CINXE.COM
Search results for: uniform
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: uniform</title> <meta name="description" content="Search results for: uniform"> <meta name="keywords" content="uniform"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="uniform" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="uniform"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 928</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: uniform</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">928</span> A Family of Distributions on Learnable Problems without Uniform Convergence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20Garza">César Garza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20learning%20theory" title="statistical learning theory">statistical learning theory</a>, <a href="https://publications.waset.org/abstracts/search?q=learnability" title=" learnability"> learnability</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20convergence" title=" uniform convergence"> uniform convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=regularized%20loss%20minimization" title=" regularized loss minimization"> regularized loss minimization</a> </p> <a href="https://publications.waset.org/abstracts/151038/a-family-of-distributions-on-learnable-problems-without-uniform-convergence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">927</span> Influence of Optical Fluence Distribution on Photoacoustic Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20Metwally">Mohamed K. Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20H.%20El-Gohary"> Sherif H. El-Gohary</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Min%20Byun"> Kyung Min Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Moo%20Han"> Seung Moo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Yeol%20Lee"> Soo Yeol Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Hyoung%20Cho"> Min Hyoung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gon%20Khang"> Gon Khang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsung%20Cho"> Jinsung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Seong%20Kim"> Tae-Seong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluence%20distribution" title=" fluence distribution"> fluence distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20imaging" title=" photoacoustic imaging"> photoacoustic imaging</a> </p> <a href="https://publications.waset.org/abstracts/12607/influence-of-optical-fluence-distribution-on-photoacoustic-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">926</span> Stability and Boundedness Theorems of Solutions of Certain Systems of Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetunji%20A.%20Adeyanju.">Adetunji A. Adeyanju.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20O.%20Omeike"> Mathew O. Omeike</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20O.%20Adeniran"> Johnson O. Adeniran</a>, <a href="https://publications.waset.org/abstracts/search?q=Biodun%20S.%20Badmus"> Biodun S. Badmus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss certain conditions for uniform asymptotic stability and uniform ultimate boundedness of solutions to some systems of Aizermann-type of differential equations by means of second method of Lyapunov. In achieving our goal, some Lyapunov functions are constructed to serve as basic tools. The stability results in this paper, extend some stability results for some Aizermann-type of differential equations found in literature. Also, we prove some results on uniform boundedness and uniform ultimate boundedness of solutions of systems of equations study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aizermann" title="Aizermann">Aizermann</a>, <a href="https://publications.waset.org/abstracts/search?q=boundedness" title=" boundedness"> boundedness</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order" title=" first order"> first order</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/164909/stability-and-boundedness-theorems-of-solutions-of-certain-systems-of-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">925</span> Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahseen%20Saad">Tahseen Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Halim%20Ceylan"> Halim Ceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Weaver"> Jonathan Weaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Nuri%20%C3%87elik"> Osman Nuri Çelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Gungor%20Sahin"> Onur Gungor Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20traffic%20control" title="area traffic control">area traffic control</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20evolution" title=" differential evolution"> differential evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=sinusoidal%20periodic%20function" title=" sinusoidal periodic function"> sinusoidal periodic function</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20delay" title=" uniform delay"> uniform delay</a>, <a href="https://publications.waset.org/abstracts/search?q=offset%20variable" title=" offset variable"> offset variable</a> </p> <a href="https://publications.waset.org/abstracts/154334/offset-dependent-uniform-delay-mathematical-optimization-model-for-signalized-traffic-network-using-differential-evolution-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">924</span> Enhancement of Pool Boiling Regimes by Sand Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Mazor">G. Mazor</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ladizhensky"> I. Ladizhensky</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shapiro"> A. Shapiro</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nemirovsky"> D. Nemirovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lot