CINXE.COM
Nombre complex - Viquipèdia, l'enciclopèdia lliure
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="ca" dir="ltr"> <head> <meta charset="UTF-8"> <title>Nombre complex - Viquipèdia, l'enciclopèdia lliure</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )cawikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gener","febrer","març","abril","maig","juny","juliol","agost","setembre","octubre","novembre","desembre"],"wgRequestId":"897048be-792a-4021-9c13-ca607d9e5388","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Nombre_complex","wgTitle":"Nombre complex","wgCurRevisionId":33692525,"wgRevisionId":33692525,"wgArticleId":31386,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles amb enllaços externs no actius","Pàgines amb enllaç commonscat des de Wikidata","1.000 articles fonamentals","Ciència (Els 1000 de META)","Control d'autoritats","Nombres complexos"],"wgPageViewLanguage":"ca","wgPageContentLanguage":"ca","wgPageContentModel":"wikitext","wgRelevantPageName":"Nombre_complex","wgRelevantArticleId":31386,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgRedirectedFrom":"Nombres_complexos","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ca","pageLanguageDir":"ltr","pageVariantFallbacks":"ca"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgInternalRedirectTargetUrl":"/wiki/Nombre_complex","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11567","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","wikibase.client.data-bridge.externalModifiers":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.UkensKonkurranse","ext.gadget.refToolbar","ext.gadget.charinsert","ext.gadget.AltresViccionari", "ext.gadget.purgetab","ext.gadget.DocTabs","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","wikibase.client.data-bridge.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ca&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.data-bridge.externalModifiers%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=ca&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ca&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/1200px-Complex_number_illustration.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/800px-Complex_number_illustration.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/640px-Complex_number_illustration.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Nombre complex - Viquipèdia, l'enciclopèdia lliure"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ca.m.wikipedia.org/wiki/Nombre_complex"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Nombre_complex&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Viquipèdia (ca)"> <link rel="EditURI" type="application/rsd+xml" href="//ca.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ca.wikipedia.org/wiki/Nombre_complex"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ca"> <link rel="alternate" type="application/atom+xml" title="Canal de sindicació Atom Viquipèdia" href="/w/index.php?title=Especial:Canvis_recents&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Nombre_complex rootpage-Nombre_complex skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vés al contingut</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Lloc"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menú principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menú principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menú principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mou a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">amaga</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegació </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Portada" title="Visiteu la pàgina principal [z]" accesskey="z"><span>Portada</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Article_aleatori" title="Carrega una pàgina a l’atzar [x]" accesskey="x"><span>Article a l'atzar</span></a></li><li id="n-Articles-de-qualitat" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Articles_de_qualitat"><span>Articles de qualitat</span></a></li> </ul> </div> </div> <div id="p-Comunitat" class="vector-menu mw-portlet mw-portlet-Comunitat" > <div class="vector-menu-heading"> Comunitat </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Portal" title="Sobre el projecte, què podeu fer, on trobareu les coses"><span>Portal viquipedista</span></a></li><li id="n-Agenda-d'actes" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Trobades"><span>Agenda d'actes</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:Canvis_recents" title="Una llista dels canvis recents al wiki [r]" accesskey="r"><span>Canvis recents</span></a></li><li id="n-La-taverna" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:La_taverna"><span>La taverna</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Contacte"><span>Contacte</span></a></li><li id="n-Xat" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Canals_IRC"><span>Xat</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Ajuda" title="El lloc per a saber més coses"><span>Ajuda</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Portada" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Viquipèdia" src="/static/images/mobile/copyright/wikipedia-wordmark-ca.svg" style="width: 7.5em; height: 1.4375em;"> <img class="mw-logo-tagline" alt="l'Enciclopèdia Lliure" src="/static/images/mobile/copyright/wikipedia-tagline-ca.svg" width="120" height="14" style="width: 7.5em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Cerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca a la Viquipèdia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Cerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca a Viquipèdia" aria-label="Cerca a Viquipèdia" autocapitalize="sentences" title="Cerca a la Viquipèdia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Cerca"> </div> <button class="cdx-button cdx-search-input__end-button">Cerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Eines personals"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aparença"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aparença" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aparença</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ca.wikipedia.org&uselang=ca" class=""><span>Donatius</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Crea_compte&returnto=Nombre+complex" title="Us animem a crear un compte i iniciar una sessió, encara que no és obligatori" class=""><span>Crea un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Registre_i_entrada&returnto=Nombre+complex" title="Us animem a registrar-vos, però no és obligatori [o]" accesskey="o" class=""><span>Inicia la sessió</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Més opcions" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Eines personals" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Eines personals</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menú