their properties. Traditional methods, such as Monte Carlo (MC) based ATAT and SCRAPs, and hybrid Monte Carlo-Molecular Dynamics (MC-MD), are often constrained by system size and computational inefficiency, limiting their applicability for large-scale modeling. We introduce PyHEA, a Python based toolkit with a high-performance C++ core, designed to efficiently model HEAs through a combination of global and local search algorithms, incremental SRO calculations, and GPU acceleration. PyHEA delivers an impressive speedup of more than 333,000x and 10,000x over state-of-the-art tools ATAT and SCRAPs respectively, ensuring accurate SRO calculations with unprecedented efficiency. In practical applications, PyHEA successfully modeled a 256,000-atom Fe-Mn-Cr-Co alloy, replicating literature results and reducing computational time from days to seconds with GPU acceleration, achieving over 1,000x speedup compared to hybrid MC-MD approaches. This huge breakthrough in computational efficiency revolutionizes HEA modeling by bridging theoretical predictions and practical applications, opening new horizons for the design of next-generation HEAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18906v2-abstract-full').style.display = 'none'; document.getElementById('2411.18906v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14732">arXiv:2411.14732</a> <span> [<a href="https://arxiv.org/pdf/2411.14732">pdf</a>, <a href="https://arxiv.org/ps/2411.14732">ps</a>, <a href="https://arxiv.org/format/2411.14732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Constant-Potential Machine Learning Molecular Dynamics Simulations Reveal Potential-Regulated Cu Cluster Formation on MoS$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jingwen Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Y">Yunsong Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Ling Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chungen Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14732v1-abstract-short" style="display: inline;"> Electrochemical processes play a crucial role in energy storage and conversion systems, yet their computational modeling remains a significant challenge. Accurately incorporating the effects of electric potential has been a central focus in theoretical electrochemistry. Although constant-potential ab initio molecular dynamics (CP-AIMD) has provided valuable insights, it is limited by its substanti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14732v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14732v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14732v1-abstract-full" style="display: none;"> Electrochemical processes play a crucial role in energy storage and conversion systems, yet their computational modeling remains a significant challenge. Accurately incorporating the effects of electric potential has been a central focus in theoretical electrochemistry. Although constant-potential ab initio molecular dynamics (CP-AIMD) has provided valuable insights, it is limited by its substantial computational demands. Here, we introduce the Explicit Electric Potential Machine Learning Force Field (EEP-MLFF) model. Our model integrates the electric potential as an explicit input parameter along with the atom-centered descriptors in the atomic neural network. This approach enables the evaluation of nuclear forces under arbitrary electric potentials, thus facilitating molecular dynamics simulations at a specific potential. By applying the proposed machine learning method to the Cu/1T$^{\prime}$-MoS$_{2}$ system, molecular dynamics simulations reveal that the potential-modulated Cu atom migration and aggregation lead to the formation of small steric Cu clusters (Single Clusters, SCs) at potentials below -0.1 V. The morphological transformations of adsorbed Cu atoms are elucidated through electronic structure analyses, which demonstrates that both Cu-S and Cu-Cu bonding can be effectively tuned by the applied electric potential. Our findings present an opportunity for the convenient manufacture of single metal cluster catalysts through potential modulation. Moreover, this theoretical framework facilitates the exploration of potential-regulated processes and helps investigate the mechanisms of electrochemical reactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14732v1-abstract-full').style.display = 'none'; document.getElementById('2411.14732v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06778">arXiv:2411.06778</a> <span> [<a href="https://arxiv.org/pdf/2411.06778">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Charge Density Wave Coexisting with Amplified Nematicity in the Correlated Kagome Metal CsCr3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liangyang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Ying Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+Y">Yuxin Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hao Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guang-Ming Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Luyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06778v1-abstract-short" style="display: inline;"> The correlated phenomena of flat bands have been extensively studied in twisted systems. However, the emergent ordered states arising from interactions in intrinsic multi-orbital flat bands in kagome lattice materials remain largely unexplored. In contrast to the vanadium-based AV3Sb5 (A = K, Rb, Cs), the newly discovered kagome metal CsCr3Sb5, featuring pressurized superconductivity, antiferromag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06778v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06778v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06778v1-abstract-full" style="display: none;"> The correlated phenomena of flat bands have been extensively studied in twisted systems. However, the emergent ordered states arising from interactions in intrinsic multi-orbital flat bands in kagome lattice materials remain largely unexplored. In contrast to the vanadium-based AV3Sb5 (A = K, Rb, Cs), the newly discovered kagome metal CsCr3Sb5, featuring pressurized superconductivity, antiferromagnetism, structural phase transition, and density wave orders, provides a rich platform for investigating strong electron correlations in multi-orbital flat bands at the Fermi surface. Here, using ultrafast optical techniques, we reveal the gap opening and the emergence of a distinct 1x4 charge density wave (CDW) at low temperatures in CsCr3Sb5. We also find that this CDW reduces the rotational symmetry to three inequivalent nematic domains, and the exotic nematicity is further amplified by the degeneracy lifting of the multi-orbital flat bands, similar to some iron-based superconductors. Surprisingly, both CDW and orbital nematicity appear concurrently with spin and structural orders at the same temperature, indicating that a single characteristic energy scale governs the low-energy flat band physics. Our study thus pioneers the investigation of ultrafast dynamics in flat band systems at the Fermi surface, offering new insights into the interactions between multiple elementary excitations in strongly correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06778v1-abstract-full').style.display = 'none'; document.getElementById('2411.06778v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22156">arXiv:2410.22156</a> <span> [<a href="https://arxiv.org/pdf/2410.22156">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological surface state dominated nonlinear transverse response and microwave rectification at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+B">Bin Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+Y">Yaqi Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongliang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+T">Tieyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+X">Xianfa Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cong%2C+L">Longqing Cong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22156v1-abstract-short" style="display: inline;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22156v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22156v1-abstract-full" style="display: none;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk inversion symmetry, the coexistence of bulk and surface conducting channels often leads to a suppressed NLHE and complex thickness-dependent behavior. Here, we report the observation of room-temperature nonlinear transverse response in 3D topological insulator Bi2Te3 thin films, whose electrical transport properties are dominated by topological surface state (TSS). By varying the thickness of Bi2Te3 epitaxial films from 7 nm to 50 nm, we found that the nonlinear transverse response increases with thickness from 7 nm to 25 nm and remains almost constant above 25 nm. This is consistent with the thickness-dependent basic transport properties, including conductance, carrier density, and mobility, indicating a pure and robust TSS-dominated linear and nonlinear transport in thick (>25 nm) Bi2Te3 films. The weaker nonlinear transverse response in Bi2Te3 below 25 nm was attributed to Te deficiency and poorer crystallinity. By utilizing the TSS-dominated electrical second harmonic generation, we successfully achieved the microwave rectification from 0.01 to 16.6 GHz in 30 nm and bulk Bi2Te3. Our work demonstrated the room temperature nonlinear transverse response in a paradigm topological insulator, addressing the tunability of the topological second harmonic response by thickness engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'none'; document.getElementById('2410.22156v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19369">arXiv:2410.19369</a> <span> [<a href="https://arxiv.org/pdf/2410.19369">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable topological edge states in black phosphorus-like Bi(110) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+S">Shengdan Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guanyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+B">Bing Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Hao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Y">Yunhao Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jin-feng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19369v1-abstract-short" style="display: inline;"> We have investigated the structures and electronic properties of ultra-thin Bi(110) films grown on an s-wave superconductor substrate using low-temperature scanning tunneling microscopy and spectroscopy. Remarkably, our experimental results validate the theoretical predictions that the manipulation of Bi(110) surface atom buckling can control the topological phase transition. Notably, we have obse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19369v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19369v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19369v1-abstract-full" style="display: none;"> We have investigated the structures and electronic properties of ultra-thin Bi(110) films grown on an s-wave superconductor substrate using low-temperature scanning tunneling microscopy and spectroscopy. Remarkably, our experimental results validate the theoretical predictions that the manipulation of Bi(110) surface atom buckling can control the topological phase transition. Notably, we have observed robust unreconstructed edge states at the edges of both 3-bilayer (BL) and 4-BL Bi(110) films, with the 4-BL film displaying stronger edge state intensity and a smaller degree of atomic buckling. First-principle calculations further substantiate these findings, demonstrating a gradual reduction in buckling as the film thickness increases, with average height differences between two Bi atoms of approximately 0.19 脜, 0.10 脜, 0.05 脜, and 0.00 脜 for the 1-BL, 2-BL, 3-BL, and 4-BL Bi(110) films, respectively. When Bi films are larger than 2 layers, the system changes from a trivial to a non-trivial phase. This research sets the stage for the controlled realization of topological superconductors through the superconducting proximity effect, providing a significant platform for investigating Majorana zero modes and fabricating quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19369v1-abstract-full').style.display = 'none'; document.getElementById('2410.19369v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15455">arXiv:2410.15455</a> <span> [<a href="https://arxiv.org/pdf/2410.15455">pdf</a>, <a href="https://arxiv.org/format/2410.15455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantum information collapse-and-revival in a strongly-interacting Rydberg atom array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+D">De-Sheng Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yao-Wen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hao-Xiang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+P">Peng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+D">Dong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shun-Yao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+B">Biao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yitong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Lin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15455v1-abstract-short" style="display: inline;"> Interactions of isolated quantum many-body systems typically scramble local information into the entire system and make it unrecoverable. Ergodicity-breaking systems possess the potential to exhibit fundamentally different information scrambling dynamics beyond this paradigm. For many-body localized systems with strong ergodicity breaking, local transport vanishes and information scrambles logarit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15455v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15455v1-abstract-full" style="display: none;"> Interactions of isolated quantum many-body systems typically scramble local information into the entire system and make it unrecoverable. Ergodicity-breaking systems possess the potential to exhibit fundamentally different information scrambling dynamics beyond this paradigm. For many-body localized systems with strong ergodicity breaking, local transport vanishes and information scrambles logarithmically slowly. Whereas in Rydberg atom arrays, local qubit flips induce dynamical retardation on surrounding qubits through the Rydberg blockade effect, giving rise to quantum many-body scars that weakly break ergodicity, and resulting in the predicted unconventional quantum information spreading behaviours. Here, we present the first measurements of out-of-time-ordered correlators and Holevo information in a Rydberg atom array, enabling us to precisely track quantum information scrambling and transport dynamics. By leveraging these tools, we observe a novel spatio-temporal collapse-and-revival behaviour of quantum information, which differs from both typical chaotic and many-body localized systems. Our experiment sheds light on the unique information dynamics in many-body systems with kinetic constraints, and demonstrates an effective digital-analogue approach to coherently reverse time evolution and steer information propagation in near-term quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15455v1-abstract-full').style.display = 'none'; document.getElementById('2410.15455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures + Supplementary Information 37 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13372">arXiv:2410.13372</a> <span> [<a href="https://arxiv.org/pdf/2410.13372">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-temperature ferromagnetism and ferroelasticity in ultraflexible atomically thin square-shaped lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+X">Xinyuan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+Y">Yueqiao Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+Y">Yu Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Q">Qian Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Ran Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Junzhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+G">Gang Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13372v1-abstract-short" style="display: