CINXE.COM

Big O notation - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Big O notation - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"026cd433-5bc3-45dd-9fc1-fecf95a5b4e5","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Big_O_notation","wgTitle":"Big O notation","wgCurRevisionId":1260396518,"wgRevisionId":1260396518,"wgArticleId":44578,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from April 2021","All articles that may contain original research","Articles that may contain original research from April 2021","Articles with unsourced statements from December 2018","Articles with unsourced statements from May 2017","Mathematical notation", "Asymptotic analysis","Analysis of algorithms"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Big_O_notation","wgRelevantArticleId":44578,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Big-O_notation","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgInternalRedirectTargetUrl":"/wiki/Big_O_notation","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled": false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q269878","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements" ,"mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/8/89/Big-O-notation.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1129"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/8/89/Big-O-notation.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="753"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Big-O-notation.png/640px-Big-O-notation.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="602"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Big O notation - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Big_O_notation"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Big_O_notation&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Big_O_notation"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Big_O_notation rootpage-Big_O_notation skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Big+O+notation" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Big+O+notation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Big+O+notation" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Big+O+notation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Formal_definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Formal_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Formal definition</span> </div> </a> <ul id="toc-Formal_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Use" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Use"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Use</span> </div> </a> <button aria-controls="toc-Use-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Use subsection</span> </button> <ul id="toc-Use-sublist" class="vector-toc-list"> <li id="toc-Infinite_asymptotics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Infinite_asymptotics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Infinite asymptotics</span> </div> </a> <ul id="toc-Infinite_asymptotics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinitesimal_asymptotics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Infinitesimal_asymptotics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Infinitesimal asymptotics</span> </div> </a> <ul id="toc-Infinitesimal_asymptotics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Product"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Product</span> </div> </a> <ul id="toc-Product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sum"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Sum</span> </div> </a> <ul id="toc-Sum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiplication_by_a_constant" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiplication_by_a_constant"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Multiplication by a constant</span> </div> </a> <ul id="toc-Multiplication_by_a_constant-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Multiple_variables" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Multiple_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Multiple variables</span> </div> </a> <ul id="toc-Multiple_variables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matters_of_notation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Matters_of_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Matters of notation</span> </div> </a> <button aria-controls="toc-Matters_of_notation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Matters of notation subsection</span> </button> <ul id="toc-Matters_of_notation-sublist" class="vector-toc-list"> <li id="toc-Equals_sign" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Equals_sign"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Equals sign</span> </div> </a> <ul id="toc-Equals_sign-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_arithmetic_operators" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_arithmetic_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Other arithmetic operators</span> </div> </a> <ul id="toc-Other_arithmetic_operators-sublist" class="vector-toc-list"> <li id="toc-Example_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2.1</span> <span>Example</span> </div> </a> <ul id="toc-Example_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Multiple_uses" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiple_uses"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Multiple uses</span> </div> </a> <ul id="toc-Multiple_uses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Typesetting" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Typesetting"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Typesetting</span> </div> </a> <ul id="toc-Typesetting-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Orders_of_common_functions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Orders_of_common_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Orders of common functions</span> </div> </a> <ul id="toc-Orders_of_common_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_asymptotic_notations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Related_asymptotic_notations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Related asymptotic notations</span> </div> </a> <button aria-controls="toc-Related_asymptotic_notations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Related asymptotic notations subsection</span> </button> <ul id="toc-Related_asymptotic_notations-sublist" class="vector-toc-list"> <li id="toc-Little-o_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Little-o_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Little-o notation</span> </div> </a> <ul id="toc-Little-o_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Big_Omega_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Big_Omega_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Big Omega notation</span> </div> </a> <ul id="toc-Big_Omega_notation-sublist" class="vector-toc-list"> <li id="toc-The_Hardy–Littlewood_definition" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_Hardy–Littlewood_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.1</span> <span>The Hardy–Littlewood definition</span> </div> </a> <ul id="toc-The_Hardy–Littlewood_definition-sublist" class="vector-toc-list"> <li id="toc-Simple_examples" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Simple_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.1.1</span> <span>Simple examples</span> </div> </a> <ul id="toc-Simple_examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_Knuth_definition" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_Knuth_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.2</span> <span>The Knuth definition</span> </div> </a> <ul id="toc-The_Knuth_definition-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Family_of_Bachmann–Landau_notations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Family_of_Bachmann–Landau_notations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Family of Bachmann–Landau notations</span> </div> </a> <ul id="toc-Family_of_Bachmann–Landau_notations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Use_in_computer_science" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Use_in_computer_science"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Use in computer science</span> </div> </a> <ul id="toc-Use_in_computer_science-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Other notation</span> </div> </a> <ul id="toc-Other_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Extensions_to_the_Bachmann–Landau_notations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Extensions_to_the_Bachmann–Landau_notations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.6</span> <span>Extensions to the Bachmann–Landau notations</span> </div> </a> <ul id="toc-Extensions_to_the_Bachmann–Landau_notations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations_and_related_usages" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations_and_related_usages"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Generalizations and related usages</span> </div> </a> <ul id="toc-Generalizations_and_related_usages-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History_(Bachmann–Landau,_Hardy,_and_Vinogradov_notations)" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History_(Bachmann–Landau,_Hardy,_and_Vinogradov_notations)"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>History (Bachmann–Landau, Hardy, and Vinogradov notations)</span> </div> </a> <ul id="toc-History_(Bachmann–Landau,_Hardy,_and_Vinogradov_notations)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References_and_notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References_and_notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References and notes</span> </div> </a> <ul id="toc-References_and_notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading">Big <i>O</i> notation</h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 36 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-36" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">36 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%85%D8%AB%D9%8A%D9%84_O_%D8%A7%D9%84%D9%83%D8%A8%D8%B1%D9%89" title="تمثيل O الكبرى – Arabic" lang="ar" hreflang="ar" data-title="تمثيل O الكبرى" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/B%C3%B6y%C3%BCk_O_i%C5%9Far%C9%99l%C9%99r_sistemi" title="Böyük O işarələr sistemi – Azerbaijani" lang="az" hreflang="az" data-title="Böyük O işarələr sistemi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A6%A1%E0%A6%BC_O_%E0%A6%B2%E0%A6%BF%E0%A6%96%E0%A6%A8%E0%A6%AA%E0%A6%A6%E0%A7%8D%E0%A6%A7%E0%A6%A4%E0%A6%BF" title="বড় O লিখনপদ্ধতি – Bangla" lang="bn" hreflang="bn" data-title="বড় O লিখনপদ্ধতি" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9E-%D0%BD%D0%B0%D1%82%D0%B0%D1%86%D1%8B%D1%8F" title="О-натацыя – Belarusian" lang="be" hreflang="be" data-title="О-натацыя" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Notaci%C3%B3_de_Landau" title="Notació de Landau – Catalan" lang="ca" hreflang="ca" data-title="Notació de Landau" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Landauova_notace" title="Landauova notace – Czech" lang="cs" hreflang="cs" data-title="Landauova notace" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Landau-Symbole" title="Landau-Symbole – German" lang="de" hreflang="de" data-title="Landau-Symbole" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Cota_superior_asint%C3%B3tica" title="Cota superior asintótica – Spanish" lang="es" hreflang="es" data-title="Cota superior asintótica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Granda_O" title="Granda O – Esperanto" lang="eo" hreflang="eo" data-title="Granda O" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Goi_borne_asintotiko" title="Goi borne asintotiko – Basque" lang="eu" hreflang="eu" data-title="Goi borne asintotiko" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D9%85%D8%A7%D8%AF_O_%D8%A8%D8%B2%D8%B1%DA%AF" title="نماد O بزرگ – Persian" lang="fa" hreflang="fa" data-title="نماد O بزرگ" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Comparaison_asymptotique" title="Comparaison asymptotique – French" lang="fr" hreflang="fr" data-title="Comparaison asymptotique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A0%90%EA%B7%BC_%ED%91%9C%EA%B8%B0%EB%B2%95" title="점근 표기법 – Korean" lang="ko" hreflang="ko" data-title="점근 표기법" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AC%E0%A4%A1%E0%A4%BC%E0%A4%BE_%E0%A4%93_%E0%A4%B8%E0%A4%82%E0%A4%95%E0%A5%87%E0%A4%A4%E0%A4%A8" title="बड़ा ओ संकेतन – Hindi" lang="hi" hreflang="hi" data-title="बड़ा ओ संकेतन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Notasi_O_besar" title="Notasi O besar – Indonesian" lang="id" hreflang="id" data-title="Notasi O besar" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/O-grande" title="O-grande – Italian" lang="it" hreflang="it" data-title="O-grande" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%99%D7%9E%D7%95%D7%9F_%D7%90%D7%A1%D7%99%D7%9E%D7%A4%D7%98%D7%95%D7%98%D7%99" title="סימון אסימפטוטי – Hebrew" lang="he" hreflang="he" data-title="סימון אסימפטוטי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%90%E1%83%A1%E1%83%98%E1%83%9B%E1%83%9E%E1%83%A2%E1%83%9D%E1%83%A2%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%90%E1%83%A6%E1%83%9C%E1%83%98%E1%83%A8%E1%83%95%E1%83%9C%E1%83%90_O-%E1%83%93%E1%83%98%E1%83%93%E1%83%98" title="ასიმპტოტური აღნიშვნა O-დიდი – Georgian" lang="ka" hreflang="ka" data-title="ასიმპტოტური აღნიშვნა O-დიდი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/O_jel%C3%B6l%C3%A9s" title="O jelölés – Hungarian" lang="hu" hreflang="hu" data-title="O jelölés" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Grote-O-notatie" title="Grote-O-notatie – Dutch" lang="nl" hreflang="nl" data-title="Grote-O-notatie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%B3%E3%83%80%E3%82%A6%E3%81%AE%E8%A8%98%E5%8F%B7" title="ランダウの記号 – Japanese" lang="ja" hreflang="ja" data-title="ランダウの記号" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Stor_O-notasjon" title="Stor O-notasjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Stor O-notasjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Asymptotyczne_tempo_wzrostu" title="Asymptotyczne tempo wzrostu – Polish" lang="pl" hreflang="pl" data-title="Asymptotyczne tempo wzrostu" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Grande-O" title="Grande-O – Portuguese" lang="pt" hreflang="pt" data-title="Grande-O" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Nota%C8%9Bia_Big_O" title="Notația Big O – Romanian" lang="ro" hreflang="ro" data-title="Notația Big O" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%C2%ABO%C2%BB_%D0%B1%D0%BE%D0%BB%D1%8C%D1%88%D0%BE%D0%B5_%D0%B8_%C2%ABo%C2%BB_%D0%BC%D0%B0%D0%BB%D0%BE%D0%B5" title="«O» большое и «o» малое – Russian" lang="ru" hreflang="ru" data-title="«O» большое и «o» малое" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Big_O_notation" title="Big O notation – Simple English" lang="en-simple" hreflang="en-simple" data-title="Big O notation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/O_notacija" title="O notacija – Slovenian" lang="sl" hreflang="sl" data-title="O notacija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%92%D0%B5%D0%BB%D0%B8%D0%BA%D0%BE_%D0%9E" title="Велико О – Serbian" lang="sr" hreflang="sr" data-title="Велико О" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ordo" title="Ordo – Swedish" lang="sv" hreflang="sv" data-title="Ordo" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%B1%E0%B8%8D%E0%B8%81%E0%B8%A3%E0%B8%93%E0%B9%8C%E0%B9%82%E0%B8%AD%E0%B9%83%E0%B8%AB%E0%B8%8D%E0%B9%88" title="สัญกรณ์โอใหญ่ – Thai" lang="th" hreflang="th" data-title="สัญกรณ์โอใหญ่" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/B%C3%BCy%C3%BCk_O_g%C3%B6sterimi" title="Büyük O gösterimi – Turkish" lang="tr" hreflang="tr" data-title="Büyük O gösterimi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9D%D0%BE%D1%82%D0%B0%D1%86%D1%96%D1%8F_%D0%9B%D0%B0%D0%BD%D0%B4%D0%B0%D1%83" title="Нотація Ландау – Ukrainian" lang="uk" hreflang="uk" data-title="Нотація Ландау" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/K%C3%BD_hi%E1%BB%87u_O_l%E1%BB%9Bn" title="Ký hiệu O lớn – Vietnamese" lang="vi" hreflang="vi" data-title="Ký hiệu O lớn" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%A4%A7_O_%E7%AC%A6%E8%99%9F" title="大 O 符號 – Cantonese" lang="yue" hreflang="yue" data-title="大 O 符號" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%A4%A7O%E7%AC%A6%E5%8F%B7" title="大O符号 – Chinese" lang="zh" hreflang="zh" data-title="大O符号" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q269878#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Big_O_notation" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Big_O_notation" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Big_O_notation"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Big_O_notation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Big_O_notation&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Big_O_notation"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Big_O_notation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Big_O_notation&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Big_O_notation" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Big_O_notation" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Big_O_notation&amp;oldid=1260396518" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Big_O_notation&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Big_O_notation&amp;id=1260396518&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBig_O_notation"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBig_O_notation"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Big_O_notation&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Big_O_notation&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q269878" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Big-O_notation&amp;redirect=no" class="mw-redirect" title="Big-O notation">Big-O notation</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Describes limiting behavior of a function</div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Big-O-notation.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Big-O-notation.png/300px-Big-O-notation.png" decoding="async" width="300" height="282" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Big-O-notation.png/450px-Big-O-notation.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Big-O-notation.png/600px-Big-O-notation.png 2x" data-file-width="661" data-file-height="622" /></a><figcaption>Example of Big O notation: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\color {red}f(x)}=O{\color {blue}(g(x))}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <mo>=</mo> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\color {red}f(x)}=O{\color {blue}(g(x))}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f5ddc938d43066aaaaffe5b12a4462ae9594ae5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.354ex; height:2.843ex;" alt="{\displaystyle {\color {red}f(x)}=O{\color {blue}(g(x))}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eda2caf97ec29f30d5f0c0cd7135393361efc020" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.268ex; height:1.843ex;" alt="{\displaystyle x\to \infty }"></span> since there exists <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7f423ab77b3411ec2803520a07c0dfae6ceb826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.703ex; height:2.176ex;" alt="{\displaystyle M&gt;0}"></span> (e.g., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca00f82608101fe96e18b56e5a0626193feff2c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.703ex; height:2.176ex;" alt="{\displaystyle M=1}"></span>) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> (e.g.,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fb111f85ebf1abbc8b78932a621d47dab364bda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.645ex; height:2.509ex;" alt="{\displaystyle x_{0}=5}"></span>) such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq {\color {red}f(x)}\leq M{\color {blue}g(x)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq {\color {red}f(x)}\leq M{\color {blue}g(x)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f601e4f2f09c6dd249ce7762a8facefef534fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.474ex; height:2.843ex;" alt="{\displaystyle 0\leq {\color {red}f(x)}\leq M{\color {blue}g(x)}}"></span> whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\geq x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\geq x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06eb265a902eeabdb1149c4e0682a9a52ec3a4a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.343ex;" alt="{\displaystyle x\geq x_{0}}"></span>.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks" style="width:18em; text-align:center; font-size:95%;"><tbody><tr><th class="sidebar-title" style="font-size:125%; font-weight:bold;">Fit approximation</th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:BigOnotationfunctionapprox_popular.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/BigOnotationfunctionapprox_popular.svg/80px-BigOnotationfunctionapprox_popular.svg.png" decoding="async" width="80" height="30" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/BigOnotationfunctionapprox_popular.svg/120px-BigOnotationfunctionapprox_popular.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/BigOnotationfunctionapprox_popular.svg/160px-BigOnotationfunctionapprox_popular.svg.png 2x" data-file-width="35" data-file-height="13" /></a></span></td></tr><tr><th class="sidebar-heading"> Concepts</th></tr><tr><td class="sidebar-content hlist" style="line-height:1.4em;"> <ul><li><a href="/wiki/Order_of_approximation" title="Order of approximation">Orders of approximation</a></li> <li><a href="/wiki/Scale_analysis_(mathematics)" title="Scale analysis (mathematics)">Scale analysis</a></li> <li><a class="mw-selflink selflink">Big O notation</a></li> <li><a href="/wiki/Curve_fitting" title="Curve fitting">Curve fitting</a></li> <li><a href="/wiki/False_precision" title="False precision">False precision</a></li> <li><a href="/wiki/Significant_figures" title="Significant figures">Significant figures</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Other fundamentals</th></tr><tr><td class="sidebar-content hlist" style="line-height:1.4em;"> <ul><li><a href="/wiki/Approximation" title="Approximation">Approximation</a></li> <li><a href="/wiki/Generalization_error" title="Generalization error">Generalization error</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor polynomial</a></li> <li><a href="/wiki/Scientific_modelling" title="Scientific modelling">Scientific modelling</a></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Order-of-approx" title="Template:Order-of-approx"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Order-of-approx" title="Template talk:Order-of-approx"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Order-of-approx" title="Special:EditPage/Template:Order-of-approx"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Big <i>O</i> notation</b> is a mathematical notation that describes the <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">limiting behavior</a> of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> when the <a href="/wiki/Argument_of_a_function" title="Argument of a function">argument</a> tends towards a particular value or infinity. Big O is a member of a <a href="#Related_asymptotic_notations">family of notations</a> invented by German mathematicians <a href="/wiki/Paul_Gustav_Heinrich_Bachmann" title="Paul Gustav Heinrich Bachmann">Paul Bachmann</a>,<sup id="cite_ref-Bachmann_1-0" class="reference"><a href="#cite_note-Bachmann-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Edmund_Landau" title="Edmund Landau">Edmund Landau</a>,<sup id="cite_ref-Landau_2-0" class="reference"><a href="#cite_note-Landau-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and others, collectively called <b>Bachmann–Landau notation</b> or <b>asymptotic notation</b>. The letter O was chosen by Bachmann to stand for <i><a href="https://en.wiktionary.org/wiki/Ordnung#German" class="extiw" title="wikt:Ordnung">Ordnung</a></i>, meaning the <a href="/wiki/Order_of_approximation" title="Order of approximation">order of approximation</a>. </p><p>In <a href="/wiki/Computer_science" title="Computer science">computer science</a>, big O notation is used to <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">classify algorithms</a> according to how their run time or space requirements grow as the input size grows.<sup id="cite_ref-:0_3-0" class="reference"><a href="#cite_note-:0-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> In <a href="/wiki/Analytic_number_theory" title="Analytic number theory">analytic number theory</a>, big O notation is often used to express a bound on the difference between an <a href="/wiki/Arithmetic_function" title="Arithmetic function">arithmetical function</a> and a better understood approximation; a famous example of such a difference is the remainder term in the <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a>. Big O notation is also used in many other fields to provide similar estimates. </p><p>Big O notation characterizes functions according to their growth rates: different functions with the same asymptotic growth rate may be represented using the same O notation. The letter O is used because the growth rate of a function is also referred to as the <b>order of the function</b>. A description of a function in terms of big O notation usually only provides an <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">upper bound</a> on the growth rate of the function. </p><p>Associated with big O notation are several related notations, using the symbols <span class="texhtml"><i>o</i>, Ω, <i>ω</i></span>, and <span class="texhtml">Θ</span>, to describe other kinds of bounds on asymptotic growth rates.