d'usuari" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ca.wikipedia.org&uselang=ca"><span>Donatius</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Crea_compte&returnto=Nombre+complex" title="Us animem a crear un compte i iniciar una sessió, encara que no és obligatori"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Crea un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Registre_i_entrada&returnto=Nombre+complex" title="Us animem a registrar-vos, però no és obligatori [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Inicia la sessió</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pàgines per a editors no registrats <a href="/wiki/Ajuda:Introducci%C3%B3" aria-label="Vegeu més informació sobre l'edició"><span>més informació</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:Contribucions_pr%C3%B2pies" title="Una llista de les modificacions fetes des d'aquesta adreça IP [y]" accesskey="y"><span>Contribucions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:Discussi%C3%B3_personal" title="Discussió sobre les edicions per aquesta adreça ip. [n]" accesskey="n"><span>Discussió per aquest IP</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Lloc"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contingut" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contingut</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mou a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">amaga</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inici</div> </a> </li> <li id="toc-Sumari" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sumari"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Sumari</span> </div> </a> <button aria-controls="toc-Sumari-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Sumari</span> </button> <ul id="toc-Sumari-sublist" class="vector-toc-list"> <li id="toc-Motivació" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Motivació"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Motivació</span> </div> </a> <ul id="toc-Motivació-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definició" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definició"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Definició</span> </div> </a> <ul id="toc-Definició-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pla_complex_o_Diagrama_d'Argand" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pla_complex_o_Diagrama_d'Argand"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Pla complex o Diagrama d'Argand</span> </div> </a> <ul id="toc-Pla_complex_o_Diagrama_d'Argand-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notació" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notació"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Notació</span> </div> </a> <button aria-controls="toc-Notació-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Notació</span> </button> <ul id="toc-Notació-sublist" class="vector-toc-list"> <li id="toc-Notació_cartesiana" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notació_cartesiana"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Notació cartesiana</span> </div> </a> <ul id="toc-Notació_cartesiana-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notació_polar" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notació_polar"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Notació polar</span> </div> </a> <ul id="toc-Notació_polar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Equivalències_entre_notació_cartesiana_i_notació_polar" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Equivalències_entre_notació_cartesiana_i_notació_polar"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Equivalències entre notació cartesiana i notació polar</span> </div> </a> <ul id="toc-Equivalències_entre_notació_cartesiana_i_notació_polar-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Operacions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Operacions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Operacions</span> </div> </a> <button aria-controls="toc-Operacions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Operacions</span> </button> <ul id="toc-Operacions-sublist" class="vector-toc-list"> <li id="toc-Suma_i_resta" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Suma_i_resta"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Suma i resta</span> </div> </a> <ul id="toc-Suma_i_resta-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiplicació" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiplicació"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Multiplicació</span> </div> </a> <ul id="toc-Multiplicació-sublist" class="vector-toc-list"> <li id="toc-Demostració" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Demostració"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Demostració</span> </div> </a> <ul id="toc-Demostració-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Divisió" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Divisió"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Divisió</span> </div> </a> <ul id="toc-Divisió-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Potència" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Potència"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Potència</span> </div> </a> <ul id="toc-Potència-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arrels" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arrels"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Arrels</span> </div> </a> <ul id="toc-Arrels-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conjugat" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conjugat"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Conjugat</span> </div> </a> <ul id="toc-Conjugat-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Caracteritzacions_i_representacions_dels_nombres_complexos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Caracteritzacions_i_representacions_dels_nombres_complexos"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Caracteritzacions i representacions dels nombres complexos</span> </div> </a> <button aria-controls="toc-Caracteritzacions_i_representacions_dels_nombres_complexos-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Caracteritzacions i representacions dels nombres complexos</span> </button> <ul id="toc-Caracteritzacions_i_representacions_dels_nombres_complexos-sublist" class="vector-toc-list"> <li id="toc-Representació_matricial_dels_nombres_complexos" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Representació_matricial_dels_nombres_complexos"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Representació matricial dels nombres complexos</span> </div> </a> <ul id="toc-Representació_matricial_dels_nombres_complexos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Espai_vectorial_real" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Espai_vectorial_real"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Espai