inline;"> The coexistence of high-temperature intrinsic ferromagnetic ordering, large magnetic anisotropy, along with novel mechanical properties such as ferroelasticity and flexibility, in experimental feasible two-dimensional (2D) crystals is greatly appealing for nanoscale spintronics. However, the progress in identifying such materials is limited. Here, by first-principles calculations, we report the fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13372v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13372v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13372v1-abstract-full" style="display: none;"> The coexistence of high-temperature intrinsic ferromagnetic ordering, large magnetic anisotropy, along with novel mechanical properties such as ferroelasticity and flexibility, in experimental feasible two-dimensional (2D) crystals is greatly appealing for nanoscale spintronics. However, the progress in identifying such materials is limited. Here, by first-principles calculations, we report the findings of an extraordinary combination of the above qualities for the first time in a new 2D exfoliated FeSi nanosheet in the P4/nmm space group. Due to the strong anion-mediated superexchange interaction, the monolayer FeSi (ML-FeSi) exhibits a Curie temperature Tc as high as 830 K, surpassing the current experimental record (344 K for ML-Cr3Te4). Furthermore, including FeSi, such isostructural lattices all demonstrate exceptional softness, as evidenced by their ultra-low in-plane stiffness. Remarkably, the transition metal atom and square-shaped crystal form work together to give this family of ML materials unique properties that can transition from Ising-like 2D ferromagnets in FeSi, MnP, MnAs, CrP, FeI, and VAs to 2D-XY ones in CrAs, VP, and multiferroic MnGe and TiTe. Overall, our work highlights such 2D lattices as promising candidates in emerging multifunctional device applications and nontrivial topological spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13372v1-abstract-full').style.display = 'none'; document.getElementById('2410.13372v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09376">arXiv:2410.09376</a> <span> [<a href="https://arxiv.org/pdf/2410.09376">pdf</a>, <a href="https://arxiv.org/format/2410.09376">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Elastic properties of Cu-6wt\%Ag alloy wires for pulsed magnets investigated by ultrasonic techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Ziyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+T">Tianyi Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+W">Wenqi Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Y">Yang Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhuo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+K">Kangjian Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Y">Yupeng Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+J">Jianfeng Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shaozhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+T">Tao Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Qi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+X">Xiaotao Han</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+Y">Yongkang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Liang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09376v1-abstract-short" style="display: inline;"> Conductor materials with good mechanical performance as well as high electrical- and thermal-conductivities are particularly important to break through the current bottle-neck limit ($\sim 100$ T) of pulsed magnets. Here we perform systematic studies on the elastic properties of the Cu-6wt%Ag alloy wires, a promising candidate material for the new-generation pulsed magnets, by employing two indepe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09376v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09376v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09376v1-abstract-full" style="display: none;"> Conductor materials with good mechanical performance as well as high electrical- and thermal-conductivities are particularly important to break through the current bottle-neck limit ($\sim 100$ T) of pulsed magnets. Here we perform systematic studies on the elastic properties of the Cu-6wt%Ag alloy wires, a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques - resonant ultrasound spectroscopy (RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu-6wt%Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this chance to test the availability of our newly-built ultrasound pulse-echo facility at Wuhan National High Magnetic Field Center (WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu-6wt%Ag alloy wire remains excellent without anomalous softening under extreme conditions, e.g., ultra-high magnetic field up to 50 T, nitrogen / helium cryogenic liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09376v1-abstract-full').style.display = 'none'; document.getElementById('2410.09376v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18050">arXiv:2409.18050</a> <span> [<a href="https://arxiv.org/pdf/2409.18050">pdf</a>, <a href="https://arxiv.org/format/2409.18050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity and charge-density-wave in the Holstein model on the Penrose Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zi-Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18050v1-abstract-short" style="display: inline;"> The exotic quantum states emerging in the quasicrystal (QC) have attracted extensive interest because of various properties absent in the crystal. In this paper, we systematically study the Holstein model at half filling on a prototypical structure of QC, namely rhombic Penrose lattice, aiming at investigating the superconductivity (SC) and other intertwined ordering arising from the interplay bet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18050v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18050v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18050v1-abstract-full" style="display: none;"> The exotic quantum states emerging in the quasicrystal (QC) have attracted extensive interest because of various properties absent in the crystal. In this paper, we systematically study the Holstein model at half filling on a prototypical structure of QC, namely rhombic Penrose lattice, aiming at investigating the superconductivity (SC) and other intertwined ordering arising from the interplay between quasiperiodicity and electron-phonon ({\it e}-ph) interaction. Through unbiased sign-problem-free determinant quantum Monte Carlo simulations, we reveal the salient features of the ground-state phase diagram. Distinct from the results on bipartite periodic lattices at half filling, SC is dominant in a large parameter regime on the Penrose lattice. When {\it e}-ph coupling is sufficiently strong, charge-density-wave order appears and strongly suppresses the SC. The strongest SC emerges at intermediate {\it e}-ph coupling strength and pronounced pairing fluctuation exists above the SC transition temperature. The strong pairing originates from the cooperative effects of unique lattice structure and macroscopically degenerate confined states at Fermi energy which uniquely exist on the Penrose lattice. Moreover, we demonstrate the forbidden ladders substantially suppress the phase coherence of SC. Our unbiased numerical results suggest that Penrose lattice is a potential platform to realize strong SC pairing, providing a promising avenue to searching for relatively high-$T_c$ SC dominantly induced by {\it e}-ph coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18050v1-abstract-full').style.display = 'none'; document.getElementById('2409.18050v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages and 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14843">arXiv:2409.14843</a> <span> [<a href="https://arxiv.org/pdf/2409.14843">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Creation of independently controllable and long lifetime polar skyrmion textures in ferroelectric-metallic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+F">Fei Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+J">Jianhua Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hongfang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+J">Jianwei Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Hui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianyi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Linjie Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+M">Mengjun Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaoyue Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenpeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Weijin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Y">Yue Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14843v1-abstract-short" style="display: inline;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14843v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14843v1-abstract-full" style="display: none;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a metallic contact undergo a topological phase transition and stabilize a broad family of skyrmion-like textures (e.g., skyrmion bubbles, multiple 蟺-twist target skyrmions, and skyrmion bags) with independent controllability, analogous to those reported in magnetic systems. Weakly-interacted skyrmion arrays with a density over 300 Gb/inch2 are successfully written, erased and read-out by local electrical and mechanical stimuli of a scanning probe. Interestingly, in contrast to the relatively short lifetime <20 hours of the skyrmion bubbles, the multiple 蟺-twist target skyrmions and skyrmion bags show topology-enhanced stability with lifetime over two weeks. Experimental and theoretical analysis implies the heterostructures carry electric Dzyaloshinskii-Moriya interaction mediated by oxygen octahedral tiltings. Our results demonstrate ferroelectric-metallic heterostructures as fertile playground for topological states and emergent phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'none'; document.getElementById('2409.14843v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11648">arXiv:2409.11648</a> <span> [<a href="https://arxiv.org/pdf/2409.11648">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> On the electrochemical CO2 reduction by Bi-based catalysts: single crystals or mixture phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+M">Mengting Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongxia Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+J">Juntao Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Qingjun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Rong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11648v1-abstract-short" style="display: inline;"> Metallic bismuth is both non-toxic and cost-effective. Bi-based catalysts have demonstrated the ability to efficiently produce HCOOH through CO2RR while effectively inhibiting the HER. Although many experiments have been reported concerning its performance towards CO2 reduction, the impact its valence states and crystal faces on CO2RR selectivity (e.g. HCOOH versus CO) it still under debate. Here,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11648v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11648v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11648v1-abstract-full" style="display: none;"> Metallic bismuth is both non-toxic and cost-effective. Bi-based catalysts have demonstrated the ability to efficiently produce HCOOH through CO2RR while effectively inhibiting the HER. Although many experiments have been reported concerning its performance towards CO2 reduction, the impact its valence states and crystal faces on CO2RR selectivity (e.g. HCOOH versus CO) it still under debate. Here, we performed a comprehensive study via density functional theory, by including three typical valence states of Bi, such as 0 (Bi), +3 (Bi2O3) and +5 (Bi2O5), as well as their often-studied crystal facets. The results show that metallic Bi demonstrates a poor selectivity for HCOOH, but boasts a higher conversion rate for CO2. While Bi2O3 exhibits a good selectivity for HCOOH production, yet it displays a lower conversion rate for CO2. For Bi2O5, all studied surfaces show high energy barriers in both cases of HCOOH and CO production, and lower energy barriers for HER reactions, indicating that Bi at +5 valence state is not the good choice for 2e transfer reactions. Subsequently, we further examined the effects of oxygen contents on the selectivity of HCOOH and the conversion rate for CO2. Interestingly, we found that partial oxidization of Bi benefits both the selectivity and the conversion rate. With these observations, we suggest that a mixture of Bi (0) and Bi2O3 (+3) phases would be a better choice than single crystals for future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11648v1-abstract-full').style.display = 'none'; document.getElementById('2409.11648v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11023">arXiv:2409.11023</a> <span> [<a href="https://arxiv.org/pdf/2409.11023">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing band topology in ABAB and ABBA stacked twisted double bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Y">Yalong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J">Jinwei Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11023v1-abstract-short" style="display: inline;"> Twisted graphene moire superlattice has been demonstrated as an exotic platform for investigating correlated states and nontrivial topology. Among the moire family, twisted double bilayer graphene (TDBG) is a tunable flat band system expected to show stacking-dependent topological properties. However, electron correlations and the band topology are usually intertwined in the flat band limit, rende… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11023v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11023v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11023v1-abstract-full" style="display: none;"> Twisted graphene moire superlattice has been demonstrated as an exotic platform for investigating correlated states and nontrivial topology. Among the moire family, twisted double bilayer graphene (TDBG) is a tunable flat band system expected to show stacking-dependent topological properties. However, electron correlations and the band topology are usually intertwined in the flat band limit, rendering the unique topological property due to stacking still elusive. Focusing on a large-angle TDBG with weak electron correlations, here we probe the Landau level (LL) spectra in two differently stacked TDBG, i.e. ABBA- and ABAB-TDBG, to unveil their distinct topological properties. For ABBA-TDBG, we observe non-trivial topology at zero electric displacement filed, evident from both the emergence of Chern bands from half fillings and the closure of gap at CNP above a critical magnetic field. For ABAB-TDBG, by contrast, we find that the moire band is topologically trivial, supported by the absence of LLs from half fillings and the persistence of the gap at CNP above the critical magnetic fields. In addition, we also observe an evolution of the trivial-to-nontrivial topological transition at finite D fields, confirmed by the emerged Landau fans originating from quarter filling v = 1. Our result demonstrates, for the first time, the unique stacking-dependent topology in TDBG, offering a promising avenue for future investigations on topological states in correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11023v1-abstract-full').style.display = 'none'; document.getElementById('2409.11023v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07910">arXiv:2409.07910</a> <span> [<a