<sup id="cite_ref-:0_3-1" class="reference"><a href="#cite_note-:0-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Formal_definition">Formal definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=1" title="Edit section: Formal definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9687ea22c0f310582e97ee5f6c6a5fca28203d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.925ex; height:2.509ex;" alt="{\displaystyle f,}"></span> the function to be estimated, be a <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> valued function, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ g\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>g</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ g\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4f953d0045fe6c7829caf82d345f4545c84ca71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.084ex; height:2.009ex;" alt="{\displaystyle \ g\,}"></span> the comparison function, be a real valued function. Let both functions be defined on some <a href="/wiki/Bounded_set" title="Bounded set">unbounded</a> <a href="/wiki/Subset" title="Subset">subset</a> of the positive <a href="/wiki/Real_number" title="Real number">real numbers</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ca91363022bd5e4dcb17e5ef29f78b8ef00b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.255ex; height:2.843ex;" alt="{\displaystyle g(x)}"></span> be non-zero (often, but not necessarily, strictly positive) for all large enough values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span><sup id="cite_ref-LandauO_4-0" class="reference"><a href="#cite_note-LandauO-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> One writes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}x\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}x\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e45ededce98fd7f1d8866cff71d6311e6510e850" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.504ex; height:3.176ex;" alt="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}x\to \infty }"></span> and it is read "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ f(x)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ f(x)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93e672050841d667b55e1ff33d567a3ed879d883" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.579ex; height:2.843ex;" alt="{\displaystyle \ f(x)\ }"></span> is big&#160;O of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ca91363022bd5e4dcb17e5ef29f78b8ef00b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.255ex; height:2.843ex;" alt="{\displaystyle g(x)}"></span>" or more often "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is of the order of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ca91363022bd5e4dcb17e5ef29f78b8ef00b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.255ex; height:2.843ex;" alt="{\displaystyle g(x)}"></span>" if the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is at most a positive constant multiple of the absolute value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ca91363022bd5e4dcb17e5ef29f78b8ef00b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.255ex; height:2.843ex;" alt="{\displaystyle g(x)}"></span> for all sufficiently large values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span> That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b171ef5a4bf9979e88b862b43b44196c70a2cbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.674ex; height:3.176ex;" alt="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}}"></span> if there exists a positive real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and a real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(x)|\leq M\ |g(x)|\quad {\text{ for all }}x\geq x_{0}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(x)|\leq M\ |g(x)|\quad {\text{ for all }}x\geq x_{0}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c616aa2ad74f1d52a60648eedf973b7f06b96733" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.727ex; height:2.843ex;" alt="{\displaystyle |f(x)|\leq M\ |g(x)|\quad {\text{ for all }}x\geq x_{0}~.}"></span> In many contexts, the assumption that we are interested in the growth rate as the variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>x</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8870480257369121bf218c4814f88d4f5c43108" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.491ex; height:1.676ex;" alt="{\displaystyle \ x\ }"></span> goes to infinity or to zero is left unstated, and one writes more simply that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cd5c1bc330a1a7a4a1784b75d08d386a426434c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.321ex; height:3.176ex;" alt="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}.}"></span> The notation can also be used to describe the behavior of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> near some real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> (often, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90d476e5e765a5d77bbcff32e4584579207ec7d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;" alt="{\displaystyle a=0}"></span>): we say <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}\ x\to a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}\ x\to a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d86a6ccab54b0c0969bcda1c5021ced57fcc155" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.991ex; height:3.176ex;" alt="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}\ x\to a}"></span> if there exist positive numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> such that for all defined <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;|x-a|&lt;\delta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;|x-a|&lt;\delta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c09500e7e9381b238aa30d66c37a707ecc5781da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.748ex; height:2.843ex;" alt="{\displaystyle 0&lt;|x-a|&lt;\delta ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(x)|\leq M|g(x)|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(x)|\leq M|g(x)|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3b1907dc88a74ce67749e0ecb3ed7c4a48f0aa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.447ex; height:2.843ex;" alt="{\displaystyle |f(x)|\leq M|g(x)|.}"></span> As <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ca91363022bd5e4dcb17e5ef29f78b8ef00b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.255ex; height:2.843ex;" alt="{\displaystyle g(x)}"></span> is non-zero for adequately large (or small) values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> both of these definitions can be unified using the <a href="/wiki/Limit_superior" class="mw-redirect" title="Limit superior">limit superior</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}\ x\to a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}\ x\to a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d86a6ccab54b0c0969bcda1c5021ced57fcc155" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.991ex; height:3.176ex;" alt="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}\quad {\text{ as }}\ x\to a}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \limsup _{x\to a}{\frac {\left|f(x)\right|}{\left|g(x)\right|}}&lt;\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \limsup _{x\to a}{\frac {\left|f(x)\right|}{\left|g(x)\right|}}&lt;\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/176cfe091b474a99b1a9e6c2c86b6a2cfd5d80aa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.122ex; height:6.509ex;" alt="{\displaystyle \limsup _{x\to a}{\frac {\left|f(x)\right|}{\left|g(x)\right|}}&lt;\infty .}"></span> And in both of these definitions the <a href="/wiki/Limit_point" class="mw-redirect" title="Limit point">limit point</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> (whether <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span> or not) is a <a href="/wiki/Cluster_point" class="mw-redirect" title="Cluster point">cluster point</a> of the domains of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81f2986cd965e404a1ee33ec84baee5c43da47fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.763ex; height:2.009ex;" alt="{\displaystyle g,}"></span> i.&#160;e., in every neighbourhood of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> there have to be infinitely many points in common. Moreover, as pointed out in the article about the <a href="/wiki/Limit_inferior_and_limit_superior#Real-valued_functions" title="Limit inferior and limit superior">limit inferior and limit superior</a>, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \limsup _{x\to a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> </mrow> </munder> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \limsup _{x\to a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/053814e8519054bbf8e10109acd77ad38e1052c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.804ex; height:2.676ex;" alt="{\displaystyle \textstyle \limsup _{x\to a}}"></span> (at least on the <a href="/wiki/Extended_real_number_line" title="Extended real number line">extended real number line</a>) always exists. </p><p>In computer science, a slightly more restrictive definition is common: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are both required to be functions from some unbounded subset of the <a href="/wiki/Natural_numbers" class="mw-redirect" title="Natural numbers">positive integers</a> to the nonnegative real numbers; then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b171ef5a4bf9979e88b862b43b44196c70a2cbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.674ex; height:3.176ex;" alt="{\displaystyle f(x)=O{\bigl (}g(x){\bigr )}}"></span> if there exist positive integer numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63584d203ecb012a7bcb90f422408bbfe4018956" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.449ex; height:2.009ex;" alt="{\displaystyle n_{0}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(n)|\leq M|g(n)|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(n)|\leq M|g(n)|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3346019a35f57a8347a1af4bc0aa46060e1cc73c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.931ex; height:2.843ex;" alt="{\displaystyle |f(n)|\leq M|g(n)|}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq n_{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq n_{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d69154ee97b1c6af1b7fc6b0240891a549c3666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.589ex; height:2.343ex;" alt="{\displaystyle n\geq n_{0}.}"></span><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=2" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In typical usage the <span class="texhtml"><i>O</i></span> notation is asymptotical, that is, it refers to very large <span class="texhtml mvar" style="font-style:italic;">x</span>. In this setting, the contribution of the terms that grow "most quickly" will eventually make the other ones irrelevant. As a result, the following simplification rules can be applied: </p> <ul><li>If <span class="texhtml"><i>f</i>(<i>x</i>)</span> is a sum of several terms, if there is one with largest growth rate, it can be kept, and all others omitted.</li> <li>If <span class="texhtml"><i>f</i>(<i>x</i>)</span> is a product of several factors, any constants (factors in the product that do not depend on <span class="texhtml mvar" style="font-style:italic;">x</span>) can be omitted.</li></ul> <p>For example, let <span class="texhtml"><i>f</i>(<i>x</i>) = 6<i>x</i><sup>4</sup> − 2<i>x</i><sup>3</sup> + 5</span>, and suppose we wish to simplify this function, using <span class="texhtml"><i>O</i></span> notation, to describe its growth rate as <span class="texhtml mvar" style="font-style:italic;">x</span> approaches infinity. This function is the sum of three terms: <span class="texhtml">6<i>x</i><sup>4</sup></span>, <span class="texhtml">−2<i>x</i><sup>3</sup></span>, and <span class="texhtml">5</span>. Of these three terms, the one with the highest growth rate is the one with the largest exponent as a function of <span class="texhtml mvar" style="font-style:italic;">x</span>, namely <span class="texhtml">6<i>x</i><sup>4</sup></span>. Now one may apply the second rule: <span class="texhtml">6<i>x</i><sup>4</sup></span> is a product of <span class="texhtml">6</span> and <span class="texhtml"><i>x</i><sup>4</sup></span> in which the first factor does not depend on <span class="texhtml"><i>x</i></span>. Omitting this factor results in the simplified form <span class="texhtml"><i>x</i><sup>4</sup></span>. Thus, we say that <span class="texhtml"><i>f</i>(<i>x</i>)</span> is a "big O" of <span class="texhtml"><i>x</i><sup>4</sup></span>. Mathematically, we can write <span class="texhtml"><i>f</i>(<i>x</i>) = <i>O</i>(<i>x</i><sup>4</sup>)</span>. One may confirm this calculation using the formal definition: let <span class="texhtml"><i>f</i>(<i>x</i>) = 6<i>x</i><sup>4</sup> − 2<i>x</i><sup>3</sup> + 5</span> and <span class="texhtml"><i>g</i>(<i>x</i>) = <i>x</i><sup>4</sup></span>. Applying the <a href="#Formal_definition">formal definition</a> from above, the statement that <span class="texhtml"><i>f</i>(<i>x</i>) = <i>O</i>(<i>x</i><sup>4</sup>)</span> is equivalent to its expansion, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(x)|\leq Mx^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(x)|\leq Mx^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e05e585265f72da0079873c3bc4a8711ebd115d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.636ex; height:3.176ex;" alt="{\displaystyle |f(x)|\leq Mx^{4}}"></span> for some suitable choice of a real number <span class="texhtml"><i>x</i><sub>0</sub></span> and a positive real number <span class="texhtml mvar" style="font-style:italic;">M</span> and for all <span class="texhtml"><i>x</i> &gt; <i>x</i><sub>0</sub></span>. To prove this, let <span class="texhtml"><i>x</i><sub>0</sub> = 1</span> and <span class="texhtml"><i>M</i> = 13</span>. Then, for all <span class="texhtml"><i>x</i> &gt; <i>x</i><sub>0</sub></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}|6x^{4}-2x^{3}+5|&amp;\leq 6x^{4}+|2x^{3}|+5\\&amp;\leq 6x^{4}+2x^{4}+5x^{4}\\&amp;=13x^{4}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>6</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>6</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>6</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mn>5</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>13</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}|6x^{4}-2x^{3}+5|&amp;\leq 6x^{4}+|2x^{3}|+5\\&amp;\leq 6x^{4}+2x^{4}+5x^{4}\\&amp;=13x^{4}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc926b093c721dee9f23185efef90e122c0acdf4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:35.4ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}|6x^{4}-2x^{3}+5|&amp;\leq 6x^{4}+|2x^{3}|+5\\&amp;\leq 6x^{4}+2x^{4}+5x^{4}\\&amp;=13x^{4}\end{aligned}}}"></span> so <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |6x^{4}-2x^{3}+5|\leq 13x^{4}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>6</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mn>13</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |6x^{4}-2x^{3}+5|\leq 13x^{4}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb23b946983d89787b6ee97bc4cab8ebd39aca96" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.684ex; height:3.176ex;" alt="{\displaystyle |6x^{4}-2x^{3}+5|\leq 13x^{4}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Use">Use</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=3" title="Edit section: Use"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big O notation has two main areas of application: </p> <ul><li>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, it is commonly used to describe <a href="#Infinitesimal_asymptotics">how closely a finite series approximates a given function</a>, especially in the case of a truncated <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> or <a href="/wiki/Asymptotic_expansion" title="Asymptotic expansion">asymptotic expansion</a>.</li> <li>In <a href="/wiki/Computer_science" title="Computer science">computer science</a>, it is useful in the <a href="#Infinite_asymptotics">analysis of algorithms</a>.<sup id="cite_ref-:0_3-2" class="reference"><a href="#cite_note-:0-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>In both applications, the function <span class="texhtml"><i>g</i>(<i>x</i>)</span> appearing within the <span class="texhtml"><i>O</i>(·)</span> is typically chosen to be as simple as possible, omitting constant factors and lower order terms. </p><p>There are two formally close, but noticeably different, usages of this notation:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2021)">citation needed</span></a></i>&#93;</sup> </p> <ul><li><a href="/wiki/Infinity" title="Infinity">infinite</a> asymptotics</li> <li><a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> asymptotics.</li></ul> <p>This distinction is only in application and not in principle, however—the formal definition for the "big O" is the same for both cases, only with different limits for the function argument.<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research" title="Wikipedia:No original research"><span title="The material near this tag possibly contains original research. (April 2021)">original research?</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Infinite_asymptotics">Infinite asymptotics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=4" title="Edit section: Infinite asymptotics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Comparison_computational_complexity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Comparison_computational_complexity.svg/220px-Comparison_computational_complexity.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Comparison_computational_complexity.svg/330px-Comparison_computational_complexity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Comparison_computational_complexity.svg/440px-Comparison_computational_complexity.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Graphs of functions commonly used in the analysis of algorithms, showing the number of operations <span class="texhtml mvar" style="font-style:italic;">N</span> versus input size <span class="texhtml mvar" style="font-style:italic;">n</span> for each function</figcaption></figure> <p>Big O notation is useful when <a href="/wiki/Analysis_of_algorithms" title="Analysis of algorithms">analyzing algorithms</a> for efficiency. For example, the time (or the number of steps) it takes to complete a problem of size <span class="texhtml mvar" style="font-style:italic;">n</span> might be found to be <span class="texhtml"><i>T</i>(<i>n</i>) = 4<i>n</i><sup>2</sup> − 2<i>n</i> + 2</span>. As <span class="texhtml mvar" style="font-style:italic;">n</span> grows large, the <span class="texhtml"><i>n</i><sup>2</sup></span> <a href="/wiki/Summand" class="mw-redirect" title="Summand">term</a> will come to dominate, so that all other terms can be neglected—for instance when <span class="texhtml"><i>n</i> = 500</span>, the term <span class="texhtml">4<i>n</i><sup>2</sup></span> is 1000 times as large as the <span class="texhtml">2<i>n</i></span> term. Ignoring the latter would have negligible effect on the expression's value for most purposes. Further, the <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> become irrelevant if we compare to any other <a href="/wiki/Orders_of_approximation" class="mw-redirect" title="Orders of approximation">order</a> of expression, such as an expression containing a term <span class="texhtml"><i>n</i><sup>3</sup></span> or <span class="texhtml"><i>n</i><sup>4</sup></span>. Even if <span class="texhtml"><i>T</i>(<i>n</i>) = 1,000,000<i>n</i><sup>2</sup></span>, if <span class="texhtml"><i>U</i>(<i>n</i>) = <i>n</i><sup>3</sup></span>, the latter will always exceed the former once <span class="texhtml mvar" style="font-style:italic;">n</span> grows larger than <span class="texhtml">1,000,000</span>, <i>viz.</i> <span class="texhtml"><i>T</i>(1,000,000) = 1,000,000<sup>3</sup> = <i>U</i>(1,000,000)</span>. Additionally, the number of steps depends on the details of the machine model on which the algorithm runs, but different types of machines typically vary by only a constant factor in the number of steps needed to execute an algorithm. So the big O notation captures what remains: we write either </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(n)=O(n^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(n)=O(n^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8526253f8646d3899c4b3f99b6b1c1d3d911a33c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.97ex; height:3.176ex;" alt="{\displaystyle T(n)=O(n^{2})}"></span></dd></dl> <p>or </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(n)\in O(n^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(n)\in O(n^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc66b3cf4747029fad4ae4d3a3c565bcf22ed237" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.712ex; height:3.176ex;" alt="{\displaystyle T(n)\in O(n^{2})}"></span></dd></dl> <p>and say that the algorithm has <i>order of <span class="texhtml">n<sup>2</sup></span></i> time complexity. The sign "<span class="texhtml">=</span>" is not meant to express "is equal to" in its normal mathematical sense, but rather a more colloquial "is", so the second expression is sometimes considered more accurate (see the "<a href="#Equals_sign">Equals sign</a>" discussion below) while the first is considered by some as an <a href="/wiki/Abuse_of_notation" title="Abuse of notation">abuse of notation</a>.<sup id="cite_ref-clrs3_6-0" class="reference"><a href="#cite_note-clrs3-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Infinitesimal_asymptotics">Infinitesimal asymptotics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=5" title="Edit section: Infinitesimal asymptotics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big O can also be used to describe the <a href="/wiki/Taylor_series#Approximation_error_and_convergence" title="Taylor series">error term</a> in an approximation to a mathematical function. The most significant terms are written explicitly, and then the least-significant terms are summarized in a single big O term. Consider, for example, the <a href="/wiki/Exponential_function#Formal_definition" title="Exponential function">exponential series</a> and two expressions of it that are valid when <span class="texhtml mvar" style="font-style:italic;">x</span> is small: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}e^{x}&amp;=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+\dotsb &amp;{\text{for all finite }}x\\[4pt]&amp;=1+x+{\frac {x^{2}}{2}}+O(x^{3})&amp;{\text{as }}x\to 0\\[4pt]&amp;=1+x+O(x^{2})&amp;{\text{as }}x\to 0\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>4</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all finite&#xA0;</mtext> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>as&#xA0;</mtext> </mrow> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>as&#xA0;</mtext> </mrow> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}e^{x}&amp;=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+\dotsb &amp;{\text{for all finite }}x\\[4pt]&amp;=1+x+{\frac {x^{2}}{2}}+O(x^{3})&amp;{\text{as }}x\to 0\\[4pt]&amp;=1+x+O(x^{2})&amp;{\text{as }}x\to 0\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a3a5d996be04cc29fdf69a93368abe98e94fd45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.838ex; width:53.377ex; height:16.843ex;" alt="{\displaystyle {\begin{aligned}e^{x}&amp;=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+\dotsb &amp;{\text{for all finite }}x\\[4pt]&amp;=1+x+{\frac {x^{2}}{2}}+O(x^{3})&amp;{\text{as }}x\to 0\\[4pt]&amp;=1+x+O(x^{2})&amp;{\text{as }}x\to 0\end{aligned}}}"></span></dd></dl> <p>The middle expression (the one with <i>O</i>(<i>x</i><sup>3</sup>)) means the absolute-value of the error <i>e</i><sup><i>x</i></sup> − (1 + <i>x</i> + <i>x</i><sup>2</sup>/2) is at most some constant times |<i>x</i><sup>3</sup>| when <i>x</i> is close enough to&#160;0. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=6" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the function <span class="texhtml"><i>f</i></span> can be written as a finite sum of other functions, then the fastest growing one determines the order of <span class="texhtml"><i>f</i>(<i>n</i>)</span>. For example, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=9\log n+5(\log n)^{4}+3n^{2}+2n^{3}=O(n^{3})\qquad {\text{as }}n\to \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>9</mn> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>+</mo> <mn>5</mn> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>as&#xA0;</mtext> </mrow> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=9\log n+5(\log n)^{4}+3n^{2}+2n^{3}=O(n^{3})\qquad {\text{as }}n\to \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89af85ea4fc64d706852594e7dea55f5c64f3e6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.822ex; height:3.176ex;" alt="{\displaystyle f(n)=9\log n+5(\log n)^{4}+3n^{2}+2n^{3}=O(n^{3})\qquad {\text{as }}n\to \infty .}"></span></dd></dl> <p>In particular, if a function may be bounded by a polynomial in <span class="texhtml mvar" style="font-style:italic;">n</span>, then as <span class="texhtml mvar" style="font-style:italic;">n</span> tends to <i>infinity</i>, one may disregard <i>lower-order</i> terms of the polynomial. The sets <span class="texhtml"><i>O</i>(<i>n</i><sup><i>c</i></sup>)</span> and <span class="texhtml"><i>O</i>(<i>c</i><sup><i>n</i></sup>)</span> are very different. If <span class="texhtml mvar" style="font-style:italic;">c</span> is greater than one, then the latter grows much faster. A function that grows faster than <span class="texhtml"><i>n</i><sup><i>c</i></sup></span> for any <span class="texhtml mvar" style="font-style:italic;">c</span> is called <i>superpolynomial</i>. One that grows more slowly than any exponential function of the form <span class="texhtml"><i>c</i><sup><i>n</i></sup></span> is called <i>subexponential</i>. An algorithm can require time that is both superpolynomial and subexponential; examples of this include the fastest known algorithms for <a href="/wiki/Integer_factorization" title="Integer factorization">integer factorization</a> and the function <span class="texhtml"><i>n</i><sup>log <i>n</i></sup></span>. </p><p>We may ignore any powers of <span class="texhtml mvar" style="font-style:italic;">n</span> inside of the logarithms. The set <span class="texhtml"><i>O</i>(log <i>n</i>)</span> is exactly the same as <span class="texhtml"><i>O</i>(log(<i>n</i><sup><i>c</i></sup>))</span>. The logarithms differ only by a constant factor (since <span class="texhtml">log(<i>n</i><sup><i>c</i></sup>) = <i>c</i> log <i>n</i></span>) and thus the big O notation ignores that. Similarly, logs with different constant bases are equivalent. On the other hand, exponentials with different bases are not of the same order. For example, <span class="texhtml">2<sup><i>n</i></sup></span> and <span class="texhtml">3<sup><i>n</i></sup></span> are not of the same order. </p><p>Changing units may or may not affect the order of the resulting algorithm. Changing units is equivalent to multiplying the appropriate variable by a constant wherever it appears. For example, if an algorithm runs in the order of <span class="texhtml"><i>n</i><sup>2</sup></span>, replacing <span class="texhtml mvar" style="font-style:italic;">n</span> by <span class="texhtml"><i>cn</i></span> means the algorithm runs in the order of <span class="texhtml"><i>c</i><sup>2</sup><i>n</i><sup>2</sup></span>, and the big O notation ignores the constant <span class="texhtml"><i>c</i><sup>2</sup></span>. This can be written as <span class="texhtml"><i>c</i><sup>2</sup><i>n</i><sup>2</sup> = O(<i>n</i><sup>2</sup>)</span>. If, however, an algorithm runs in the order of <span class="texhtml">2<sup><i>n</i></sup></span>, replacing <span class="texhtml mvar" style="font-style:italic;">n</span> with <span class="texhtml"><i>cn</i></span> gives <span class="texhtml">2<sup><i>cn</i></sup> = (2<sup><i>c</i></sup>)<sup><i>n</i></sup></span>. This is not equivalent to <span class="texhtml">2<sup><i>n</i></sup></span> in general. Changing variables may also affect the order of the resulting algorithm. For example, if an algorithm's run time is <span class="texhtml"><i>O</i>(<i>n</i>)</span> when measured in terms of the number <span class="texhtml mvar" style="font-style:italic;">n</span> of <i>digits</i> of an input number <span class="texhtml mvar" style="font-style:italic;">x</span>, then its run time is <span class="texhtml"><i>O</i>(log <i>x</i>)</span> when measured as a function of the input number <span class="texhtml mvar" style="font-style:italic;">x</span> itself, because <span class="texhtml"><i>n</i> = <i>O</i>(log <i>x</i>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Product">Product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=7" title="Edit section: Product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}=O(g_{1}){\text{ and }}f_{2}=O(g_{2})\Rightarrow f_{1}f_{2}=O(g_{1}g_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}=O(g_{1}){\text{ and }}f_{2}=O(g_{2})\Rightarrow f_{1}f_{2}=O(g_{1}g_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/819a5b9bb47ab027ff7cb4240935e18487391599" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.993ex; height:2.843ex;" alt="{\displaystyle f_{1}=O(g_{1}){\text{ and }}f_{2}=O(g_{2})\Rightarrow f_{1}f_{2}=O(g_{1}g_{2})}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\cdot O(g)=O(fg)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\cdot O(g)=O(fg)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b82dc34c0c85245ebf04bb9b7202bd30931d7a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.732ex; height:2.843ex;" alt="{\displaystyle f\cdot O(g)=O(fg)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Sum">Sum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=8" title="Edit section: Sum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}=O(g_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}=O(g_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10bbbef07d6840089dac53d3844220538055f114" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.038ex; height:2.843ex;" alt="{\displaystyle f_{1}=O(g_{1})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{2}=O(g_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{2}=O(g_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31c9c91c308dc88f1fba95d5b9307bc731b45936" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.038ex; height:2.843ex;" alt="{\displaystyle f_{2}=O(g_{2})}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}+f_{2}=O(\max(|g_{1}|,|g_{2}|))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}+f_{2}=O(\max(|g_{1}|,|g_{2}|))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46bbf69733fada9e826e73f184e770f18f818e8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.991ex; height:2.843ex;" alt="{\displaystyle f_{1}+f_{2}=O(\max(|g_{1}|,|g_{2}|))}"></span>. It follows that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}=O(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}=O(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d51f82b5ddc09c23f6676096a19367cd136a366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.991ex; height:2.843ex;" alt="{\displaystyle f_{1}=O(g)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{2}=O(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{2}=O(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdb9c640aca1f49030a10cef0b81fc17be012a2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.991ex; height:2.843ex;" alt="{\displaystyle f_{2}=O(g)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}+f_{2}\in O(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}+f_{2}\in O(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6423bf44c7a2d4a0a299441c610ddecb63314fea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.767ex; height:2.843ex;" alt="{\displaystyle f_{1}+f_{2}\in O(g)}"></span>. In other words, this second statement says that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b2d25119aee12d89cada9a75c50c1dfb9e13384" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.699ex; height:2.843ex;" alt="{\displaystyle O(g)}"></span> is a <a href="/wiki/Convex_cone" title="Convex cone">convex cone</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Multiplication_by_a_constant">Multiplication by a constant</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=9" title="Edit section: Multiplication by a constant"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">k</span> be a nonzero constant. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(|k|\cdot g)=O(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(|k|\cdot g)=O(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/985920563f4f78550f8a1fd39b05087419893328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.68ex; height:2.843ex;" alt="{\displaystyle O(|k|\cdot g)=O(g)}"></span>. In other words, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=O(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=O(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beed823cad3e8b52dcfa798e8097d94b3c3c7541" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.076ex; height:2.843ex;" alt="{\displaystyle f=O(g)}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\cdot f=O(g).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>f</mi> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\cdot f=O(g).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd52d7bf53187189e7f1703754a985e20b5f7d74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.613ex; height:2.843ex;" alt="{\displaystyle k\cdot f=O(g).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Multiple_variables">Multiple variables</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=10" title="Edit section: Multiple variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big <i>O</i> (and little o, Ω, etc.) can also be used with multiple variables. To define big <i>O</i> formally for multiple variables, suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are two functions defined on some subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>. We say </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathbf {x} ){\text{ is }}O(g(\mathbf {x} ))\quad {\text{ as }}\mathbf {x} \to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is&#xA0;</mtext> </mrow> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathbf {x} ){\text{ is }}O(g(\mathbf {x} ))\quad {\text{ as }}\mathbf {x} \to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7795cfe1aba791ee68445acb0972e714e74822" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.054ex; height:2.843ex;" alt="{\displaystyle f(\mathbf {x} ){\text{ is }}O(g(\mathbf {x} ))\quad {\text{ as }}\mathbf {x} \to \infty }"></span></dd></dl> <p>if and only if there exist constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c84d4126c6df243734f9355927c026df6b0d3859" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.027ex; height:2.176ex;" alt="{\displaystyle C&gt;0}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(\mathbf {x} )|\leq C|g(\mathbf {x} )|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(\mathbf {x} )|\leq C|g(\mathbf {x} )|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfaf93ff01d1ecce5ae7e5663e944e8bf031fc16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.287ex; height:2.843ex;" alt="{\displaystyle |f(\mathbf {x} )|\leq C|g(\mathbf {x} )|}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}\geq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}\geq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f38c48bb379042d7d38c69a508a179c8340479a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.67ex; height:2.509ex;" alt="{\displaystyle x_{i}\geq M}"></span> for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ffcf9ad7ad44f04fa43c5b604b4801e089981cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.449ex; height:2.176ex;" alt="{\displaystyle i.}"></span><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Equivalently, the condition that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}\geq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}\geq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f38c48bb379042d7d38c69a508a179c8340479a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.67ex; height:2.509ex;" alt="{\displaystyle x_{i}\geq M}"></span> for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> can be written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {x} \|_{\infty }\geq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\mathbf {x} \|_{\infty }\geq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/227752f0aea2730aa50e062e7f4d049acec3c5ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.152ex; height:2.843ex;" alt="{\displaystyle \|\mathbf {x} \|_{\infty }\geq M}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {x} \|_{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\mathbf {x} \|_{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d9444d248dbfe32092e00fea179a754dab64812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.611ex; height:2.843ex;" alt="{\displaystyle \|\mathbf {x} \|_{\infty }}"></span> denotes the <a href="/wiki/Chebyshev_norm" class="mw-redirect" title="Chebyshev norm">Chebyshev norm</a>. For example, the statement </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n,m)=n^{2}+m^{3}+O(n+m)\quad {\text{ as }}n,m\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n,m)=n^{2}+m^{3}+O(n+m)\quad {\text{ as }}n,m\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56fe59d65b70e4e5d736265ebaaf1e298112e7df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.707ex; height:3.176ex;" alt="{\displaystyle f(n,m)=n^{2}+m^{3}+O(n+m)\quad {\text{ as }}n,m\to \infty }"></span></dd></dl> <p>asserts that there exist constants <i>C</i> and <i>M</i> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(n,m)-(n^{2}+m^{3})|\leq C|n+m|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>n</mi> <mo>+</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(n,m)-(n^{2}+m^{3})|\leq C|n+m|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47d7b9ba195e7a6e61e9ee41b4db198cb8338398" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.318ex; height:3.176ex;" alt="{\displaystyle |f(n,m)-(n^{2}+m^{3})|\leq C|n+m|}"></span></dd></dl> <p>whenever either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\geq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\geq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7279b1c0ec22610b56ffbca3e53f7959cfeb53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.581ex; height:2.343ex;" alt="{\displaystyle m\geq M}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e39da113317452e220c9cf19066d930c7c13886d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.935ex; height:2.343ex;" alt="{\displaystyle n\geq M}"></span> holds. This definition allows all of the coordinates of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> to increase to infinity. In particular, the statement </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n,m)=O(n^{m})\quad {\text{ as }}n,m\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n,m)=O(n^{m})\quad {\text{ as }}n,m\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/647fb88e21638c3dae333c139e3dd7ea7c2c24a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.277ex; height:2.843ex;" alt="{\displaystyle f(n,m)=O(n^{m})\quad {\text{ as }}n,m\to \infty }"></span></dd></dl> <p>(i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists C\,\exists M\,\forall n\,\forall m\,\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>C</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>M</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists C\,\exists M\,\forall n\,\forall m\,\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b89f97936c678bd23ee08dcd0c61775893332436" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.472ex; height:2.176ex;" alt="{\displaystyle \exists C\,\exists M\,\forall n\,\forall m\,\cdots }"></span>) is quite different from </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall m\colon ~f(n,m)=O(n^{m})\quad {\text{ as }}n\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>m</mi> <mo>&#x003A;<!-- : --></mo> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall m\colon ~f(n,m)=O(n^{m})\quad {\text{ as }}n\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66054aa34578efeb81fc0cde681fb86f45073038" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.15ex; height:2.843ex;" alt="{\displaystyle \forall m\colon ~f(n,m)=O(n^{m})\quad {\text{ as }}n\to \infty }"></span></dd></dl> <p>(i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall m\,\exists C\,\exists M\,\forall n\,\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>C</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>M</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mspace width="thinmathspace" /> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall m\,\exists C\,\exists M\,\forall n\,\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ca18642648021a9f83a74e74d7baaf2b64d4229" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.472ex; height:2.176ex;" alt="{\displaystyle \forall m\,\exists C\,\exists M\,\forall n\,\cdots }"></span>). </p><p>Under this definition, the subset on which a function is defined is significant when generalizing statements from the univariate setting to the multivariate setting. For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n,m)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n,m)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b4d90d0dcfb967ec07bae7226112b9e9b000b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.818ex; height:2.843ex;" alt="{\displaystyle f(n,m)=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(n,m)=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(n,m)=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cad27ab0d17f4a109ed5405edaa12ff433e18e36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.888ex; height:2.843ex;" alt="{\displaystyle g(n,m)=n}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n,m)=O(g(n,m))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n,m)=O(g(n,m))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d05254fc1d2f56769dfad2fa32f78148a297c9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.632ex; height:2.843ex;" alt="{\displaystyle f(n,m)=O(g(n,m))}"></span> if we restrict <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [1,\infty )^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [1,\infty )^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a753904fe6e79c3dc47a3625dec4f8cda69f3565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.126ex; height:3.176ex;" alt="{\displaystyle [1,\infty )^{2}}"></span>, but not if they are defined on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\infty )^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\infty )^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9344632df798a9fb7d480004a0c78474c6fc7e28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.126ex; height:3.176ex;" alt="{\displaystyle [0,\infty )^{2}}"></span>. </p><p>This is not the only generalization of big O to multivariate functions, and in practice, there is some inconsistency in the choice of definition.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Matters_of_notation">Matters of notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=11" title="Edit section: Matters of notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Equals_sign">Equals sign</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=12" title="Edit section: Equals sign"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The statement "<span class="texhtml">&#8202; <i>f</i>(<i>x</i>) &#8202;</span> is <span class="texhtml">&#8202; <i>O</i>[ <i>g</i>(<i>x</i>) ] &#8202;</span>" as defined above is usually written as <span class="texhtml">&#8202; <i>f</i>(<i>x</i>) = <i>O</i>[ <i>g</i>(<i>x</i>) ] &#8202;</span>. Some consider this to be an <a href="/wiki/Abuse_of_notation" title="Abuse of notation">abuse of notation</a>, since the use of the equals sign could be misleading as it suggests a symmetry that this statement does not have. As <a href="/wiki/Nicolaas_Govert_de_Bruijn" title="Nicolaas Govert de Bruijn">de Bruijn</a> says, <span class="texhtml">&#8202; <i>O</i>[ <i>x</i> ] = <i>O</i>[ <i>x</i><sup>2</sup> ] &#8202;</span> is true but <span class="texhtml">&#8202; <i>O</i>[ <i>x</i><sup>2</sup> ] = <i>O</i>[ <i>x</i> ] &#8202;</span> is not.<sup id="cite_ref-deBruijn_9-0" class="reference"><a href="#cite_note-deBruijn-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth</a> describes such statements as "one-way equalities", since if the sides could be reversed, "we could deduce ridiculous things like <span class="texhtml">&#8202; <i>n</i> = <i>n</i><sup>2</sup> &#8202;</span> from the identities <span class="texhtml">&#8202; <i>n</i> = <i>O</i>[ <i>n</i><sup>2</sup> ] &#8202;</span> and <span class="texhtml">&#8202; <i>n</i><sup>2</sup> = <i>O</i>[ <i>n</i><sup>2</sup> ] &#8202;</span>".<sup id="cite_ref-Concrete_Mathematics_10-0" class="reference"><a href="#cite_note-Concrete_Mathematics-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> In another letter, Knuth also pointed out that </p> <dl><dd>"the equality sign is not symmetric with respect to such notations", [as, in this notation,] "mathematicians customarily use the '=' sign as they use the word 'is' in English: Aristotle is a man, but a man isn't necessarily Aristotle".<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>For these reasons, it would be more precise to use <a href="/wiki/Set_notation" class="mw-redirect" title="Set notation">set notation</a> and write <span class="texhtml">&#8202; <i>f</i>(<i>x</i>) ∈ <i>O</i>[ <i>g</i>(<i>x</i>) ] &#8202;</span> (read as: "<span class="texhtml">&#8202; <i>f</i>(<i>x</i>) &#8202;</span> <a href="/wiki/Element_(mathematics)#Notation_and_terminology" title="Element (mathematics)">is an element of</a> <span class="texhtml">&#8202; <i>O</i>[ <i>g</i>(<i>x</i>) ] &#8202;</span>", or "<span class="texhtml">&#8202; <i>f</i>(<i>x</i>) &#8202;</span> is in the set <span class="texhtml">&#8202; <i>O</i>[ <i>g</i>(<i>x</i>) ] &#8202;"),</span> thinking of <span class="texhtml">&#8202; <i>O</i>[ <i>g</i>(<i>x</i>) ] &#8202;</span> as the class of all functions <span class="texhtml">&#8202; <i>h</i>(<i>x</i>) &#8202;</span> such that <span class="nowrap">&#8202; <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>h</i>(<i>x</i>)</span>&#124; ≤ <i>C</i> &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i>(<i>x</i>)</span>&#124; &#8202;</span> </span> for some positive real number <span class="texhtml mvar" style="font-style:italic;">C</span>.<sup id="cite_ref-Concrete_Mathematics_10-1" class="reference"><a href="#cite_note-Concrete_Mathematics-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> However, the use of the equals sign is customary.<sup id="cite_ref-deBruijn_9-1" class="reference"><a href="#cite_note-deBruijn-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Concrete_Mathematics_10-2" class="reference"><a href="#cite_note-Concrete_Mathematics-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Other_arithmetic_operators">Other arithmetic operators</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=13" title="Edit section: Other arithmetic operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big O notation can also be used in conjunction with other arithmetic operators in more complicated equations. For example, <span class="nowrap"><i>h</i>(<i>x</i>) + <i>O</i>(<i>f</i>(<i>x</i>))</span> denotes the collection of functions having the growth of <i>h</i>(<i>x</i>) plus a part whose growth is limited to that of <i>f</i>(<i>x</i>). Thus, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)=h(x)+O(f(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)=h(x)+O(f(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73e8f66f701116890456d29ce8d01b807272d91d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.672ex; height:2.843ex;" alt="{\displaystyle g(x)=h(x)+O(f(x))}"></span></dd></dl> <p>expresses the same as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)-h(x)=O(f(x)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)-h(x)=O(f(x)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e3477cd71688b6a7a1769aadc28764efa090688" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.319ex; height:2.843ex;" alt="{\displaystyle g(x)-h(x)=O(f(x)).}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Example_2">Example <span class="anchor" id="Example_(Matters_of_notation)"></span></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=14" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose an <a href="/wiki/Algorithm" title="Algorithm">algorithm</a> is being developed to operate on a set of <i>n</i> elements. Its developers are interested in finding a function <i>T</i>(<i>n</i>) that will express how long the algorithm will take to run (in some arbitrary measurement of time) in terms of the number of elements in the input set. The algorithm works by first calling a subroutine to sort the elements in the set and then perform its own operations. The sort has a known time complexity of <i>O</i>(<i>n</i><sup>2</sup>), and after the subroutine runs the algorithm must take an additional <span class="nowrap">55<i>n</i><sup>3</sup> + 2<i>n</i> + 10</span> steps before it terminates. Thus the overall time complexity of the algorithm can be expressed as <span class="nowrap"><i>T</i>(<i>n</i>) = 55<i>n</i><sup>3</sup> + <i>O</i>(<i>n</i><sup>2</sup>)</span>. Here the terms <span class="nowrap">2<i>n</i> + 10</span> are subsumed within the faster-growing <i>O</i>(<i>n</i><sup>2</sup>). Again, this usage disregards some of the formal meaning of the "=" symbol, but it does allow one to use the big O notation as a kind of convenient placeholder. </p> <div class="mw-heading mw-heading3"><h3 id="Multiple_uses">Multiple uses</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=15" title="Edit section: Multiple uses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In more complicated usage, <i>O</i>(·) can appear in different places in an equation, even several times on each side. For example, the following are true for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0d55d9b32f6fa8fab6a84ea444a6b5a24bb45e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:1.843ex;" alt="{\displaystyle n\to \infty }"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(n+1)^{2}&amp;=n^{2}+O(n),\\(n+O(n^{1/2}))\cdot (n+O(\log n))^{2}&amp;=n^{3}+O(n^{5/2}),\\n^{O(1)}&amp;=O(e^{n}).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(n+1)^{2}&amp;=n^{2}+O(n),\\(n+O(n^{1/2}))\cdot (n+O(\log n))^{2}&amp;=n^{3}+O(n^{5/2}),\\n^{O(1)}&amp;=O(e^{n}).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42312b6e624001cba2f95952067b93278ea868bb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.21ex; margin-bottom: -0.294ex; width:48.295ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}(n+1)^{2}&amp;=n^{2}+O(n),\\(n+O(n^{1/2}))\cdot (n+O(\log n))^{2}&amp;=n^{3}+O(n^{5/2}),\\n^{O(1)}&amp;=O(e^{n}).\end{aligned}}}"></span> The meaning of such statements is as follows: for <i>any</i> functions which satisfy each <i>O</i>(·) on the left side, there are <i>some</i> functions satisfying each <i>O</i>(·) on the right side, such that substituting all these functions into the equation makes the two sides equal. For example, the third equation above means: "For any function <i>f</i>(<i>n</i>) = <i>O</i>(1), there is some function <i>g</i>(<i>n</i>) = <i>O</i>(<i>e</i><sup><i>n</i></sup>) such that <i>n</i><sup><i>f</i>(<i>n</i>)</sup> = <i>g</i>(<i>n</i>)." In terms of the "set notation" above, the meaning is that the class of functions represented by the left side is a subset of the class of functions represented by the right side. In this use the "=" is a formal symbol that unlike the usual use of "=" is not a <a href="/wiki/Symmetric_relation" title="Symmetric relation">symmetric relation</a>. Thus for example <span class="nowrap"><i>n</i><sup><i>O</i>(1)</sup> = <i>O</i>(<i>e</i><sup><i>n</i></sup>)</span> does not imply the false statement <span class="nowrap"><i>O</i>(<i>e</i><sup><i>n</i></sup>) = <i>n</i><sup><i>O</i>(1)</sup></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Typesetting">Typesetting</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=16" title="Edit section: Typesetting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big O is typeset as an italicized uppercase "O", as in the following example: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd9594a16cb898b8f2a2dff9227a385ec183392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.032ex; height:3.176ex;" alt="{\displaystyle O(n^{2})}"></span>.<sup id="cite_ref-KnuthArt_12-0" class="reference"><a href="#cite_note-KnuthArt-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ConcreteMath_13-0" class="reference"><a href="#cite_note-ConcreteMath-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> In <a href="/wiki/TeX" title="TeX">TeX</a>, it is produced by simply typing O inside math mode. Unlike Greek-named Bachmann–Landau notations, it needs no special symbol. However, some authors use the calligraphic variant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6ae2ed4058fb748a183d9ada8aea50a00d0c89f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.85ex; height:2.176ex;" alt="{\displaystyle {\mathcal {O}}}"></span> instead.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Orders_of_common_functions">Orders of common functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=17" title="Edit section: Orders of common functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Time_complexity#Table_of_common_time_complexities" title="Time complexity">Time complexity §&#160;Table of common time complexities</a></div> <p>Here is a list of classes of functions that are commonly encountered when analyzing the running time of an algorithm. In each case, <i>c</i> is a positive constant and <i>n</i> increases without bound. The slower-growing functions are generally listed first. </p> <table class="wikitable"> <tbody><tr> <th>Notation</th> <th>Name</th> <th>Example </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e66384bc40452c5452f33563fe0e27e803b0cc21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.745ex; height:2.843ex;" alt="{\displaystyle O(1)}"></span></td> <td><a href="/wiki/Constant_time" class="mw-redirect" title="Constant time">constant</a></td> <td>Finding the median value for a sorted array of numbers; Calculating <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c490525b94310eb9d66c0282f8d28f652af9f40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.998ex; height:2.843ex;" alt="{\displaystyle (-1)^{n}}"></span>; Using a constant-size <a href="/wiki/Lookup_table" title="Lookup table">lookup table</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(\alpha (n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(\alpha (n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f2f9c5bf5571b12dd0907f0a1ef917e1c082201" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.274ex; height:2.843ex;" alt="{\displaystyle O(\alpha (n))}"></span></td> <td><a href="/wiki/Inverse_Ackermann_function" class="mw-redirect" title="Inverse Ackermann function">inverse Ackermann function</a></td> <td>Amortized complexity per operation for the <a href="/wiki/Disjoint-set_data_structure" title="Disjoint-set data structure">Disjoint-set data structure</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(\log \log n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(\log \log n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9f3ded7e013a35c8039ff3276bee6e183d7f1a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.695ex; height:2.843ex;" alt="{\displaystyle O(\log \log n)}"></span></td> <td>double logarithmic</td> <td>Average number of comparisons spent finding an item using <a href="/wiki/Interpolation_search" title="Interpolation search">interpolation search</a> in a sorted array of uniformly distributed values </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(\log n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(\log n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aae0f22048ba6b7c05dbae17b056bfa16e21807d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.336ex; height:2.843ex;" alt="{\displaystyle O(\log n)}"></span></td> <td><a href="/wiki/Logarithmic_time" class="mw-redirect" title="Logarithmic time">logarithmic</a></td> <td>Finding an item in a sorted array with a <a href="/wiki/Binary_search_algorithm" class="mw-redirect" title="Binary search algorithm">binary search</a> or a balanced search <a href="/wiki/Tree_data_structure" class="mw-redirect" title="Tree data structure">tree</a> as well as all operations in a <a href="/wiki/Binomial_heap" title="Binomial heap">binomial heap</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O((\log n)^{c})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O((\log n)^{c})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/180638b34fb9d9a72d4448fa4136615b0487d52a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.09ex; height:2.843ex;" alt="{\displaystyle O((\log n)^{c})}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle c&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>c</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle c&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9057ec1c55def34aa105650bfe9491240553d160" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.268ex; height:2.176ex;" alt="{\textstyle c&gt;1}"></span></td> <td><a href="/wiki/Polylogarithmic_time" class="mw-redirect" title="Polylogarithmic time">polylogarithmic</a></td> <td>Matrix chain ordering can be solved in polylogarithmic time on a <a href="/wiki/Parallel_random-access_machine" class="mw-redirect" title="Parallel random-access machine">parallel random-access machine</a>. </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n^{c})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n^{c})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/949acd060374f98c6dc5f76ad962c7fe2d6636d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.922ex; height:2.843ex;" alt="{\displaystyle O(n^{c})}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 0&lt;c&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>c</mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 0&lt;c&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e7a58e5049a6f4b9f57b980a1e4fc6d7481532" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.529ex; height:2.176ex;" alt="{\textstyle 0&lt;c&lt;1}"></span></td> <td>fractional power</td> <td>Searching in a <a href="/wiki/K-d_tree" title="K-d tree">k-d tree</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34109fe397fdcff370079185bfdb65826cb5565a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.977ex; height:2.843ex;" alt="{\displaystyle O(n)}"></span></td> <td><a href="/wiki/Linear_time" class="mw-redirect" title="Linear time">linear</a></td> <td>Finding an item in an unsorted list or in an unsorted array; adding two <i>n</i>-bit integers by <a href="/wiki/Ripple_carry_adder" class="mw-redirect" title="Ripple carry adder">ripple carry</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n\log ^{*}n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <msup> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n\log ^{*}n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c6a679f4e6f08c50bfbdf85386ff72f320fc384" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.172ex; height:2.843ex;" alt="{\displaystyle O(n\log ^{*}n)}"></span></td> <td><i>n</i> <a href="/wiki/Log-star" class="mw-redirect" title="Log-star">log-star</a> <i>n</i></td> <td>Performing <a href="/wiki/Polygon_triangulation" title="Polygon triangulation">triangulation</a> of a simple polygon using <a href="/wiki/Kirkpatrick%E2%80%93Seidel_algorithm" title="Kirkpatrick–Seidel algorithm">Seidel's algorithm</a>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log ^{*}(n)={\begin{cases}0,&amp;{\text{if }}n\leq 1\\1+\log ^{*}(\log n),&amp;{\text{if }}n&gt;1\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>+</mo> <msup> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log ^{*}(n)={\begin{cases}0,&amp;{\text{if }}n\leq 1\\1+\log ^{*}(\log n),&amp;{\text{if }}n&gt;1\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a8ce0b95ab4bdc244b0ad464677f1709df7c562" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.979ex; height:6.176ex;" alt="{\displaystyle \log ^{*}(n)={\begin{cases}0,&amp;{\text{if }}n\leq 1\\1+\log ^{*}(\log n),&amp;{\text{if }}n&gt;1\end{cases}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n\log n)=O(\log n!)