vectorial real</span> </div> </a> <ul id="toc-Espai_vectorial_real-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Solucions_d'equacions_polinòmiques" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Solucions_d'equacions_polinòmiques"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Solucions d'equacions polinòmiques</span> </div> </a> <ul id="toc-Solucions_d'equacions_polinòmiques-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construcció_i_caracterització_algebraica" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construcció_i_caracterització_algebraica"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Construcció i caracterització algebraica</span> </div> </a> <ul id="toc-Construcció_i_caracterització_algebraica-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Caracterització_com_a_cos_topològic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Caracterització_com_a_cos_topològic"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Caracterització com a cos topològic</span> </div> </a> <ul id="toc-Caracterització_com_a_cos_topològic-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Història" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Història"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Història</span> </div> </a> <ul id="toc-Història-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aplicacions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Aplicacions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Aplicacions</span> </div> </a> <button aria-controls="toc-Aplicacions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Aplicacions</span> </button> <ul id="toc-Aplicacions-sublist" class="vector-toc-list"> <li id="toc-Teoria_del_control" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Teoria_del_control"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Teoria del control</span> </div> </a> <ul id="toc-Teoria_del_control-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Anàlisi_del_senyal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Anàlisi_del_senyal"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Anàlisi del senyal</span> </div> </a> <ul id="toc-Anàlisi_del_senyal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrals_impròpies" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integrals_impròpies"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Integrals impròpies</span> </div> </a> <ul id="toc-Integrals_impròpies-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mecànica_quàntica" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mecànica_quàntica"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Mecànica quàntica</span> </div> </a> <ul id="toc-Mecànica_quàntica-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativitat" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativitat"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Relativitat</span> </div> </a> <ul id="toc-Relativitat-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matemàtiques_aplicades" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matemàtiques_aplicades"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Matemàtiques aplicades</span> </div> </a> <ul id="toc-Matemàtiques_aplicades-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dinàmica_de_fluids" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dinàmica_de_fluids"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.7</span> <span>Dinàmica de fluids</span> </div> </a> <ul id="toc-Dinàmica_de_fluids-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fractals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fractals"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.8</span> <span>Fractals</span> </div> </a> <ul id="toc-Fractals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Curiositats" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Curiositats"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Curiositats</span> </div> </a> <button aria-controls="toc-Curiositats-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Curiositats</span> </button> <ul id="toc-Curiositats-sublist" class="vector-toc-list"> <li id="toc-Els_nombres_complexos_i_els_polígons_regulars" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Els_nombres_complexos_i_els_polígons_regulars"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Els nombres complexos i els polígons regulars</span> </div> </a> <ul id="toc-Els_nombres_complexos_i_els_polígons_regulars-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Vegeu_també" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Vegeu_també"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Vegeu també</span> </div> </a> <ul id="toc-Vegeu_també-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referències" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Referències"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Referències</span> </div> </a> <ul id="toc-Referències-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contingut" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Commuta la taula de continguts." > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Commuta la taula de continguts.</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Nombre complex</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vés a un article en una altra llengua. Disponible en 132 llengües" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-132" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">132 llengües</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Komplekse_getal" title="Komplekse getal - afrikaans" lang="af" hreflang="af" data-title="Komplekse getal" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Komplexe_Zahl" title="Komplexe Zahl - alemany suís" lang="gsw" hreflang="gsw" data-title="Komplexe Zahl" data-language-autonym="Alemannisch" data-language-local-name="alemany suís" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8B%A8%E1%8A%A0%E1%89%85%E1%8C%A3%E1%8C%AB_%E1%89%81%E1%8C%A5%E1%88%AD" title="የአቅጣጫ ቁጥር - amhàric" lang="am" hreflang="am" data-title="የአቅጣጫ ቁጥር" data-language-autonym="አማርኛ" data-language-local-name="amhàric" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Numero_complexo" title="Numero complexo - aragonès" lang="an" hreflang="an" data-title="Numero complexo" data-language-autonym="Aragonés" data-language-local-name="aragonès" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="समिश्र संख्या - angika" lang="anp" hreflang="anp" data-title="समिश्र संख्या" data-language-autonym="अंगिका" data-language-local-name="angika" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D9%85%D8%B1%D9%83%D8%A8" title="عدد مركب - àrab" lang="ar" hreflang="ar" data-title="عدد مركب" data-language-autonym="العربية" data-language-local-name="àrab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%9C%E0%A6%9F%E0%A6%BF%E0%A6%B2_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="জটিল