of researches was dedicated to the evaluation of the efficiency of the uniform constant and temporary coatings enhancing a heat transfer rate. Our goal is an investigation of the sand coatings distributed by both uniform and non-uniform forms. The sand of different sizes (0.2-0.4-0.6 mm) was attached to a copper ball (30 mm diameter) surface by means of PVA adhesive as a uniform layer. At the next stage, sand spots were distributed over the ball surface with an areal density that ranges between one spot per 1.18 cm² (for low-density spots) and one spot per 0.51 cm² (for high-density spots). The spot's diameter value varied from 3 to 6.5 mm and height from 0.5 to 1.5 mm. All coatings serve as a heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8-20.2 W/cm², depending on the sand layer structure. Application of the enhancing coating increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by a factor of 4.5 as compared to the bare sample. The non-uniform sand coatings were increasing the heat transfer rate value under all pool boiling conditions: nucleate boiling, transfer boiling and the most severe film boiling. A combination of uniform sand coating together with high-density sand spots increased the average heat transfer rate by a factor of 3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title="heat transfer enhancement">heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleate%20boiling" title=" nucleate boiling"> nucleate boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20boiling" title=" film boiling"> film boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20boiling" title=" transfer boiling"> transfer boiling</a> </p> <a href="https://publications.waset.org/abstracts/118417/enhancement-of-pool-boiling-regimes-by-sand-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">923</span> 3D Mesh Coarsening via Uniform Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuhua%20Lai">Shuhua Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kairui%20Chen"> Kairui Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarsening" title="coarsening">coarsening</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20clustering" title=" mesh clustering"> mesh clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20approximation" title=" shape approximation"> shape approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20simplification" title=" mesh simplification"> mesh simplification</a> </p> <a href="https://publications.waset.org/abstracts/48919/3d-mesh-coarsening-via-uniform-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">922</span> Oxygenation in Turbulent Flows over Block Ramps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thendiyath%20Roshni">Thendiyath Roshni</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Pagliara"> Stefano Pagliara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20ramps" title=" block ramps"> block ramps</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygenation" title=" oxygenation"> oxygenation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flows" title=" turbulent flows"> turbulent flows</a> </p> <a href="https://publications.waset.org/abstracts/98618/oxygenation-in-turbulent-flows-over-block-ramps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">921</span> Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moung%20Young%20Lee">Moung Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Gyu%20Song"> Chul Gyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back-projection" title="back-projection">back-projection</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20comparison" title=" image comparison"> image comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20FFT" title=" non-uniform FFT"> non-uniform FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20tomography" title=" photoacoustic tomography"> photoacoustic tomography</a> </p> <a href="https://publications.waset.org/abstracts/40584/comparison-of-back-projection-with-non-uniform-fast-fourier-transform-for-real-time-photoacoustic-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">920</span> Chemical Reaction Method for Growing Uniform Photomechanical Organic Crystlas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabih%20O.%20Al-Kaysi">Rabih O. Al-Kaysi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingyan%20Zhu"> Lingyan Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhannah%20K.%20Al-Muhannah"> Muhannah K. Al-Muhannah</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Bardeen"> Christopher J. Bardeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> (E)-3-(Anthracen-9-yl)acrylic acid (9-AYAA) 1 exhibits a strong photomechanical response in bulk crystals but is challenging to grow in microcrystalline form. High quality microcrystals of this molecule could not be grown using techniques like sublimation, reprecipitation, and the floating drop method. If the tertbutyl ester of 9-AYAA is used as a starting material, however, high quality, size-uniform microwires could be grown via acid catalyzed hydrolysis. 