CINXE.COM

Search results for: thread lift method

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thread lift method</title> <meta name="description" content="Search results for: thread lift method"> <meta name="keywords" content="thread lift method"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thread lift method" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thread lift method"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19239</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thread lift method</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19239</span> Thread Lift: Classification, Technique, and How to Approach to the Patient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panprapa%20Yongtrakul">Panprapa Yongtrakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Punyaphat%20Sirithanabadeekul"> Punyaphat Sirithanabadeekul</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakjira%20Siriphan"> Pakjira Siriphan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The thread lift technique has become popular because it is less invasive, requires a shorter operation, less downtime, and results in fewer postoperative complications. The advantage of the technique is that the thread can be inserted under the skin without the need for long incisions. Currently, there are a lot of thread lift techniques with respect to the specific types of thread used on specific areas, such as the mid-face, lower face, or neck area. Objective: To review the thread lift technique for specific areas according to type of thread, patient selection, and how to match the most appropriate to the patient. Materials and Methods: A literature review technique was conducted by searching PubMed and MEDLINE, then compiled and summarized. Result: We have divided our protocols into two sections: Protocols for short suture, and protocols for long suture techniques. We also created 3D pictures for each technique to enhance understanding and application in a clinical setting. Conclusion: There are advantages and disadvantages to short suture and long suture techniques. The best outcome for each patient depends on appropriate patient selection and determining the most suitable technique for the defect and area of patient concern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thread%20lift" title="thread lift">thread lift</a>, <a href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method" title=" thread lift method"> thread lift method</a>, <a href="https://publications.waset.org/abstracts/search?q=thread%20lift%20technique" title=" thread lift technique"> thread lift technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thread%20lift%20procedure" title=" thread lift procedure"> thread lift procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=threading" title=" threading"> threading</a> </p> <a href="https://publications.waset.org/abstracts/53546/thread-lift-classification-technique-and-how-to-approach-to-the-patient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19238</span> The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Kloypayan">J. Kloypayan</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Pimpakan"> W. Pimpakan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pipe taper thread measurement and uncertainty normally used the four-wire probe according to the JIS B 0262. Besides, according to the EA-10/10 standard, the pipe thread could be measured using the three-wire probe. This research proposed to use the three-wire probe measuring the pitch diameter of the pipe taper thread. The measuring accessory component was designed and made, then, assembled to one side of the ULM 828 CiM machine. Therefore, this machine could be used to measure and calibrate both the pipe thread and the pipe taper thread. The equations and the expanded uncertainty for pitch diameter measurement were formulated. After the experiment, the results showed that the pipe taper thread had the pitch diameter equal to 19.165 mm and the expanded uncertainty equal to 1.88µm. Then, the experiment results were compared to the results from the National Institute of Metrology Thailand. The equivalence ratio from the comparison showed that both results were related. Thus, the proposed method of using the three-wire probe measured the pitch diameter of the pipe taper thread was acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipe%20taper%20thread" title="pipe taper thread">pipe taper thread</a>, <a href="https://publications.waset.org/abstracts/search?q=three-wire%20probe" title=" three-wire probe"> three-wire probe</a>, <a href="https://publications.waset.org/abstracts/search?q=measure%20and%20calibration" title=" measure and calibration"> measure and calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20universal%20length%20measuring%20machine" title=" the universal length measuring machine"> the universal length measuring machine</a> </p> <a href="https://publications.waset.org/abstracts/2496/the-pitch-diameter-of-pipe-taper-thread-measurement-and-uncertainty-using-three-wire-probe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19237</span> Eli-Twist Spun Yarn: An Alternative to Conventional Sewing Thread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujit%20Kumar%20Sinha">Sujit Kumar Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Madan%20Lal%20Regar"> Madan Lal Regar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sewing thread plays an important role in the transformation of a two-dimensional fabric into a three-dimensional garment. The interaction of the sewing thread with the fabric at the seam not only influences the appearance of a garment but also its performance. Careful selection of sewing thread and associated parameters can only help in improvement. Over the years, ring spinning has been dominating the yarn market. In the pursuit of improvement to challenge its dominance alternative technology has also been developed. But no real challenge has been posed by the