সংখ্যা - assamès" lang="as" hreflang="as" data-title="জটিল সংখ্যা" data-language-autonym="অসমীয়া" data-language-local-name="assamès" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/N%C3%BAmberu_complexu" title="Númberu complexu - asturià" lang="ast" hreflang="ast" data-title="Númberu complexu" data-language-autonym="Asturianu" data-language-local-name="asturià" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Kompleks_%C9%99d%C9%99dl%C9%99r" title="Kompleks ədədlər - azerbaidjanès" lang="az" hreflang="az" data-title="Kompleks ədədlər" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaidjanès" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%DA%A9%D9%88%D9%85%D9%BE%D9%84%DA%A9%D8%B3_%D8%B3%D8%A7%DB%8C%DB%8C%D9%84%D8%A7%D8%B1" title="کومپلکس ساییلار - South Azerbaijani" lang="azb" hreflang="azb" data-title="کومپلکس ساییلار" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BB%D1%8B_%D2%BB%D0%B0%D0%BD" title="Комплекслы һан - baixkir" lang="ba" hreflang="ba" data-title="Комплекслы һан" data-language-autonym="Башҡортса" data-language-local-name="baixkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Kuompleks%C4%97nis_skaitlios" title="Kuompleksėnis skaitlios - Samogitian" lang="sgs" hreflang="sgs" data-title="Kuompleksėnis skaitlios" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Камплексны лік - belarús" lang="be" hreflang="be" data-title="Камплексны лік" data-language-autonym="Беларуская" data-language-local-name="belarús" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Камплексны лік - Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Камплексны лік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексно число - búlgar" lang="bg" hreflang="bg" data-title="Комплексно число" data-language-autonym="Български" data-language-local-name="búlgar" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9C%E0%A6%9F%E0%A6%BF%E0%A6%B2_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="জটিল সংখ্যা - bengalí" lang="bn" hreflang="bn" data-title="জটিল সংখ্যা" data-language-autonym="বাংলা" data-language-local-name="bengalí" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Kompleksan_broj" title="Kompleksan broj - bosnià" lang="bs" hreflang="bs" data-title="Kompleksan broj" data-language-autonym="Bosanski" data-language-local-name="bosnià" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%82%D0%BE%D0%BE" title="Комплекс тоо - Russia Buriat" lang="bxr" hreflang="bxr" data-title="Комплекс тоо" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%D8%A6%D8%A7%D9%88%DB%8E%D8%AA%DB%95" title="ژمارەی ئاوێتە - kurd central" lang="ckb" hreflang="ckb" data-title="ژمارەی ئاوێتە" data-language-autonym="کوردی" data-language-local-name="kurd central" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo - txec" lang="cs" hreflang="cs" data-title="Komplexní číslo" data-language-autonym="Čeština" data-language-local-name="txec" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BB%C4%83_%D1%85%D0%B8%D1%81%D0%B5%D0%BF" title="Комплекслă хисеп - txuvaix" lang="cv" hreflang="cv" data-title="Комплекслă хисеп" data-language-autonym="Чӑвашла" data-language-local-name="txuvaix" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhif_cymhlyg" title="Rhif cymhlyg - gal·lès" lang="cy" hreflang="cy" data-title="Rhif cymhlyg" data-language-autonym="Cymraeg" data-language-local-name="gal·lès" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da badge-Q17559452 badge-recommendedarticle mw-list-item" title="article recomanat"><a href="https://da.wikipedia.org/wiki/Komplekse_tal" title="Komplekse tal - danès" lang="da" hreflang="da" data-title="Komplekse tal" data-language-autonym="Dansk" data-language-local-name="danès" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Komplexe_Zahl" title="Komplexe Zahl - alemany" lang="de" hreflang="de" data-title="Komplexe Zahl" data-language-autonym="Deutsch" data-language-local-name="alemany" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Amaro_kompleks" title="Amaro kompleks - Zazaki" lang="diq" hreflang="diq" data-title="Amaro kompleks" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Μιγαδικός αριθμός - grec" lang="el" hreflang="el" data-title="Μιγαδικός αριθμός" data-language-autonym="Ελληνικά" data-language-local-name="grec" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B3mmer_cumpl%C3%AAs" title="Nómmer cumplês - Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nómmer cumplês" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Complex_number" title="Complex number - anglès" lang="en" hreflang="en" data-title="Complex number" data-language-autonym="English" data-language-local-name="anglès" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kompleksa_nombro" title="Kompleksa nombro - esperanto" lang="eo" hreflang="eo" data-title="Kompleksa nombro" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_complejo" title="Número complejo - espanyol" lang="es" hreflang="es" data-title="Número complejo" data-language-autonym="Español" data-language-local-name="espanyol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kompleksarv" title="Kompleksarv - estonià" lang="et" hreflang="et" data-title="Kompleksarv" data-language-autonym="Eesti" data-language-local-name="estonià" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zenbaki_konplexu" title="Zenbaki konplexu - basc" lang="eu" hreflang="eu" data-title="Zenbaki konplexu" data-language-autonym="Euskara" data-language-local-name="basc" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D9%85%D8%AE%D8%AA%D9%84%D8%B7" title="عدد مختلط - persa" lang="fa" hreflang="fa" data-title="عدد مختلط" data-language-autonym="فارسی" data-language-local-name="persa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kompleksiluku" title="Kompleksiluku - finès" lang="fi" hreflang="fi" data-title="Kompleksiluku" data-language-autonym="Suomi" data-language-local-name="finès" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Kompleksarv" title="Kompleksarv - Võro" lang="vro" hreflang="vro" data-title="Kompleksarv" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Komplekst_tal" title="Komplekst tal - feroès" lang="fo" hreflang="fo" data-title="Komplekst tal" data-language-autonym="Føroyskt" data-language-local-name="feroès" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_complexe" title="Nombre complexe - francès" lang="fr" hreflang="fr" data-title="Nombre complexe" data-language-autonym="Français" data-language-local-name="francès" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Kompleks_taal" title="Kompleks taal - frisó septentrional" lang="frr" hreflang="frr" data-title="Kompleks taal" data-language-autonym="Nordfriisk" data-language-local-name="frisó septentrional" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Kompleks_getal" title="Kompleks getal - frisó occidental" lang="fy" hreflang="fy" data-title="Kompleks getal" data-language-autonym="Frysk" data-language-local-name="frisó