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>!</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n\log n)=O(\log n!)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cb5e834d1a8273752727953b92a514047d22484" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.199ex; height:2.843ex;" alt="{\displaystyle O(n\log n)=O(\log n!)}"></span></td> <td><a href="/wiki/Linearithmic_time" class="mw-redirect" title="Linearithmic time">linearithmic</a>, loglinear, quasilinear, or "<i>n</i> log <i>n</i>"</td> <td>Performing a <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a>; fastest possible <a href="/wiki/Comparison_sort" title="Comparison sort">comparison sort</a>; <a href="/wiki/Heapsort" title="Heapsort">heapsort</a> and <a href="/wiki/Merge_sort" title="Merge sort">merge sort</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd9594a16cb898b8f2a2dff9227a385ec183392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.032ex; height:3.176ex;" alt="{\displaystyle O(n^{2})}"></span></td> <td><a href="/wiki/Quadratic_time" class="mw-redirect" title="Quadratic time">quadratic</a></td> <td>Multiplying two <i>n</i>-digit numbers by <a href="/wiki/Multiplication_algorithm#Long_multiplication" title="Multiplication algorithm">schoolbook multiplication</a>; simple sorting algorithms, such as <a href="/wiki/Bubble_sort" title="Bubble sort">bubble sort</a>, <a href="/wiki/Selection_sort" title="Selection sort">selection sort</a> and <a href="/wiki/Insertion_sort" title="Insertion sort">insertion sort</a>; (worst-case) bound on some usually faster sorting algorithms such as <a href="/wiki/Quicksort" title="Quicksort">quicksort</a>, <a href="/wiki/Shellsort" title="Shellsort">Shellsort</a>, and <a href="/wiki/Tree_sort" title="Tree sort">tree sort</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n^{c})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n^{c})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/949acd060374f98c6dc5f76ad962c7fe2d6636d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.922ex; height:2.843ex;" alt="{\displaystyle O(n^{c})}"></span></td> <td><a href="/wiki/Polynomial_time" class="mw-redirect" title="Polynomial time">polynomial</a> or algebraic</td> <td><a href="/wiki/Tree-adjoining_grammar" title="Tree-adjoining grammar">Tree-adjoining grammar</a> parsing; maximum <a href="/wiki/Matching_(graph_theory)" title="Matching (graph theory)">matching</a> for <a href="/wiki/Bipartite_graph" title="Bipartite graph">bipartite graphs</a>; finding the <a href="/wiki/Determinant" title="Determinant">determinant</a> with <a href="/wiki/LU_decomposition" title="LU decomposition">LU decomposition</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{n}[\alpha ,c]=e^{(c+o(1))(\ln n)^{\alpha }(\ln \ln n)^{1-\alpha }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{n}[\alpha ,c]=e^{(c+o(1))(\ln n)^{\alpha }(\ln \ln n)^{1-\alpha }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40715162d91a34daf9bcfed5f41d8e336417f803" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.754ex; height:3.676ex;" alt="{\displaystyle L_{n}[\alpha ,c]=e^{(c+o(1))(\ln n)^{\alpha }(\ln \ln n)^{1-\alpha }}}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 0&lt;\alpha &lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 0&lt;\alpha &lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e2d230edd927b1759c4b4093fa4caaa8a7944cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.009ex; height:2.176ex;" alt="{\textstyle 0&lt;\alpha &lt;1}"></span></td> <td><a href="/wiki/L-notation" title="L-notation">L-notation</a> or <a href="/wiki/Sub-exponential_time" class="mw-redirect" title="Sub-exponential time">sub-exponential</a></td> <td>Factoring a number using the <a href="/wiki/Quadratic_sieve" title="Quadratic sieve">quadratic sieve</a> or <a href="/wiki/General_number_field_sieve" title="General number field sieve">number field sieve</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(c^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(c^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cab28ca44589e77de77ab8cc55cdbd4a63f7ef8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.808ex; height:2.843ex;" alt="{\displaystyle O(c^{n})}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle c&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>c</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle c&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9057ec1c55def34aa105650bfe9491240553d160" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.268ex; height:2.176ex;" alt="{\textstyle c&gt;1}"></span></td> <td><a href="/wiki/Exponential_time" class="mw-redirect" title="Exponential time">exponential</a></td> <td>Finding the (exact) solution to the <a href="/wiki/Travelling_salesman_problem" title="Travelling salesman problem">travelling salesman problem</a> using <a href="/wiki/Dynamic_programming" title="Dynamic programming">dynamic programming</a>; determining if two logical statements are equivalent using <a href="/wiki/Brute-force_search" title="Brute-force search">brute-force search</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n!)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>!</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n!)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12921c489714d475a454bd39ef644d4334d97113" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.624ex; height:2.843ex;" alt="{\displaystyle O(n!)}"></span></td> <td><a href="/wiki/Factorial" title="Factorial">factorial</a></td> <td>Solving the <a href="/wiki/Travelling_salesman_problem" title="Travelling salesman problem">travelling salesman problem</a> via brute-force search; generating all unrestricted permutations of a <a href="/wiki/Partially_ordered_set" title="Partially ordered set">poset</a>; finding the <a href="/wiki/Determinant" title="Determinant">determinant</a> with <a href="/wiki/Laplace_expansion" title="Laplace expansion">Laplace expansion</a>; enumerating <a href="/wiki/Bell_number" title="Bell number">all partitions of a set</a> </td></tr></tbody></table> <p>The statement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=O(n!)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>!</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=O(n!)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2112c37f521132251407043c59aec72dbad126ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.205ex; height:2.843ex;" alt="{\displaystyle f(n)=O(n!)}"></span> is sometimes weakened to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=O\left(n^{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=O\left(n^{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e476f151f8eebb41935f16a78e7d78b8bb8a75f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.164ex; height:2.843ex;" alt="{\displaystyle f(n)=O\left(n^{n}\right)}"></span> to derive simpler formulas for asymptotic complexity. For any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27b3af208b148139eefc03f0f80fa94c38c5af45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k&gt;0}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba126f626d61752f62eaacaf11761a54de4dc84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.268ex; height:2.176ex;" alt="{\displaystyle c&gt;0}"></span>,</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n^{c}(\log n)^{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n^{c}(\log n)^{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b83df58cf2ec028a8c249ec28c770e3bb0bf347" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.573ex; height:3.176ex;" alt="{\displaystyle O(n^{c}(\log n)^{k})}"></span> is a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n^{c+\varepsilon })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n^{c+\varepsilon })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10906d93e6dc825b378d3642c1079925d87492bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.966ex; height:3.009ex;" alt="{\displaystyle O(n^{c+\varepsilon })}"></span> for any <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e04ec3670b50384a3ce48aca42e7cc5131a06b12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.344ex; height:2.176ex;" alt="{\displaystyle \varepsilon &gt;0}"></span>,</span> so may be considered as a polynomial with some bigger order. </p> <div class="mw-heading mw-heading2"><h2 id="Related_asymptotic_notations">Related asymptotic notations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=18" title="Edit section: Related asymptotic notations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big <i>O</i> is widely used in computer science. Together with some other related notations, it forms the family of Bachmann–Landau notations.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2021)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Little-o_notation">Little-o notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=19" title="Edit section: Little-o notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Little o" redirects here. For the baseball player, see <a href="/wiki/Omar_Vizquel" title="Omar Vizquel">Omar Vizquel</a>.</div> <p>Intuitively, the assertion "<span class="texhtml"><i>f</i>(<i>x</i>)</span> is <span class="texhtml"><i>o</i>(<i>g</i>(<i>x</i>))</span>" (read "<span class="texhtml"><i>f</i>(<i>x</i>)</span> is little-o of <span class="texhtml"><i>g</i>(<i>x</i>)</span>" or "<span class="texhtml"><i>f</i>(<i>x</i>)</span> is of inferior order to <span class="texhtml"><i>g</i>(<i>x</i>)</span>") means that <span class="texhtml"><i>g</i>(<i>x</i>)</span> grows much faster than <span class="texhtml"><i>f</i>(<i>x</i>)</span>, or equivalently <span class="texhtml"><i>f</i>(<i>x</i>)</span> grows much slower than <span class="texhtml"><i>g</i>(<i>x</i>)</span>. As before, let <i>f</i> be a real or complex valued function and <i>g</i> a real valued function, both defined on some unbounded subset of the positive <a href="/wiki/Real_number" title="Real number">real numbers</a>, such that <i>g</i>(<i>x</i>) is strictly positive for all large enough values of <i>x</i>. One writes </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=o(g(x))\quad {\text{ as }}x\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;as&#xA0;</mtext> </mrow> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=o(g(x))\quad {\text{ as }}x\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/095a25369f3dec90b5123575eca7eb35c2bb2c63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.538ex; height:2.843ex;" alt="{\displaystyle f(x)=o(g(x))\quad {\text{ as }}x\to \infty }"></span></dd></dl> <p>if for every positive constant <span class="texhtml mvar" style="font-style:italic;">ε</span> there exists a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(x)|\leq \varepsilon g(x)\quad {\text{ for all }}x\geq x_{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B5;<!-- ε --></mi> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(x)|\leq \varepsilon g(x)\quad {\text{ for all }}x\geq x_{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68b0e6df26708f200e053ff5fa852452c01a11d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.914ex; height:2.843ex;" alt="{\displaystyle |f(x)|\leq \varepsilon g(x)\quad {\text{ for all }}x\geq x_{0}.}"></span><sup id="cite_ref-Landausmallo_16-0" class="reference"><a href="#cite_note-Landausmallo-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>For example, one has </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2x=o(x^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2x=o(x^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed5154f15b7298f3b33c2341117142eaf1890322" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.911ex; height:3.176ex;" alt="{\displaystyle 2x=o(x^{2})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/x=o(1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/x=o(1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a546858e20b4fdffc68734738e18b4d30371c25c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.499ex; height:2.843ex;" alt="{\displaystyle 1/x=o(1),}"></span> &#160; &#160; both as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\to \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\to \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/077f3645400fedfac226358e8dc3ead4949b1fc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.914ex; height:1.843ex;" alt="{\displaystyle x\to \infty .}"></span></dd></dl> <p>The difference between the <a href="#Formal_definition">definition of the big-O notation</a> and the definition of little-o is that while the former has to be true for <i>at least one</i> constant <i>M</i>, the latter must hold for <i>every</i> positive constant <span class="texhtml"><i>ε</i></span>, however small.<sup id="cite_ref-Introduction_to_Algorithms_17-0" class="reference"><a href="#cite_note-Introduction_to_Algorithms-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> In this way, little-o notation makes a <i>stronger statement</i> than the corresponding big-O notation: every function that is little-o of <i>g</i> is also big-O of <i>g</i>, but not every function that is big-O of <i>g</i> is little-o of <i>g</i>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2x^{2}=O(x^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2x^{2}=O(x^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/120bc341cdd3295546a6da949edc72d4ef04b053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.611ex; height:3.176ex;" alt="{\displaystyle 2x^{2}=O(x^{2})}"></span> but <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2x^{2}\neq o(x^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2260;<!-- ≠ --></mo> <mi>o</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2x^{2}\neq o(x^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec3a0e26e2f0130c79181844f0bcf3be77b531de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.966ex; height:3.176ex;" alt="{\displaystyle 2x^{2}\neq o(x^{2})}"></span>.</span> </p><p>If <i>g</i>(<i>x</i>) is nonzero, or at least becomes nonzero beyond a certain point, the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=o(g(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=o(g(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66122afa55c2aa7af3f23d3caa66a5a6ca4a494c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.708ex; height:2.843ex;" alt="{\displaystyle f(x)=o(g(x))}"></span> is equivalent to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b124ab9f38e11ecaf524de2f501f4956ec7b0bc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.128ex; height:6.509ex;" alt="{\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=0}"></span> (and this is in fact how Landau<sup id="cite_ref-Landausmallo_16-1" class="reference"><a href="#cite_note-Landausmallo-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> originally defined the little-o notation).</dd></dl> <p>Little-o respects a number of arithmetic operations. For example, </p> <dl><dd>if <span class="texhtml mvar" style="font-style:italic;">c</span> is a nonzero constant and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=o(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=o(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0023489f1bbadf8b2ee4b0257a0a7f6fb600784e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.43ex; height:2.843ex;" alt="{\displaystyle f=o(g)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\cdot f=o(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>f</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\cdot f=o(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07bfe7f3dfa6248159f2437946fb3623b7da292a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.116ex; height:2.843ex;" alt="{\displaystyle c\cdot f=o(g)}"></span>, and</dd> <dd>if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=o(F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=o(F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a702e6bf0cfdb968289ca99ca0ff50df5eac80f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.055ex; height:2.843ex;" alt="{\displaystyle f=o(F)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=o(G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=o(G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebc932d37954c06dd90db3fdc2d86df728c15b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.978ex; height:2.843ex;" alt="{\displaystyle g=o(G)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\cdot g=o(F\cdot G).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>F</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\cdot g=o(F\cdot G).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ec05071b3538b7537bceb558e8770698fe3d460" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.003ex; height:2.843ex;" alt="{\displaystyle f\cdot g=o(F\cdot G).}"></span></dd></dl> <p>It also satisfies a <a href="/wiki/Transitive_relation" title="Transitive relation">transitivity</a> relation: </p> <dl><dd>if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=o(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=o(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0023489f1bbadf8b2ee4b0257a0a7f6fb600784e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.43ex; height:2.843ex;" alt="{\displaystyle f=o(g)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=o(h)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=o(h)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b30f22123250b0ea58e7d52f498ba1e9820168b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.49ex; height:2.843ex;" alt="{\displaystyle g=o(h)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=o(h).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=o(h).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a25bacdf64773597665893fa46262103bf632f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.3ex; height:2.843ex;" alt="{\displaystyle f=o(h).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Big_Omega_notation">Big Omega notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=20" title="Edit section: Big Omega notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another asymptotic notation is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>, read "big omega".<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> There are two widespread and incompatible definitions of the statement </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\Omega (g(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\Omega (g(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83679ae2e7d7e9f0d0c0e7e750ee75ef824f74a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.258ex; height:2.843ex;" alt="{\displaystyle f(x)=\Omega (g(x))}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\to a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\to a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d566e0ecdd92745b25ad40bae39614468c01f6e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.174ex; height:1.843ex;" alt="{\displaystyle x\to a}"></span>,</dd></dl> <p>where <i>a</i> is some real number, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span>, where <i>f</i> and <i>g</i> are real functions defined in a neighbourhood of <i>a</i>, and where <i>g</i> is positive in this neighbourhood. </p><p>The Hardy–Littlewood definition is used mainly in <a href="/wiki/Analytic_number_theory" title="Analytic number theory">analytic number theory</a>, and the Knuth definition mainly in <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">computational complexity theory</a>; the definitions are not equivalent. </p> <div class="mw-heading mw-heading4"><h4 id="The_Hardy–Littlewood_definition"><span id="The_Hardy.E2.80.93Littlewood_definition"></span>The Hardy–Littlewood definition</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=21" title="Edit section: The Hardy–Littlewood definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1914 <a href="/wiki/Godfrey_Harold_Hardy" class="mw-redirect" title="Godfrey Harold Hardy">G.H. Hardy</a> and <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">J.E. Littlewood</a> introduced the new symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Omega \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Omega \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7c5e43c8d2b22b4c0191ebd8bcc4c3f5d715179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.486ex; height:2.509ex;" alt="{\displaystyle \ \Omega \ ,}"></span><sup id="cite_ref-HL_19-0" class="reference"><a href="#cite_note-HL-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> which is defined as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\Omega {\bigl (}\ g(x)\ {\bigr )}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\Omega {\bigl (}\ g(x)\ {\bigr )}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/719b776f8a8486047d46d1c0b995fe92c8595df7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.063ex; height:3.176ex;" alt="{\displaystyle f(x)=\Omega {\bigl (}\ g(x)\ {\bigr )}\quad }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad x\to \infty \quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad x\to \infty \quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef653404ab1b7d3bdd8c266c8efc83dd9ad009c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.913ex; height:1.843ex;" alt="{\displaystyle \quad x\to \infty \quad }"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \limsup _{x\to \infty }\ \left|{\frac {\ f(x)\ }{g(x)}}\right|&gt;0~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mtext>&#xA0;</mtext> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>&gt;</mo> <mn>0</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \limsup _{x\to \infty }\ \left|{\frac {\ f(x)\ }{g(x)}}\right|&gt;0~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1389f773c5e34441a282bcd9ebbbc0f8d1cd4237" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.993ex; height:6.509ex;" alt="{\displaystyle \quad \limsup _{x\to \infty }\ \left|{\frac {\ f(x)\ }{g(x)}}\right|&gt;0~.}"></span></dd></dl> <p>Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~f(x)=\Omega {\bigl (}\ g(x)\ {\bigr )}~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~f(x)=\Omega {\bigl (}\ g(x)\ {\bigr )}~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76762849097e9094691cda705eb35448c9f470a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.901ex; height:3.176ex;" alt="{\displaystyle ~f(x)=\Omega {\bigl (}\ g(x)\ {\bigr )}~}"></span> is the negation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~f(x)=o{\bigl (}\ g(x)\ {\bigr )}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~f(x)=o{\bigl (}\ g(x)\ {\bigr )}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0e1e79f0eee321331e7240bffa9b9547031bca1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.998ex; height:3.176ex;" alt="{\displaystyle ~f(x)=o{\bigl (}\ g(x)\ {\bigr )}~.}"></span> </p><p>In 1916 the same authors introduced the two new symbols <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Omega _{R}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Omega _{R}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1108f25bb73cbee35a299e688e3b5a85b57b261d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.319ex; height:2.509ex;" alt="{\displaystyle \ \Omega _{R}\ }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Omega _{L}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Omega _{L}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec9180b2c2ef15696ca5b770dd246ffa3a67380" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.838ex; height:2.509ex;" alt="{\displaystyle \ \Omega _{L}\ ,}"></span> defined as:<sup id="cite_ref-HL2_20-0" class="reference"><a href="#cite_note-HL2-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\Omega _{R}{\bigl (}\ g(x)\ {\bigr )}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\Omega _{R}{\bigl (}\ g(x)\ {\bigr )}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d742079135b22ce3732b229da3cba5a989d1b7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.542ex; height:3.176ex;" alt="{\displaystyle f(x)=\Omega _{R}{\bigl (}\ g(x)\ {\bigr )}\quad }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad x\to \infty \quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad x\to \infty \quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef653404ab1b7d3bdd8c266c8efc83dd9ad009c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.913ex; height:1.843ex;" alt="{\displaystyle \quad x\to \infty \quad }"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \limsup _{x\to \infty }\ {\frac {\ f(x)\ }{g(x)}}&gt;0\ ;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&gt;</mo> <mn>0</mn> <mtext>&#xA0;</mtext> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \limsup _{x\to \infty }\ {\frac {\ f(x)\ }{g(x)}}&gt;0\ ;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d794effaab534866d2da1f70098493b98e0c044a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.312ex; height:6.509ex;" alt="{\displaystyle \quad \limsup _{x\to \infty }\ {\frac {\ f(x)\ }{g(x)}}&gt;0\ ;}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\Omega _{L}{\bigl (}\ g(x)\ {\bigr )}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\Omega _{L}{\bigl (}\ g(x)\ {\bigr )}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21bb968446a8211a84485db0c46f58d8a56f8674" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.414ex; height:3.176ex;" alt="{\displaystyle f(x)=\Omega _{L}{\bigl (}\ g(x)\ {\bigr )}\quad }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad x\to \infty \quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad x\to \infty \quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef653404ab1b7d3bdd8c266c8efc83dd9ad009c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.913ex; height:1.843ex;" alt="{\displaystyle \quad x\to \infty \quad }"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad ~\liminf _{x\to \infty }\ {\frac {\ f(x)\ }{g(x)}}&lt;0~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mtext>&#xA0;</mtext> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&lt;</mo> <mn>0</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad ~\liminf _{x\to \infty }\ {\frac {\ f(x)\ }{g(x)}}&lt;0~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c1e4c105c6213ddeb9ef8c068125840a6292d75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.43ex; height:6.509ex;" alt="{\displaystyle \quad ~\liminf _{x\to \infty }\ {\frac {\ f(x)\ }{g(x)}}&lt;0~.