9-AYAA microwires with uniform length and thickness were produced after a suspension of (E)-tert-butyl 3-(anthracen-9-yl)acrylate ester 2 microparticles was tumble-mixed in a mixture of phosphoric acid and sodium dodecyl sulfate at 35 °C. The dependence of the results on temperature, surfactant and precursor concentration, and mixing mode was investigated. This chemical reaction-growth method was extended to grow microplates of 9-anthraldehyde 3 using the corresponding acylal 4 as the starting material. Under 475 nm irradiation, the 9-AYAA microwires undergo a photoinduced coiling–uncoiling transition, while the 9-anthraldehyde microplates undergo a folding–unfolding transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photomechanical" title="photomechanical">photomechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20crystals" title=" organic crystals"> organic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform" title=" uniform"> uniform</a> </p> <a href="https://publications.waset.org/abstracts/28878/chemical-reaction-method-for-growing-uniform-photomechanical-organic-crystlas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">919</span> Defining Polysubstance Use in Adolescents: A Literary Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cailyn%20Green">Cailyn Green</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigated the lack of standardization that exists in the field of polysubstance use. This standardization has to do with a uniform way of defining when and if polysubstance is taking place. This research is important to the field of substance abuse as it makes future researchers aware of this lack of uniformity in a commonly used word in the field. By investigating, we make researchers aware of these discrepancies to encourage a uniform definition to be created and used. The methodology for this research was a literary review. This literature review consisted of four peer-reviewed and published journal articles in four different journals. These articles focused on adolescents and their polysubstance use. The research question asked what time frame was used to determine if a client's substance use can be classified as polysubstance use when they reported using two or more substances. The results identify that there is no uniform working definition of the time frame for polysubstance to take place. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addiction" title="addiction">addiction</a>, <a href="https://publications.waset.org/abstracts/search?q=adolescence" title=" adolescence"> adolescence</a>, <a href="https://publications.waset.org/abstracts/search?q=literary%20review" title=" literary review"> literary review</a>, <a href="https://publications.waset.org/abstracts/search?q=polysubstance" title=" polysubstance"> polysubstance</a> </p> <a href="https://publications.waset.org/abstracts/159954/defining-polysubstance-use-in-adolescents-a-literary-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">918</span> Hot Deformation Behavior and Recrystallization of Inconel 718 Superalloy under Double Cone Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20%20Jianguo">Wang Jianguo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding%20Xiao"> Ding Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Dong"> Liu Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Haiping"> Wang Haiping</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yanhui"> Yang Yanhui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Yang"> Hu Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hot deformation behavior of Inconel 718 alloy was studied by uniaxial compression tests under the deformation temperature of 940~1040℃ and strain rate of 0.001-10s⁻¹. The double cone compression (DCC) tests develop strains range from 30% to the 79% strain including all intermediate values of stains at different temperature (960~1040℃). DCC tests were simulated by finite element software which shown the strain and strain rates distribution. The result shows that the peak stress level of the alloy decreased with increasing deformation temperature and decreasing strain rate, which could be characterized by a Zener-Hollomon parameter in the hyperbolic-sine equation. The characterization method of hot processing window containing recrystallization volume fraction and average grain size was proposed for double cone compression test of uniform coarse grain, mixed crystal and uniform fine grain double conical specimen in hydraulic press and screw press. The results show that uniform microstructures can be obtained by low temperature with high deformation followed by high temperature with small deformation on the hydraulic press and low temperature, medium deformation, multi-pass on the screw press. The two methods were applied in industrial forgings process, and the forgings with uniform microstructure were obtained successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inconel%20718%20superalloy" title="inconel 718 superalloy">inconel 718 superalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20processing%20windows" title=" hot processing windows"> hot processing windows</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20cone%20compression" title=" double cone compression"> double cone compression</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20microstructure" title=" uniform microstructure"> uniform microstructure</a> </p> <a href="https://publications.waset.org/abstracts/105454/hot-deformation-behavior-and-recrystallization-of-inconel-718-superalloy-under-double-cone-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">917</span> Experimental Study of the Modifications of the Bed of a River under Extreme Flow Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghenaim">A. Ghenaim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Terfous"> A. Terfous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, degradation phenomena in fluvial beds having uniform sediments are explored experimentally under extreme flow conditions. Laboratory experiments were conducted in a rectangular cross-section channel for different flow