href="https://arxiv.org/pdf/2409.07910">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.165424">10.1103/PhysRevB.110.165424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controllable magnetic anisotropy and ferroelasticity in superconducting FeSe monolayer with surface fluorine adsorption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qu%2C+Y">Yueqiao Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+Y">Yu Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhixiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+G">Gang Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07910v1-abstract-short" style="display: inline;"> Controllable magnetization in atomically thin two-dimensional magnets is highly desirable for developing spintronics. For FeSe monolayer, its magnetic ground state is not yet fully understood, and the potential in constructing high-speed and advanced devices remains unknown. Using density functional theory calculations, we confirm the spin ordering of monolayer FeSe to be dimer texture. With Fluor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07910v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07910v1-abstract-full" style="display: none;"> Controllable magnetization in atomically thin two-dimensional magnets is highly desirable for developing spintronics. For FeSe monolayer, its magnetic ground state is not yet fully understood, and the potential in constructing high-speed and advanced devices remains unknown. Using density functional theory calculations, we confirm the spin ordering of monolayer FeSe to be dimer texture. With Fluorine (F) adsorption (F/FeSe), the system exhibits a coverage dependent magnetic anisotropy and multiferroicity which can be attributable to the Jahn-Teller effect, being the benefit to potential spintronic applications. Intriguingly, an inherent coupling between magnetism and ferroelasticity in the most energetically favorable F/FeSe system is proposed. Our study thus not only provides a promising way to control the spintronic properties and construct multiferroics, but also renders F/FeSe an ideal platform for magnetism studies and practical high-performance multifunctional devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07910v1-abstract-full').style.display = 'none'; document.getElementById('2409.07910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 165424 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06660">arXiv:2409.06660</a> <span> [<a href="https://arxiv.org/pdf/2409.06660">pdf</a>, <a href="https://arxiv.org/format/2409.06660">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Memory and Personality Shape Ideological Polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shengkai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Phan%2C+T+V">Trung V. Phan</a>, <a href="/search/cond-mat?searchtype=author&query=Di+Carlo%2C+L">Luca Di Carlo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Gao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Do%2C+V+H">Van H. Do</a>, <a href="/search/cond-mat?searchtype=author&query=Mikhail%2C+E">Elia Mikhail</a>, <a href="/search/cond-mat?searchtype=author&query=Austin%2C+R+H">Robert H. Austin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liyu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06660v2-abstract-short" style="display: inline;"> We do experiments on physical agents with dynamic binary ideologies, deep memories of previous probes of neigboring agents, but fixed personalities that interpret the memory content to make ideological decisions. We find experimentally a critical memory depth below which complete ideological polarization of the collective cannot occur, and above which it is inevitable, an emergent symmetry breakin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06660v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06660v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06660v2-abstract-full" style="display: none;"> We do experiments on physical agents with dynamic binary ideologies, deep memories of previous probes of neigboring agents, but fixed personalities that interpret the memory content to make ideological decisions. We find experimentally a critical memory depth below which complete ideological polarization of the collective cannot occur, and above which it is inevitable, an emergent symmetry breaking that is memory depth dependent. Depending on the details of the personalities, the polarization can be static or dynamic in time, even in certain cases chaotic due to nonreciprocity in how the agents respond to other agents. Thus, agents with different personalities and depths of memory serve as a physics analog of the ideology dynamics among biased individuals, illuminating how decisions influenced by individual memories of past interactions can shape and influence subsequent polarization. Perhaps such applications of physics-based systems to political systems will help us to understand the ideological instabilities observed today. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06660v2-abstract-full').style.display = 'none'; document.getElementById('2409.06660v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15965">arXiv:2408.15965</a> <span> [<a href="https://arxiv.org/pdf/2408.15965">pdf</a>, <a href="https://arxiv.org/format/2408.15965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Novel ground states and emergent quantum many-body scars in a two-species Rydberg atom array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lei-Yi-Nan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+S">Shun-Yao Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+S">Shi-Rong Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+J">Jie Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+S">Su Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+P">Peng Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+S">Shou-Shu Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+T">Tao Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+J">Jian Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15965v1-abstract-short" style="display: inline;"> Rydberg atom array has been established as one appealing platform for quantum simulation and quantum computation. Recent experimental development of trapping and controlling two-species atoms using optical tweezer arrays has brought more complex interactions in this game, enabling much versatile novel quantum states and phenomena to emerge and thus leading to a growing need for both theoretical an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15965v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15965v1-abstract-full" style="display: none;"> Rydberg atom array has been established as one appealing platform for quantum simulation and quantum computation. Recent experimental development of trapping and controlling two-species atoms using optical tweezer arrays has brought more complex interactions in this game, enabling much versatile novel quantum states and phenomena to emerge and thus leading to a growing need for both theoretical and numerical investigations in this regard. In this paper we systematically calculate the ground state phase diagram of alternating two-species atom array and find some novel quantum states that cannot exist in traditional cold-atom platforms, for instance the period $4$ product state $|1100\rangle^{\otimes m}$, the period $6$ product state $|111000\rangle^{\otimes m}$ and order-disorder separation phase. We also confirm the existence of floating phase, however, in this system it has to be described by two interacting bosonic fields whereas that in the single species Rydberg atom array can be understood as free bosons. More interestingly, in the quench dynamics we discover a type of new quantum many-body scar distinct from that previous found in single species atoms which is explained by low-energy effective theory of the PXP model. Instead, the underlying physics of the newly found quantum many-body scar can be described by a perturbation theory spanning the whole energy spectrum. Detailed analysis on how to experimentally prepare these states and observe the phenomena is provided. Numerical evidence shows that the proposed scheme is robust against typical experimentally relevent imperfections and thus it is implementable. Our work opens new avenue for quantum simulating novel quantum many-body states both in and out of equilibrium arising from the interplay of competing interactions of different atom species and quantum fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15965v1-abstract-full').style.display = 'none'; document.getElementById('2408.15965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09741">arXiv:2408.09741</a> <span> [<a href="https://arxiv.org/pdf/2408.09741">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of electrical high-harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zan%2C+X">Xiaozhou Zan</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Z">Zitian Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Haiwen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J">Jingwei Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+X">Xin-Cheng Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09741v1-abstract-short" style="display: inline;"> High-harmonic generation (HHG), an extreme nonlinear effect, introduces an unprecedented paradigm to detect emergent quantum phases and electron dynamics inconceivable in the framework of linear and low-order nonlinear processes. As an important manifestation, the optical HHG (o-HHG) enables extraordinary opportunities to underpin attosecond physics. In addition to nonlinear optics, emerging nonli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09741v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09741v1-abstract-full" style="display: none;"> High-harmonic generation (HHG), an extreme nonlinear effect, introduces an unprecedented paradigm to detect emergent quantum phases and electron dynamics inconceivable in the framework of linear and low-order nonlinear processes. As an important manifestation, the optical HHG (o-HHG) enables extraordinary opportunities to underpin attosecond physics. In addition to nonlinear optics, emerging nonlinear electric transport has been demonstrated recently and opens new paradigms to probe quantum phase transition, symmetry breaking, band geometrical and topological properties. Thus far, only electrical second-/third-harmonic generation in perturbative regime has been elucidated, while the electrical HHG (e-HHG) that can advance to extreme non-perturbative physics remains elusive. Here we report the observation of e-HHG up to 300th-order. Remarkably, the e-HHG shows a clear non-perturbative character and exhibits periodic oscillations with the reciprocal of driving current. Further, theoretical simulations corroborate the experiments, suggesting the contribution of singular distribution of Berry curvature near band edges. Our results demonstrate e-HHG in extreme nonlinear regime and may shed light on a plethora of exotic physics and applications, such as extreme non-equilibrium quantum phenomena, ultra-fast and coherent electrical signal generations and detections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09741v1-abstract-full').style.display = 'none'; document.getElementById('2408.09741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09417">arXiv:2408.09417</a> <span> [<a href="https://arxiv.org/pdf/2408.09417">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Discovery of terahertz-frequency orbitally-coupled magnons in a kagome ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Che%2C+M">Mengqian Che</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Weizhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Maoyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Bartram%2C+F+M">F. Michael Bartram</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liangyang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hao Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guang-Ming Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Luyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09417v1-abstract-short" style="display: inline;"> In ferromagnetic materials, magnons - quanta of spin waves - typically resonate in the gigahertz range. Beyond conventional magnons, while theoretical studies have predicted magnons associated with orbital magnetic moments, their direct observation has remained challenging. Here, we present the discovery of two distinct terahertz orbitally-coupled magnon resonances in the topological kagome ferrom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09417v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09417v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09417v1-abstract-full" style="display: none;"> In ferromagnetic materials, magnons - quanta of spin waves - typically resonate in the gigahertz range. Beyond conventional magnons, while theoretical studies have predicted magnons associated with orbital magnetic moments, their direct observation has remained challenging. Here, we present the discovery of two distinct terahertz orbitally-coupled magnon resonances in the topological kagome ferromagnet Co3Sn2S2. Using time-resolved Kerr rotation spectroscopy, we pinpoint two magnon resonances at 0.61 and 0.49 THz at 6 K, surpassing all previously reported magnon resonances in ferromagnets due to strong magnetocrystalline anisotropy. These dual modes originate from the strong coupling of localized spin and orbital magnetic moments. These findings unveil a novel category of magnons stemming from orbital magnetic moments, and position Co3Sn2S2 as a promising candidate for high-speed terahertz spintronic applications <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09417v1-abstract-full').style.display = 'none'; document.getElementById('2408.09417v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08612">arXiv:2408.08612</a> <span> [<a href="https://arxiv.org/pdf/2408.08612">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Atomic-Scale Imaging of Fractional Spinon Quasiparticles in Open-Shell Triangulene Spin-$\frac{1}{2}$ Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhangyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xin-Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yashi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Ying Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Mingpu Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+P">Pei-Nian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Deng-Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08612v1-abstract-short" style="display: inline;"> The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08612v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08612v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08612v1-abstract-full" style="display: none;"> The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-$\frac{1}{2}$ chains using open-shell [2]triangulene molecules as building blocks. Each [2]triangulene unit, owing to its sublattice imbalance, hosts a net spin-$\frac{1}{2}$ in accordance with Lieb's theorem, and these spins are antiferromagnetically coupled within covalent chains with a coupling strength of $J = 45$ meV. Through scanning tunneling microscopy and spectroscopy, we probe the spin states, excitation gaps, and their spatial excitation weights within covalent spin chains of varying lengths with atomic precision. Our investigation reveals that the excitation gap decreases as the chain length increases, extrapolating to zero for long chains, consistent with Haldane's gapless prediction. Moreover, inelastic tunneling spectroscopy reveals an m-shaped energy dispersion characteristic of confined spinon quasiparticles in a one-dimensional quantum box. These findings establish a promising strategy for exploring the unique properties of excitation quasiparticles and their broad implications for quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08612v1-abstract-full').style.display = 'none'; document.getElementById('2408.08612v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04959">arXiv:2408.04959</a> <span> [<a href="https://arxiv.org/pdf/2408.04959">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant interfacial Dzyaloshinskii-Moriya Interaction in perovskite La_{0.7}Sr_{0.3}MnO_{3} films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">L. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+N">N. Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">L. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Z. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Y. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+D">D. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+D">D. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">J. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">J. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W+g">W. g Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">W. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+H">H. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04959v1-abstract-short" style="display: inline;"> The Dzyaloshinskii-Moriya interaction (DMI) plays a critical role in stabilizing topological spin textures, a key area of growing interest in oxide-based spintronics. While most of reported topological phenomena found in manganites are related to the bulk-like DMI, the understanding of interfacial DMI and its origin in oxide interfaces remain limited. Here we experimentally investigate the interfa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04959v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04959v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04959v1-abstract-full" style="display: none;"> The Dzyaloshinskii-Moriya interaction (DMI) plays a critical role in stabilizing topological spin textures, a key area of growing interest in oxide-based spintronics. While most of reported topological phenomena found in manganites are related to the bulk-like DMI, the understanding of interfacial DMI and its origin in oxide interfaces remain limited. Here we experimentally investigate the interfacial DMI of La_{0.7}Sr_{0.3}MnO_{3} (LSMO) films grown on various substrates by employing spin-wave propagation with drift velocities at room temperature. Our findings reveal a giant interfacial DMI coefficient (\mathit{D} _{s}) of 1.96 pJ/m in LSMO/NdGaO_{3}(110) system, exceeding previously reported values in oxides by one to two orders of magnitude. First-principles calculations further show that with the aid of 6\mathit{s} electrons, the 4\mathit{f} electrons from Nd play a key role in enhancing the spin-orbit coupling of the 3\mathit{d} electrons in Mn, ultimately leading to the observed giant interfacial DMI. This discovery of giant interfacial DMI through engineering the interface of oxides provides valuable insights for advancing functional chiral magnonics and spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04959v1-abstract-full').style.display = 'none'; document.getElementById('2408.04959v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04095">arXiv:2408.04095</a> <span> [<a href="https://arxiv.org/pdf/2408.04095">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A Metastable Pentagonal 2D Material Synthesized by Symmetry-Driven Epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lina Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yujin Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Bianchi%2C+M">Marco Bianchi</a>, <a href="/search/cond-mat?searchtype=author&query=Hus%2C+S+M">Saban M. Hus</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zheshen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Balog%2C+R">Richard Balog</a>, <a href="/search/cond-mat?searchtype=author&query=Miwa%2C+J+A">Jill A. Miwa</a>, <a href="/search/cond-mat?searchtype=author&query=Hofmann%2C+P">Philip Hofmann</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+A">An-ping Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zemlyanov%2C+D+Y">Dmitry Y. Zemlyanov</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Youyong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y+P">Yong P. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04095v1-abstract-short" style="display: inline;"> Most two-dimensional (2D) materials experimentally studied so far have hexagons as their building blocks. Only a few exceptions, such as PdSe2, are lower in energy in pentagonal phases and exhibit pentagons as building blocks. While theory has predicted a large number of pentagonal 2D materials, many of them are metastable and their experimental realization is difficult. Here we report the success… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04095v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04095v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04095v1-abstract-full" style="display: none;"> Most two-dimensional (2D) materials experimentally studied so far have hexagons as their building blocks. Only a few exceptions, such as PdSe2, are lower in energy in pentagonal phases and exhibit pentagons as building blocks. While theory has predicted a large number of pentagonal 2D materials, many of them are metastable and their experimental realization is difficult. Here we report the successful synthesis of a metastable pentagonal 2D material, the monolayer pentagonal PdTe2, by symmetry-driven epitaxy. Scanning tunneling microscopy and complementary spectroscopy measurements are used to characterize the monolayer pentagonal PdTe2, which demonstrates well-ordered low-symmetry atomic arrangements and is stabilized by lattice matching with the underlying Pd(100) substrate. Theoretical calculations, along with angle-resolved photoemission spectroscopy, reveal monolayer pentagonal PdTe2 is a semiconductor with an indirect bandgap of 1.05 eV. Our work opens an avenue for the synthesis of pentagon-based 2D materials and gives opportunities to explore their applications such as multifunctional nanoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04095v1-abstract-full').style.display = 'none'; document.getElementById('2408.04095v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02892">arXiv:2408.02892</a> <span> [<a href="https://arxiv.org/pdf/2408.02892">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.046503">10.1103/PhysRevLett.133.046503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local excitation of kagome spin ice magnetism in HoAgGe seen by scanning tunneling microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hanbin Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T">Tianyu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guowei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tiantian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+W">Wei Song</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiang-Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+J">Jifeng Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y+Y">Y. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">Nan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hao Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Liyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Mei%2C+J">Jia-Wei Mei</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Jiaqing He</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qihang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02892v1-abstract-short" style="display: inline;"> The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02892v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02892v1-abstract-full" style="display: none;"> The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical bias voltages with negative intensity values, serving as a striking inelastic tunneling signal. This signal disappears above the spin ice formation temperature and has a dependence on the magnetic fields, demonstrating its intimate relation with the spin ice magnetism. We provide a two-level spin-flip model to explain the tunneling dips considering the spin ice magnetism under spin-orbit coupling. Our results uncover a local emergent excitation of spin ice magnetism in a kagome metal, suggesting that local electrical field induced spin flip climbs over a barrier caused by spin-orbital locking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02892v1-abstract-full').style.display = 'none'; document.getElementById('2408.02892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 046503 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16978">arXiv:2407.16978</a> <span> [<a href="https://arxiv.org/pdf/2407.16978">pdf</a>, <a href="https://arxiv.org/format/2407.16978">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.024427">10.1103/PhysRevB.110.024427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding the Ising zigzag antiferromagnetism of FePS3 and FePSe3 monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+K">Ke Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Ning%2C+Y">Yueyue Ning</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Di Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yaozhenghang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Pu%2C+S">Shengli Pu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Hua Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16978v1-abstract-short" style="display: inline;"> This study investigates the spin-orbital states of FePS3 and FePSe3 monolayers and the origin of their Ising zigzag AFM, using DFT, crystal field level diagrams, superexchange analyses, and parallel tempering MC simulations. Our calculations show that under the trigonal elongation of the FeS6 (FeSe6) octahedra, the $e_g^蟺$ doublet of the Fe 3d crystal field levels lies lower than the $a_{1g}$ sing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16978v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16978v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16978v1-abstract-full" style="display: none;"> This study investigates the spin-orbital states of FePS3 and FePSe3 monolayers and the origin of their Ising zigzag AFM, using DFT, crystal field level diagrams, superexchange analyses, and parallel tempering MC simulations. Our calculations show that under the trigonal elongation of the FeS6 (FeSe6) octahedra, the $e_g^蟺$ doublet of the Fe 3d crystal field levels lies lower than the $a_{1g}$ singlet by about 108 meV (123 meV), which is much larger than the strength of Fe 3d SOC. Then, the half-filled minority-spin $e_g^蟺$ doublet of the high-spin Fe$^{2+}$ ions ($d^{5\uparrow,1\downarrow}$) splits by the SOC into the lower $L_{z+}$ and higher $L_{z-}$ states. The spin-orbital ground state $d^{5\uparrow}$$L_{z+}^{1\downarrow}$ formally with $S_z$ = 2 and $L_z$ = 1 gives the large z-axis spin/orbital moments of 3.51/0.76 $渭_{B}$ (3.41/0.67 $渭_{B}$) for FePS$_3$ (FePSe$_3$) monolayer, and both the moments are reduced by the strong (stronger) Fe 3d hybridizations with S 3p (Se 4p) states. As a result, FePS3 (FePSe3) monolayer has a huge perpendicular single-ion anisotropy energy of 19.4 meV (14.9 meV), giving an Ising-type magnetism. Moreover, via the maximally localized Wannier functions, we find that the first nearest neighboring (1NN) Fe-Fe pair has large hopping parameters in between some specific orbitals, and so does the 3NN Fe-Fe pair. In contrast, the 2NN Fe-Fe pair has much smaller hopping parameters and the 4NN Fe-Fe pair has negligibly small ones. Then, a combination of those hopping parameters and the superexchange picture can readily explain the computed strong 1NN ferromagnetic coupling and the strong 3NN antiferromagnetic one but the relatively much smaller 2NN antiferromagnetic coupling. Furthermore, our PTMC simulations give TN of 119 K for FePS3 monolayer and also predict for FePSe3 monolayer the same magnetic structure with a close or even higher TN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16978v1-abstract-full').style.display = 'none'; document.getElementById('2407.16978v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 024427 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15150">arXiv:2407.15150</a> <span> [<a href="https://arxiv.org/pdf/2407.15150">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad3ef6">10.1088/1674-1056/ad3ef6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pan%2C+X">Xiao-Long Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiang-Rong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Geng%2C+H+Y">Hua Y. Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15150v1-abstract-short" style="display: inline;"> Mn3TeO6 (MTO) has been experimentally found to adopt a P21/n structure under high pressure, which exhibits a significantly smaller band gap compared to the atmospheric R-3 phase. In this study, we systematically investigate the magnetism, structural phase transition and electronic properties of MTO under high pressure through first-principles calculations. Both R-3 and P21/n phases of MTO are anti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15150v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15150v1-abstract-full" style="display: none;"> Mn3TeO6 (MTO) has been experimentally found to adopt a P21/n structure under high pressure, which exhibits a significantly smaller band gap compared to the atmospheric R-3 phase. In this study, we systematically investigate the magnetism, structural phase transition and electronic properties of MTO under high pressure through first-principles calculations. Both R-3 and P21/n phases of MTO are antiferromagnetic at zero temperature. The R-3 phase transforms to the P21/n phase at 7.58 GPa, accompanied by a considerable volume collapse of about 6.47%. Employing the accurate method that combines DFT+U and G0W0, the calculated band gap of R-3 phase at zero pressure is very close to the experimental values, while that of the P21/n phase is significantly overestimated. The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P21/n phase instead of the Kubelka-Munk plot for the direct band gap. Furthermore, our study reveals that the transition from the R-3 phase to the P21/n phase is accompanied by a slight reduction in the band gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15150v1-abstract-full').style.display = 'none'; document.getElementById('2407.15150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B 33, 076102 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13256">arXiv:2407.13256</a> <span> [<a href="https://arxiv.org/pdf/2407.13256">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.4c00964">10.1021/acs.jctc.4c00964 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minimum tracking linear response Hubbard and Hund corrected Density Functional Theory in CP2K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chai%2C+Z">Ziwei Chai</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+R">Rutong Si</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+M">Mingyang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Teobaldi%2C+G">Gilberto Teobaldi</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Regan%2C+D+D">David D. O'Regan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Li-Min Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13256v2-abstract-short" style="display: inline;"> We present the implementation of the Hubbard ($U$) and Hund ($J$) corrected Density Functional Theory (DFT+$U$+$J$) functionality in the Quickstep program, which is part of the CP2K suite. The tensorial and L枚wdin subspace representations are implemented and compared. Full analytical DFT+$U$+$J$ forces are implemented and benchmarked for the tensorial and L枚wdin representations. We also present th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13256v2-abstract-full').style.display = 'inline'; document.getElementById('2407.13256v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13256v2-abstract-full" style="display: none;"> We present the implementation of the Hubbard ($U$) and Hund ($J$) corrected Density Functional Theory (DFT+$U$+$J$) functionality in the Quickstep program, which is part of the CP2K suite. The tensorial and L枚wdin subspace representations are implemented and compared. Full analytical DFT+$U$+$J$ forces are implemented and benchmarked for the tensorial and L枚wdin representations. We also present the implementation of the recently proposed minimum-tracking linear-response method that enables the $U$ and $J$ parameters to be calculated on first principles basis without reference to the Kohn-Sham eigensystem. These implementations are benchmarked against recent results for different materials properties including DFT+$U$ band gap opening in NiO, the relative stability of various polaron distributions in TiO$_2$, the dependence of the calculated TiO$_2$ band gap on +$J$ corrections, and, finally, the role of the +$U$ and +$J$ corrections for the computed properties of a series of the hexahydrated transition metals. Our implementation provides results consistent with those already reported in the literature from comparable methods. We conclude the contribution with tests on the influence of the L枚wdin orthonormalization on the occupancies, calculated parameters, and derived properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13256v2-abstract-full').style.display = 'none'; document.getElementById('2407.13256v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Theory Comput. 