}"></span></dd></dl> <p>These symbols were used by <a href="/wiki/Edmund_Landau" title="Edmund Landau">E. Landau</a>, with the same meanings, in 1924.<sup id="cite_ref-landau_21-0" class="reference"><a href="#cite_note-landau-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Authors that followed Landau, however, use a different notation for the same definitions:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2018)">citation needed</span></a></i>&#93;</sup> The symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Omega _{R}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Omega _{R}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1108f25bb73cbee35a299e688e3b5a85b57b261d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.319ex; height:2.509ex;" alt="{\displaystyle \ \Omega _{R}\ }"></span> has been replaced by the current notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Omega _{+}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Omega _{+}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed6eda01147bbaa4c155358a4baf6ab7f0672903" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.35ex; height:2.509ex;" alt="{\displaystyle \ \Omega _{+}\ }"></span> with the same definition, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Omega _{L}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Omega _{L}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee9c2f1022ac10a744c73930ec1998ad0d7dfb68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.191ex; height:2.509ex;" alt="{\displaystyle \ \Omega _{L}\ }"></span> became <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Omega _{-}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Omega _{-}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aac8b139956069742925d74e0d555f44c0fcb32a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.997ex; height:2.509ex;" alt="{\displaystyle \ \Omega _{-}~.}"></span> </p><p>These three symbols <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Omega \ ,\Omega _{+}\ ,\Omega _{-}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>,</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Omega \ ,\Omega _{+}\ ,\Omega _{-}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4328f8e296d03a3a1ea9e5357d3c80a56429ab60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.093ex; height:2.509ex;" alt="{\displaystyle \ \Omega \ ,\Omega _{+}\ ,\Omega _{-}\ ,}"></span> as well as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ f(x)=\Omega _{\pm }{\bigl (}\ g(x)\ {\bigr )}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00B1;<!-- ± --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ f(x)=\Omega _{\pm }{\bigl (}\ g(x)\ {\bigr )}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9980b9c62ae16aa7f7ceaa0d8ff8fa8ac2e62ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.412ex; height:3.176ex;" alt="{\displaystyle \ f(x)=\Omega _{\pm }{\bigl (}\ g(x)\ {\bigr )}\ }"></span> (meaning that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ f(x)=\Omega _{+}{\bigl (}\ g(x)\ {\bigr )}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ f(x)=\Omega _{+}{\bigl (}\ g(x)\ {\bigr )}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dbb0203ff8768ab57fa2b604be332532c07f9b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.412ex; height:3.176ex;" alt="{\displaystyle \ f(x)=\Omega _{+}{\bigl (}\ g(x)\ {\bigr )}\ }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ f(x)=\Omega _{-}{\bigl (}\ g(x)\ {\bigr )}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ f(x)=\Omega _{-}{\bigl (}\ g(x)\ {\bigr )}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d5f878ae2b06d1ad5876e51cd45acc753cd7db1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.412ex; height:3.176ex;" alt="{\displaystyle \ f(x)=\Omega _{-}{\bigl (}\ g(x)\ {\bigr )}\ }"></span> are both satisfied), are now currently used in <a href="/wiki/Analytic_number_theory" title="Analytic number theory">analytic number theory</a>.<sup id="cite_ref-Ivic_22-0" class="reference"><a href="#cite_note-Ivic-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading5"><h5 id="Simple_examples">Simple examples</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=22" title="Edit section: Simple examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin x=\Omega (1)\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin x=\Omega (1)\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e844e31a8b6f2be13b24d7327ce25f26825f510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.643ex; height:2.843ex;" alt="{\displaystyle \sin x=\Omega (1)\quad }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad x\to \infty \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad x\to \infty \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/896ee8b534f618a0d1fd725a44e2a6db307cb48b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.818ex; height:2.176ex;" alt="{\displaystyle \quad x\to \infty \ ,}"></span></dd></dl> <p>and more precisely </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin x=\Omega _{\pm }(1)\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00B1;<!-- ± --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin x=\Omega _{\pm }(1)\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a513df63b2ec1f4c15d81fbcf22b5e8a999eb63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.154ex; height:2.843ex;" alt="{\displaystyle \sin x=\Omega _{\pm }(1)\quad }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad x\to \infty ~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad x\to \infty ~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4284c8e3e549f79df084395b2199b0a4f1f20f3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.818ex; height:1.843ex;" alt="{\displaystyle \quad x\to \infty ~.}"></span></dd></dl> <p>We have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\sin x=\Omega (1)\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\sin x=\Omega (1)\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5c825cc194b38f1fdd54b8d274628e4909c295e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.646ex; height:2.843ex;" alt="{\displaystyle 1+\sin x=\Omega (1)\quad }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad x\to \infty \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad x\to \infty \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/896ee8b534f618a0d1fd725a44e2a6db307cb48b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.818ex; height:2.176ex;" alt="{\displaystyle \quad x\to \infty \ ,}"></span></dd></dl> <p>and more precisely </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\sin x=\Omega _{+}(1)\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\sin x=\Omega _{+}(1)\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a662473108818abbcef72fcd9e562b5a634f4eca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.157ex; height:2.843ex;" alt="{\displaystyle 1+\sin x=\Omega _{+}(1)\quad }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad x\to \infty \ ;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mtext>&#xA0;</mtext> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad x\to \infty \ ;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03da1882cd535de5b695390951b4b96912de9a53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.818ex; height:2.176ex;" alt="{\displaystyle \quad x\to \infty \ ;}"></span></dd></dl> <p>however </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\sin x\neq \Omega _{-}(1)\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\sin x\neq \Omega _{-}(1)\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f224454dd133f145d3fd6d2618decc113105ca66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.157ex; height:2.843ex;" alt="{\displaystyle 1+\sin x\neq \Omega _{-}(1)\quad }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad x\to \infty ~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad x\to \infty ~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4284c8e3e549f79df084395b2199b0a4f1f20f3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.818ex; height:1.843ex;" alt="{\displaystyle \quad x\to \infty ~.}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="The_Knuth_definition">The Knuth definition</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=23" title="Edit section: The Knuth definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1976 <a href="/wiki/Donald_Knuth" title="Donald Knuth">Donald Knuth</a> published a paper to justify his use of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>-symbol to describe a stronger property.<sup id="cite_ref-knuth_24-0" class="reference"><a href="#cite_note-knuth-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> Knuth wrote: "For all the applications I have seen so far in computer science, a stronger requirement ... is much more appropriate". He defined </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\Omega (g(x))\Leftrightarrow g(x)=O(f(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\Omega (g(x))\Leftrightarrow g(x)=O(f(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3df3f696c222490af2885947ea346e56f1288504" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.226ex; height:2.843ex;" alt="{\displaystyle f(x)=\Omega (g(x))\Leftrightarrow g(x)=O(f(x))}"></span></dd></dl> <p>with the comment: "Although I have changed Hardy and Littlewood's definition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>, I feel justified in doing so because their definition is by no means in wide use, and because there are other ways to say what they want to say in the comparatively rare cases when their definition applies."<sup id="cite_ref-knuth_24-1" class="reference"><a href="#cite_note-knuth-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Family_of_Bachmann–Landau_notations"><span id="Family_of_Bachmann.E2.80.93Landau_notations"></span>Family of Bachmann–Landau notations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=24" title="Edit section: Family of Bachmann–Landau notations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th>Notation </th> <th>Name<sup id="cite_ref-knuth_24-2" class="reference"><a href="#cite_note-knuth-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </th> <th>Description </th> <th>Formal definition </th> <th>Limit definition<sup id="cite_ref-Balcázar_25-0" class="reference"><a href="#cite_note-Balcázar-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Cucker_26-0" class="reference"><a href="#cite_note-Cucker-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Wild_27-0" class="reference"><a href="#cite_note-Wild-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-knuth_24-3" class="reference"><a href="#cite_note-knuth-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-HL_19-1" class="reference"><a href="#cite_note-HL-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=o(g(n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=o(g(n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/319350e8903fea3a1f83f0a91ec740d9694eef4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.838ex; height:2.843ex;" alt="{\displaystyle f(n)=o(g(n))}"></span> </td> <td>Small O; Small Oh; Little O; Little Oh </td> <td><span class="texhtml mvar" style="font-style:italic;">f</span> is dominated by <span class="texhtml mvar" style="font-style:italic;">g</span> asymptotically (for any constant factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon |f(n)|\leq k\,g(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mo>&gt;</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon |f(n)|\leq k\,g(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a4f61359500829ea3f53970881059e641a8cfdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.342ex; height:2.843ex;" alt="{\displaystyle \forall k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon |f(n)|\leq k\,g(n)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/492b43a40ba041a1f958d4e3923eed6fd947f08c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.239ex; height:6.509ex;" alt="{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=0}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=O(g(n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=O(g(n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f4ecd455bbf94b9eeab71366619cb18e040dce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.484ex; height:2.843ex;" alt="{\displaystyle f(n)=O(g(n))}"></span> </td> <td>Big O; Big Oh; Big Omicron </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/940e58aa437f429f47fd743a819e41fedaa1ff9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.572ex; height:2.843ex;" alt="{\displaystyle |f|}"></span> is asymptotically bounded above by <span class="texhtml mvar" style="font-style:italic;">g</span> (up to constant factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon |f(n)|\leq k\,g(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mo>&gt;</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon |f(n)|\leq k\,g(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16115602291a322030d1f83eaa012a3e8f11e10d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.342ex; height:2.843ex;" alt="{\displaystyle \exists k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon |f(n)|\leq k\,g(n)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \limsup _{n\to \infty }{\frac {f(n)}{g(n)}}&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \limsup _{n\to \infty }{\frac {f(n)}{g(n)}}&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d841dd81b7f9d43b4b2df003dbd15984ed846af3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.247ex; height:6.509ex;" alt="{\displaystyle \limsup _{n\to \infty }{\frac {f(n)}{g(n)}}&lt;\infty }"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)\asymp g(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x224D;<!-- ≍ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)\asymp g(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd1056a38d423d01ca060a8c50a760632b6d3b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.901ex; height:2.843ex;" alt="{\displaystyle f(n)\asymp g(n)}"></span> (Hardy's notation) or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=\Theta (g(n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x0398;<!-- Θ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=\Theta (g(n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8445424def6bf9c759eff91dc041585caf4abd81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.519ex; height:2.843ex;" alt="{\displaystyle f(n)=\Theta (g(n))}"></span> (Knuth notation) </td> <td>Of the same order as (Hardy); Big Theta (Knuth) </td> <td><span class="texhtml mvar" style="font-style:italic;">f</span> is asymptotically bounded by <span class="texhtml mvar" style="font-style:italic;">g</span> both above (with constant factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{2}}"></span>) and below (with constant factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"></span>) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists k_{1}&gt;0\,\exists k_{2}&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mo>&gt;</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists k_{1}&gt;0\,\exists k_{2}&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be379e6bea41362b562f8783c99e54cc4b716ca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.422ex; height:2.509ex;" alt="{\displaystyle \exists k_{1}&gt;0\,\exists k_{2}&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}\,g(n)\leq f(n)\leq k_{2}\,g(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{1}\,g(n)\leq f(n)\leq k_{2}\,g(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b53161e524a1b5489b581143dfa5f4d5f845673" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.625ex; height:2.843ex;" alt="{\displaystyle k_{1}\,g(n)\leq f(n)\leq k_{2}\,g(n)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=O(g(n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=O(g(n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f4ecd455bbf94b9eeab71366619cb18e040dce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.484ex; height:2.843ex;" alt="{\displaystyle f(n)=O(g(n))}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(n)=O(f(n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(n)=O(f(n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a666fe69b6e49bd7a1cabe96d5ee4b49fb0115c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.484ex; height:2.843ex;" alt="{\displaystyle g(n)=O(f(n))}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)\sim g(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)\sim g(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21481c5c7ce37ba3b4a27c198ca59f4cfc92f3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.901ex; height:2.843ex;" alt="{\displaystyle f(n)\sim g(n)}"></span> </td> <td>Asymptotic equivalence </td> <td><span class="texhtml mvar" style="font-style:italic;">f</span> is equal to <span class="texhtml mvar" style="font-style:italic;">g</span> <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotically</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall \varepsilon &gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon \left|{\frac {f(n)}{g(n)}}-1\right|&lt;\varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>&#x03B5;<!-- ε --></mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mo>&gt;</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>|</mo> </mrow> <mo>&lt;</mo> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall \varepsilon &gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon \left|{\frac {f(n)}{g(n)}}-1\right|&lt;\varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fd9b982208142f0fa7be6058570298f37ec0d39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.218ex; height:6.509ex;" alt="{\displaystyle \forall \varepsilon &gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon \left|{\frac {f(n)}{g(n)}}-1\right|&lt;\varepsilon }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e40d97db198d24361a2a35fa8af2128e0523f84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.239ex; height:6.509ex;" alt="{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=1}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=\Omega (g(n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=\Omega (g(n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df8a463b6e106cce5d68174c1df5768a1682ef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.388ex; height:2.843ex;" alt="{\displaystyle f(n)=\Omega (g(n))}"></span> </td> <td>Big Omega in complexity theory (Knuth) </td> <td><span class="texhtml mvar" style="font-style:italic;">f</span> is bounded below by <span class="texhtml mvar" style="font-style:italic;">g</span> asymptotically </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon f(n)\geq k\,g(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mo>&gt;</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mi>k</mi> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon f(n)\geq k\,g(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb5154c98624eb114e71485abb7ec1396d157e6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.048ex; height:2.843ex;" alt="{\displaystyle \exists k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon f(n)\geq k\,g(n)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \liminf _{n\to \infty }{\frac {f(n)}{g(n)}}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \liminf _{n\to \infty }{\frac {f(n)}{g(n)}}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d9e629f09dbf872b91187297980c2e624d58a54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.235ex; height:6.509ex;" alt="{\displaystyle \liminf _{n\to \infty }{\frac {f(n)}{g(n)}}&gt;0}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=\omega (g(n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=\omega (g(n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/488ceb81e87597589fc9cd0ba7f54345f6569929" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.156ex; height:2.843ex;" alt="{\displaystyle f(n)=\omega (g(n))}"></span> </td> <td>Small Omega; Little Omega </td> <td><span class="texhtml mvar" style="font-style:italic;">f</span> dominates <span class="texhtml mvar" style="font-style:italic;">g</span> asymptotically </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon f(n)&gt;k\,g(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mo>&gt;</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mi>k</mi> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon f(n)&gt;k\,g(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b016c45b28b07815ff7f1e86ce09064f61057faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.048ex; height:2.843ex;" alt="{\displaystyle \forall k&gt;0\,\exists n_{0}\,\forall n&gt;n_{0}\colon f(n)&gt;k\,g(n)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94f1a706b1f85b13d89bb38ef7a1486a755caa3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.401ex; height:6.509ex;" alt="{\displaystyle \lim _{n\to \infty }{\frac {f(n)}{g(n)}}=\infty }"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=\Omega (g(n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=\Omega (g(n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df8a463b6e106cce5d68174c1df5768a1682ef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.388ex; height:2.843ex;" alt="{\displaystyle f(n)=\Omega (g(n))}"></span> </td> <td>Big Omega in number theory (Hardy–Littlewood) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/940e58aa437f429f47fd743a819e41fedaa1ff9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.572ex; height:2.843ex;" alt="{\displaystyle |f|}"></span> is not dominated by <span class="texhtml mvar" style="font-style:italic;">g</span> asymptotically </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists k&gt;0\,\forall n_{0}\,\exists n&gt;n_{0}\colon |f(n)|\geq k\,g(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>n</mi> <mo>&gt;</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mi>k</mi> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists k&gt;0\,\forall n_{0}\,\exists n&gt;n_{0}\colon |f(n)|\geq k\,g(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee1de6bf9135e3729da954f9a7e35225a1689c31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.342ex; height:2.843ex;" alt="{\displaystyle \exists k&gt;0\,\forall n_{0}\,\exists n&gt;n_{0}\colon |f(n)|\geq k\,g(n)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \limsup _{n\to \infty }{\frac {\left|f(n)\right|}{g(n)}}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \limsup _{n\to \infty }{\frac {\left|f(n)\right|}{g(n)}}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fd52d75e1283fbf16cee8ade84c95a94b39e776" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.379ex; height:6.509ex;" alt="{\displaystyle \limsup _{n\to \infty }{\frac {\left|f(n)\right|}{g(n)}}&gt;0}"></span> </td></tr></tbody></table> <p>The limit definitions assume <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(n)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(n)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f58b017ed2f12e925640328d716644bced11d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.581ex; height:2.843ex;" alt="{\displaystyle g(n)&gt;0}"></span> for sufficiently large <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. The table is (partly) sorted from smallest to largest, in the sense that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o,O,\Theta ,\sim ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>o</mi> <mo>,</mo> <mi>O</mi> <mo>,</mo> <mi mathvariant="normal">&#x0398;<!-- Θ --></mi> <mo>,</mo> <mo>&#x223C;<!-- ∼ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o,O,\Theta ,\sim ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e390d0aeb498be71e63699533c19791c7479950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.266ex; height:2.509ex;" alt="{\displaystyle o,O,\Theta ,\sim ,}"></span> (Knuth's version of) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ,\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ,\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae305c1f11e74128425067caff8f3c749ff61fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.158ex; height:2.509ex;" alt="{\displaystyle \Omega ,\omega }"></span> on functions correspond to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle &lt;,\leq ,\approx ,=,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&lt;</mo> <mo>,</mo> <mo>&#x2264;<!-- ≤ --></mo> <mo>,</mo> <mo>&#x2248;<!-- ≈ --></mo> <mo>,</mo> <mo>=</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle &lt;,\leq ,\approx ,=,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eb15153a0a17dfe2878ee7c7590230ad4c9d3e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.981ex; height:2.343ex;" alt="{\displaystyle &lt;,\leq ,\approx ,=,}"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \geq ,&gt;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2265;<!-- ≥ --></mo> <mo>,</mo> <mo>&gt;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \geq ,&gt;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d0adc8772efbceb6ee25889368c7e0b08c1abf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.65ex; height:2.343ex;" alt="{\displaystyle \geq ,&gt;}"></span> on the real line<sup id="cite_ref-Wild_27-1" class="reference"><a href="#cite_note-Wild-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> (the Hardy–Littlewood version of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>, however, doesn't correspond to any such description). </p><p>Computer science uses the big <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>, big Theta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0398;<!-- Θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc927b19f46d005b4720db7a0f96cd5b6f1a0d9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Theta }"></span>, little <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>o</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1031f61947aa3d1cf3a70ec3e4904df2c3675d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle o}"></span>, little omega <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> and Knuth's big Omega <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> notations.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Analytic number theory often uses the big <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>, small <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>o</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1031f61947aa3d1cf3a70ec3e4904df2c3675d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle o}"></span>, Hardy's <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \asymp }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x224D;<!