conditions, channel characteristics, and sediment properties at the National Institute of Applied Sciences (Strasbourg, France). Tests were carried out in two conditions: (1) equilibrium condition, where, once the steady and uniform flow conditions were achieved for a given slope and discharge, the channel was fed with variable sediment discharges until the bed-load sediment transport achieved an equilibrium condition; and (2) nonequilibrium condition, where the sediment feeding was instantaneously stopped, and the bed levels were measured over time. Experimental results enabled assessing the erosion rates and determining the empirical mathematical model to predict the bed level changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluvial%20beds" title="fluvial beds">fluvial beds</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20flow%20conditions" title=" uniform flow conditions"> uniform flow conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=nonequilibrium%20condition" title=" nonequilibrium condition"> nonequilibrium condition</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20disposition" title=" sediment disposition"> sediment disposition</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a> </p> <a href="https://publications.waset.org/abstracts/156505/experimental-study-of-the-modifications-of-the-bed-of-a-river-under-extreme-flow-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">916</span> Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defne%20Akay">Defne Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20S.%20Kandemir"> Bekir S. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulomb%20impurity" title="coulomb impurity">coulomb impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20cones" title=" graphene cones"> graphene cones</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title=" graphene quantum dots"> graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/43687/magnetic-field-effects-on-parabolic-graphene-quantum-dots-with-topological-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">915</span> Thermomagnetic Convection of a Ferrofluid in a Non-Uniform Magnetic Field Induced a Current Carrying Wire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Vatani">Ashkan Vatani</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Woodfield"> Peter Woodfield</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam-Trung%20Nguyen"> Nam-Trung Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dzung%20Dao"> Dzung Dao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermomagnetic convection of a ferrofluid flow induced by the non-uniform magnetic field around a current-carrying wire was theoretically analyzed and experimentally tested. To show this phenomenon, the temperature rise of a hot wire, immersed in DIW and Ferrofluid, as a result of joule heating has been measured using a transient hot-wire technique. When current is applied to the wire, a temperature gradient is imposed on the magnetic fluid resulting in non-uniform magnetic susceptibility of the ferrofluid that results in a non-uniform magnetic body force which makes the ferrofluid flow as a bulk suspension. For the case of the wire immersed in DIW, free convection is the only means of cooling, while for the case of ferrofluid a combination of both free convection and thermomagnetic convection is expected to enhance the heat transfer from the wire beyond that of DIW. Experimental results at different temperatures and for a range of constant currents applied to the wire show that thermomagnetic convection becomes effective for the currents higher than 1.5A at all temperatures. It is observed that the onset of thermomagnetic convection is directly proportional to the current applied to the wire and that the thermomagnetic convection happens much faster than the free convection. Calculations show that a 35% enhancement in heat transfer can be expected for the ferrofluid compared to DIW, for a 3A current applied to the wire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling" title="cooling">cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection" title=" thermomagnetic convection"> thermomagnetic convection</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/62634/thermomagnetic-convection-of-a-ferrofluid-in-a-non-uniform-magnetic-field-induced-a-current-carrying-wire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">914</span> Experimental and Numerical Study of the Thermomagnetic Convection of Ferrofluid Driven by Non-Uniform Magnetic Field around a Current-Carrying Wire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Vatani">Ashkan Vatani</a>, <a href="https://publications.waset.org/abstracts/search?q=Petere%20Woodfiel"> Petere Woodfiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam-Trung%20Nguyen"> Nam-Trung Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dzung%20Dao"> Dzung Dao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermomagnetic convection of a ferrofluid flow induced by the non-uniform magnetic field around a current-carrying wire was theoretically analyzed, numerically studied and experimentally validated. The dependency of the thermomagnetic convection on the current and fluid temperature has been studied. The Nusselt number for a heated 50um diameter wire in the ferrofluid exponentially scales with applied current to the micro-wire. This result is in good agreement with the correlated Nusselt number by curve-fitting the experimental data at different fluid temperatures. It was shown that at low currents, no significance is observed for thermomagnetic convection rather than the buoyancy-driven convection, while