any of the developed spinning systems. Eli-Twist spinning system can be a new method of yarn manufacture to provide a product with improved mechanical and physical properties with respect to the conventional ring spun yarn. The system, patented by Suessen has gained considerable attention in the recent times. The process of produces a two-ply compact yarn with improved fiber utilization. It produces a novel structure combining all advantages of condensing and doubling. In the present study, sewing threads of three different counts each from cotton, polyester and polyester/cotton (50/50) blend were produced on a ring and Eli-Twist systems. A twist multiplier of 4.2 was used to produce all the yarns. A comparison of hairiness, tensile strength and coefficient of friction with conventional ring yarn was made. Eli-Twist yarn has shown better frictional characteristics, better tensile strength and less hairiness. The performance of the Eli-Twist sewing thread has also been found to be better than the conventional 2-ply sewing thread. The performance was estimated through seam strength, seam elongation and seam efficiency of sewn fabric. Eli-Twist sewing thread has shown less friction, less hairiness, and higher tensile strength. Eli-Twist sewing thread resulted in better seam characteristics in comparison to conventional 2-ply sewing thread. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ring%20spun%20yarn" title="ring spun yarn">ring spun yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Eli-Twist%20yarn" title=" Eli-Twist yarn"> Eli-Twist yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=sewing%20thread" title=" sewing thread"> sewing thread</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20strength" title=" seam strength"> seam strength</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20elongation" title=" seam elongation"> seam elongation</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20efficiency" title=" seam efficiency"> seam efficiency</a> </p> <a href="https://publications.waset.org/abstracts/84534/eli-twist-spun-yarn-an-alternative-to-conventional-sewing-thread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19236</span> Gas Lift Optimization Using Smart Gas Lift Valve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20G.%20H.%20Abdalsadig">Mohamed A. G. H. Abdalsadig</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Nourian"> Amir Nourian</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Nasr"> G. G. Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Babaie"> M. Babaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Effect%20of%20gas%20lift%20valve%20port%20size" title="Effect of gas lift valve port size">Effect of gas lift valve port size</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20water%20cut" title=" effect water cut"> effect water cut</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20flow%20performance" title=" vertical flow performance"> vertical flow performance</a> </p> <a href="https://publications.waset.org/abstracts/48540/gas-lift-optimization-using-smart-gas-lift-valve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19235</span> Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping-Ben%20Liu">Ping-Ben Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chou%20Tseng"> Chien-Chou Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computational%20Fluid%20Dynamics" title="Computational Fluid Dynamics">Computational Fluid Dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20coefficient" title=" lift coefficient"> lift coefficient</a> </p> <a href="https://publications.waset.org/abstracts/70047/investigation-of-the-turbulent-cavitating-flows-from-the-viewpoint-of-the-lift-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19234</span> Gas Lift Optimization to Improve Well Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20G.%20H.%20Abdalsadig">Mohamed A. G. H. Abdalsadig</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Nourian"> Amir Nourian</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Nasr"> G. G. Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Babaie"> Meisam Babaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20rate" title=" production rate"> production rate</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20pressure%20effect" title=" reservoir pressure effect"> reservoir pressure effect</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection%20rate%20effect" title=" gas injection rate effect"> gas injection rate effect</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection%20pressure" title=" gas injection pressure"> gas injection pressure</a> </p> <a href="https://publications.waset.org/abstracts/46454/gas-lift-optimization-to-improve-well-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19233</span> Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Q.%20Kelly">Nigel Q. Kelly</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Siddiqi"> Zaid Siddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20W.%20Lee"> Jin W. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent&reg;. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=Coanda" title=" Coanda"> Coanda</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/127878/computational-fluid-dynamics-analysis-and-optimization-of-the-coanda-unmanned-aerial-vehicle-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19232</span> Oil Producing Wells Using a Technique of Gas Lift on Prosper Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Yadav">Nikhil Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Verma"> Shubham Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas lift is a common technique used to optimize oil production in wells. Prosper software is a powerful tool for modeling and optimizing gas lift systems in oil wells. This review paper examines the effectiveness of Prosper software in optimizing gas lift systems in oil-producing wells. The literature review identified several studies that demonstrated the use of Prosper software to adjust injection rate, depth, and valve characteristics to optimize gas lift system performance. The results showed that Prosper software can significantly improve production rates and reduce operating costs in oil-producing wells. However, the accuracy of the model depends on the accuracy of the input data, and the cost of Prosper software can be high. Therefore, further research is needed to improve the accuracy of the model and evaluate the cost-effectiveness of using Prosper software in gas lift system optimization <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20lift" title="gas lift">gas lift</a>, <a href="https://publications.waset.org/abstracts/search?q=prosper%20software" title=" prosper software"> prosper software</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20rate" title=" injection rate"> injection rate</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20costs" title=" operating costs"> operating costs</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-producing%20wells" title=" oil-producing wells"> oil-producing wells</a> </p> <a href="https://publications.waset.org/abstracts/167194/oil-producing-wells-using-a-technique-of-gas-lift-on-prosper-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19231</span> Half Model Testing for Canard of a Hybrid Buoyant Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwar%20U.%20Haque">Anwar U. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqar%20Asrar"> Waqar Asrar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Ali%20Omar"> Ashraf Ali Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Sulaeman"> Erwin Sulaeman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaffer%20Sayed%20Mohamed%20Ali"> Jaffer Sayed Mohamed Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low-Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of the overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angles of attack. As a part of the validation of low fidelity tool, the plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficient, the overall trend has under-predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20testing" title="wind tunnel testing">wind tunnel testing</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20displacement" title=" boundary layer displacement"> boundary layer displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20curve%20slope" title=" lift curve slope"> lift curve slope</a>, <a href="https://publications.waset.org/abstracts/search?q=canard" title=" canard"> canard</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a> </p> <a href="https://publications.waset.org/abstracts/33529/half-model-testing-for-canard-of-a-hybrid-buoyant-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19230</span> Application of Co-Flow Jet Concept to Aircraft Lift Increase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Likitha%20Siddanathi">Sai Likitha Siddanathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present project is aimed at increasing the amount of lift produced by typical airfoil. This is achieved by its modification into the co-flow jet structure where a new internal flow is created inside the airfoil from well-designed apertures on its surface. The limit where produced excess lift overcomes the weight of pumping system inserted in airfoil upper portion, and drag force is converted into thrust is discussed in terms of airfoil velocity and angle of attack. Two normal and co-flow jet models are numerically designed and experimental results for both fabricated normal airfoil and CFJ model have been tested in low subsonic wind tunnel. Application has been made to subsonic NACA 652-415 airfoil. Produced lift in CFJ airfoil indicates a maximum value up to a factor of 5 above normal airfoil nearby flow separation ie in relatively weak flow distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20Jet" title="flow Jet">flow Jet</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20coefficient" title=" lift coefficient"> lift coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil%20performance" title=" airfoil performance"> airfoil performance</a> </p> <a href="https://publications.waset.org/abstracts/42591/application-of-co-flow-jet-concept-to-aircraft-lift-increase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19229</span> Case-Based Reasoning Approach for Process Planning of Internal Thread Cold Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Zhang">D. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Du"> H. Y. Du</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20W.%20Li"> G. W. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zeng"> J. Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Zuo"> D. W. Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20P.%20You"> Y. P. You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the difficult issues of process selection, case-based reasoning technology is applied to computer aided process planning system for cold form tapping of internal threads on the basis of similarity in the process. A model is established based on the analysis of process planning. Case representation and similarity computing method are given. Confidence degree is used to evaluate the case. Rule-based reuse strategy is presented. The scheme is illustrated and verified by practical application. The case shows the design results with the proposed method are effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case-based%20reasoning" title="case-based reasoning">case-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20thread" title=" internal thread"> internal thread</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20extrusion" title=" cold extrusion"> cold extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20planning" title=" process planning"> process planning</a> </p> <a href="https://publications.waset.org/abstracts/20120/case-based-reasoning-approach-for-process-planning-of-internal-thread-cold-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19228</span> Effect of a Stepwise Discontinuity on a 65 Degree Delta Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishit%20L.