-- ≍ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \asymp }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d57855824799fd82a250ecfe10596a751bb1b091" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.035ex; margin-bottom: -0.206ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \asymp }"></span>,<sup id="cite_ref-GT_29-0" class="reference"><a href="#cite_note-GT-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Hardy–Littlewood's big Omega <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> (with or without the +, − or ± subscripts) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sim }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x223C;<!-- ∼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sim }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcc42adfcfdc24d5c4c474869e5d8eaa78d1173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.307ex; margin-bottom: -0.478ex; width:1.808ex; height:1.343ex;" alt="{\displaystyle \sim }"></span> notations.<sup id="cite_ref-Ivic_22-1" class="reference"><a href="#cite_note-Ivic-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> The small omega <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> notation is not used as often in analysis.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Use_in_computer_science">Use in computer science</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=25" title="Edit section: Use in computer science"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Analysis_of_algorithms" title="Analysis of algorithms">Analysis of algorithms</a></div> <p>Informally, especially in computer science, the big <i>O</i> notation often can be used somewhat differently to describe an asymptotic <a href="/wiki/Upper_and_lower_bounds#Tight_bounds" title="Upper and lower bounds">tight</a> bound where using big Theta Θ notation might be more factually appropriate in a given context.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> For example, when considering a function <i>T</i>(<i>n</i>) = 73<i>n</i><sup>3</sup> + 22<i>n</i><sup>2</sup> + 58, all of the following are generally acceptable, but tighter bounds (such as numbers 2 and 3 below) are usually strongly preferred over looser bounds (such as number 1 below). </p> <ol><li><span class="nowrap"><i>T</i>(<i>n</i>) = <i>O</i>(<i>n</i><sup>100</sup>)</span></li> <li><span class="nowrap"><i>T</i>(<i>n</i>) = <i>O</i>(<i>n</i><sup>3</sup>)</span></li> <li><span class="nowrap"><i>T</i>(<i>n</i>) = Θ(<i>n</i><sup>3</sup>)</span></li></ol> <p>The equivalent English statements are respectively: </p> <ol><li><i>T</i>(<i>n</i>) grows asymptotically no faster than <i>n</i><sup>100</sup></li> <li><i>T</i>(<i>n</i>) grows asymptotically no faster than <i>n</i><sup>3</sup></li> <li><i>T</i>(<i>n</i>) grows asymptotically as fast as <i>n</i><sup>3</sup>.</li></ol> <p>So while all three statements are true, progressively more information is contained in each. In some fields, however, the big O notation (number 2 in the lists above) would be used more commonly than the big Theta notation (items numbered 3 in the lists above). For example, if <i>T</i>(<i>n</i>) represents the running time of a newly developed algorithm for input size <i>n</i>, the inventors and users of the algorithm might be more inclined to put an upper asymptotic bound on how long it will take to run without making an explicit statement about the lower asymptotic bound. </p> <div class="mw-heading mw-heading3"><h3 id="Other_notation">Other notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=26" title="Edit section: Other notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In their book <i><a href="/wiki/Introduction_to_Algorithms" title="Introduction to Algorithms">Introduction to Algorithms</a></i>, <a href="/wiki/Thomas_H._Cormen" title="Thomas H. Cormen">Cormen</a>, <a href="/wiki/Charles_E._Leiserson" title="Charles E. Leiserson">Leiserson</a>, <a href="/wiki/Ronald_L._Rivest" class="mw-redirect" title="Ronald L. Rivest">Rivest</a> and <a href="/wiki/Clifford_Stein" title="Clifford Stein">Stein</a> consider the set of functions <i>f</i> which satisfy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=O(g(n))\quad (n\to \infty )~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=O(g(n))\quad (n\to \infty )~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f0646d976911ba7bb59922696d6978c8a0dc5f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.176ex; height:2.843ex;" alt="{\displaystyle f(n)=O(g(n))\quad (n\to \infty )~.}"></span></dd></dl> <p>In a correct notation this set can, for instance, be called <i>O</i>(<i>g</i>), where </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(g)=\{f:{\text{there exist positive constants}}~c~{\text{and}}~n_{0}~{\text{such that}}~0\leq f(n)\leq cg(n){\text{ for all }}n\geq n_{0}\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>there exist positive constants</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>c</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mtext>&#xA0;</mtext> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>such that</mtext> </mrow> <mtext>&#xA0;</mtext> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>c</mi> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(g)=\{f:{\text{there exist positive constants}}~c~{\text{and}}~n_{0}~{\text{such that}}~0\leq f(n)\leq cg(n){\text{ for all }}n\geq n_{0}\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b5656aaec472c2053d8261bd1b68c71eae8f1c3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:93.621ex; height:2.843ex;" alt="{\displaystyle O(g)=\{f:{\text{there exist positive constants}}~c~{\text{and}}~n_{0}~{\text{such that}}~0\leq f(n)\leq cg(n){\text{ for all }}n\geq n_{0}\}.}"></span><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p><p>The authors state that the use of equality operator (=) to denote set membership rather than the set membership operator (∈) is an abuse of notation, but that doing so has advantages.<sup id="cite_ref-clrs3_6-1" class="reference"><a href="#cite_note-clrs3-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Inside an equation or inequality, the use of asymptotic notation stands for an anonymous function in the set <i>O</i>(<i>g</i>), which eliminates lower-order terms, and helps to reduce inessential clutter in equations, for example:<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2n^{2}+3n+1=2n^{2}+O(n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>2</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2n^{2}+3n+1=2n^{2}+O(n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eedc305f6b5d915801f7046b89be85833efa5f73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.186ex; height:3.176ex;" alt="{\displaystyle 2n^{2}+3n+1=2n^{2}+O(n).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Extensions_to_the_Bachmann–Landau_notations"><span id="Extensions_to_the_Bachmann.E2.80.93Landau_notations"></span>Extensions to the Bachmann–Landau notations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=27" title="Edit section: Extensions to the Bachmann–Landau notations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another notation sometimes used in computer science is <i><a href="/wiki/%C3%95" title="Õ">Õ</a></i> (read <i>soft-O</i>), which hides polylogarithmic factors. There are two definitions in use: some authors use <i>f</i>(<i>n</i>)&#160;=&#160;<i>Õ</i>(<i>g</i>(<i>n</i>)) as <a href="/wiki/Shorthand" title="Shorthand">shorthand</a> for <span class="nowrap"><i>f</i>(<i>n</i>) = <i>O</i>(<i>g</i>(<i>n</i>) <a href="/wiki/Polylogarithmic_function" title="Polylogarithmic function">log<sup><i>k</i></sup> <i>n</i></a>)</span> for some <i>k</i>, while others use it as shorthand for <span class="nowrap"><i>f</i>(<i>n</i>) = <i>O</i>(<i>g</i>(<i>n</i>) log<sup><i>k</i></sup> <i>g</i>(<i>n</i>))</span>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> When <span class="nowrap"><i>g</i>(<i>n</i>)</span> is polynomial in <i>n</i>, there is no difference; however, the latter definition allows one to say, e.g. that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n2^{n}={\tilde {O}}(2^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>O</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n2^{n}={\tilde {O}}(2^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98ba0a1a6539cb13a71f780c881e36968c6a9d60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.838ex; height:3.176ex;" alt="{\displaystyle n2^{n}={\tilde {O}}(2^{n})}"></span> while the former definition allows for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log ^{k}n={\tilde {O}}(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>O</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log ^{k}n={\tilde {O}}(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e914ff8543f85d1e7f2f0aff80fab95847cd4a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.686ex; height:3.176ex;" alt="{\displaystyle \log ^{k}n={\tilde {O}}(1)}"></span> for any constant <i>k</i>. Some authors write <i>O</i><sup>*</sup> for the same purpose as the latter definition.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Essentially, it is big <i>O</i> notation, ignoring <a href="/wiki/Polylogarithmic_function" title="Polylogarithmic function">logarithmic factors</a> because the <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">growth-rate</a> effects of some other super-logarithmic function indicate a growth-rate explosion for large-sized input parameters that is more important to predicting bad run-time performance than the finer-point effects contributed by the logarithmic-growth factor(s). This notation is often used to obviate the "nitpicking" within growth-rates that are stated as too tightly bounded for the matters at hand (since log<sup><i>k</i></sup>&#160;<i>n</i> is always <i>o</i>(<i>n</i><sup>ε</sup>) for any constant <i>k</i> and any <span class="nowrap"><i>ε</i> &gt; 0</span>). </p><p>Also, the <a href="/wiki/L-notation" title="L-notation"><i>L</i> notation</a>, defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{n}[\alpha ,c]=e^{(c+o(1))(\ln n)^{\alpha }(\ln \ln n)^{1-\alpha }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{n}[\alpha ,c]=e^{(c+o(1))(\ln n)^{\alpha }(\ln \ln n)^{1-\alpha }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59b5d9f7b7c3e8763737cb136642c142bd27da00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.401ex; height:3.676ex;" alt="{\displaystyle L_{n}[\alpha ,c]=e^{(c+o(1))(\ln n)^{\alpha }(\ln \ln n)^{1-\alpha }},}"></span></dd></dl> <p>is convenient for functions that are between <a href="/wiki/Time_complexity#Polynomial_time" title="Time complexity">polynomial</a> and <a href="/wiki/Time_complexity#Exponential_time" title="Time complexity">exponential</a> in terms of <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc7e60afd0a48ba01cb2fee90f0199c28dce0298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.721ex; height:2.176ex;" alt="{\displaystyle \ln n}"></span>.</span> </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations_and_related_usages">Generalizations and related usages</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=28" title="Edit section: Generalizations and related usages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The generalization to functions taking values in any <a href="/wiki/Normed_vector_space" title="Normed vector space">normed vector space</a> is straightforward (replacing absolute values by norms), where <i>f</i> and <i>g</i> need not take their values in the same space. A generalization to functions <i>g</i> taking values in any <a href="/wiki/Topological_group" title="Topological group">topological group</a> is also possible<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2017)">citation needed</span></a></i>&#93;</sup>. The "limiting process" <span class="texhtml"><i>x</i> → <i>x</i><sub><i>o</i></sub></span> can also be generalized by introducing an arbitrary <a href="/wiki/Filter_base" class="mw-redirect" title="Filter base">filter base</a>, i.e. to directed <a href="/wiki/Net_(mathematics)" title="Net (mathematics)">nets</a> <i>f</i> and&#160;<i>g</i>. The <i>o</i> notation can be used to define <a href="/wiki/Derivative" title="Derivative">derivatives</a> and <a href="/wiki/Differentiability" class="mw-redirect" title="Differentiability">differentiability</a> in quite general spaces, and also (asymptotical) equivalence of functions, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\sim g\iff (f-g)\in o(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>g</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\sim g\iff (f-g)\in o(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/288861b9af5eb92d645701a42b4887578d6aeed3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.328ex; height:2.843ex;" alt="{\displaystyle f\sim g\iff (f-g)\in o(g)}"></span></dd></dl> <p>which is an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> and a more restrictive notion than the relationship "<i>f</i> is Θ(<i>g</i>)" from above. (It reduces to lim <i>f</i> / <i>g</i> = 1 if <i>f</i> and <i>g</i> are positive real valued functions.) For example, 2<i>x</i> is Θ(<i>x</i>), but <span class="texhtml">2<i>x</i> − <i>x</i></span> is not <i>o</i>(<i>x</i>). </p> <div class="mw-heading mw-heading2"><h2 id="History_(Bachmann–Landau,_Hardy,_and_Vinogradov_notations)"><span id="History_.28Bachmann.E2.80.93Landau.2C_Hardy.2C_and_Vinogradov_notations.29"></span>History (Bachmann–Landau, Hardy, and Vinogradov notations)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=29" title="Edit section: History (Bachmann–Landau, Hardy, and Vinogradov notations)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The symbol O was first introduced by number theorist <a href="/wiki/Paul_Bachmann" class="mw-redirect" title="Paul Bachmann">Paul Bachmann</a> in 1894, in the second volume of his book <i>Analytische Zahlentheorie</i> ("<a href="/wiki/Analytic_number_theory" title="Analytic number theory">analytic number theory</a>").<sup id="cite_ref-Bachmann_1-1" class="reference"><a href="#cite_note-Bachmann-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The number theorist <a href="/wiki/Edmund_Landau" title="Edmund Landau">Edmund Landau</a> adopted it, and was thus inspired to introduce in 1909 the notation o;<sup id="cite_ref-Landau_2-1" class="reference"><a href="#cite_note-Landau-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> hence both are now called Landau symbols. These notations were used in applied mathematics during the 1950s for asymptotic analysis.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> The symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> (in the sense "is not an <i>o</i> of") was introduced in 1914 by Hardy and Littlewood.<sup id="cite_ref-HL_19-2" class="reference"><a href="#cite_note-HL-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Hardy and Littlewood also introduced in 1916 the symbols <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb36a87fe7819b8c5f859475abb8e5e92152a886" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.158ex; height:2.509ex;" alt="{\displaystyle \Omega _{R}}"></span> ("right") and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{L}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{L}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5ca7869e6dabfee30cbede644d9597b1e644422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.03ex; height:2.509ex;" alt="{\displaystyle \Omega _{L}}"></span> ("left"),<sup id="cite_ref-HL2_20-1" class="reference"><a href="#cite_note-HL2-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> precursors of the modern symbols <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aece5d68daf75b9115c8bda0d66c4a0c1d462888" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \Omega _{+}}"></span> ("is not smaller than a small o of") and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aca6086114a9cedeb6893d24e0a5c894e853de6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \Omega _{-}}"></span> ("is not larger than a small o of"). Thus the Omega symbols (with their original meanings) are sometimes also referred to as "Landau symbols". This notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> became commonly used in number theory at least since the 1950s.<sup id="cite_ref-titchmarsh_37-0" class="reference"><a href="#cite_note-titchmarsh-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p><p>The symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sim }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x223C;<!-- ∼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sim }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcc42adfcfdc24d5c4c474869e5d8eaa78d1173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.307ex; margin-bottom: -0.478ex; width:1.808ex; height:1.343ex;" alt="{\displaystyle \sim }"></span>, although it had been used before with different meanings,<sup id="cite_ref-Wild_27-2" class="reference"><a href="#cite_note-Wild-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> was given its modern definition by Landau in 1909<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> and by Hardy in 1910.<sup id="cite_ref-Hardy_39-0" class="reference"><a href="#cite_note-Hardy-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> Just above on the same page of his tract Hardy defined the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \asymp }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x224D;<!-- ≍ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \asymp }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d57855824799fd82a250ecfe10596a751bb1b091" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.035ex; margin-bottom: -0.206ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \asymp }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\asymp g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x224D;<!-- ≍ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\asymp g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ee00f45070774eacea191324a222395bc050895" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.771ex; height:2.843ex;" alt="{\displaystyle f(x)\asymp g(x)}"></span> means that both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=O(g(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=O(g(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e69c69cb5dc8e33a50a094deff53ec988fa6aeb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.354ex; height:2.843ex;" alt="{\displaystyle f(x)=O(g(x))}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)=O(f(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)=O(f(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/003c7cb944326248afb5cc4233db0ef354229feb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.354ex; height:2.843ex;" alt="{\displaystyle g(x)=O(f(x))}"></span> are satisfied. The notation is still currently used in analytic number theory.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GT_29-1" class="reference"><a href="#cite_note-GT-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> In his tract Hardy also proposed the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\asymp \!\!\!\!\!\!-}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x224D;<!-- ≍ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\asymp \!\!\!\!\!\!-}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/362539d1e3e203e2f4d61b2bcf6bafb24620aa4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; margin-left: -0.127ex; width:2.453ex; height:2.176ex;" alt="{\displaystyle \,\asymp \!\!\!\!\!\!-}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\asymp \!\!\!\!\!\!-g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x224D;<!-- ≍ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\asymp \!\!\!\!\!\!-g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/069538a19179ea99ff9cff29619d6db6842a3ae2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.979ex; height:2.509ex;" alt="{\displaystyle f\asymp \!\!\!\!\!\!-g}"></span> means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\sim Kg}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>K</mi> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\sim Kg}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3923ac7fa2211ce5236777910a23ae71061cc10e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.559ex; height:2.509ex;" alt="{\displaystyle f\sim Kg}"></span> for some constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\not =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2260;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\not =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1424e3c491415e77856462bf80d4015d66afb3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.327ex; height:2.676ex;" alt="{\displaystyle K\not =0}"></span>. </p><p>In the 1970s the big O was popularized in computer science by <a href="/wiki/Donald_Knuth" title="Donald Knuth">Donald Knuth</a>, who proposed the different notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\Theta (g(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x0398;<!-- Θ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\Theta (g(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecd70e6ee84d7584d91b2d5d7cda885fcbe2f11a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.388ex; height:2.843ex;" alt="{\displaystyle f(x)=\Theta (g(x))}"></span> for Hardy's <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\asymp g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x224D;<!-- ≍ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\asymp g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ee00f45070774eacea191324a222395bc050895" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.771ex; height:2.843ex;" alt="{\displaystyle f(x)\asymp g(x)}"></span>, and proposed a different definition for the Hardy and Littlewood Omega notation.<sup id="cite_ref-knuth_24-4" class="reference"><a href="#cite_note-knuth-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>Two other symbols coined by Hardy were (in terms of the modern <i>O</i> notation) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\preccurlyeq g\iff f=O(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x227C;<!-- ≼ --></mo> <mi>g</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>f</mi> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\preccurlyeq g\iff f=O(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/284c00309f89e2f9f1022c935b110d020ef66b87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.466ex; height:2.843ex;" alt="{\displaystyle f\preccurlyeq g\iff f=O(g)}"></span> &#160; and &#160; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\prec g\iff f=o(g);}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x227A;<!-- ≺ --></mo> <mi>g</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>f</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\prec g\iff f=o(g);}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c4cee5e7aba783c4a64db2022ff63767baecb9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.467ex; height:2.843ex;" alt="{\displaystyle f\prec g\iff f=o(g);}"></span></dd></dl> <p>(Hardy however never defined or used the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prec \!\!\prec }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x227A;<!-- ≺ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x227A;<!-- ≺ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prec \!\!\prec }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3a283e08c1b4c6e1505c7c13cd4382b19a2844b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.842ex; height:1.843ex;" alt="{\displaystyle \prec \!\!\prec }"></span>, nor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ll }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x226A;<!-- ≪ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ll }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10563f31a4178c71bef006ea5c601e908f984136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \ll }"></span>, as it has been sometimes reported). Hardy introduced the symbols <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \preccurlyeq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x227C;<!-- ≼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \preccurlyeq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99bc8c68be5ec5d812bb700383d1911b5f94a1ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.343ex;" alt="{\displaystyle \preccurlyeq }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prec }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x227A;<!-- ≺ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prec }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59707ac9078525b52a9e21a1baf9ab787af7a9aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:1.843ex;" alt="{\displaystyle \prec }"></span> (as well as the already mentioned other symbols) in his 1910 tract "Orders of Infinity", and made use of them only in three papers (1910–1913). In his nearly 400 remaining papers and books he consistently used the Landau symbols O and o. </p><p>Hardy's symbols <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \preccurlyeq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x227C;<!-- ≼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \preccurlyeq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99bc8c68be5ec5d812bb700383d1911b5f94a1ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.343ex;" alt="{\displaystyle \preccurlyeq }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prec }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x227A;<!-- ≺ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prec }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59707ac9078525b52a9e21a1baf9ab787af7a9aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:1.843ex;" alt="{\displaystyle \prec }"></span> (as well as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\asymp \!\!\!\!\!\!-}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x224D;<!-- ≍ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>&#x2212;<!-- − --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\asymp \!\!\!\!\!\!-}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/362539d1e3e203e2f4d61b2bcf6bafb24620aa4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; margin-left: -0.127ex; width:2.453ex; height:2.176ex;" alt="{\displaystyle \,\asymp \!\!\!\!\!\!-}"></span>) are not used anymore. On the other hand, in the 1930s,<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> the Russian number theorist <a href="/wiki/Ivan_Matveyevich_Vinogradov" class="mw-redirect" title="Ivan Matveyevich Vinogradov">Ivan Matveyevich Vinogradov</a> introduced his notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ll }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x226A;<!-- ≪ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ll }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10563f31a4178c71bef006ea5c601e908f984136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \ll }"></span>, which has been increasingly used in number theory instead of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> notation. We have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\ll g\iff f=O(g),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x226A;<!-- ≪ --></mo> <mi>g</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>f</mi> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\ll g\iff f=O(g),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bed035cc5f8f5dfaf9e38b92cfdb16b87e481929" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.628ex; height:2.843ex;" alt="{\displaystyle f\ll g\iff f=O(g),}"></span></dd></dl> <p>and frequently both notations are used in the same paper. </p><p>The big-O originally stands for "order of" ("Ordnung", Bachmann 1894), and is thus a Latin letter. Neither Bachmann nor Landau ever call it "Omicron". The symbol was much later on (1976) viewed by Knuth as a capital <a href="/wiki/Omicron" title="Omicron">omicron</a>,<sup id="cite_ref-knuth_24-5" class="reference"><a href="#cite_note-knuth-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> probably in reference to his definition of the symbol <a href="/wiki/Omega" title="Omega">Omega</a>. The digit <a href="/wiki/0" title="0">zero</a> should not be used. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=30" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Asymptotic_computational_complexity" title="Asymptotic computational complexity">Asymptotic computational complexity</a></li> <li><a href="/wiki/Asymptotic_expansion" title="Asymptotic expansion">Asymptotic expansion</a>: Approximation of functions generalizing Taylor's formula</li> <li><a href="/wiki/Asymptotically_optimal_algorithm" title="Asymptotically optimal algorithm">Asymptotically optimal algorithm</a>: A phrase frequently used to describe an algorithm that has an upper bound asymptotically within a constant of a lower bound for the problem</li> <li><a href="/wiki/Big_O_in_probability_notation" title="Big O in probability notation">Big O in probability notation</a>: <i>O<sub>p</sub></i>, <i>o<sub>p</sub></i></li> <li><a href="/wiki/Limit_inferior_and_limit_superior" title="Limit inferior and limit superior">Limit inferior and limit superior</a>: An explanation of some of the limit notation used in this article</li> <li><a href="/wiki/Master_theorem_(analysis_of_algorithms)" title="Master theorem (analysis of algorithms)">Master theorem (analysis of algorithms)</a>: For analyzing divide-and-conquer recursive algorithms using Big O notation</li> <li><a href="/wiki/Nachbin%27s_theorem" title="Nachbin&#39;s theorem">Nachbin's theorem</a>: A precise method of bounding <a href="/wiki/Complex_analytic" class="mw-redirect" title="Complex analytic">complex analytic</a> functions so that the domain of convergence of <a href="/wiki/Integral_transform" title="Integral transform">integral transforms</a> can be stated</li> <li><a href="/wiki/Order_of_approximation" title="Order of approximation">Order of approximation</a></li> <li><a href="/wiki/Computational_complexity_of_mathematical_operations" title="Computational complexity of mathematical operations">Computational complexity of mathematical operations</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References_and_notes">References and notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=31" title="Edit section: References and notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-Bachmann-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bachmann_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bachmann_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBachmann1894" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Paul_Bachmann" class="mw-redirect" title="Paul Bachmann">Bachmann, Paul</a> (1894). <a rel="nofollow" class="external text" href="https://archive.org/stream/dieanalytischeza00bachuoft#page/402/mode/2up"><i>Analytische Zahlentheorie</i></a> &#91;<i>Analytic Number Theory</i>&#93; (in German). Vol.&#160;2. Leipzig: Teubner.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analytische+Zahlentheorie&amp;rft.place=Leipzig&amp;rft.pub=Teubner&amp;rft.date=1894&amp;rft.aulast=Bachmann&amp;rft.aufirst=Paul&amp;rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fdieanalytischeza00bachuoft%23page%2F402%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-Landau-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Landau_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Landau_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandau1909" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Edmund_Landau" title="Edmund Landau">Landau, Edmund</a> (1909). <a rel="nofollow" class="external text" href="https://archive.org/details/handbuchderlehre01landuoft"><i>Handbuch der Lehre von der Verteilung der Primzahlen</i></a> &#91;<i>Handbook on the theory of the distribution of the primes</i>&#93; (in German). Vol.&#160;1. Leipzig: B. G. Teubner. p.&#160;61.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbuch+der+Lehre+von+der+Verteilung+der+Primzahlen&amp;rft.place=Leipzig&amp;rft.pages=61&amp;rft.pub=B.+G.+Teubner&amp;rft.date=1909&amp;rft.aulast=Landau&amp;rft.aufirst=Edmund&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhandbuchderlehre01landuoft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span> Also see page 883 in vol. 2 of the book (not available from the link given). </span> </li> <li id="cite_note-:0-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormenLeisersonRivest1990" class="citation book cs1"><a href="/wiki/Thomas_H._Cormen" title="Thomas H. Cormen">Cormen, Thomas H.</a>; <a href="/wiki/Charles_E._Leiserson" title="Charles E. Leiserson">Leiserson, Charles E.</a>; <a href="/wiki/Ronald_L._Rivest" class="mw-redirect" title="Ronald L. Rivest">Rivest, Ronald L.</a> (1990). "Growth of Functions". <a href="/wiki/Introduction_to_Algorithms" title="Introduction to Algorithms"><i>Introduction to Algorithms</i></a> (1st&#160;ed.). MIT Press and McGraw-Hill. pp.&#160;23–41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-53091-0" title="Special:BookSources/978-0-262-53091-0"><bdi>978-0-262-53091-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Growth+of+Functions&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.pages=23-41&amp;rft.edition=1st&amp;rft.pub=MIT+Press+and+McGraw-Hill&amp;rft.date=1990&amp;rft.isbn=978-0-262-53091-0&amp;rft.aulast=Cormen&amp;rft.aufirst=Thomas+H.&amp;rft.au=Leiserson%2C+Charles+E.&amp;rft.au=Rivest%2C+Ronald+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-LandauO-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-LandauO_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandau1909" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Edmund_Landau" title="Edmund Landau">Landau, Edmund</a> (1909). <a rel="nofollow" class="external text" href="https://archive.org/stream/handbuchderlehre01landuoft#page/31/mode/2up"><i>Handbuch der Lehre von der Verteilung der Primzahlen</i></a> &#91;<i>Handbook on the theory of the distribution of the primes</i>&#93; (in German). Leipzig: B.G. Teubner. p.&#160;31.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbuch+der+Lehre+von+der+Verteilung+der+Primzahlen&amp;rft.place=Leipzig&amp;rft.pages=31&amp;rft.pub=B.G.+Teubner&amp;rft.date=1909&amp;rft.aulast=Landau&amp;rft.aufirst=Edmund&amp;rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fhandbuchderlehre01landuoft%23page%2F31%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSipser1997" class="citation book cs1">Sipser, Michael (1997). <i>Introduction to the Theory of Computation</i>. Boston, MA: PWS Publishing. p.&#160;227, def.&#160;7.2.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Computation&amp;rft.place=Boston%2C+MA&amp;rft.pages=227%2C+def.-7.2&amp;rft.pub=PWS+Publishing&amp;rft.date=1997&amp;rft.aulast=Sipser&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-clrs3-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-clrs3_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-clrs3_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormen,_Thomas_H.Leiserson,_Charles_E.Rivest,_Ronald_L.2009" class="citation book cs1">Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (2009). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoal00corm_805"><i>Introduction to Algorithms</i></a></span> (3rd&#160;ed.). Cambridge/MA: MIT Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoal00corm_805/page/n65">45</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-53305-8" title="Special:BookSources/978-0-262-53305-8"><bdi>978-0-262-53305-8</bdi></a>. <q>Because <i>θ</i>(<i>g</i>(<i>n</i>)) is a set, we could write "<i>f</i>(<i>n</i>) ∈ <i>θ</i>(<i>g</i>(<i>n</i>))" to indicate that <i>f</i>(<i>n</i>) is a member of <i>θ</i>(<i>g</i>(<i>n</i>)). Instead, we will usually write <i>f</i>(<i>n</i>) = <i>θ</i>(<i>g</i>(<i>n</i>)) to express the same notion. You might be confused because we abuse equality in this way, but we shall see later in this section that doing so has its advantages.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.place=Cambridge%2FMA&amp;rft.pages=45&amp;rft.edition=3rd&amp;rft.pub=MIT+Press&amp;rft.date=2009&amp;rft.isbn=978-0-262-53305-8&amp;rft.au=Cormen%2C+Thomas+H.&amp;rft.au=Leiserson%2C+Charles+E.&amp;rft.au=Rivest%2C+Ronald+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoal00corm_805&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFCormenLeisersonRivestStein2009">Cormen et al. (2009)</a>, <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoal00corm_805/page/n73">p. 53</a></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowell" class="citation web cs1">Howell, Rodney. <a rel="nofollow" class="external text" href="http://people.cis.ksu.edu/~rhowell/asymptotic.pdf">"On Asymptotic Notation with Multiple Variables"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150424012920/http://people.cis.ksu.edu/~rhowell/asymptotic.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2015-04-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-04-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=On+Asymptotic+Notation+with+Multiple+Variables&amp;rft.aulast=Howell&amp;rft.aufirst=Rodney&amp;rft_id=http%3A%2F%2Fpeople.cis.ksu.edu%2F~rhowell%2Fasymptotic.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-deBruijn-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-deBruijn_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-deBruijn_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_Bruijn1958" class="citation book cs1"><a href="/wiki/N._G._de_Bruijn" class="mw-redirect" title="N. G. de Bruijn">de Bruijn, N.G.</a> (1958). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_tnwmvHmVwMC&amp;q=%22The+trouble+is%22&amp;pg=PA5"><i>Asymptotic Methods in Analysis</i></a>. Amsterdam: North-Holland. pp.&#160;5–7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-64221-5" title="Special:BookSources/978-0-486-64221-5"><bdi>978-0-486-64221-5</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230117051949/https://books.google.com/books?id=_tnwmvHmVwMC&amp;q=%22The+trouble+is%22&amp;pg=PA5">Archived</a> from the original on 2023-01-17<span class="reference-accessdate">. Retrieved <span class="nowrap">2021-09-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Asymptotic+Methods+in+Analysis&amp;rft.place=Amsterdam&amp;rft.pages=5-7&amp;rft.pub=North-Holland&amp;rft.date=1958&amp;rft.isbn=978-0-486-64221-5&amp;rft.aulast=de+Bruijn&amp;rft.aufirst=N.G.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_tnwmvHmVwMC%26q%3D%2522The%2Btrouble%2Bis%2522%26pg%3DPA5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-Concrete_Mathematics-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Concrete_Mathematics_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Concrete_Mathematics_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Concrete_Mathematics_10-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrahamKnuthPatashnik1994" class="citation book cs1"><a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, Ronald</a>; <a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a>; <a href="/wiki/Oren_Patashnik" title="Oren Patashnik">Patashnik, Oren</a> (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pntQAAAAMAAJ"><i>Concrete Mathematics</i></a> (2&#160;ed.). Reading, Massachusetts: Addison–Wesley. p.&#160;446. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-55802-9" title="Special:BookSources/978-0-201-55802-9"><bdi>978-0-201-55802-9</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230117051955/https://books.google.com/books?id=pntQAAAAMAAJ">Archived</a> from the original on 2023-01-17<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-09-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Concrete+Mathematics&amp;rft.place=Reading%2C+Massachusetts&amp;rft.pages=446&amp;rft.edition=2&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft.date=1994&amp;rft.isbn=978-0-201-55802-9&amp;rft.aulast=Graham&amp;rft.aufirst=Ronald&amp;rft.au=Knuth%2C+Donald&amp;rft.au=Patashnik%2C+Oren&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpntQAAAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDonald_Knuth1998" class="citation journal cs1">Donald Knuth (June–July 1998). <a rel="nofollow" class="external text" href="https://www.ams.org/notices/199806/commentary.pdf">"Teach Calculus with Big O"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Notices_of_the_American_Mathematical_Society" title="Notices of the American Mathematical Society">Notices of the American Mathematical Society</a></i>. <b>45</b> (6): 687. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211014070416/https://www.ams.org/notices/199806/commentary.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2021-10-14<span class="reference-accessdate">. Retrieved <span class="nowrap">2021-09-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft.atitle=Teach+Calculus+with+Big+O&amp;rft.volume=45&amp;rft.issue=6&amp;rft.pages=687&amp;rft.date=1998-06%2F1998-07&amp;rft.au=Donald+Knuth&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fnotices%2F199806%2Fcommentary.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span> (<a rel="nofollow" class="external text" href="http://www-cs-staff.stanford.edu/~knuth/ocalc.tex">Unabridged version</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080513234708/http://www-cs-staff.stanford.edu/~knuth/ocalc.tex">Archived</a> 2008-05-13 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>)</span> </li> <li id="cite_note-KnuthArt-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-KnuthArt_12-0">^</a></b></span> <span class="reference-text">Donald E. Knuth, The art of computer programming. Vol. 1. Fundamental algorithms, third edition, Addison Wesley Longman, 1997. Section 1.2.11.1.</span> </li> <li id="cite_note-ConcreteMath-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-ConcreteMath_13-0">^</a></b></span> <span class="reference-text">Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, <i>Concrete Mathematics: A Foundation for Computer Science (2nd ed.)</i>, Addison-Wesley, 1994. Section&#160;9.2, p.&#160;443.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Sivaram Ambikasaran and Eric Darve, An <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}(N\log N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}(N\log N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8658b7724f2492980eab8528378dc975a9a072ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.532ex; height:2.843ex;" alt="{\displaystyle {\mathcal {O}}(N\log N)}"></span> Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices, <i>J. Scientific Computing</i> <b>57</b> (2013), no.&#160;3, 477–501.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Saket Saurabh and Meirav Zehavi, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k,n-k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k,n-k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ffc83943cba6e01a096c690f9d676fad4043f09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.501ex; height:2.843ex;" alt="{\displaystyle (k,n-k)}"></span>-Max-Cut: An <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}^{*}(2^{p})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}^{*}(2^{p})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d068915ba2c03baee0e3671bc56e3057bc9441e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.935ex; height:2.843ex;" alt="{\displaystyle {\mathcal {O}}^{*}(2^{p})}"></span>-Time Algorithm and a Polynomial Kernel, <i>Algorithmica</i> <b>80</b> (2018), no.&#160;12, 3844–3860.</span> </li> <li id="cite_note-Landausmallo-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Landausmallo_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Landausmallo_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandau1909" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Edmund_Landau" title="Edmund Landau">Landau, Edmund</a> (1909). <a rel="nofollow" class="external text" href="https://archive.org/stream/handbuchderlehre01landuoft#page/61/mode/2up"><i>Handbuch der Lehre von der Verteilung der Primzahlen</i></a> &#91;<i>Handbook on the theory of the distribution of the primes</i>&#93; (in German). Leipzig: B. G. Teubner. p.&#160;61.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbuch+der+Lehre+von+der+Verteilung+der+Primzahlen&amp;rft.place=Leipzig&amp;rft.pages=61&amp;rft.pub=B.+G.+Teubner&amp;rft.date=1909&amp;rft.aulast=Landau&amp;rft.aufirst=Edmund&amp;rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fhandbuchderlehre01landuoft%23page%2F61%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-Introduction_to_Algorithms-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Introduction_to_Algorithms_17-0">^</a></b></span> <span class="reference-text">Thomas H. Cormen et al., 2001, <a rel="nofollow" class="external text" href="http://highered.mcgraw-hill.com/sites/0070131511/">Introduction to Algorithms, Second Edition, Ch. 3.1</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090116115944/http://highered.mcgraw-hill.com/sites/0070131511/">Archived</a> 2009-01-16 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormenLeisersonRivestStein2009" class="citation book cs1">Cormen TH, Leiserson CE, Rivest RL, Stein C (2009). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/676697295"><i>Introduction to algorithms</i></a> (3rd&#160;ed.). Cambridge, Mass.: MIT Press. p.&#160;48. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-27083-0" title="Special:BookSources/978-0-262-27083-0"><bdi>978-0-262-27083-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/676697295">676697295</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+algorithms&amp;rft.place=Cambridge%2C+Mass.&amp;rft.pages=48&amp;rft.edition=3rd&amp;rft.pub=MIT+Press&amp;rft.date=2009&amp;rft_id=info%3Aoclcnum%2F676697295&amp;rft.isbn=978-0-262-27083-0&amp;rft.aulast=Cormen&amp;rft.aufirst=TH&amp;rft.au=Leiserson%2C+CE&amp;rft.au=Rivest%2C+RL&amp;rft.au=Stein%2C+C&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F676697295&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-HL-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-HL_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HL_19-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-HL_19-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyLittlewood1914" class="citation journal cs1"><a href="/wiki/Godfrey_Harold_Hardy" class="mw-redirect" title="Godfrey Harold Hardy">Hardy, G.H.</a>; <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">Littlewood, J.E.</a> (1914). <a rel="nofollow" class="external text" href="http://projecteuclid.org/download/pdf_1/euclid.acta/1485887376">"Some problems of diophantine approximation: <span class="nowrap">Part II. The</span> trigonometrical series associated with the elliptic <span class="texhtml mvar" style="font-style:italic;">θ</span>&#160;functions"</a>. <i><a href="/wiki/Acta_Mathematica" title="Acta Mathematica">Acta Mathematica</a></i>. <b>37</b>: 225. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02401834">10.1007/BF02401834</a></span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181212063403/https://projecteuclid.org/download/pdf_1/euclid.acta/1485887376">Archived</a> from the original on 2018-12-12<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-03-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Mathematica&amp;rft.atitle=Some+problems+of+diophantine+approximation%3A+%3Cspan+class%3D%22nowrap%22%3EPart+II.+The%3C%2Fspan%3E+trigonometrical+series+associated+with+the+elliptic+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3E%CE%B8%3C%2Fspan%3E+functions&amp;rft.volume=37&amp;rft.pages=225&amp;rft.date=1914&amp;rft_id=info%3Adoi%2F10.1007%2FBF02401834&amp;rft.aulast=Hardy&amp;rft.aufirst=G.H.&amp;rft.au=Littlewood%2C+J.E.&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Fdownload%2Fpdf_1%2Feuclid.acta%2F1485887376&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-HL2-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-HL2_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HL2_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyLittlewood1916" class="citation journal cs1"><a href="/wiki/Godfrey_Harold_Hardy" class="mw-redirect" title="Godfrey Harold Hardy">Hardy, G.H.</a>; <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">Littlewood, J.E.</a> (1916). "Contribution to the theory of the Riemann zeta-function and the theory of the distribution of primes". <i><a href="/wiki/Acta_Mathematica" title="Acta Mathematica">Acta Mathematica</a></i>. <b>41</b>: 119–196. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02422942">10.1007/BF02422942</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Mathematica&amp;rft.atitle=Contribution+to+the+theory+of+the+Riemann+zeta-function+and+the+theory+of+the+distribution+of+primes&amp;rft.volume=41&amp;rft.pages=119-196&amp;rft.date=1916&amp;rft_id=info%3Adoi%2F10.1007%2FBF02422942&amp;rft.aulast=Hardy&amp;rft.aufirst=G.H.&amp;rft.au=Littlewood%2C+J.E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-landau-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-landau_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandau1924" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Edmund_Landau" title="Edmund Landau">Landau, E.</a> (1924). "Über die Anzahl der Gitterpunkte in gewissen Bereichen.&#160;IV" &#91;On the number of grid points in known regions&#93;. <i>Nachr. Gesell. Wiss. Gött. Math-phys.</i> (in German): 137–150.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nachr.+Gesell.+Wiss.+G%C3%B6tt.+Math-phys.&amp;rft.atitle=%C3%9Cber+die+Anzahl+der+Gitterpunkte+in+gewissen+Bereichen.+IV.&amp;rft.pages=137-150&amp;rft.date=1924&amp;rft.aulast=Landau&amp;rft.aufirst=E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-Ivic-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ivic_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ivic_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIvić1985" class="citation book cs1"><a href="/wiki/Aleksandar_Ivi%C4%87" title="Aleksandar Ivić">Ivić, A.</a> (1985). <i>The Riemann Zeta-Function</i>. John Wiley &amp; Sons. chapter&#160;9.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Riemann+Zeta-Function&amp;rft.pages=chapter-9&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1985&amp;rft.aulast=Ivi%C4%87&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTenenbaum2015" class="citation book cs1"><a href="/wiki/G%C3%A9rald_Tenenbaum" title="Gérald Tenenbaum">Tenenbaum, G.</a> (2015). <i>Introduction to Analytic and Probabilistic Number Theory</i>. Providence, RI: American Mathematical Society. §&#160;I.5.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Analytic+and+Probabilistic+Number+Theory&amp;rft.place=Providence%2C+RI&amp;rft.pages=%C2%A7-I.5&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2015&amp;rft.aulast=Tenenbaum&amp;rft.aufirst=G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-knuth-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-knuth_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-knuth_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-knuth_24-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-knuth_24-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-knuth_24-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-knuth_24-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1976" class="citation journal cs1">Knuth, Donald (April–June 1976). <a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1008328.1008329">"Big Omicron and big Omega and big Theta"</a>. <i>SIGACT News</i>. <b>8</b> (2): 18–24. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1008328.1008329">10.1145/1008328.1008329</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5230246">5230246</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIGACT+News&amp;rft.atitle=Big+Omicron+and+big+Omega+and+big+Theta&amp;rft.volume=8&amp;rft.issue=2&amp;rft.pages=18-24&amp;rft.date=1976-04%2F1976-06&amp;rft_id=info%3Adoi%2F10.1145%2F1008328.1008329&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5230246%23id-name%3DS2CID&amp;rft.aulast=Knuth&amp;rft.aufirst=Donald&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%252F1008328.1008329&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-Balcázar-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Balcázar_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalcázarGabarró" class="citation journal cs1">Balcázar, José L.; Gabarró, Joaquim. <a rel="nofollow" class="external text" href="http://archive.numdam.org/article/ITA_1989__23_2_177_0.pdf">"Nonuniform complexity classes specified by lower and upper bounds"</a> <span class="cs1-format">(PDF)</span>. <i>RAIRO – Theoretical Informatics and Applications – Informatique Théorique et Applications</i>. <b>23</b> (2): 180. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0988-3754">0988-3754</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170314153158/http://archive.numdam.org/article/ITA_1989__23_2_177_0.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 14 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2017</span> &#8211; via Numdam.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=RAIRO+%E2%80%93+Theoretical+Informatics+and+Applications+%E2%80%93+Informatique+Th%C3%A9orique+et+Applications&amp;rft.atitle=Nonuniform+complexity+classes+specified+by+lower+and+upper+bounds&amp;rft.volume=23&amp;rft.issue=2&amp;rft.pages=180&amp;rft.issn=0988-3754&amp;rft.aulast=Balc%C3%A1zar&amp;rft.aufirst=Jos%C3%A9+L.&amp;rft.au=Gabarr%C3%B3%2C+Joaquim&amp;rft_id=http%3A%2F%2Farchive.numdam.org%2Farticle%2FITA_1989&#95;_23_2_177_0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-Cucker-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cucker_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCuckerBürgisser2013" class="citation book cs1">Cucker, Felipe; Bürgisser, Peter (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SNu4BAAAQBAJ&amp;pg=PA467">"A.1 Big Oh, Little Oh, and Other Comparisons"</a>. <i>Condition: The Geometry of Numerical Algorithms</i>. Berlin, Heidelberg: Springer. pp.&#160;467–468. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-38896-5">10.1007/978-3-642-38896-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-38896-5" title="Special:BookSources/978-3-642-38896-5"><bdi>978-3-642-38896-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A.1+Big+Oh%2C+Little+Oh%2C+and+Other+Comparisons&amp;rft.btitle=Condition%3A+The+Geometry+of+Numerical+Algorithms&amp;rft.place=Berlin%2C+Heidelberg&amp;rft.pages=467-468&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-38896-5&amp;rft.isbn=978-3-642-38896-5&amp;rft.aulast=Cucker&amp;rft.aufirst=Felipe&amp;rft.au=B%C3%BCrgisser%2C+Peter&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSNu4BAAAQBAJ%26pg%3DPA467&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-Wild-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wild_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wild_27-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Wild_27-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVitányiMeertens1985" class="citation journal cs1"><a href="/wiki/Paul_Vitanyi" class="mw-redirect" title="Paul Vitanyi">Vitányi, Paul</a>; <a href="/wiki/Lambert_Meertens" title="Lambert Meertens">Meertens, Lambert</a> (April 1985). <a rel="nofollow" class="external text" href="http://www.kestrel.edu/home/people/meertens/publications/papers/Big_Omega_contra_the_wild_functions.pdf">"Big Omega versus the wild functions"</a> <span class="cs1-format">(PDF)</span>. <i>ACM SIGACT News</i>. <b>16</b> (4): 56–59. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.694.3072">10.1.1.694.3072</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F382242.382835">10.1145/382242.382835</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11700420">11700420</a></span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160310012405/http://www.kestrel.edu/home/people/meertens/publications/papers/Big_Omega_contra_the_wild_functions.