2024, 20, 20, 8984-9002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12744">arXiv:2407.12744</a> <span> [<a href="https://arxiv.org/pdf/2407.12744">pdf</a>, <a href="https://arxiv.org/format/2407.12744">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad51f8">10.1088/1674-1056/ad51f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negligible Normal Fluid in Superconducting State of Heavily Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Detected by Ultra-Low Temperature Angle-Resolved Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qinghong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Yuyang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junhao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiangang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Junjie Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+W">Wenkai Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zong%2C+N">Nan Zong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lijuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R">Rukang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xintong Li</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12744v1-abstract-short" style="display: inline;"> In high temperature cuprate superconductors, it was found that in the overdoped region the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a he… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12744v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12744v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12744v1-abstract-full" style="display: none;"> In high temperature cuprate superconductors, it was found that in the overdoped region the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a $T_{\mathrm{c}}$ of 48 K. We find that this heavily overdoped Bi2212 remains in the strong coupling regime with $2 \mathit螖_0 / k_{\mathrm{B}} T_{\mathrm{c}}=5.8$. The single-particle scattering rate is very small along the nodal direction ($\sim$5 meV) and increases as the momentum moves from the nodal to the antinodal regions. A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero. The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212. These results provide key information to understand the high $T_\mathrm{c}$ mechanism in the cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12744v1-abstract-full').style.display = 'none'; document.getElementById('2407.12744v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 33, 077405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10677">arXiv:2407.10677</a> <span> [<a href="https://arxiv.org/pdf/2407.10677">pdf</a>, <a href="https://arxiv.org/ps/2407.10677">ps</a>, <a href="https://arxiv.org/format/2407.10677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> </div> </div> <p class="title is-5 mathjax"> From bordisms of three-manifolds to domain walls between topological orders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y+L">Yu Leon Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Sakthivadivel%2C+D+A+R">Dalton A R Sakthivadivel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10677v1-abstract-short" style="display: inline;"> We study a correspondence between spin three-manifolds and bosonic abelian topological orders. Let $N$ be a spin three-manifold. We can define a $(2+1)$-dimensional topological order $\mathrm{TO}_N$ as follows: its anyons are the torsion elements in $H_1(N)$, the braiding of anyons is given by the linking form, and their topological spins are given by the quadratic refinement of the linking form o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10677v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10677v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10677v1-abstract-full" style="display: none;"> We study a correspondence between spin three-manifolds and bosonic abelian topological orders. Let $N$ be a spin three-manifold. We can define a $(2+1)$-dimensional topological order $\mathrm{TO}_N$ as follows: its anyons are the torsion elements in $H_1(N)$, the braiding of anyons is given by the linking form, and their topological spins are given by the quadratic refinement of the linking form obtained from the spin structure. Under this correspondence, a surgery presentation of $N$ gives rise to a classical Chern--Simons description of the associated topological order $\mathrm{TO}_N$. We then extend the correspondence to spin bordisms between three-manifolds, and domain walls between topological orders. In particular, we construct a domain wall $\mathcal{D}_M$ between $\mathrm{TO}_N$ and $\mathrm{TO}_{N'}$, where $M$ is a spin bordism from $N$ to $N'$. This domain wall unfolds to a composition of a gapped boundary, obtained from anyon condensation, and a gapless Narain boundary CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10677v1-abstract-full').style.display = 'none'; document.getElementById('2407.10677v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20+1 pages, five tikzpictures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 57K10; 57R56; 57R65; 81V27 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08665">arXiv:2407.08665</a> <span> [<a href="https://arxiv.org/pdf/2407.08665">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Closed Loop Superparamagnetic Tunnel Junctions for Reliable True Randomness and Generative Artificial Intelligence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Koh%2C+D">Dooyong Koh</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qiuyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=McGoldrick%2C+B+C">Brooke C. McGoldrick</a>, <a href="/search/cond-mat?searchtype=author&query=Chou%2C+C">Chung-Tao Chou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Luqiao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Baldo%2C+M+A">Marc A. Baldo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08665v2-abstract-short" style="display: inline;"> Physical devices exhibiting stochastic functions with low energy consumption and high device density have the potential to enable complex probability-based computing algorithms, accelerate machine learning tasks, and enhance hardware security. Recently, superparamagnetic tunnel junctions (sMTJs) have been widely explored for such purposes, leading to the development of sMTJ-based systems; however,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08665v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08665v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08665v2-abstract-full" style="display: none;"> Physical devices exhibiting stochastic functions with low energy consumption and high device density have the potential to enable complex probability-based computing algorithms, accelerate machine learning tasks, and enhance hardware security. Recently, superparamagnetic tunnel junctions (sMTJs) have been widely explored for such purposes, leading to the development of sMTJ-based systems; however, the reliance on nanoscale ferromagnets limits scalability and reliability, making sMTJs sensitive to external perturbations and prone to significant device variations. Here, we present an experimental demonstration of closed loop three-terminal sMTJs as reliable and potentially scalable sources of true randomness in the field-free regime. By leveraging dual-current controllability and incorporating feedback, we stabilize the switching operation of superparamagnets and reach cryptographic-quality random bitstreams. The realization of controllable and robust true random sMTJs underpin a general hardware platform for computing schemes exploiting the stochasticity in the physical world, as demonstrated by the generative artificial intelligence example in our experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08665v2-abstract-full').style.display = 'none'; document.getElementById('2407.08665v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19310">arXiv:2406.19310</a> <span> [<a href="https://arxiv.org/pdf/2406.19310">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Imaging semiconductor-to-metal transition and topological flat bands of twisted bilayer MoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+T">Ting Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+N">Ning Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Can Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Shudan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19310v1-abstract-short" style="display: inline;"> Two-dimensional (2D) moir茅 materials have emerged as a highly tunable platform for investigating novel quantum states of matter arising from strong electronic correlations and nontrivial band topology. Recently, topological flat bands formed in 2D semiconducting moir茅 superlattices have attracted great interests. In particular, a series of topological quantum phases, including the long-sought frac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19310v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19310v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19310v1-abstract-full" style="display: none;"> Two-dimensional (2D) moir茅 materials have emerged as a highly tunable platform for investigating novel quantum states of matter arising from strong electronic correlations and nontrivial band topology. Recently, topological flat bands formed in 2D semiconducting moir茅 superlattices have attracted great interests. In particular, a series of topological quantum phases, including the long-sought fractional quantum anomalous Hall (FQAH) effect, have recently been experimentally observed in twisted bilayer MoTe2 (tMoTe2). However, the microscopic information of tMoTe2 moir茅 superlattice and its electronic structure is still lacking. Here, we present scanning tunneling microscopy and spectroscopy (STM/STS) studies of the tMoTe2 moir茅 superlattice, with twist angles ranging from about 2.3掳 to 2.8掳. We developed a contact-STM mode to apply pressure on tMoTe2 and observed a phase transition from band insulator to metal of tMoTe2 under pressure at the charge neutrality point. STM imaging reveals a pronounced in-plane lattice reconstruction with periodic strain redistribution in the tMoTe2, which serves as gauge fields for generating topological moir茅 bands. Importantly, the electronic states of the low-energy moir茅 flat bands primarily concentrate at the XM and MX regions as revealed by STS imaging. Such spatial distributions are nicely reproduced by our first principal calculations with a large-scale basis, suggesting the low-energy moir茅 flat bands are formed through the hybridization of K valley bands of the top layer and K' valley bands of the bottom layer. Overall, our findings provide compelling real-space evidence of electronic structure under pressure and topological flat bands of tMoTe2, paving the way for further STM/STS investigations of correlated topological states within the topological flat band in gate-tunable tMoTe2 devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19310v1-abstract-full').style.display = 'none'; document.getElementById('2406.19310v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03554">arXiv:2406.03554</a> <span> [<a href="https://arxiv.org/pdf/2406.03554">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.085432">10.1103/PhysRevB.110.085432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic ground state and strain-mediated chiral-like atomic distortions behavior in two-dimensional rectangular spin lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liao%2C+Y">Yu Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+Y">Yueqiao Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zuo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jun-Zhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+G">Gang Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03554v1-abstract-short" style="display: inline;"> Due to the large perpendicular magnetic anisotropy originating from spin-orbit coupling, magnetoelastic coupling is generally reported in easy-plane magnets with rectangular lattice where the easy magnetization is coupled with the lattice direction, while the acquisition of a novel coupling, beyond the easy-plane ferromagnets, in two-dimensional (2D) materials remains unknown. Here, by employing t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03554v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03554v1-abstract-full" style="display: none;"> Due to the large perpendicular magnetic anisotropy originating from spin-orbit coupling, magnetoelastic coupling is generally reported in easy-plane magnets with rectangular lattice where the easy magnetization is coupled with the lattice direction, while the acquisition of a novel coupling, beyond the easy-plane ferromagnets, in two-dimensional (2D) materials remains unknown. Here, by employing the density functional theory calculations, we demonstrate this feasibility with the discovery of long-range ferromagnetic ordering and elastic strain-mediated chiral-like atomic distortions behavior in a newly tetragonal As-Fe-As trilayer (t-FeAs monolayer), which shows large perpendicular magnetic anisotropy, robust ferromagnetic ordering, and in-plane ferroelasticity. We firstly point out that obvious limits exist when using the four magnetic configurations to determine the magnetic ground state for a rectangular spin lattice even if more exchange interaction parameters are included. A four-state mapping analysis is carefully examined for t-FeAs, where the calculated Curie temperature, Tc, is 435 K, which is higher than most reported 2D magnets, and can be further tuned by appropriate strains. Intriguingly, the chiral-like atomic distortion behavior of the Fe sub-layer is scanning tunneling microscopy characterizable, which can switch the magnetization axis between the out-of-plane and in-plane direction. This unusual finding of ferroelastic manipulation of both the atomic displacement and spin properties makes t-FeAs a promising candidate for future spintronics and also provides the possibility for exploring unprecedented coupling physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03554v1-abstract-full').style.display = 'none'; document.getElementById('2406.03554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 085432 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01037">arXiv:2406.01037</a> <span> [<a href="https://arxiv.org/pdf/2406.01037">pdf</a>, <a href="https://arxiv.org/ps/2406.01037">ps</a>, <a href="https://arxiv.org/format/2406.01037">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Engineering second-order topological insulators