occidental" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Uimhir_choimpl%C3%A9ascach" title="Uimhir choimpléascach - irlandès" lang="ga" hreflang="ga" data-title="Uimhir choimpléascach" data-language-autonym="Gaeilge" data-language-local-name="irlandès" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 - xinès gan" lang="gan" hreflang="gan" data-title="複數" data-language-autonym="贛語" data-language-local-name="xinès gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Nonm_kompleks" title="Nonm kompleks - Guianan Creole" lang="gcr" hreflang="gcr" data-title="Nonm kompleks" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_complexo" title="Número complexo - gallec" lang="gl" hreflang="gl" data-title="Número complexo" data-language-autonym="Galego" data-language-local-name="gallec" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Papapy_rypy%27%C5%A9" title="Papapy rypy'ũ - guaraní" lang="gn" hreflang="gn" data-title="Papapy rypy'ũ" data-language-autonym="Avañe'ẽ" data-language-local-name="guaraní" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%B8%E0%AA%82%E0%AA%95%E0%AA%B0_%E0%AA%B8%E0%AA%82%E0%AA%96%E0%AB%8D%E0%AA%AF%E0%AA%BE%E0%AA%93" title="સંકર સંખ્યાઓ - gujarati" lang="gu" hreflang="gu" data-title="સંકર સંખ્યાઓ" data-language-autonym="ગુજરાતી" data-language-local-name="gujarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%9E%D7%A8%D7%95%D7%9B%D7%91" title="מספר מרוכב - hebreu" lang="he" hreflang="he" data-title="מספר מרוכב" data-language-autonym="עברית" data-language-local-name="hebreu" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="समिश्र संख्या - hindi" lang="hi" hreflang="hi" data-title="समिश्र संख्या" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Jatil_ginti" title="Jatil ginti - hindi de Fiji" lang="hif" hreflang="hif" data-title="Jatil ginti" data-language-autonym="Fiji Hindi" data-language-local-name="hindi de Fiji" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Kompleksni_broj" title="Kompleksni broj - croat" lang="hr" hreflang="hr" data-title="Kompleksni broj" data-language-autonym="Hrvatski" data-language-local-name="croat" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Komplex_sz%C3%A1mok" title="Komplex számok - hongarès" lang="hu" hreflang="hu" data-title="Komplex számok" data-language-autonym="Magyar" data-language-local-name="hongarès" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%B8%D5%B4%D5%BA%D5%AC%D5%A5%D6%84%D5%BD_%D5%A9%D5%AB%D5%BE" title="Կոմպլեքս թիվ - armeni" lang="hy" hreflang="hy" data-title="Կոմպլեքս թիվ" data-language-autonym="Հայերեն" data-language-local-name="armeni" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Numero_complexe" title="Numero complexe - interlingua" lang="ia" hreflang="ia" data-title="Numero complexe" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Lumur_kompleks" title="Lumur kompleks - iban" lang="iba" hreflang="iba" data-title="Lumur kompleks" data-language-autonym="Jaku Iban" data-language-local-name="iban" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bilangan_kompleks" title="Bilangan kompleks - indonesi" lang="id" hreflang="id" data-title="Bilangan kompleks" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesi" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Komplexa_nombro" title="Komplexa nombro - ido" lang="io" hreflang="io" data-title="Komplexa nombro" data-language-autonym="Ido" data-language-local-name="ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Tvinnt%C3%B6lur" title="Tvinntölur - islandès" lang="is" hreflang="is" data-title="Tvinntölur" data-language-autonym="Íslenska" data-language-local-name="islandès" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numero_complesso" title="Numero complesso - italià" lang="it" hreflang="it" data-title="Numero complesso" data-language-autonym="Italiano" data-language-local-name="italià" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E6%95%B0" title="複素数 - japonès" lang="ja" hreflang="ja" data-title="複素数" data-language-autonym="日本語" data-language-local-name="japonès" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Komplex_nomba" title="Komplex nomba - crioll anglès de Jamaica" lang="jam" hreflang="jam" data-title="Komplex nomba" data-language-autonym="Patois" data-language-local-name="crioll anglès de Jamaica" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/relcimdyna%27u" title="relcimdyna'u - lojban" lang="jbo" hreflang="jbo" data-title="relcimdyna'u" data-language-autonym="La .lojban." data-language-local-name="lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%99%E1%83%9D%E1%83%9B%E1%83%9E%E1%83%9A%E1%83%94%E1%83%A5%E1%83%A1%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98" title="კომპლექსური რიცხვი - georgià" lang="ka" hreflang="ka" data-title="კომპლექსური რიცხვი" data-language-autonym="ქართული" data-language-local-name="georgià" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Am%E1%B8%8Dan_asemlal" title="Amḍan asemlal - cabilenc" lang="kab" hreflang="kab" data-title="Amḍan asemlal" data-language-autonym="Taqbaylit" data-language-local-name="cabilenc" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Nd%C9%A9_nd%C9%A9_%C3%B1%CA%8A%C5%8B" title="Ndɩ ndɩ ñʊŋ - Kabiye" lang="kbp" hreflang="kbp" data-title="Ndɩ ndɩ ñʊŋ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B5%D1%88%D0%B5%D0%BD_%D1%81%D0%B0%D0%BD" title="Кешен сан - kazakh" lang="kk" hreflang="kk" data-title="Кешен сан" data-language-autonym="Қазақша" data-language-local-name="kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9F%86%E1%9E%93%E1%9E%BD%E1%9E%93%E1%9E%80%E1%9E%BB%E1%9F%86%E1%9E%95%E1%9F%92%E1%9E%9B%E1%9E%B7%E1%9E%85" title="ចំនួនកុំផ្លិច - khmer" lang="km" hreflang="km" data-title="ចំនួនកុំផ្លិច" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B3%B5%EC%86%8C%EC%88%98" title="복소수 - coreà" lang="ko" hreflang="ko" data-title="복소수" data-language-autonym="한국어" data-language-local-name="coreà" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Niver_kompleth" title="Niver kompleth - còrnic" lang="kw" hreflang="kw" data-title="Niver kompleth" data-language-autonym="Kernowek" data-language-local-name="còrnic" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D1%82%D2%AF%D2%AF_%D1%81%D0%B0%D0%BD" title="Комплекстүү сан - kirguís" lang="ky" hreflang="ky" data-title="Комплекстүү сан" data-language-autonym="Кыргызча" data-language-local-name="kirguís" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_complexus" title="Numerus complexus - llatí" lang="la" hreflang="la" data-title="Numerus complexus" data-language-autonym="Latina" data-language-local-name="llatí" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Complex_getal" title="Complex getal - limburguès" lang="li" hreflang="li" data-title="Complex getal" data-language-autonym="Limburgs" data-language-local-name="limburguès" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Numer_compless" title="Numer compless - llombard" lang="lmo" hreflang="lmo" data-title="Numer