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-10<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-03-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACM+SIGACT+News&amp;rft.atitle=Big+Omega+versus+the+wild+functions&amp;rft.volume=16&amp;rft.issue=4&amp;rft.pages=56-59&amp;rft.date=1985-04&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.694.3072%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11700420%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F382242.382835&amp;rft.aulast=Vit%C3%A1nyi&amp;rft.aufirst=Paul&amp;rft.au=Meertens%2C+Lambert&amp;rft_id=http%3A%2F%2Fwww.kestrel.edu%2Fhome%2Fpeople%2Fmeertens%2Fpublications%2Fpapers%2FBig_Omega_contra_the_wild_functions.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormenLeisersonRivestStein2001" class="citation book cs1"><a href="/wiki/Thomas_H._Cormen" title="Thomas H. Cormen">Cormen, Thomas H.</a>; <a href="/wiki/Charles_E._Leiserson" title="Charles E. Leiserson">Leiserson, Charles E.</a>; <a href="/wiki/Ron_Rivest" title="Ron Rivest">Rivest, Ronald L.</a>; <a href="/wiki/Clifford_Stein" title="Clifford Stein">Stein, Clifford</a> (2001) [1990]. <a href="/wiki/Introduction_to_Algorithms" title="Introduction to Algorithms"><i>Introduction to Algorithms</i></a> (2nd&#160;ed.). MIT Press and McGraw-Hill. pp.&#160;41–50. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-262-03293-7" title="Special:BookSources/0-262-03293-7"><bdi>0-262-03293-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.pages=41-50&amp;rft.edition=2nd&amp;rft.pub=MIT+Press+and+McGraw-Hill&amp;rft.date=2001&amp;rft.isbn=0-262-03293-7&amp;rft.aulast=Cormen&amp;rft.aufirst=Thomas+H.&amp;rft.au=Leiserson%2C+Charles+E.&amp;rft.au=Rivest%2C+Ronald+L.&amp;rft.au=Stein%2C+Clifford&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-GT-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-GT_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GT_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, «&#160;Notation&#160;», page xxiii. American Mathematical Society, Providence RI, 2015.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">for example it is omitted in: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHildebrand" class="citation web cs1">Hildebrand, A.J. <a rel="nofollow" class="external text" href="http://www.math.uiuc.edu/~ajh/595ama/ama-ch2.pdf">"Asymptotic Notations"</a> <span class="cs1-format">(PDF)</span>. Department of Mathematics. <i>Asymptotic Methods in Analysis</i>. Math&#160;595, Fall 2009. Urbana, IL: University of Illinois. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170314153801/http://www.math.uiuc.edu/~ajh/595ama/ama-ch2.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 14 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Asymptotic+Methods+in+Analysis&amp;rft.atitle=Asymptotic+Notations&amp;rft.aulast=Hildebrand&amp;rft.aufirst=A.J.&amp;rft_id=http%3A%2F%2Fwww.math.uiuc.edu%2F~ajh%2F595ama%2Fama-ch2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><a href="#CITEREFCormenLeisersonRivestStein2009">Cormen et al. (2009)</a>, p. 64: "Many people continue to use the <i>O</i>-notation where the Θ-notation is more technically precise."</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormen,_Thomas_H.Leiserson,_Charles_E.Rivest,_Ronald_L.2009" class="citation book cs1">Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (2009). <i>Introduction to Algorithms</i> (3rd&#160;ed.). Cambridge/MA: MIT Press. p.&#160;47. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-53305-8" title="Special:BookSources/978-0-262-53305-8"><bdi>978-0-262-53305-8</bdi></a>. <q>When we have only an asymptotic upper bound, we use O-notation. For a given function <i>g</i>(<i>n</i>), we denote by <i>O</i>(<i>g</i>(<i>n</i>)) (pronounced "big-oh of <i>g</i> of <i>n</i>" or sometimes just "oh of <i>g</i> of <i>n</i>") the set of functions <i>O</i>(<i>g</i>(<i>n</i>)) = { <i>f</i>(<i>n</i>)&#160;: there exist positive constants <i>c</i> and <i>n</i><sub>0</sub> such that 0 ≤ <i>f</i>(<i>n</i>) ≤ <i>cg</i>(<i>n</i>) for all <i>n</i> ≥ <i>n</i><sub>0</sub>}</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.place=Cambridge%2FMA&amp;rft.pages=47&amp;rft.edition=3rd&amp;rft.pub=MIT+Press&amp;rft.date=2009&amp;rft.isbn=978-0-262-53305-8&amp;rft.au=Cormen%2C+Thomas+H.&amp;rft.au=Leiserson%2C+Charles+E.&amp;rft.au=Rivest%2C+Ronald+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormen,_Thomas_H.Leiserson,_Charles_E.Rivest,_Ronald_L.2009" class="citation book cs1">Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (2009). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoal00corm_805"><i>Introduction to Algorithms</i></a></span> (3rd&#160;ed.). Cambridge/MA: MIT Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoal00corm_805/page/n69">49</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-53305-8" title="Special:BookSources/978-0-262-53305-8"><bdi>978-0-262-53305-8</bdi></a>. <q>When the asymptotic notation stands alone (that is, not within a larger formula) on the right-hand side of an equation (or inequality), as in n = O(n<sup>2</sup>), we have already defined the equal sign to mean set membership: n ∈ O(n<sup>2</sup>). In general, however, when asymptotic notation appears in a formula, we interpret it as standing for some anonymous function that we do not care to name. For example, the formula 2<i>n</i><sup>2</sup> + 3<i>n</i> + 1 = 2<i>n</i><sup>2</sup> + <i>θ</i>(<i>n</i>) means that 2<i>n</i><sup>2</sup> + 3<i>n</i> + 1 = 2<i>n</i><sup>2</sup> + <i>f</i>(<i>n</i>), where <i>f</i>(<i>n</i>) is some function in the set <i>θ</i>(<i>n</i>). In this case, we let <i>f</i>(<i>n</i>) = 3<i>n</i> + 1, which is indeed in <i>θ</i>(<i>n</i>). Using asymptotic notation in this manner can help eliminate inessential detail and clutter in an equation.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.place=Cambridge%2FMA&amp;rft.pages=49&amp;rft.edition=3rd&amp;rft.pub=MIT+Press&amp;rft.date=2009&amp;rft.isbn=978-0-262-53305-8&amp;rft.au=Cormen%2C+Thomas+H.&amp;rft.au=Leiserson%2C+Charles+E.&amp;rft.au=Rivest%2C+Ronald+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoal00corm_805&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormenLeisersonRivestStein2022" class="citation book cs1">Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2022). <a rel="nofollow" class="external text" href="https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/"><i>Introduction to Algorithms</i></a> (4th&#160;ed.). Cambridge, Mass.: The MIT Press. pp.&#160;74–75. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780262046305" title="Special:BookSources/9780262046305"><bdi>9780262046305</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.place=Cambridge%2C+Mass.&amp;rft.pages=74-75&amp;rft.edition=4th&amp;rft.pub=The+MIT+Press&amp;rft.date=2022&amp;rft.isbn=9780262046305&amp;rft.aulast=Cormen&amp;rft.aufirst=Thomas+H.&amp;rft.au=Leiserson%2C+Charles+E.&amp;rft.au=Rivest%2C+Ronald+L.&amp;rft.au=Stein%2C+Clifford&amp;rft_id=https%3A%2F%2Fmitpress.mit.edu%2F9780262046305%2Fintroduction-to-algorithms%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndreas_Björklund_and_Thore_Husfeldt_and_Mikko_Koivisto2009" class="citation journal cs1">Andreas Björklund and Thore Husfeldt and Mikko Koivisto (2009). <a rel="nofollow" class="external text" href="https://www.cs.helsinki.fi/u/mkhkoivi/publications/sicomp-2009.pdf">"Set partitioning via inclusion-exclusion"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/SIAM_Journal_on_Computing" title="SIAM Journal on Computing">SIAM Journal on Computing</a></i>. <b>39</b> (2): 546–563. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F070683933">10.1137/070683933</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220203095918/https://www.cs.helsinki.fi/u/mkhkoivi/publications/sicomp-2009.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-02-03<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-02-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Journal+on+Computing&amp;rft.atitle=Set+partitioning+via+inclusion-exclusion&amp;rft.volume=39&amp;rft.issue=2&amp;rft.pages=546-563&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1137%2F070683933&amp;rft.au=Andreas+Bj%C3%B6rklund+and+Thore+Husfeldt+and+Mikko+Koivisto&amp;rft_id=https%3A%2F%2Fwww.cs.helsinki.fi%2Fu%2Fmkhkoivi%2Fpublications%2Fsicomp-2009.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span> See sect.2.3, p.551.</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdelyi1956" class="citation book cs1">Erdelyi, A. (1956). <i>Asymptotic Expansions</i>. Courier Corporation. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-60318-6" title="Special:BookSources/978-0-486-60318-6"><bdi>978-0-486-60318-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Asymptotic+Expansions&amp;rft.pub=Courier+Corporation&amp;rft.date=1956&amp;rft.isbn=978-0-486-60318-6&amp;rft.aulast=Erdelyi&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span>.</span> </li> <li id="cite_note-titchmarsh-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-titchmarsh_37-0">^</a></b></span> <span class="reference-text">E. C. Titchmarsh, The Theory of the Riemann Zeta-Function (Oxford; Clarendon Press, 1951)</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandau1909" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Edmund_Landau" title="Edmund Landau">Landau, Edmund</a> (1909). <a rel="nofollow" class="external text" href="https://archive.org/details/handbuchderlehre01landuoft"><i>Handbuch der Lehre von der Verteilung der Primzahlen</i></a> &#91;<i>Handbook on the theory of the distribution of the primes</i>&#93; (in German). Leipzig: B. G. Teubner. p.&#160;62.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbuch+der+Lehre+von+der+Verteilung+der+Primzahlen&amp;rft.place=Leipzig&amp;rft.pages=62&amp;rft.pub=B.+G.+Teubner&amp;rft.date=1909&amp;rft.aulast=Landau&amp;rft.aufirst=Edmund&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhandbuchderlehre01landuoft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-Hardy-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hardy_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy1910" class="citation book cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, G. H.</a> (1910). <a rel="nofollow" class="external text" href="https://archive.org/details/ordersofinfinity00harduoft"><i>Orders of Infinity: The 'Infinitärcalcül' of Paul du Bois-Reymond</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p.&#160;2.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Orders+of+Infinity%3A+The+%27Infinit%C3%A4rcalc%C3%BCl%27+of+Paul+du+Bois-Reymond&amp;rft.pages=2&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1910&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fordersofinfinity00harduoft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyWright2008" class="citation book cs1">Hardy, G. H.; <a href="/wiki/E._M._Wright" title="E. M. Wright">Wright, E. M.</a> (2008) [1st ed. 1938]. "1.6. Some notations". <i>An Introduction to the Theory of Numbers</i>. Revised by <a href="/wiki/Roger_Heath-Brown" title="Roger Heath-Brown">D. R. Heath-Brown</a> and <a href="/wiki/Joseph_H._Silverman" title="Joseph H. Silverman">J. H. Silverman</a>, with a foreword by <a href="/wiki/Andrew_Wiles" title="Andrew Wiles">Andrew Wiles</a> (6th&#160;ed.). Oxford: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-921985-8" title="Special:BookSources/978-0-19-921985-8"><bdi>978-0-19-921985-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=1.6.+Some+notations&amp;rft.btitle=An+Introduction+to+the+Theory+of+Numbers&amp;rft.place=Oxford&amp;rft.edition=6th&amp;rft.pub=Oxford+University+Press&amp;rft.date=2008&amp;rft.isbn=978-0-19-921985-8&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rft.au=Wright%2C+E.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">See for instance "A new estimate for <i>G</i>(<i>n</i>) in Waring's problem" (Russian). Doklady Akademii Nauk SSSR 5, No 5-6 (1934), 249–253. Translated in English in: Selected works / Ivan Matveevič Vinogradov; prepared by the Steklov Mathematical Institute of the Academy of Sciences of the USSR on the occasion of his 90th birthday. Springer-Verlag, 1985.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=32" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy1910" class="citation book cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, G. H.</a> (1910). <a rel="nofollow" class="external text" href="https://archive.org/details/ordersofinfinity00harduoft"><i>Orders of Infinity: The 'Infinitärcalcül' of Paul du Bois-Reymond</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Orders+of+Infinity%3A+The+%27Infinit%C3%A4rcalc%C3%BCl%27+of+Paul+du+Bois-Reymond&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1910&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fordersofinfinity00harduoft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1997" class="citation book cs1"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a> (1997). "1.2.11: Asymptotic Representations". <i>Fundamental Algorithms</i>. The Art of Computer Programming. Vol.&#160;1 (3rd&#160;ed.). Addison-Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-89683-1" title="Special:BookSources/978-0-201-89683-1"><bdi>978-0-201-89683-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=1.2.11%3A+Asymptotic+Representations&amp;rft.btitle=Fundamental+Algorithms&amp;rft.series=The+Art+of+Computer+Programming&amp;rft.edition=3rd&amp;rft.pub=Addison-Wesley&amp;rft.date=1997&amp;rft.isbn=978-0-201-89683-1&amp;rft.aulast=Knuth&amp;rft.aufirst=Donald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormenLeisersonRivestStein2001" class="citation book cs1"><a href="/wiki/Thomas_H._Cormen" title="Thomas H. Cormen">Cormen, Thomas H.</a>; <a href="/wiki/Charles_E._Leiserson" title="Charles E. Leiserson">Leiserson, Charles E.</a>; <a href="/wiki/Ronald_L._Rivest" class="mw-redirect" title="Ronald L. Rivest">Rivest, Ronald L.</a>; <a href="/wiki/Clifford_Stein" title="Clifford Stein">Stein, Clifford</a> (2001). "3.1: Asymptotic notation". <a href="/wiki/Introduction_to_Algorithms" title="Introduction to Algorithms"><i>Introduction to Algorithms</i></a> (2nd&#160;ed.). MIT Press and McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-03293-3" title="Special:BookSources/978-0-262-03293-3"><bdi>978-0-262-03293-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=3.1%3A+Asymptotic+notation&amp;rft.btitle=Introduction+to+Algorithms&amp;rft.edition=2nd&amp;rft.pub=MIT+Press+and+McGraw-Hill&amp;rft.date=2001&amp;rft.isbn=978-0-262-03293-3&amp;rft.aulast=Cormen&amp;rft.aufirst=Thomas+H.&amp;rft.au=Leiserson%2C+Charles+E.&amp;rft.au=Rivest%2C+Ronald+L.&amp;rft.au=Stein%2C+Clifford&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSipser1997" class="citation book cs1"><a href="/wiki/Michael_Sipser" title="Michael Sipser">Sipser, Michael</a> (1997). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoth00sips_928"><i>Introduction to the Theory of Computation</i></a></span>. PWS Publishing. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoth00sips_928/page/n239">226</a>–228. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-534-94728-6" title="Special:BookSources/978-0-534-94728-6"><bdi>978-0-534-94728-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Computation&amp;rft.pages=226-228&amp;rft.pub=PWS+Publishing&amp;rft.date=1997&amp;rft.isbn=978-0-534-94728-6&amp;rft.aulast=Sipser&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoth00sips_928&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAvigadDonnelly2004" class="citation conference cs1">Avigad, Jeremy; Donnelly, Kevin (2004). <a rel="nofollow" class="external text" href="http://www.andrew.cmu.edu/~avigad/Papers/bigo.pdf"><i>Formalizing O notation in Isabelle/HOL</i></a> <span class="cs1-format">(PDF)</span>. International Joint Conference on Automated Reasoning. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-25984-8_27">10.1007/978-3-540-25984-8_27</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Formalizing+O+notation+in+Isabelle%2FHOL&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-25984-8_27&amp;rft.aulast=Avigad&amp;rft.aufirst=Jeremy&amp;rft.au=Donnelly%2C+Kevin&amp;rft_id=http%3A%2F%2Fwww.andrew.cmu.edu%2F~avigad%2FPapers%2Fbigo.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlack2005" class="citation web cs1">Black, Paul E. (11 March 2005). Black, Paul E. (ed.). <a rel="nofollow" class="external text" href="https://xlinux.nist.gov/dads/HTML/bigOnotation.html">"big-O notation"</a>. <i>Dictionary of Algorithms and Data Structures</i>. U.S. National Institute of Standards and Technology<span class="reference-accessdate">. Retrieved <span class="nowrap">December 16,</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Dictionary+of+Algorithms+and+Data+Structures&amp;rft.atitle=big-O+notation&amp;rft.date=2005-03-11&amp;rft.aulast=Black&amp;rft.aufirst=Paul+E.&amp;rft_id=https%3A%2F%2Fxlinux.nist.gov%2Fdads%2FHTML%2FbigOnotation.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlack2004" class="citation web cs1">Black, Paul E. (17 December 2004). Black, Paul E. (ed.). <a rel="nofollow" class="external text" href="https://xlinux.nist.gov/dads/HTML/littleOnotation.html">"little-o notation"</a>. <i>Dictionary of Algorithms and Data Structures</i>. U.S. National Institute of Standards and Technology<span class="reference-accessdate">. Retrieved <span class="nowrap">December 16,</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Dictionary+of+Algorithms+and+Data+Structures&amp;rft.atitle=little-o+notation&amp;rft.date=2004-12-17&amp;rft.aulast=Black&amp;rft.aufirst=Paul+E.&amp;rft_id=https%3A%2F%2Fxlinux.nist.gov%2Fdads%2FHTML%2FlittleOnotation.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlack2004" class="citation web cs1">Black, Paul E. (17 December 2004). Black, Paul E. (ed.). <a rel="nofollow" class="external text" href="https://xlinux.nist.gov/dads/HTML/omegaCapital.html">"Ω"</a>. <i>Dictionary of Algorithms and Data Structures</i>. U.S. National Institute of Standards and Technology<span class="reference-accessdate">. Retrieved <span class="nowrap">December 16,</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Dictionary+of+Algorithms+and+Data+Structures&amp;rft.atitle=%CE%A9&amp;rft.date=2004-12-17&amp;rft.aulast=Black&amp;rft.aufirst=Paul+E.&amp;rft_id=https%3A%2F%2Fxlinux.nist.gov%2Fdads%2FHTML%2FomegaCapital.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlack2004" class="citation web cs1">Black, Paul E. (17 December 2004). Black, Paul E. (ed.). <a rel="nofollow" class="external text" href="https://xlinux.nist.gov/dads/HTML/omega.html">"ω"</a>. <i>Dictionary of Algorithms and Data Structures</i>. U.S. National Institute of Standards and Technology<span class="reference-accessdate">. Retrieved <span class="nowrap">December 16,</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Dictionary+of+Algorithms+and+Data+Structures&amp;rft.atitle=%CF%89&amp;rft.date=2004-12-17&amp;rft.aulast=Black&amp;rft.aufirst=Paul+E.&amp;rft_id=https%3A%2F%2Fxlinux.nist.gov%2Fdads%2FHTML%2Fomega.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlack2004" class="citation web cs1">Black, Paul E. (17 December 2004). Black, Paul E. (ed.). <a rel="nofollow" class="external text" href="https://xlinux.nist.gov/dads/HTML/theta.html">"Θ"</a>. <i>Dictionary of Algorithms and Data Structures</i>. U.S. National Institute of Standards and Technology<span class="reference-accessdate">. Retrieved <span class="nowrap">December 16,</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Dictionary+of+Algorithms+and+Data+Structures&amp;rft.atitle=%CE%98&amp;rft.date=2004-12-17&amp;rft.aulast=Black&amp;rft.aufirst=Paul+E.&amp;rft_id=https%3A%2F%2Fxlinux.nist.gov%2Fdads%2FHTML%2Ftheta.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+O+notation" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_O_notation&amp;action=edit&amp;section=33" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Data_Structures" class="extiw" title="wikibooks:Data Structures">Data Structures</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Data_Structures/Asymptotic_Notation#Big-O_Notation" class="extiw" title="wikibooks:Data Structures/Asymptotic Notation">Big-O Notation</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/40px-Wikiversity_logo_2017.svg.png" decoding="async" width="40" height="33" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/60px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/80px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Wikiversity solved a <a href="https://en.wikiversity.org/wiki/MyOpenMath/Solutions" class="extiw" title="v:MyOpenMath/Solutions"><i>MyOpenMath problem</i></a> using <i><b><a href="https://en.wikiversity.org/wiki/MyOpenMath/Solutions/Big-O" class="extiw" title="v:MyOpenMath/Solutions/Big-O">Big-O Notation</a></b></i></div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://oeis.org/wiki/Growth_of_sequences">Growth of sequences — OEIS (Online Encyclopedia of Integer Sequences) Wiki</a></li> <li><a rel="nofollow" class="external text" href="https://classes.soe.ucsc.edu/cse102/Fall21/Handouts/AsymptoticGrowth.pdf">Introduction to Asymptotic Notations</a></li> <li><a rel="nofollow" class="external text" href="http://www.perlmonks.org/?node_id=573138">Big-O Notation – What is it good for</a></li> <li><a rel="nofollow" class="external text" href="https://autarkaw.org/2013/01/30/making-sense-of-the-big-oh/">An example of Big O in accuracy of central divided difference scheme for first derivative</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181007223123/https://autarkaw.org/2013/01/30/making-sense-of-the-big-oh/">Archived</a> 2018-10-07 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="https://discrete.gr/complexity/">A Gentle Introduction to Algorithm Complexity Analysis</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5857dfdcd6‐bzpjb Cached time: 20241203065151 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.281 seconds Real time usage: 1.537 seconds Preprocessor visited node count: 10296/1000000 Post‐expand include size: 128996/2097152 bytes Template argument size: 13416/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 171846/5000000 bytes Lua time usage: 0.627/10.000 seconds Lua memory usage: 8479298/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1000.760 1 -total 42.08% 421.113 1 Template:Reflist 25.73% 257.462 25 Template:Cite_book 11.01% 110.160 95 Template:Math 10.36% 103.717 1 Template:Short_description 10.01% 100.142 1 Template:Order-of-approx 9.82% 98.255 1 Template:Sidebar 7.66% 76.627 2 Template:Pagetype 6.31% 63.104 4 Template:Citation_needed 5.91% 59.153 5 Template:Fix --> <!-- Saved in parser cache with key enwiki:pcache:44578:|#|:idhash:canonical and timestamp 20241203065151 and revision id 1260396518. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Big_O_notation&amp;oldid=1260396518">https://en.wikipedia.org/w/index.php?title=Big_O_notation&amp;oldid=1260396518</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Mathematical_notation" title="Category:Mathematical notation">Mathematical notation</a></li><li><a href="/wiki/Category:Asymptotic_analysis" title="Category:Asymptotic analysis">Asymptotic analysis</a></li><li><a href="/wiki/Category:Analysis_of_algorithms" title="Category:Analysis of algorithms">Analysis of algorithms</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2021" title="Category:Articles with unsourced statements from April 2021">Articles with unsourced statements from April 2021</a></li><li><a href="/wiki/Category:All_articles_that_may_contain_original_research" title="Category:All articles that may contain original research">All articles that may contain original research</a></li><li><a href="/wiki/Category:Articles_that_may_contain_original_research_from_April_2021" title="Category:Articles that may contain original research from April 2021">Articles that may contain original research from April 2021</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2018" title="Category:Articles with unsourced statements from December 2018">Articles with unsourced statements from December 2018</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2017" title="Category:Articles with unsourced statements from May 2017">Articles with unsourced statements from May 2017</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 30 November 2024, at 15:01<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Big_O_notation&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-67847f4bfd-2tnvt","wgBackendResponseTime":203,"wgPageParseReport":{"limitreport":{"cputime":"1.281","walltime":"1.537","ppvisitednodes":{"value":10296,"limit":1000000},"postexpandincludesize":{"value":128996,"limit":2097152},"templateargumentsize":{"value":13416,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":171846,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1000.760 1 -total"," 42.08% 421.113 1 Template:Reflist"," 25.73% 257.462 25 Template:Cite_book"," 11.01% 110.160 95 Template:Math"," 10.36% 103.717 1 Template:Short_description"," 10.01% 100.142 1 Template:Order-of-approx"," 9.82% 98.255 1 Template:Sidebar"," 7.66% 76.627 2 Template:Pagetype"," 6.31% 63.104 4 Template:Citation_needed"," 5.91% 59.153 5 Template:Fix"]},"scribunto":{"limitreport-timeusage":{"value":"0.627","limit":"10.000"},"limitreport-memusage":{"value":8479298,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAndreas_Björklund_and_Thore_Husfeldt_and_Mikko_Koivisto2009\"] = 1,\n [\"CITEREFAvigadDonnelly2004\"] = 1,\n [\"CITEREFBachmann1894\"] = 1,\n [\"CITEREFBalcázarGabarró\"] = 1,\n [\"CITEREFBlack2004\"] = 4,\n [\"CITEREFBlack2005\"] = 1,\n [\"CITEREFCormen,_Thomas_H.Leiserson,_Charles_E.Rivest,_Ronald_L.2009\"] = 3,\n [\"CITEREFCormenLeisersonRivest1990\"] = 1,\n [\"CITEREFCormenLeisersonRivestStein2001\"] = 1,\n [\"CITEREFCormenLeisersonRivestStein2009\"] = 1,\n [\"CITEREFCormenLeisersonRivestStein2022\"] = 1,\n [\"CITEREFCuckerBürgisser2013\"] = 1,\n [\"CITEREFDonald_Knuth1998\"] = 1,\n [\"CITEREFErdelyi1956\"] = 1,\n [\"CITEREFGrahamKnuthPatashnik1994\"] = 1,\n [\"CITEREFHardy1910\"] = 2,\n [\"CITEREFHardyLittlewood1914\"] = 1,\n [\"CITEREFHardyLittlewood1916\"] = 1,\n [\"CITEREFHardyWright2008\"] = 1,\n [\"CITEREFHildebrand\"] = 1,\n [\"CITEREFHowell\"] = 1,\n [\"CITEREFIvić1985\"] = 1,\n [\"CITEREFKnuth1976\"] = 1,\n [\"CITEREFKnuth1997\"] = 1,\n [\"CITEREFLandau1909\"] = 4,\n [\"CITEREFLandau1924\"] = 1,\n [\"CITEREFSipser1997\"] = 2,\n [\"CITEREFTenenbaum2015\"] = 1,\n [\"CITEREFVitányiMeertens1985\"] = 1,\n [\"CITEREFde_Bruijn1958\"] = 1,\n [\"Example_(Matters_of_notation)\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 2,\n [\"=\"] = 6,\n [\"Anchor\"] = 1,\n [\"Citation needed\"] = 4,\n [\"Cite book\"] = 24,\n [\"Cite conference\"] = 1,\n [\"Cite journal\"] = 8,\n [\"Cite web\"] = 7,\n [\"DISPLAYTITLE:Big ''O'' notation\"] = 1,\n [\"Further\"] = 2,\n [\"Harvtxt\"] = 2,\n [\"Introduction to Algorithms\"] = 1,\n [\"Mabs\"] = 2,\n [\"Math\"] = 95,\n [\"Mvar\"] = 38,\n [\"Nobr\"] = 2,\n [\"Nowrap\"] = 17,\n [\"Order-of-approx\"] = 1,\n [\"Original research inline\"] = 1,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n [\"Sister project\"] = 1,\n [\"Webarchive\"] = 3,\n [\"Wikibooks\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-5857dfdcd6-bzpjb","timestamp":"20241203065151","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Big O notation","url":"https:\/\/en.wikipedia.org\/wiki\/Big_O_notation","sameAs":"http:\/\/www.wikidata.org\/entity\/Q269878","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q269878","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-12T20:35:36Z","dateModified":"2024-11-30T15:01:48Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/89\/Big-O-notation.png","headline":"form of Landau notation representing asymptotically equivalent or slower growth"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10