%20Sanil">Nishit L. Sanil</a>, <a href="https://publications.waset.org/abstracts/search?q=Raza%20M.%20Khan"> Raza M. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing lift effectively at higher angles of attack has always been a daunting challenge in aviation especially on a delta wing. These are used on military jet fighter planes and has some undesirable characteristics, notably flow separation at high angles of attack and high drag at low speeds. In order to solve this problem, a design modification is modeled on a delta wing which would increase the lift so that we can improve maneuverability. To attain an increase in the lift of a 65 degree delta wing at higher angles of attack, a step-wise discontinuity is created at the upper surface of the delta wing. A normal delta wing is validated for comparison which would thereby give us a measure of flow separation and coefficient of lift affected by the modification. The results obtained deliver a significant increase in lift at higher angles of attack thereby delaying stall. Hence the benefits of the modification would aid the potential designs of aircraft’s in the time to come. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20lift" title="coefficient of lift">coefficient of lift</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20wing" title=" delta wing"> delta wing</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=step-wise%20discontinuity" title=" step-wise discontinuity"> step-wise discontinuity</a> </p> <a href="https://publications.waset.org/abstracts/93174/effect-of-a-stepwise-discontinuity-on-a-65-degree-delta-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19227</span> On the Role of Cutting Conditions on Surface Roughness in High-Speed Thread Milling of Brass C3600</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mahyar%20Khorasani">Amir Mahyar Khorasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Gibson"> Ian Gibson</a>, <a href="https://publications.waset.org/abstracts/search?q=Moshe%20Goldberg"> Moshe Goldberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Masoud%20Movahedi"> Mohammad Masoud Movahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Littlefair"> Guy Littlefair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important factors in manufacturing processes especially machining operations is surface quality. Improving this parameter results in improving fatigue strength, corrosion resistance, creep life and surface friction. The reliability and clearance of removable joints such as thread and nuts are highly related to the surface roughness. In this work, the effect of different cutting parameters such as cutting fluid pressure, feed rate and cutting speed on the surface quality of the crest of thread in the high-speed milling of Brass C3600 have been determined. Two popular neural networks containing MLP and RBF coupling with Taguchi L32 have been used to model surface roughness which was shown to be highly adept for such tasks. The contribution of this work is modelling surface roughness on the crest of the thread by using precise profilometer with nanoscale resolution. Experimental tests have been carried out for validation and approved suitable accuracy of the proposed model. Also analysing the interaction of parameters two by two showed that the most effective cutting parameter on the surface value is feed rate followed by cutting speed and cutting fluid pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20conditions" title=" cutting conditions"> cutting conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20machining" title=" high-speed machining"> high-speed machining</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=thread%20milling" title=" thread milling"> thread milling</a> </p> <a href="https://publications.waset.org/abstracts/46808/on-the-role-of-cutting-conditions-on-surface-roughness-in-high-speed-thread-milling-of-brass-c3600" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19226</span> Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anshul%20Jain">Anshul Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Deepak%20Kumar"> P. Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20S.%20Dikshit"> P. K. S. Dikshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag" title="drag">drag</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=vanes" title=" vanes"> vanes</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a> </p> <a href="https://publications.waset.org/abstracts/47361/computation-of-drag-and-lift-coefficients-on-submerged-vanes-in-open-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19225</span> A Verification Intellectual Property for Multi-Flow Rate Control on Any Single Flow Bus Functional Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawamana%20Ramachandra">Pawamana Ramachandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitesh%20Gupta"> Jitesh Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Saranga%20P.