the thermomagnetic convection becomes dominant at high currents. Also, numerical simulations showed a promising cooling ability for large scale applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title="ferrofluid">ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20magnetic%20field" title=" non-uniform magnetic field"> non-uniform magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection" title=" thermomagnetic convection"> thermomagnetic convection</a> </p> <a href="https://publications.waset.org/abstracts/59200/experimental-and-numerical-study-of-the-thermomagnetic-convection-of-ferrofluid-driven-by-non-uniform-magnetic-field-around-a-current-carrying-wire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">913</span> Cladding Technology for Metal-Hybrid Composites with Network-Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ha-Guk%20Jeong">Ha-Guk Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Beom%20Lee"> Jong-Beom Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cladding%20process" title="cladding process">cladding process</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-hybrid%20composites" title=" metal-hybrid composites"> metal-hybrid composites</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrostatic%20extrusion" title=" hydrostatic extrusion"> hydrostatic extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%2Fthermal%20characteristics" title=" electronic/thermal characteristics"> electronic/thermal characteristics</a> </p> <a href="https://publications.waset.org/abstracts/92271/cladding-technology-for-metal-hybrid-composites-with-network-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">912</span> Influence of the Non-Uniform Distribution of Filler Porosity on the Thermal Performance of Sensible Heat Thermocline Storage Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuchao%20Hua">Yuchao Hua</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingai%20Luo"> Lingai Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal energy storage is of critical importance for the highly-efficient utilization of renewable energy sources. Over the past decades, single-tank thermocline technology has attracted much attention owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks on the basis of the analytical model obtained by the Laplace transform. It is found that when the total amount of filler materials (i.e., the integration of porosity) is fixed, the different porosity distributions can result in the significantly-different behaviors of outlet temperature and thus the varied charging and discharging efficiencies. Our results indicate that a non-uniform distribution of the fillers with the proper design can improve the heat storage performance without changing the total amount of the filling materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20thermocline%20storage%20tank" title=" heat thermocline storage tank"> heat thermocline storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=packed%20bed" title=" packed bed"> packed bed</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20thermal%20analysis" title=" transient thermal analysis"> transient thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/149548/influence-of-the-non-uniform-distribution-of-filler-porosity-on-the-thermal-performance-of-sensible-heat-thermocline-storage-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">911</span> Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Ram">Gopi Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Durbadal%20Mandal"> Durbadal Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Kar"> Rajib Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakti%20Prasad%20Ghoshal"> Sakti Prasad Ghoshal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO, and SA applied to the same problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20arrays" title="circular arrays">circular arrays</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20null%20beam%20width" title=" first null beam width"> first null beam width</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20lobe%20level" title=" side lobe level"> side lobe level</a>, <a href="https://publications.waset.org/abstracts/search?q=FFA" title=" FFA"> FFA</a> </p> <a href="https://publications.waset.org/abstracts/4066/design-of-non-uniform-circular-antenna-arrays-using-firefly-algorithm-for-side-lobe-level-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">910</span> Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Nakamachi">E. Nakamachi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Matsumoto"> K. Matsumoto</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yamamoto"> K. Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Morita"> Y. Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sakamoto"> H. Sakamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nerve%20cell%20PC12" title="nerve cell PC12">nerve cell PC12</a>, <a href="https://publications.waset.org/abstracts/search?q=axonal%20extension" title=" axonal extension"> axonal extension</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20regeneration" title=" nerve regeneration"> nerve regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic-mechanical%20stimulation" title=" electromagnetic-mechanical stimulation"> electromagnetic-mechanical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/73506/electromagnetic-mechanical-stimulation-on-pc12-for-enhancement-of-nerve-axonal-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">909</span> Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alroaithi">Mohammad Alroaithi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20particles" title=" porous particles"> porous particles</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structures" title=" porous structures"> porous structures</a> </p> <a href="https://publications.waset.org/abstracts/84709/fabrication-of-highly-ordered-interconnected-porous-polymeric-particles-and-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">908</span> Effect of Wetting Layer on the Energy Spectrum of One-Electron Non-Uniform Quantum Ring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Rodr%C3%ADguez-Prada">F. A. Rodríguez-Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=W%20Gutierrez"> W Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20D.