compless" data-language-autonym="Lombard" data-language-local-name="llombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%88%E0%BA%B3%E0%BA%99%E0%BA%A7%E0%BA%99%E0%BA%AA%E0%BA%BB%E0%BA%99" title="ຈຳນວນສົນ - laosià" lang="lo" hreflang="lo" data-title="ຈຳນວນສົນ" data-language-autonym="ລາວ" data-language-local-name="laosià" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Kompleksinis_skai%C4%8Dius" title="Kompleksinis skaičius - lituà" lang="lt" hreflang="lt" data-title="Kompleksinis skaičius" data-language-autonym="Lietuvių" data-language-local-name="lituà" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Komplekss_skaitlis" title="Komplekss skaitlis - letó" lang="lv" hreflang="lv" data-title="Komplekss skaitlis" data-language-autonym="Latviešu" data-language-local-name="letó" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Isa_haro" title="Isa haro - malgaix" lang="mg" hreflang="mg" data-title="Isa haro" data-language-autonym="Malagasy" data-language-local-name="malgaix" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B5%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Комплексен број - macedoni" lang="mk" hreflang="mk" data-title="Комплексен број" data-language-autonym="Македонски" data-language-local-name="macedoni" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AE%E0%B4%BF%E0%B4%B6%E0%B5%8D%E0%B4%B0%E0%B4%B8%E0%B4%82%E0%B4%96%E0%B5%8D%E0%B4%AF" title="മിശ്രസംഖ്യ - malaiàlam" lang="ml" hreflang="ml" data-title="മിശ്രസംഖ്യ" data-language-autonym="മലയാളം" data-language-local-name="malaiàlam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%82%D0%BE%D0%BE" title="Комплекс тоо - mongol" lang="mn" hreflang="mn" data-title="Комплекс тоо" data-language-autonym="Монгол" data-language-local-name="mongol" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B8%E0%A4%82%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="संमिश्र संख्या - marathi" lang="mr" hreflang="mr" data-title="संमिश्र संख्या" data-language-autonym="मराठी" data-language-local-name="marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Nombor_kompleks" title="Nombor kompleks - malai" lang="ms" hreflang="ms" data-title="Nombor kompleks" data-language-autonym="Bahasa Melayu" data-language-local-name="malai" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%80%E1%80%BD%E1%80%94%E1%80%BA%E1%80%95%E1%80%9C%E1%80%80%E1%80%BA%E1%80%85%E1%80%BA%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8" title="ကွန်ပလက်စ်ကိန်း - birmà" lang="my" hreflang="my" data-title="ကွန်ပလက်စ်ကိန်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="birmà" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Komplexe_Tall" title="Komplexe Tall - baix alemany" lang="nds" hreflang="nds" data-title="Komplexe Tall" data-language-autonym="Plattdüütsch" data-language-local-name="baix alemany" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Complex_getal" title="Complex getal - neerlandès" lang="nl" hreflang="nl" data-title="Complex getal" data-language-autonym="Nederlands" data-language-local-name="neerlandès" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Komplekse_tal" title="Komplekse tal - noruec nynorsk" lang="nn" hreflang="nn" data-title="Komplekse tal" data-language-autonym="Norsk nynorsk" data-language-local-name="noruec nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Komplekst_tall" title="Komplekst tall - noruec bokmål" lang="nb" hreflang="nb" data-title="Komplekst tall" data-language-autonym="Norsk bokmål" data-language-local-name="noruec bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Nombre_compl%C3%A8xe" title="Nombre complèxe - occità" lang="oc" hreflang="oc" data-title="Nombre complèxe" data-language-autonym="Occitan" data-language-local-name="occità" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Lakkoofsa_Xaxxamaa" title="Lakkoofsa Xaxxamaa - oromo" lang="om" hreflang="om" data-title="Lakkoofsa Xaxxamaa" data-language-autonym="Oromoo" data-language-local-name="oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BE%D0%BD_%D0%BD%D1%8B%D0%BC%C3%A6%D1%86" title="Комплексон нымæц - osseta" lang="os" hreflang="os" data-title="Комплексон нымæц" data-language-autonym="Ирон" data-language-local-name="osseta" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A9%B0%E0%A8%AA%E0%A8%B2%E0%A9%88%E0%A8%95%E0%A8%B8_%E0%A8%A8%E0%A9%B0%E0%A8%AC%E0%A8%B0" title="ਕੰਪਲੈਕਸ ਨੰਬਰ - panjabi" lang="pa" hreflang="pa" data-title="ਕੰਪਲੈਕਸ ਨੰਬਰ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="panjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_zespolone" title="Liczby zespolone - polonès" lang="pl" hreflang="pl" data-title="Liczby zespolone" data-language-autonym="Polski" data-language-local-name="polonès" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/N%C3%B9mer_compless" title="Nùmer compless - piemontès" lang="pms" hreflang="pms" data-title="Nùmer compless" data-language-autonym="Piemontèis" data-language-local-name="piemontès" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%A9%D9%85%D9%BE%D9%84%DB%8C%DA%A9%D8%B3_%D9%86%D9%85%D8%A8%D8%B1" title="کمپلیکس نمبر - Western Punjabi" lang="pnb" hreflang="pnb" data-title="کمپلیکس نمبر" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmero_complexo" title="Número complexo - portuguès" lang="pt" hreflang="pt" data-title="Número complexo" data-language-autonym="Português" data-language-local-name="portuguès" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_complex" title="Număr complex - romanès" lang="ro" hreflang="ro" data-title="Număr complex" data-language-autonym="Română" data-language-local-name="romanès" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437796 badge-featuredarticle mw-list-item" title="article de qualitat"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексное число - rus" lang="ru" hreflang="ru" data-title="Комплексное число" data-language-autonym="Русский" data-language-local-name="rus" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B5_%D1%87%D1%96%D1%81%D0%BB%D0%BE" title="Комплексне чісло - Rusyn" lang="rue" hreflang="rue" data-title="Комплексне чісло" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D0%B0%D1%85%D1%81%D0%B0%D0%B0%D0%BD" title="Комплекс ахсаан - iacut" lang="sah" hreflang="sah" data-title="Комплекс ахсаан" data-language-autonym="Саха тыла" data-language-local-name="iacut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/N%C3%B9mmuru_cumplessu" title="Nùmmuru cumplessu - sicilià" lang="scn" hreflang="scn" data-title="Nùmmuru cumplessu" data-language-autonym="Sicilianu" data-language-local-name="sicilià" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Complex_nummer" title="Complex nummer - escocès" lang="sco" hreflang="sco" data-title="Complex nummer" data-language-autonym="Scots" data-language-local-name="escocès" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Kompleksan_broj" title="Kompleksan broj - serbocroat" lang="sh" hreflang="sh" data-title="Kompleksan