%20Pogula"> Saranga P. Pogula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In verification of high volume and complex packet processing IPs, finer control of flow management aspects (for example, rate, bits/sec etc.) per flow class (or a virtual channel or a software thread) is needed. When any Software/Universal Verification Methodology (UVM) thread arbitration is left to the simulator (e.g., Verilog Compiler Simulator (VCS) or Incisive Enterprise Simulator core simulation engine (NCSIM)), it is hard to predict its pattern of resulting distribution of bandwidth by the simulator thread arbitration. In many cases, the patterns desired in a test scenario may not be accomplished as the simulator might give a different distribution than what was required. This can lead to missing multiple traffic scenarios, specifically deadlock and starvation related. We invented a component (namely Flow Manager Verification IP) to be intervening between the application (test case) and the protocol VIP (with UVM sequencer) to control the bandwidth per thread/virtual channel/flow. The Flow Manager has knobs visible to the UVM sequence/test to configure the required distribution of rate per thread/virtual channel/flow. This works seamlessly and produces rate stimuli to further harness the Design Under Test (DUT) with asymmetric inputs compared to the programmed bandwidth/Quality of Service (QoS) distributions in the Design Under Test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20manager" title="flow manager">flow manager</a>, <a href="https://publications.waset.org/abstracts/search?q=UVM%20sequencer" title=" UVM sequencer"> UVM sequencer</a>, <a href="https://publications.waset.org/abstracts/search?q=rated%20traffic%20generation" title=" rated traffic generation"> rated traffic generation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20service" title=" quality of service"> quality of service</a> </p> <a href="https://publications.waset.org/abstracts/168765/a-verification-intellectual-property-for-multi-flow-rate-control-on-any-single-flow-bus-functional-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19224</span> Leveraging Quality Metrics in Voting Model Based Thread Retrieval</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Heydari">Atefeh Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadali%20Tavakoli"> Mohammadali Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuriati%20Ismail"> Zuriati Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Naomie%20Salim"> Naomie Salim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seeking and sharing knowledge on online forums have made them popular in recent years. Although online forums are valuable sources of information, due to variety of sources of messages, retrieving reliable threads with high quality content is an issue. Majority of the existing information retrieval systems ignore the quality of retrieved documents, particularly, in the field of thread retrieval. In this research, we present an approach that employs various quality features in order to investigate the quality of retrieved threads. Different aspects of content quality, including completeness, comprehensiveness, and politeness, are assessed using these features, which lead to finding not only textual, but also conceptual relevant threads for a user query within a forum. To analyse the influence of the features, we used an adopted version of voting model thread search as a retrieval system. We equipped it with each feature solely and also various combinations of features in turn during multiple runs. The results show that incorporating the quality features enhances the effectiveness of the utilised retrieval system significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=content%20quality" title="content quality">content quality</a>, <a href="https://publications.waset.org/abstracts/search?q=forum%20search" title=" forum search"> forum search</a>, <a href="https://publications.waset.org/abstracts/search?q=thread%20retrieval" title=" thread retrieval"> thread retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=voting%20techniques" title=" voting techniques"> voting techniques</a> </p> <a href="https://publications.waset.org/abstracts/42749/leveraging-quality-metrics-in-voting-model-based-thread-retrieval" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19223</span> Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Japinder%20Wadhawan">Japinder Wadhawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Rajan"> Pradeep Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20K.%20Saran"> Alok K. Saran</a>, <a href="https://publications.waset.org/abstracts/search?q=Navdeep%20S.%20Sidhu"> Navdeep S. Sidhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daanvir%20K.%20Dhir"> Daanvir K. Dhir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austempered%20ductile%20iron" title="austempered ductile iron">austempered ductile iron</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20arm" title=" lift arm"> lift arm</a> </p> <a href="https://publications.waset.org/abstracts/66244/analysis-of-lift-arm-failure-and-its-improvement-for-the-use-in-farm-tractor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19222</span> Numerical Simulation of the Flow around Wing-In-Ground Effect (WIG) Craft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elbatran">A. Elbatran</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ahmed"> Y. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Radwan"> A. Radwan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ishak"> M. Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of WIG craft is representing an ambitious technology that will support in reducing time, effort, and money of the conventional marine transportation in the future. This paper investigates the aerodynamic characteristic of compound wing-in-ground effect (WIG) craft model. Drag coefficient, lift coefficient and Lift and drag ratio were studied numerically with respect to the ground clearance and the wing angle of attack. The modifications of the wing has been done in order to investigate the most suitable wing configuration that can increase the wing lift-to-drag ratio at low ground clearance. A numerical investigation was carried out in this research work using finite volume Reynolds-Averaged Navier-Stokes Equations (RANSE) code ANSYS CFX, Validation was carried out by using experiments. The experimental and the numerical results concluded that the lift to drag ratio decreased with the increasing of the ground clearance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20Coefficient" title="drag Coefficient">drag Coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20clearance" title=" ground clearance"> ground clearance</a>, <a href="https://publications.waset.org/abstracts/search?q=navier-stokes" title=" navier-stokes"> navier-stokes</a>, <a