%20Mikhailov"> I. D. Mikhailov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the spectral properties of one-electron non-uniform crater-shaped quantum dot whose thickness is increased linearly with different slopes in different radial directions between the central hole and the outer border and which is deposited over thin wetting layer in the presence of the external vertically directed magnetic field. We show that in the adiabatic limit, when the crater thickness is much smaller than its lateral dimension, the one-particle wave functions of the electron confined in such structure in the zero magnetic field case can be found exactly in an analytical form and they can be used subsequently as the base functions in framework of the exact diagonalization method to study the effect of the wetting layer and an external magnetic field applied along of the grown axis on energy levels of one-electron non-uniform quantum dot. It is shown that both the structural non-uniformity and the increase of the thickness of the wetting layer provide a quenching of the Aharonov-Bohm oscillations of the lower energy levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title="electronic properties">electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20rings" title=" quantum rings"> quantum rings</a>, <a href="https://publications.waset.org/abstracts/search?q=volcano%20shaped" title=" volcano shaped"> volcano shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting%20layer" title=" wetting layer"> wetting layer</a> </p> <a href="https://publications.waset.org/abstracts/34102/effect-of-wetting-layer-on-the-energy-spectrum-of-one-electron-non-uniform-quantum-ring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">907</span> Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taweechai%20Nuntawisuttiwong">Taweechai Nuntawisuttiwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Dejdumrong"> Natasha Dejdumrong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20interpolation" title="Lagrange interpolation">Lagrange interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20complexity" title=" linear complexity"> linear complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=monomial%20matrix" title=" monomial matrix"> monomial matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20interpolation" title=" Newton interpolation"> Newton interpolation</a> </p> <a href="https://publications.waset.org/abstracts/110424/fast-and-efficient-algorithms-for-evaluating-uniform-and-nonuniform-lagrange-and-newton-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">906</span> On Modules over Dedekind Prime Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elvira%20Kusniyanti">Elvira Kusniyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanni%20Garminia"> Hanni Garminia</a>, <a href="https://publications.waset.org/abstracts/search?q=Pudji%20Astuti"> Pudji Astuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research studies an interconnection between finitely generated uniform modules and Dedekind prime rings. The characterization of modules over Dedekind prime rings that will be investigated is an adoption of Noetherian and hereditary concept. Dedekind prime rings are Noetherian and hereditary rings. This property of Dedekind prime rings is a background of the idea of adopting arises. In Noetherian area, it was known that a ring R is Noetherian ring if and only if every finitely generated R-module is a Noetherian module. Similar to that result, a characterization of the hereditary ring is related to its projective modules. That is, a ring R is hereditary ring if and only if every projective R-module is a hereditary module. Due to the above two results, we suppose that characterization of a Dedekind prime ring can be analyzed from finitely generated modules over it. We propose a conjecture: a ring R is a Dedekind prime ring if and only if every finitely generated uniform R-module is a Dedekind module. In this article, we will generalize a concept of the Dedekind module for non-commutative ring case and present a part of the above conjecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dedekind%20domains" title="dedekind domains">dedekind domains</a>, <a href="https://publications.waset.org/abstracts/search?q=dedekind%20prime%20rings" title=" dedekind prime rings"> dedekind prime rings</a>, <a href="https://publications.waset.org/abstracts/search?q=dedekind%20modules" title=" dedekind modules"> dedekind modules</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20modules" title=" uniform modules"> uniform modules</a> </p> <a href="https://publications.waset.org/abstracts/32475/on-modules-over-dedekind-prime-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">905</span> On Optimum Stratification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20M.%20Khan">M. G. M. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20Prasad"> V. D. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Rao"> D. K. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title="auxiliary variable">auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming%20technique" title=" dynamic programming technique"> dynamic programming technique</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20programming%20problem" title=" nonlinear programming problem"> nonlinear programming problem</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20stratification" title=" optimum stratification"> optimum stratification</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20distribution" title=" uniform distribution"> uniform distribution</a> </p> <a href="https://publications.waset.org/abstracts/6677/on-optimum-stratification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">904</span> Simulation of the Flow in Bilayer Coextrusion Dies with Gradually Changing Calibrator Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Gupta">Mahesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal in the design of a die for extrusion of a complex profile is to obtain a uniform velocity at the die exit. If the velocity at the exit of an extrusion die is not uniform, the shape of the extrudate profile can change significantly after the polymer exits the die. To rectify the extrudate distortion caused by non-uniform exit velocity, calibrators and sizers are often installed along the extrudate cooling system. Furthermore, the profile shape in calibrators and sizers is sometimes gradually changed to intentionally deform the extrudate to the required final product shape. This is exploited to simplify extrusion die design, because a relatively simple profile at the die exit can be modified to obtain a more complex profile by deforming it in calibrators or sizers. The gradual change in the shape of calibrator or sizer profiles can also be used to extrude slightly different profiles from the same die. In the present work, a combined flow, thermal and structural analysis is used to accurately predict distortion of extrudate profile after the polymer leaves a die. Simulations of the flow and extrudate deformation in two different bilayer coextrusion dies with gradually changing profile shape in successive calibrators and sizers will be presented. The effect of non-uniform exit velocity, cooling shrinkage and shape of sizer profiles on extrudate deformation is included in the simulation. The predicted extrudate shape and layer structure is found to match accurately with those in a coextruded product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coextrusion" title="coextrusion">coextrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20die%20design" title=" extrusion die design"> extrusion die design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/185818/simulation-of-the-flow-in-bilayer-coextrusion-dies-with-gradually-changing-calibrator-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">903</span> Investigation on Hand-Woven School Uniform Initiative and Sustainability: The Kerala Model from India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhilash%20Balan%20Paleri">Abhilash Balan Paleri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hand woven fabric embellishes an exceptional identity in the social milieu of Kerala; still, the artisans and handloom sector is undergoing crisis due to various reasons. The hand woven school uniform initiative of Govt. of Kerala launched in 2016 aims at enhancing the sector, ensuring sustainability at artisan and end-user levels. The Kerala Government already distributed 23 lakhs meters of cloth (for shirting, suiting, and skirting) woven by 4085 artisans in their traditional looms covering 4.5 lakhs of students in the public education sector which covers cover 3,701 schools in the state. The 2019-20 year production is expected to be 42 Lakhs meters of hand woven clothing catering 8.6 lakhs of students in the primary sector. This particular investigation unveils the upshots of the initiative, and the observations are derived through systematic enquiry with artisans, authorities, and end-users. The findings show a remarkable positive impact in the livelihood of artisans and the entire handloom sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=handloom%20school%20uniform%20initiative%20of%20Kerala" title="handloom school uniform initiative of Kerala">handloom school uniform initiative of Kerala</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20woven%20fabric" title=" hand woven fabric"> hand woven fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=handloom%20weavers" title=" handloom weavers"> handloom weavers</a> </p> <a href="https://publications.waset.org/abstracts/122567/investigation-on-hand-woven-school-uniform-initiative-and-sustainability-the-kerala-model-from-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> Numerical Investigation of a Slightly Oblique Round Jet Flowing into a Uniform Counterflow Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20Amamou">Amani Amamou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Sa%C3%AFd"> Nejla Mahjoub Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Bournot"> Philippe Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A counterflowing jet is a particular configuration of turbulent jets issuing into a moving ambient which has not carried much attention in literature compared with jet in a coflow or in a crossflow. This is due to the marked instability of the jet in a counterflow coupled with experimental and theoretical difficulties related to the flow inversion phenomenon. Nevertheless, jets in a counterflow are encountered in many engineering applications which required enhanced mixing