via coupling two first-order topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lizhou Liu</a>, <a href="/search/cond-mat?searchtype=author&query=An%2C+J">Jiaqi An</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Y">Yafei Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yingtao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Qiao%2C+Z">Zhenhua Qiao</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01037v1-abstract-short" style="display: inline;"> We theoretically investigate the engineering of two-dimensional second-order topological insulators with corner states by coupling two first-order topological insulators. We find that the interlayer coupling between two topological insulators with opposite topological invariants results in the formation of edge-state gaps, which are essential for the emergence of the corner states. Using the effec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01037v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01037v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01037v1-abstract-full" style="display: none;"> We theoretically investigate the engineering of two-dimensional second-order topological insulators with corner states by coupling two first-order topological insulators. We find that the interlayer coupling between two topological insulators with opposite topological invariants results in the formation of edge-state gaps, which are essential for the emergence of the corner states. Using the effective Hamiltonian framework, We elucidate that the formation of topological corner states requires either the preservation of symmetry in the crystal system or effective mass countersigns for neighboring edge states. Our proposed strategy for inducing corner state through interlayer coupling is versatile and applicable to both $\mathbb{Z}_2$ topological insulators and quantum anomalous Hall effects. We demonstrate this approach using several representative models including the seminal Kane-Mele model, the Bernevig-Hughes-Zhang model, and the Rashba graphene model to explicitly exhibit the formation of corner states via interlater coupling. Moreover, we also observe that the stacking of the coupled $\mathbb{Z}_2$ topological insulating systems results in the formation of the time-reversal invariant three-dimensional second-order nodal ring semimetals. Remarkably, the three-dimensional system from the stacking of the Bernevig-Hughes-Zhang model can be transformed into second-order Dirac semimetals, characterized by one-dimensional hinge Fermi arcs. Our strategy of engineering second-order topological phases via simple interlayer coupling promises to advance the exploration of higher-order topological insulators in two-dimensional spinful systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01037v1-abstract-full').style.display = 'none'; document.getElementById('2406.01037v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15742">arXiv:2405.15742</a> <span> [<a href="https://arxiv.org/pdf/2405.15742">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Correlated Charge Density Wave Insulators in Chirally Twisted Triple Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+G">Gengdong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Z">Zuo Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yijie Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+M">Miao Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zaizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+M">Min Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jinhua Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zhida Song</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xiaobo Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15742v1-abstract-short" style="display: inline;"> Electrons residing in flat-band system can play a vital role in triggering spectacular phenomenology due to relatively large interactions and spontaneous breaking of different degeneracies. In this work we demonstrate chirally twisted triple bilayer graphene, a new moir茅 structure formed by three pieces of helically stacked Bernal bilayer graphene, as a highly tunable flat-band system. In addition… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15742v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15742v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15742v1-abstract-full" style="display: none;"> Electrons residing in flat-band system can play a vital role in triggering spectacular phenomenology due to relatively large interactions and spontaneous breaking of different degeneracies. In this work we demonstrate chirally twisted triple bilayer graphene, a new moir茅 structure formed by three pieces of helically stacked Bernal bilayer graphene, as a highly tunable flat-band system. In addition to the correlated insulators showing at integer moir茅 fillings, commonly attributed to interaction induced symmetry broken isospin flavors in graphene, we observe abundant insulating states at half-integer moir茅 fillings, suggesting a longer-range interaction and the formation of charge density wave insulators which spontaneously break the moir茅 translation symmetry. With weak out-of-plane magnetic field applied, as observed half-integer filling states are enhanced and more quarter-integer filling states appear, pointing towards further quadrupling moir茅 unit cells. The insulating states at fractional fillings combined with Hartree-Fock calculations demonstrate the observation of a new type of correlated charge density wave insulators in graphene and points to a new accessible twist manner engineering correlated moir茅 electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15742v1-abstract-full').style.display = 'none'; document.getElementById('2405.15742v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11249">arXiv:2405.11249</a> <span> [<a href="https://arxiv.org/pdf/2405.11249">pdf</a>, <a href="https://arxiv.org/ps/2405.11249">ps</a>, <a href="https://arxiv.org/format/2405.11249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interlayer Coupling Induced Topological Phase Transition to Higher Order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lizhou Liu</a>, <a href="/search/cond-mat?searchtype=author&query=An%2C+J">Jiaqi An</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Y">Yafei Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yingtao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Qiao%2C+Z">Zhenhua Qiao</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11249v1-abstract-short" style="display: inline;"> We theoretically find that the second-order topological insulator, i.e., corner states, can be engineered by coupling two copies of two-dimensional $\mathbb{Z}_2$ topological insulators with opposite spin-helicities. As concrete examples, we utilize Kane-Mele models (i.e., graphene with intrinsic spin-orbit coupling) to realize the corner states by setting the respective graphenes to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11249v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11249v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11249v1-abstract-full" style="display: none;"> We theoretically find that the second-order topological insulator, i.e., corner states, can be engineered by coupling two copies of two-dimensional $\mathbb{Z}_2$ topological insulators with opposite spin-helicities. As concrete examples, we utilize Kane-Mele models (i.e., graphene with intrinsic spin-orbit coupling) to realize the corner states by setting the respective graphenes to be $\mathbb{Z}_2$ topological insulators with opposite intrinsic spin-orbit couplings. To exhibit its universality, we generalize our findings to other representative $\mathbb{Z}_2$ topological insulators, e.g., the Bernevig-Hughes-Zhang model. An effective model is presented to reveal the physical origin of corner states. We further show that the corner states can also be designed in other topological systems, e.g., by coupling quantum anomalous Hall systems with opposite Chern numbers. Our work suggests that interlayer coupling can be treated as a simple and efficient strategy to drive lower-order topological insulators to the higher-order ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11249v1-abstract-full').style.display = 'none'; document.getElementById('2405.11249v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13574">arXiv:2404.13574</a> <span> [<a href="https://arxiv.org/pdf/2404.13574">pdf</a>, <a href="https://arxiv.org/format/2404.13574">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> A Variational Approach to Trap Macromolecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Luofu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+C">Chao Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13574v1-abstract-short" style="display: inline;"> Trapping macromolecules is impoartant for the study of their conformations, interactions, dynamics and kinetic processes. Here, we develop a variational approach which self-consistently introduces a mean force that controls the center-of-mass position and a self-adjustable harmonic potential that counters the center-of-mass fluctuation. The effectiveness and versatility of our approach is verified… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13574v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13574v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13574v1-abstract-full" style="display: none;"> Trapping macromolecules is impoartant for the study of their conformations, interactions, dynamics and kinetic processes. Here, we develop a variational approach which self-consistently introduces a mean force that controls the center-of-mass position and a self-adjustable harmonic potential that counters the center-of-mass fluctuation. The effectiveness and versatility of our approach is verified in three classical yet not fully understood problems in polymer physics: (1) single-chain conformation in the entire solvent regimes, (2) globule-pearl necklace-coil transition of a polyelectrolyte and (3) inter-chain interaction by simultaneously trapping two polymers. The scaling relationships and $胃$ behaviors are well captured. Conformations with large shape anisotropy appearing in charged polymers are clearly depicted. Our theoretical predictions are in quantitative agreement with experimental results reported in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13574v1-abstract-full').style.display = 'none'; document.getElementById('2404.13574v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19830">arXiv:2403.19830</a> <span> [<a href="https://arxiv.org/pdf/2403.19830">pdf</a>, <a href="https://arxiv.org/format/2403.19830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Emerging Jordan blocks in the two-dimensional Potts and loop models at generic $Q$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lawrence Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jacobsen%2C+J+L">Jesper Lykke Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&query=Saleur%2C+H">Hubert Saleur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19830v1-abstract-short" style="display: inline;"> It was recently suggested -- based on general self-consistency arguments as well as results from the bootstrap (arXiv:2005.07708, arXiv:2007.11539, arXiv:2007.04190) -- that the CFT describing the $Q$-state Potts model is logarithmic for generic values of $Q$, with rank-two Jordan blocks for $L_0$ and ${\mkern 1.5mu\overline{\mkern-1.5mu L\mkern-1.5mu}\mkern 1.5mu}_0$ in many sectors of the theory… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19830v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19830v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19830v1-abstract-full" style="display: none;"> It was recently suggested -- based on general self-consistency arguments as well as results from the bootstrap (arXiv:2005.07708, arXiv:2007.11539, arXiv:2007.04190) -- that the CFT describing the $Q$-state Potts model is logarithmic for generic values of $Q$, with rank-two Jordan blocks for $L_0$ and ${\mkern 1.5mu\overline{\mkern-1.5mu L\mkern-1.5mu}\mkern 1.5mu}_0$ in many sectors of the theory. This is despite the well-known fact that the lattice transfer matrix (or Hamiltonian) is diagonalizable in (arbitrary) finite size. While the emergence of Jordan blocks only in the limit $L\to\infty$ is perfectly possible conceptually, diagonalizability in finite size makes the measurement of logarithmic couplings (whose values are analytically predicted in arXiv:2007.11539, arXiv:2007.04190) very challenging. This problem is solved in the present paper (which can be considered a companion to arXiv:2007.11539), and the conjectured logarithmic structure of the CFT confirmed in detail by the study of the lattice model and associated "emerging Jordan blocks." <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19830v1-abstract-full').style.display = 'none'; document.getElementById('2403.19830v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2403.09881</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17403">arXiv:2403.17403</a> <span> [<a href="https://arxiv.org/pdf/2403.17403">pdf</a>, <a href="https://arxiv.org/format/2403.17403">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Vortex nucleations in spinor Bose condensates under localized synthetic magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L+-">L. -R. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S+-">S. -C. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T+-">T. -W. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+H+-">H. -Y. Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+T+-">T. -K. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Yip%2C+S+-">S. -K. Yip</a>, <a href="/search/cond-mat?searchtype=author&query=Kawaguchi%2C+Y">Y. Kawaguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y+-">Y. -J. Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17403v1-abstract-short" style="display: inline;"> Gauge fields are ubiquitous in modern quantum physics. In superfluids, quantized vortices can be induced by gauge fields. Here we demonstrate the first experimental observation of vortex nucleations in spinor Bose-Einstein Condensates under radially-localized synthetic magnetic fields. The associated gauge potentials $\vec{A}$ are azimuthal and created by light-induced spin-orbital-angular-momentu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17403v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17403v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17403v1-abstract-full" style="display: none;"> Gauge fields are ubiquitous in modern quantum physics. In superfluids, quantized vortices can be induced by gauge fields. Here we demonstrate the first experimental observation of vortex nucleations in spinor Bose-Einstein Condensates under radially-localized synthetic magnetic fields. The associated gauge potentials $\vec{A}$ are azimuthal and created by light-induced spin-orbital-angular-momentum coupling, generating circulating azimuthal velocity fields $\propto \vec{p}-\vec{A}$ even when the canonical momentum $\vec{p}= 0$. A sufficiently large azimuthal velocity peaked near the condensate center results in a dynamically unstable localized excitation that initiates vortex nucleations. This excitation appears as a spontaneously-formed vortex-antivortex pair near the cloud center. Following the initially developed instability, the dynamics is governed by the asymmetry and dissipation, where the atomic orbital angular momentum evolves and can reach the value of the ground state. Our system exhibits dynamical and Landau instabilities and agrees reasonably with time-dependent Gross-Pitaevskii simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17403v1-abstract-full').style.display = 'none'; document.getElementById('2403.17403v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17253">arXiv:2403.17253</a> <span> [<a href="https://arxiv.org/pdf/2403.17253">pdf</a>, <a href="https://arxiv.org/ps/2403.17253">ps</a>, <a href="https://arxiv.org/format/2403.17253">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Convert laser light into single photons via interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yanfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Manman Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+G">Guoqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Li Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenyan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+W">Weijie Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hanqing Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+X">Xiangbin Su</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shulun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+D">Deyan Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+X">Xiangjun Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+H">Haiqiao Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+Z">Zhichuan Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chengyong Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17253v1-abstract-short" style="display: inline;"> Laser light possesses perfect coherence, but cannot be attenuated to single photons via linear optics. An elegant route to convert laser light into single photons is based on photon blockade in a cavity with a single atom in the strong coupling regime. However, the single-photon purity achieved by this method remains relatively low. Here we propose an interference-based approach where laser light… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17253v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17253v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17253v1-abstract-full" style="display: none;"> Laser light possesses perfect coherence, but cannot be attenuated to single photons via linear optics. An elegant route to convert laser light into single photons is based on photon blockade in a cavity with a single atom in the strong coupling regime. However, the single-photon purity achieved by this method remains relatively low. Here we propose an interference-based approach where laser light can be transformed into single photons by destructively interfering with a weak but super-bunched incoherent field emitted from a cavity coupling to a single quantum emitter. We demonstrate this idea by measuring the reflected light of a laser field which drives a double-sided optical microcavity containing a single artificial atom-quantum dot (QD) in the Purcell regime. The reflected light consists of a superposition of the driving field with the cavity output field. We achieve the second-order autocorrelation g2(0)=0.030+-0.002 and the two-photon interference visibility 94.3%+-0.2. By separating the coherent and incoherent fields in the reflected light, we observe that the incoherent field from the cavity exhibits super-bunching with g2(0)=41+-2 while the coherent field remains Poissonian statistics. By controlling the relative amplitude of coherent and incoherent fields, we verify that photon statistics of reflected light is tuneable from perfect anti-bunching to super-bunching in agreement with our predictions. Our results demonstrate photon statistics of light as a quantum interference phenomenon that a single QD can scatter two photons simultaneously at low driving fields in contrast to the common picture that a single two-level quantum emitter can only scatter (or absorb and emit) single photons. This work opens the door to tailoring photon statistics of laser light via cavity or waveguide quantum electrodynamics and interference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17253v1-abstract-full').style.display = 'none'; document.getElementById('2403.17253v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16035">arXiv:2403.16035</a> <span> [<a href="https://arxiv.org/pdf/2403.16035">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strongly asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qianbiao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Long Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+G">Guozhong Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+L">Lijun Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16035v1-abstract-short" style="display: inline;"> Electrical switching of magnetization is central to spintronics. Despite the enormous efforts on the spin torques and the Dzyaloshinskii-Moriya interaction (DMI) effects, some fundamental physics for electrical switching of magnetization is still missing as indicated by a number of remarkable long-standing puzzles. Here, we report the discovery of the long-range intralayer DMI effect widely existi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16035v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16035v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16035v1-abstract-full" style="display: none;"> Electrical switching of magnetization is central to spintronics. Despite the enormous efforts on the spin torques and the Dzyaloshinskii-Moriya interaction (DMI) effects, some fundamental physics for electrical switching of magnetization is still missing as indicated by a number of remarkable long-standing puzzles. Here, we report the discovery of the long-range intralayer DMI effect widely existing in magnetic heterostructure, which is distinct from the yet-known DMI effects as it describes the chiral coupling of two orthogonal magnetic domains within the same magnetic layer via the mediation of an adjacent heavy metal layer. The long-range intralayer DMI generates a strong perpendicular effective magnetic field (H_DMI^z) on the perpendicular magnetization. Characteristically, H_DMI^z varies with the sign/magnitude of the interfacial DMI constant, the applied in-plane magnetic fields, and the distribution of the perpendicular magnetic anisotropy. The long-range intralayer DMI results in striking consequences including the strongly asymmetric current/field switching of perpendicular magnetization, hysteresis loop shift of perpendicular magnetization in the absence of in-plane direct current, and sharp, complete switching of perpendicular magnetization purely by an in-plane magnetic field. Utilizing the long-range intralayer DMI effect, we demonstrate programable, complete Boolean logic operations (i.e., AND, NAND, NOT, OR, and NOR) within a single spin-orbit torque device. These results will stimulate the investigation of the long-range intralayer DMI effect and its impacts on a variety of spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16035v1-abstract-full').style.display = 'none'; document.getElementById('2403.16035v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In press in Nature Communicatitons</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14893">arXiv:2403.14893</a> <span> [<a href="https://arxiv.org/pdf/2403.14893">pdf</a>, <a href="https://arxiv.org/format/2403.14893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.035161">10.1103/PhysRevB.110.035161 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital doublet driven even-spin Chern insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuntian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiayu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Hua Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qihang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14893v2-abstract-short" style="display: inline;"> Quantum spin Hall insulators hosting edge spin currents hold great potential for low-power spintronic devices. In this paper, we present a universal approach to achieve a high and near-quantized spin Hall conductance plateau within a sizable bulk gap. Using a nonmagnetic four-band model Hamiltonian, we demonstrate that an even-spin Chern (ESC) insulator can be accessed by tuning the sign of spin-o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14893v2-abstract-full').style.display = 'inline'; document.getElementById('2403.14893v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14893v2-abstract-full" style="display: none;"> Quantum spin Hall insulators hosting edge spin currents hold great potential for low-power spintronic devices. In this paper, we present a universal approach to achieve a high and near-quantized spin Hall conductance plateau within a sizable bulk gap. Using a nonmagnetic four-band model Hamiltonian, we demonstrate that an even-spin Chern (ESC) insulator can be accessed by tuning the sign of spin-orbit coupling (SOC) within a crystal symmetry-enforced orbital doublet. With the assistance of a high spin Chern number of $C_{S}=-2$ and spin $U$(1) quasisymmetry, this orbital-doublet-driven ESC phase is endowed with the near-double-quantized spin Hall conductance. We identify 12 crystallographic point groups supporting such a sign-tunable SOC. Furthermore, we apply our theory to realistic examples, and show the phase transition from a trivial insulator governed by positive SOC in the RuI$_{3}$ monolayer to an ESC insulator dominated by negative SOC in the RuBr$_{3}$ monolayer. This orbital-doublet-driven ESC insulator, RuBr$_{3}$, showcases nontrivial characteristics including helical edge states, near-double-quantized spin Hall conductance, and robust corner states. Our work provides different pathways in the pursuit of the long-sought quantum spin Hall insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14893v2-abstract-full').style.display = 'none'; document.getElementById('2403.14893v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 035161 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08276">arXiv:2403.08276</a> <span> [<a href="https://arxiv.org/pdf/2403.08276">pdf</a>, <a href="https://arxiv.org/format/2403.08276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Synergy between Spin and Orbital Angular Momenta on a M枚bius Strip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+X">Xiao-Chen Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Y">Yuan Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiujuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+M">Ming-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yan-Feng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08276v1-abstract-short" style="display: inline;"> Spin and orbital angular momenta are fundamental physical characteristics described by polarization and spatial degrees of freedom, respectively. Polarization is a feature of vector fields while spatial phase gradient determines the orbital angular momentum ubiquitous to any scalar field. Common wisdom treats these two degrees of freedom as distinct and independent principles to manipulate wave pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08276v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08276v1-abstract-full" style="display: none;"> Spin and orbital angular momenta are fundamental physical characteristics described by polarization and spatial degrees of freedom, respectively. Polarization is a feature of vector fields while spatial phase gradient determines the orbital angular momentum ubiquitous to any scalar field. Common wisdom treats these two degrees of freedom as distinct and independent principles to manipulate wave propagations. Here, we demonstrate their synergy. This is achieved by introducing two orthogonal $p$-orbitals as eigenbases, whose spatial modal features are exploited to generate orbital angular momenta and the associated orbital orientations provide means to simultaneously manipulate polarizations. Through periodic modulation and directional coupling, we realize a full cyclic evolution of the synchronized and synergized spin-orbital angular momenta. Remarkably, this evolution acquires a nontrivial geometric phase, leading to its representation on a M枚bius strip. Experimentally, an acoustic cavity array is designed, whose dipole resonances precisely mimic the $p$-orbitals. The acoustic waves, uniquely, see the pressure (scalar) field as a spatial feature and carry an intrinsic polarization defined by the velocity (vector) field, serving as an ideal platform to observe the synergy of spin and orbital angular momenta. Based on such a property, we further showcase a spin-orbital-Hall effect, highlighting the intricate locking of handedness, directionality, spin density and spatial mode profile. Our study unveils a fundamental connection between spin and orbital angular momenta, promising avenues for novel applications in information coding and high-capacity communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08276v1-abstract-full').style.display = 'none'; document.getElementById('2403.08276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05012">arXiv:2403.05012</a> <span> [<a href="https://arxiv.org/pdf/2403.05012">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Dynamics of Bilayer and Trilayer Nickelate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y+T">Y. T. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L+Y">L. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+P">P. Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">H. Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C+Y">C. Y. Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M+X">M. X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J+K">J. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+M+-">M. -L. Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+P+H">P. H. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H+J">H. J. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Luyi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05012v1-abstract-short" style="display: inline;"> In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ult… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05012v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05012v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05012v1-abstract-full" style="display: none;"> In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ultrafast dynamics of the bilayer and trilayer nickelates at ambient pressure. Firstly, we observe a coherent phonon mode in La4Ni3O10 involving the collective vibration of La, Ni, and O atoms, which is absent in La3Ni2O7. Secondly, the temperature-dependent relaxation time diverges near the density-wave transition temperature of La4Ni3O10, in drastic contrast to kink-like changes in La3Ni2O7. Moreover, we estimate the electron-phonon coupling constants to be 0.05~0.07 and 0.12~0.16 for La3Ni2O7 and La4Ni3O10, respectively, suggesting a relatively minor role of electron-phonon coupling in the electronic properties of Lan+1NinO3n+1. Our work not only sheds light on the relevant microscopic interaction but also establishes a foundation for further studying the interplay between superconductivity and density-wave transitions in nickelate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05012v1-abstract-full').style.display = 'none'; document.getElementById('2403.05012v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04572">arXiv:2403.04572</a> <span> [<a href="https://arxiv.org/pdf/2403.04572">pdf</a>, <a href="https://arxiv.org/format/2403.04572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Topology and entanglement of molecular phase space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Albert%2C+V+V">Victor V. Albert</a>, <a href="/search/cond-mat?searchtype=author&query=Kubischta%2C+E">Eric Kubischta</a>, <a href="/search/cond-mat?searchtype=author&query=Lemeshko%2C+M">Mikhail Lemeshko</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L+R">Lee R. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04572v2-abstract-short" style="display: inline;"> We formulate a quantum phase space for molecular rotational and nuclear-spin states. Taking in molecular geometry and nuclear-spin data, our framework yields admissible position and momentum states, inter-convertible via a generalized Fourier transform. We classify molecules into three types -- asymmetric, rotationally symmetric, and perrotationally symmetric -- with the last type having no macros… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04572v2-abstract-full').style.display = 'inline'; document.getElementById('2403.04572v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04572v2-abstract-full" style="display: none;"> We formulate a quantum phase space for molecular rotational and nuclear-spin states. Taking in molecular geometry and nuclear-spin data, our framework yields admissible position and momentum states, inter-convertible via a generalized Fourier transform. We classify molecules into three types -- asymmetric, rotationally symmetric, and perrotationally symmetric -- with the last type having no macroscopic analogue due to nuclear-spin statistics constraints. We identify two features in perrotationally symmetric state spaces that are Hamiltonian-independent and induced solely by symmetry and spin statistics. First, many molecular species are intrinsically rotation-spin entangled in a way that cannot be broken without transitioning to another species or breaking symmetry. Second, each molecular position state houses an internal pseudo-spin or "fiber" degree of freedom, and the fiber's Berry phase or matrix after adiabatic changes in position yields naturally robust operations, akin to braiding anyonic quasiparticles or realizing fault-tolerant quantum gates. We outline scenarios where these features can be experimentally probed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04572v2-abstract-full').style.display = 'none'; document.getElementById('2403.04572v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 + 37 pages, 8 figures, 6 tables, 46 examples; v2 minor clarifications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02017">arXiv:2403.02017</a> <span> [<a href="https://arxiv.org/pdf/2403.02017">pdf</a>, <a href="https://arxiv.org/format/2403.02017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The General Principle behind Magnetization-induced Second-Order Topological Corner States in the Kane-Mele Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Miao%2C+C">Cheng-Ming Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lizhou Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+Y">Yu-Hao Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Q">Qing-Feng Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Ying-Tao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02017v1-abstract-short" style="display: inline;"> We propose a general principle for realizing second-order topological corner states in the modified Kane-Mele model with magnetization. It is demonstrated that the sign of the edge Dirac mass depends on the magnetization of the edge sublattice termination. By adjusting the directions of magnetization according to the type of sublattice at the termination of two edges, a mass domain wall can be ind… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02017v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02017v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02017v1-abstract-full" style="display: none;"> We propose a general principle for realizing second-order topological corner states in the modified Kane-Mele model with magnetization. It is demonstrated that the sign of the edge Dirac mass depends on the magnetization of the edge sublattice termination. By adjusting the directions of magnetization according to the type of sublattice at the termination of two edges, a mass domain wall can be induced in the presence of topological corner states at an arbitrary position. All previous work on introducing magnetization in the Kane-Mele model to realize second-order topological corner states can be explained by the presence of the Dirac mass domain wall with opposite signs. Applying this principle, we design square-shaped and armchair-type hexagon-shaped graphene nanoflakes with edge magnetization, allowing for the emergence of second-order topological corner states. Our findings serve as a general theory, demonstrating that the realization of second-order topological corner states is not limited by boundary type or nanoflake shape. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02017v1-abstract-full').style.display = 'none'; document.getElementById('2403.02017v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01120">arXiv:2403.01120</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-breaking-dependent electronic structures and strain regulation in ReSeS monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+T">Texture Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+J+W">J. W. Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H+C">H. C. Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L+Z">L. Z. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01120v2-abstract-short" style="display: inline;"> Electronic devices for information storages and processes can be further optimized by introducing the degree of freedom of anisotropy, which is strongly dependent of their structural symmetry. Herein, a ReSeS monolayer with asymmetrical double-faces are proposed to disclose the anisotropic electronic structure. Meanwhile infrared fingerprint based on the lattice vibration is also adopted to demons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01120v2-abstract-full').style.display = 'inline'; document.getElementById('2403.01120v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01120v2-abstract-full" style="display: none;"> Electronic devices for information storages and processes can be further optimized by introducing the degree of freedom of anisotropy, which is strongly dependent of their structural symmetry. Herein, a ReSeS monolayer with asymmetrical double-faces are proposed to disclose the anisotropic electronic structure. Meanwhile infrared fingerprint based on the lattice vibration is also adopted to demonstrate the symmetry-breaking-dependent structural transformation. First-principles calculations demonstrate that the geometry deformation will induce the reconstruction of electronic structure. Ulteriorly, both the dynamic properties of carrier and spectroscopic response can be regulated by external strain and displays anisotropic behaviors. Our idea provides threads for designing new regulable optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01120v2-abstract-full').style.display = 'none'; document.getElementById('2403.01120v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">At present, the calculations and interpretations of defect properties, Raman spectroscopic properties, and electronic effective masses involved in this paper are unreliable</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13974">arXiv:2402.13974</a> <span> [<a href="https://arxiv.org/pdf/2402.13974">pdf</a>, <a href="https://arxiv.org/format/2402.13974">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L161104">10.1103/PhysRevB.110.L161104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum spin Hall effect protected by spin U(1) quasisymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuntian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiayu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Hua Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qihang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13974v2-abstract-short" style="display: inline;"> Quantum spin Hall (QSH) effect, where electrons with opposite spin channels are deflected to opposite sides of a two-dimensional system with a quantized conductance, was believed to be characterized by a nontrivial topological index $Z_{2}$. However, spin mixing effects in realistic materials often lead to deviation of the spin Hall conductance from exact quantization. In this Letter, we present a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13974v2-abstract-full').style.display = 'inline'; document.getElementById('2402.13974v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13974v2-abstract-full" style="display: none;"> Quantum spin Hall (QSH) effect, where electrons with opposite spin channels are deflected to opposite sides of a two-dimensional system with a quantized conductance, was believed to be characterized by a nontrivial topological index $Z_{2}$. However, spin mixing effects in realistic materials often lead to deviation of the spin Hall conductance from exact quantization. In this Letter, we present a universal symmetry indicator for diagnosing QSH effect in realistic materials, termed spin U(1) quasisymmetry. Such a symmetry eliminates the first-order spin-mixing perturbation and thus protects the near-quantization of SHC, applicable to time-reversal-preserved cases with either $Z_{2}=1$ or $Z_{2}=0$, as well as time-reversal-broken scenarios. We propose that spin U(1) quasisymmetry is hidden in the subspace spanned by the doublets with unquenched orbital momentum and emerges when SOC is present, which can be realized in 19 crystallographic point groups. Particularly, we identify a previous overlooked even spin Chern phase with a trivial $Z_{2}$ index as an ideal platform for achieving a near-double-quantized SHC, as exemplified by twisted bilayer transition metal dichalcogenides and monolayer RuBr$_{3}$. Our work offers a new perspective for understanding QSH effect and significantly expands the material pool for the screening of exemplary material candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13974v2-abstract-full').style.display = 'none'; document.getElementById('2402.13974v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, L161104 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17953">arXiv:2401.17953</a> <span> [<a href="https://arxiv.org/pdf/2401.17953">pdf</a>, <a href="https://arxiv.org/format/2401.17953">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcis.2024.03.103">10.1016/j.jcis.2024.03.103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced contact flexibility from nanoparticles in capillary suspensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lingyue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Allard%2C+J">Jens Allard</a>, <a href="/search/cond-mat?searchtype=author&query=Koos%2C+E">Erin Koos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17953v2-abstract-short" style="display: inline;"> Hypothesis: Sample-spanning particle networks are used to induce structure and a yield stress, necessary for 3D printing of porous ceramics and paints. In capillary suspensions, a small quantity of immiscible secondary fluid is incorporated into a suspension. By further adding nanoparticles with a range of hydrophobicities, the structure of the bridges and microparticle-microparticle contacts shou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17953v2-abstract-full').style.display = 'inline'; document.getElementById('2401.17953v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17953v2-abstract-full" style="display: none;"> Hypothesis: Sample-spanning particle networks are used to induce structure and a yield stress, necessary for 3D printing of porous ceramics and paints. In capillary suspensions, a small quantity of immiscible secondary fluid is incorporated into a suspension. By further adding nanoparticles with a range of hydrophobicities, the structure of the bridges and microparticle-microparticle contacts should be modified, resulting in a tunable yield stress and shear moduli. Moreover, the compressibility of these samples, important in many processing and application steps, should be sensitive to these changes. Experiment: The nanoparticle hydrophobicity was altered and their position relative to the microparticles and the bridges was examined using confocal microscopy where the correlation between bridge size and network structure was observed. A step-wise uniaxial compression test on the confocal was conducted to monitor the microparticle movement and structural changes between capillary suspension networks with and without nanoparticles. Findings: Our observation suggests that nanoparticles induce the formation of thin liquid films on the surface of the microparticles, mitigating contact line pinning and promoting internal liquid exchange. Additionally, nanoparticles at microparticle contact regions further diminish Hertzian contact, enhancing the capacity for rearrangement. These effects enhance microparticle movement, narrowing the bridge size distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17953v2-abstract-full').style.display = 'none'; document.getElementById('2401.17953v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SI included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Colloid and Interface Science, Volume 665, July 2024, Pages 643-654 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17608">arXiv:2401.17608</a> <span> [<a href="https://arxiv.org/pdf/2401.17608">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrical 180o switching of N茅el vector in spin-splitting antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Han%2C+L">Lei Han</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+X">Xizhi Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+R">Rui Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+X">Xingkai Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+J">Jiankun Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liangyang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenxuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+H">Hua Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yongjian Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+S">Shixuan Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qian Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xianzhe Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Luyi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+C">Cheng Song</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+F">Feng Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17608v1-abstract-short" style="display: inline;"> Antiferromagnetic spintronics have attracted wide attention due to its great potential in constructing ultra-dense and ultra-fast antiferromagnetic memory that suits modern high-performance information technology. The electrical 180o switching of N茅el vector is a long-term goal for developing electrical-controllable antiferromagnetic memory with opposite N茅el vectors as binary "0" and "1". However… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17608v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17608v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17608v1-abstract-full" style="display: none;"> Antiferromagnetic spintronics have attracted wide attention due to its great potential in constructing ultra-dense and ultra-fast antiferromagnetic memory that suits modern high-performance information technology. The electrical 180o switching of N茅el vector is a long-term goal for developing electrical-controllable antiferromagnetic memory with opposite N茅el vectors as binary "0" and "1". However, the state-of-art antiferromagnetic switching mechanisms have long been limited for 90o or 120o switching of N茅el vector, which unavoidably require multiple writing channels that contradicts ultra-dense integration. Here, we propose a deterministic switching mechanism based on spin-orbit torque with asymmetric energy barrier, and experimentally achieve electrical 180o switching of spin-splitting antiferromagnet Mn5Si3. Such a 180o switching is read out by the N茅el vector-induced anomalous Hall effect. Based on our writing and readout methods, we fabricate an antiferromagnet device with electrical-controllable high and low resistance states that accomplishes robust write and read cycles. Besides fundamental advance, our work promotes practical spin-splitting antiferromagnetic devices based on spin-splitting antiferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17608v1-abstract-full').style.display = 'none'; document.getElementById('2401.17608v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 10, eadn0479 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+L&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>