href="https://publications.waset.org/abstracts/search?q=WIG" title=" WIG"> WIG</a> </p> <a href="https://publications.waset.org/abstracts/62997/numerical-simulation-of-the-flow-around-wing-in-ground-effect-wig-craft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19221</span> A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kishan">R. Kishan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Sumant"> R. M. Sumant</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Suhas"> S. Suhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Mahalingam"> Arun Mahalingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title="CFD analysis">CFD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=FVM" title=" FVM"> FVM</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20coefficient" title=" lift coefficient"> lift coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20generators" title=" vortex generators"> vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a> </p> <a href="https://publications.waset.org/abstracts/42241/a-cfd-study-of-the-performance-characteristics-of-vented-cylinders-as-vortex-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19220</span> Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Nur%20Syazwani">C. M. Nur Syazwani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Ahmad%20Imran"> M. K. Ahmad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizal%20E.%20M.%20Nasir"> Rizal E. M. Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20wing-body" title="blended wing-body">blended wing-body</a>, <a href="https://publications.waset.org/abstracts/search?q=bird-inspired%20blended%20wing-body" title=" bird-inspired blended wing-body"> bird-inspired blended wing-body</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/24050/aerodynamic-investigation-of-baseline-iv-bird-inspired-bwb-aircraft-design-improvements-over-baseline-iii-bwb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19219</span> Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Cecrdle">J. Cecrdle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modelling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title="aeroelasticity">aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter" title=" flutter"> flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=propeller%20blade%20force" title=" propeller blade force"> propeller blade force</a>, <a href="https://publications.waset.org/abstracts/search?q=whirl%20flutter" title=" whirl flutter"> whirl flutter</a> </p> <a href="https://publications.waset.org/abstracts/5333/influence-of-propeller-blade-lift-distribution-on-whirl-flutter-stability-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19218</span> Ground Effect on Marine Midge Water Surface Locomotion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Hua%20Wu">Chih-Hua Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bang-Fuh%20Chen"> Bang-Fuh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Keryea%20Soong"> Keryea Soong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20effect" title="ground effect">ground effect</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20locomotion" title=" water locomotion"> water locomotion</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20lift" title=" aerodynamic lift"> aerodynamic lift</a> </p> <a href="https://publications.waset.org/abstracts/169099/ground-effect-on-marine-midge-water-surface-locomotion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19217</span> Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donatien%20Callon">Donatien Callon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Lalonde"> Ian Lalonde</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathieu%20Nadeau"> Mathieu Nadeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Girard"> Alexandre Girard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a new motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66%, and 3) provides the same level of patient comfort compared to a standard unassisted floor lift. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floor%20lift" title="floor lift">floor lift</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20robot%20interaction" title=" human robot interaction"> human robot interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=admittance%20controller" title=" admittance controller"> admittance controller</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20admittance" title=" variable admittance"> variable admittance</a> </p> <a href="https://publications.waset.org/abstracts/176308/controller-design-and-experimental-evaluation-of-a-motorized-assistance-for-a-patient-transfer-floor-lift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19216</span> Concept and Design of a Biomimetic Single-Wing Micro Aerial Vehicle (MAV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thomas">S. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ho"> D. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kerroux"> A. Kerroux</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lixi"> L. Lixi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Rackham"> N. Rackham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rosenfeld"> S. Rosenfeld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this first paper, the different concepts and designs to build a single-wing MAV are discussed. Six scratch-building prototypes using three different designs have been tested regarding sufficient lift and weight distribution, of which various configurations were explored. Samare prototypes achieved wireless control over the motor and flap whilst obtaining data from the IMU, though obtaining an increase in lift was the key issue due to insufficient thrust. The final prototype was able to demonstrate an improvement in weight distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAMARE" title="SAMARE">SAMARE</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20aerial%20vehicle%20%28MAV%29" title=" micro