as combustion, process and environmental engineering. In this work, we propose to investigate a round turbulent jet flowing into a uniform counterflow stream through a numerical approach. A hydrodynamic and thermal study of a slightly oblique round jets issuing into a uniform counterflow stream is carried out for different jet-to-counterflow velocity ratios ranging between 3.1 and 15. It is found that even a slight inclination of the jet in the vertical direction of the flow affects the structure and the velocity field of the counterflowing jet. In addition, the evolution of passive scalar temperature and pertinent length scales are presented at various velocity ratios, confirming that the flow is sensitive to directional perturbations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet" title="jet">jet</a>, <a href="https://publications.waset.org/abstracts/search?q=counterflow" title=" counterflow"> counterflow</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20inclination" title=" jet inclination"> jet inclination</a> </p> <a href="https://publications.waset.org/abstracts/42541/numerical-investigation-of-a-slightly-oblique-round-jet-flowing-into-a-uniform-counterflow-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eiji%20Nakamachi">Eiji Nakamachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Sakiyama"> Ryota Sakiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Yamamoto"> Koji Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Morita"> Yusuke Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Sakamoto"> Hidetoshi Sakamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nerve%20regeneration" title="nerve regeneration">nerve regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=axonal%20extension" title=" axonal extension "> axonal extension </a>, <a href="https://publications.waset.org/abstracts/search?q=PC12%20cell" title=" PC12 cell"> PC12 cell</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20bio-reactor" title=" three-dimensional bio-reactor"> three-dimensional bio-reactor</a> </p> <a href="https://publications.waset.org/abstracts/80976/development-of-three-dimensional-bio-reactor-using-magnetic-field-stimulation-to-enhance-pc12-cell-axonal-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianyang%20Xu">Tianyang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20target%3B" title="underwater target;">underwater target;</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20characteristics%3B" title=" non-uniform characteristics;"> non-uniform characteristics;</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster-driven%20method%3B" title=" cluster-driven method;"> cluster-driven method;</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20scattering%20characteristics" title=" acoustic scattering characteristics"> acoustic scattering characteristics</a> </p> <a href="https://publications.waset.org/abstracts/169602/analysis-of-non-uniform-characteristics-of-small-underwater-targets-based-on-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> Seismic Response of Structures of Reinforced Concrete Buildings: Regular and Irregular Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhammid%20Chibane">Abdelhammid Chibane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Often, for architectural reasons or designs, several buildings have a non-uniform profile in elevation. Depending on the configuration of the construction and the arrangements structural elements, the non-uniform profile in elevation (the recess) is considered concept of a combination of non-uniform distributions of strength, stiffness, weight and geometry along the height of irregular structures. Therefore, this type of configuration can induce irregular distribution load causing a serious concentration stresses at the discontinuity. This therefore requires a serious behavioral treatment buildings in an earthquake. If appropriate measures are not taken into account, structural irregularity may become a major source of damage during earthquakesEarth. In the past, several research investigations have identified differences in dynamic response of irregular and regular porches. Among the most notable differences are the increments of displacements and ductility applications in floors located above the level of the shoulder and an increase in the contribution of the higher modes cisaillement1 efforts, ..., 10. The para -ssismiques codes recommend the methods of analysis Dynamic (or modal history) to establish the forces of calculation instead of the static method equivalent, which is basically applicable only to regular structures without major discontinuities in the mass, rigidity and strength along the height 11, 12 .To investigate the effects of irregular profiles on the structures, the main objective of this study was the assessment of the inelastic response, in terms of applications of ductility four types of non-uniform multi-stage structures subjected to relatively severe earthquakes. In the This study, only the parallel responses are analyzed setback. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings" title="buildings">buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration%20stresses" title=" concentration stresses"> concentration stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=designs" title=" designs"> designs</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20structures" title=" irregular structures"> irregular structures</a> </p> <a href="https://publications.waset.org/abstracts/44031/seismic-response-of-structures-of-reinforced-concrete-buildings-regular-and-irregular-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>