broj" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbocroat" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%83%E0%B6%82%E0%B6%9A%E0%B7%93%E0%B6%BB%E0%B7%8A%E0%B6%AB_%E0%B7%83%E0%B6%82%E0%B6%9B%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F" title="සංකීර්ණ සංඛ්යා - singalès" lang="si" hreflang="si" data-title="සංකීර්ණ සංඛ්යා" data-language-autonym="සිංහල" data-language-local-name="singalès" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Complex_number" title="Complex number - Simple English" lang="en-simple" hreflang="en-simple" data-title="Complex number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Komplexn%C3%A9_%C4%8D%C3%ADslo" title="Komplexné číslo - eslovac" lang="sk" hreflang="sk" data-title="Komplexné číslo" data-language-autonym="Slovenčina" data-language-local-name="eslovac" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kompleksno_%C5%A1tevilo" title="Kompleksno število - eslovè" lang="sl" hreflang="sl" data-title="Kompleksno število" data-language-autonym="Slovenščina" data-language-local-name="eslovè" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Kompleksloho" title="Kompleksloho - sami d’Inari" lang="smn" hreflang="smn" data-title="Kompleksloho" data-language-autonym="Anarâškielâ" data-language-local-name="sami d’Inari" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Thiin_kakan" title="Thiin kakan - somali" lang="so" hreflang="so" data-title="Thiin kakan" data-language-autonym="Soomaaliga" data-language-local-name="somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numrat_kompleks%C3%AB" title="Numrat kompleksë - albanès" lang="sq" hreflang="sq" data-title="Numrat kompleksë" data-language-autonym="Shqip" data-language-local-name="albanès" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Комплексан број - serbi" lang="sr" hreflang="sr" data-title="Комплексан број" data-language-autonym="Српски / srpski" data-language-local-name="serbi" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Komplexa_tal" title="Komplexa tal - suec" lang="sv" hreflang="sv" data-title="Komplexa tal" data-language-autonym="Svenska" data-language-local-name="suec" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Namba_changamano" title="Namba changamano - suahili" lang="sw" hreflang="sw" data-title="Namba changamano" data-language-autonym="Kiswahili" data-language-local-name="suahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BF%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%B2%E0%AF%86%E0%AE%A3%E0%AF%8D" title="சிக்கலெண் - tàmil" lang="ta" hreflang="ta" data-title="சிக்கலெண்" data-language-autonym="தமிழ்" data-language-local-name="tàmil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B8%E0%B0%82%E0%B0%95%E0%B1%80%E0%B0%B0%E0%B1%8D%E0%B0%A3_%E0%B0%B8%E0%B0%82%E0%B0%96%E0%B1%8D%E0%B0%AF%E0%B0%B2%E0%B1%81" title="సంకీర్ణ సంఖ్యలు - telugu" lang="te" hreflang="te" data-title="సంకీర్ణ సంఖ్యలు" data-language-autonym="తెలుగు" data-language-local-name="telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%B4%D0%B0%D0%B4%D0%B8_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D3%A3" title="Адади комплексӣ - tadjik" lang="tg" hreflang="tg" data-title="Адади комплексӣ" data-language-autonym="Тоҷикӣ" data-language-local-name="tadjik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B8%8B%E0%B9%89%E0%B8%AD%E0%B8%99" title="จำนวนเชิงซ้อน - tai" lang="th" hreflang="th" data-title="จำนวนเชิงซ้อน" data-language-autonym="ไทย" data-language-local-name="tai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Komplikadong_bilang" title="Komplikadong bilang - tagal" lang="tl" hreflang="tl" data-title="Komplikadong bilang" data-language-autonym="Tagalog" data-language-local-name="tagal" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Karma%C5%9F%C4%B1k_say%C4%B1" title="Karmaşık sayı - turc" lang="tr" hreflang="tr" data-title="Karmaşık sayı" data-language-autonym="Türkçe" data-language-local-name="turc" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%81%D0%B0%D0%BD" title="Комплекс сан - tàtar" lang="tt" hreflang="tt" data-title="Комплекс сан" data-language-autonym="Татарча / tatarça" data-language-local-name="tàtar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексне число - ucraïnès" lang="uk" hreflang="uk" data-title="Комплексне число" data-language-autonym="Українська" data-language-local-name="ucraïnès" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%AE%D9%84%D9%88%D8%B7_%D8%B9%D8%AF%D8%AF" title="مخلوط عدد - urdú" lang="ur" hreflang="ur" data-title="مخلوط عدد" data-language-autonym="اردو" data-language-local-name="urdú" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Kompleks_sonlar" title="Kompleks sonlar - uzbek" lang="uz" hreflang="uz" data-title="Kompleks sonlar" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Numaro_conpleso" title="Numaro conpleso - vènet" lang="vec" hreflang="vec" data-title="Numaro conpleso" data-language-autonym="Vèneto" data-language-local-name="vènet" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%91_ph%E1%BB%A9c" title="Số phức - vietnamita" lang="vi" hreflang="vi" data-title="Số phức" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Complexe_getalln" title="Complexe getalln - flamenc occidental" lang="vls" hreflang="vls" data-title="Complexe getalln" data-language-autonym="West-Vlams" data-language-local-name="flamenc occidental" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Komplikado_nga_ihap" title="Komplikado nga ihap - waray" lang="war" hreflang="war" data-title="Komplikado nga ihap" data-language-autonym="Winaray" data-language-local-name="waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%A4%8D%E6%95%B0%EF%BC%88%E6%95%B0%E5%AD%A6%EF%BC%89" title="复数(数学) - xinès wu" lang="wuu" hreflang="wuu" data-title="复数(数学)" data-language-autonym="吴语" data-language-local-name="xinès wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B8%D0%BD_%D1%82%D0%BE%D0%B9%D0%B3" title="Комплексин тойг - calmuc" lang="xal" hreflang="xal" data-title="Комплексин тойг" data-language-autonym="Хальмг" data-language-local-name="calmuc" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A7%D7%90%D7%9E%D7%A4%D7%9C%D7%A2%D7%A7%D7%A1%D7%A2_%D7%A6%D7%90%D7%9C" title="קאמפלעקסע צאל - ídix" lang="yi" hreflang="yi" data-title="קאמפלעקסע צאל" data-language-autonym="ייִדיש" data-language-local-name="ídix" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/N%E1%BB%8D%CC%81mb%C3%A0_t%C3%B3%E1%B9%A3%C3%B2ro" title="Nọ́mbà tóṣòro - ioruba" lang="yo" hreflang="yo" data-title="Nọ́mbà tóṣòro" data-language-autonym="Yorùbá" data-language-local-name="ioruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%A4%8D%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="复数 (数学) - xinès" lang="zh" hreflang="zh" data-title="复数 (数学)" data-language-autonym="中文" data-language-local-name="xinès" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 - xinès clàssic" lang="lzh" hreflang="lzh" data-title="複數" data-language-autonym="文言" data-language-local-name="xinès