aerial vehicle (MAV)"> micro aerial vehicle (MAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title=" unmanned aerial vehicle (UAV)"> unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=mono-copter" title=" mono-copter"> mono-copter</a>, <a href="https://publications.waset.org/abstracts/search?q=single-wing" title=" single-wing"> single-wing</a>, <a href="https://publications.waset.org/abstracts/search?q=mono-wing" title=" mono-wing"> mono-wing</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20control" title=" flight control"> flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=aerofoil" title=" aerofoil"> aerofoil</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a> </p> <a href="https://publications.waset.org/abstracts/12820/concept-and-design-of-a-biomimetic-single-wing-micro-aerial-vehicle-mav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19215</span> Students’ Online Forum Activities and Social Network Analysis in an E-Learning Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20L.%20Cheng">P. L. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20N.%20Umar"> I. N. Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Online discussion forum is a popular e-learning technique that allows participants to interact and construct knowledge. This study aims to examine the levels of participation, categories of participants and the structure of their interactions in a forum. A convenience sampling of one course coordinator and 23 graduate students was selected in this study. The forums’ log file and the Social Network Analysis software were used in this study. The analysis reveals 610 activities (including viewing forum’s topic, viewing discussion thread, posting a new thread, replying to other participants’ post, updating an existing thread and deleting a post) performed by them in this forum, with an average of 3.83 threads posted. Also, this forum consists of five at-risk participants, six bridging participants, four isolated participants and five leaders of information. In addition, the network density value is 0.15 and there exist five reciprocal interactions in this forum. The closeness value varied between 28 and 68 while the eigen vector centrality value varied between 0.008 and 0.39. The finding indicates that the participants tend to listen more rather than express their opinions in the forum. It was also revealed that those who actively provide supports in the discussion forum were not the same people who received the most responses from their peers. This study found that cliques do not exist in the forum and the participants are not selective to whom they response to, rather, it was based on the content of the posts made by their peers. Based upon the findings, further analysis with different method and population, larger sample size and a longer time frame are recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-learning" title="e-learning">e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20management%20system" title=" learning management system"> learning management system</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20forum" title=" online forum"> online forum</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a> </p> <a href="https://publications.waset.org/abstracts/17470/students-online-forum-activities-and-social-network-analysis-in-an-e-learning-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19214</span> Effect of Palatal Lift Prosthesis on Speech Clarity in Flaccid Dysarthria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20Alfwaress">Firas Alfwaress</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelraheem%20Bebers%20Abdelhadi%20Hamasha"> Abdelraheem Bebers Abdelhadi Hamasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Abu%20Awaad"> Maha Abu Awaad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The aim of the present study was to investigate the effect of Palatal Lift Prosthesis (PLP) on speech clarity in patients with Flaccid Dysarthria. Five speech measures were investigated including Nasalance Scores, Diadchokinetic (DDK), Vowel Duration, airflow, and Sound Intensity. Participants: Twelve (7 Males and 5 females) native speakers of Jordanian Arabic with Flaccid Dysarthria following stroke, traumatic brain injury, and amyotrophic lateral sclerosis were included. The age of the participants ranged from 8–65 years with an average of 31.75 years. Design: Nasalance Scores, Diadchokinetic rate, Vowel Duration, and Sound Intensity were obtained using the Nasometer II, Model 6450 in three conditions. The first condition included obtaining the five measures without wearing the customized Palatal Lift Prosthesis. The second and third conditions included obtaining the five measures immediately after wearing the Palatal Lift Prosthesis and three months later. Results: Palatal lift prosthesis was found to be effective in individuals with flaccid dysarthria. Results showed decrease in the Nasalance Scores for the syllable repetition tasks and vowel prolongation tasks when comparing the means in the pre PLP with the post PLP at p≤0.001 except for the /m/ prolongation task. Results showed increased DDK repetition task, airflow amount, and sound intensity, and a decrease in vowel length at p≤0.001. Conclusions: The use of palatal lift prosthesis is effective in improving the speech of patients with flaccid dysarthria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palatal%20lift%20prosthesis" title="palatal lift prosthesis">palatal lift prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=flaccid%20dysarthria" title=" flaccid dysarthria"> flaccid dysarthria</a>, <a href="https://publications.waset.org/abstracts/search?q=hypernasality" title=" hypernasality"> hypernasality</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20clarity" title=" speech clarity"> speech clarity</a>, <a href="https://publications.waset.org/abstracts/search?q=diadchokinetic%20rate" title=" diadchokinetic rate"> diadchokinetic rate</a> </p> <a href="https://publications.waset.org/abstracts/16323/effect-of-palatal-lift-prosthesis-on-speech-clarity-in-flaccid-dysarthria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19213</span> Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdulghani%20Taha">Ahmed Abdulghani Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdulghani%20Taha"> Mohammad Abdulghani Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 &plusmn; 0.71 yrs, height (Hgt) = 173.17 &plusmn; 5.28 cm, body weight (BW) = 70.34 &plusmn; 7.87.6 kg, Body mass index (BMI) 23.42 &plusmn; 2.06 kg.m-2, fat mass (FM) = 9.96 &plusmn; 3.15 kg and fat percentage (% BF) = 13.98 &plusmn; 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55&plusmn; 2.21, P &gt; 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title="fuzzy logic">fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20fat%20percentage" title=" body fat percentage"> body fat percentage</a>, <a href="https://publications.waset.org/abstracts/search?q=weightlifting" title=" weightlifting"> weightlifting</a> </p> <a href="https://publications.waset.org/abstracts/11353/using-fuzzy-logic-decision-support-system-to-predict-the-lifted-weight-for-students-at-weightlifting-class" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19212</span> Computational Analysis of Cavity Effect over Aircraft Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Booma%20Devi">P. Booma Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20A.%20Shah"> Dilip A. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lift" title="lift">lift</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20reduce" title=" drag reduce"> drag reduce</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20dimple" title=" square dimple"> square dimple</a>, <a href="https://publications.waset.org/abstracts/search?q=triangle%20dimple" title=" triangle dimple"> triangle dimple</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20of%20stall%20angle" title=" enhancement of stall angle"> enhancement of stall angle</a> </p> <a href="https://publications.waset.org/abstracts/51224/computational-analysis-of-cavity-effect-over-aircraft-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19211</span> Optimisation of a Dragonfly-Inspired Flapping Wing-Actuation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Ming%20Kok">Jia-Ming Kok</a>, <a href="https://publications.waset.org/abstracts/search?q=Javaan%20Chahl"> Javaan Chahl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An optimisation method using both global and local optimisation is implemented to determine the flapping profile which will produce the most lift for an experimental wing-actuation system. The optimisation method is tested using a numerical quasi-steady analysis. Results of an optimised flapping profile show a 20% increase in lift generated as compared to flapping profiles obtained by high speed cinematography of a Sympetrum frequens dragonfly. Initial optimisation procedures showed 3166 objective function evaluations. The global optimisation parameters - initial sample size and stage one sample size, were altered to reduce the number of function evaluations. Altering the stage one sample size had no significant effect. It was found that reducing the initial sample size to 400 would allow a reduction in computational effort to approximately 1500 function evaluations without compromising the global solvers ability to locate potential minima. To further reduce the optimisation effort required, we increase the local solver’s convergence tolerance criterion. An increase in the tolerance from 0.02N to 0.05N decreased the number of function evaluations by another 20%. However, this potentially reduces the maximum obtainable lift by up to 0.025N. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flapping%20wing" title="flapping wing">flapping wing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-steady%20model" title=" quasi-steady model"> quasi-steady model</a>, <a href="https://publications.waset.org/abstracts/search?q=dragonfly" title=" dragonfly"> dragonfly</a> </p> <a href="https://publications.waset.org/abstracts/9439/optimisation-of-a-dragonfly-inspired-flapping-wing-actuation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19210</span> Design and Numerical Study on Aerodynamics Performance for F16 Leading Edge Extension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=San-Yih%20Lin">San-Yih Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsien-Hao%20Teng"> Hsien-Hao Teng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we use commercial software, ANSYS CFX, to carry on the simulation the F16 aerodynamics performance flow field. The flight with a modified Leading Edge Extension (LEX) is proposed to increase the lift/drag ratio. The Shear Stress Transport turbulent model is used. The unstructured grid system is generated by the ICEM CFD. The prism grid around the wall surface is generated to simulate boundary layer viscosity flow field and Tetrahedron Mesh is used for the other computation domain. The lift, drag, and pitch moment are computed. The strong vortex structures upper the wing and vortex bursts under different sweep angle of LEX are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEX" title="LEX">LEX</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%2Fdrag%20ratio" title=" lift/drag ratio"> lift/drag ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20moment" title=" pitch moment"> pitch moment</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20burst" title=" vortex burst"> vortex burst</a> </p> <a href="https://publications.waset.org/abstracts/85534/design-and-numerical-study-on-aerodynamics-performance-for-f16-leading-edge-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=641">641</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=642">642</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thread%20lift%20method&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10