clàssic" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Ho%CC%8Dk-cha%CC%8Dp-s%C3%B2%CD%98" title="Ho̍k-cha̍p-sò͘ - xinès min del sud" lang="nan" hreflang="nan" data-title="Ho̍k-cha̍p-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="xinès min del sud" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 - cantonès" lang="yue" hreflang="yue" data-title="複數" data-language-autonym="粵語" data-language-local-name="cantonès" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11567#sitelinks-wikipedia" title="Modifica enllaços interlingües" class="wbc-editpage">Modifica els enllaços</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espais de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Nombre_complex" title="Vegeu el contingut de la pàgina [c]" accesskey="c"><span>Pàgina</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussi%C3%B3:Nombre_complex" rel="discussion" title="Discussió sobre el contingut d'aquesta pàgina [t]" accesskey="t"><span>Discussió</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Canvia la variant de llengua" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">català</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistes"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Nombre_complex"><span>Mostra</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Nombre_complex&action=edit" title="Modifica el codi font d'aquesta pàgina [e]" accesskey="e"><span>Modifica</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Nombre_complex&action=history" title="Versions antigues d'aquesta pàgina [h]" accesskey="h"><span>Mostra l'historial</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Eines de la pàgina"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Eines" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Eines</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Eines</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mou a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">amaga</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Més opcions" > <div class="vector-menu-heading"> Accions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Nombre_complex"><span>Mostra</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Nombre_complex&action=edit" title="Modifica el codi font d'aquesta pàgina [e]" accesskey="e"><span>Modifica</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Nombre_complex&action=history"><span>Mostra l'historial</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:Enlla%C3%A7os/Nombre_complex" title="Una llista de totes les pàgines wiki que enllacen amb aquesta [j]" accesskey="j"><span>Què hi enllaça</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:Seguiment/Nombre_complex" rel="nofollow" title="Canvis recents a pàgines enllaçades des d'aquesta pàgina [k]" accesskey="k"><span>Canvis relacionats</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A0gines_especials" title="Llista totes les pàgines especials [q]" accesskey="q"><span>Pàgines especials</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Nombre_complex&oldid=33692525" title="Enllaç permanent a aquesta revisió de la pàgina"><span>Enllaç permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Nombre_complex&action=info" title="Més informació sobre aquesta pàgina"><span>Informació de la pàgina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citau&page=Nombre_complex&id=33692525&wpFormIdentifier=titleform" title="Informació sobre com citar aquesta pàgina"><span>Citau aquest article</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:UrlShortener&url=https%3A%2F%2Fca.wikipedia.org%2Fwiki%2FNombre_complex"><span>Obtén una URL abreujada</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&url=https%3A%2F%2Fca.wikipedia.org%2Fwiki%2FNombre_complex"><span>Descarrega el codi QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimeix/exporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Llibre&bookcmd=book_creator&referer=Nombre+complex"><span>Crea un llibre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&page=Nombre_complex&action=show-download-screen"><span>Baixa com a PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Nombre_complex&printable=yes" title="Versió per a impressió d'aquesta pàgina [p]" accesskey="p"><span>Versió per a impressora</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> En altres projectes </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Complex_numbers" hreflang="en"><span>Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11567" title="Enllaç a l'element del repositori de dades connectat [g]" accesskey="g"><span>Element a Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Eines de la pàgina"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aparença"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aparença</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mou a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">amaga</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-ind-100" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Viquip%C3%A8dia:Llista_dels_1000_articles_fonamentals" title="Els 1.000 fonamentals de la Viquipèdia"><img alt="Els 1.000 fonamentals de la Viquipèdia" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/Segell_1000_unificat_Viquip%C3%A8dia.svg/30px-Segell_1000_unificat_Viquip%C3%A8dia.svg.png" decoding="async" width="30" height="36" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/Segell_1000_unificat_Viquip%C3%A8dia.svg/45px-Segell_1000_unificat_Viquip%C3%A8dia.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/34/Segell_1000_unificat_Viquip%C3%A8dia.svg/60px-Segell_1000_unificat_Viquip%C3%A8dia.svg.png 2x" data-file-width="2408" data-file-height="2896" /></a></span></div></div> </div> <div id="siteSub" class="noprint">De la Viquipèdia, l'enciclopèdia lliure</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(S'ha redirigit des de: <a href="/w/index.php?title=Nombres_complexos&redirect=no" class="mw-redirect" title="Nombres complexos">Nombres complexos</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ca" dir="ltr"><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fitxer:Complex_number_illustration.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/220px-Complex_number_illustration.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/330px-Complex_number_illustration.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/440px-Complex_number_illustration.svg.png 2x" data-file-width="180" data-file-height="180" /></a><figcaption>Figura 1: Un nombre complex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span> pot representar-se visualment com un parell de nombres <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> formant un vector en un diagrama anomenat <a href="/wiki/Pla_d%27Argand" class="mw-redirect" title="Pla d'Argand">pla d'Argand</a>.</figcaption></figure> <div role="navigation" class="navbox" aria-labelledby="Sistema_de_nombresen_matemàtiques" style="width:30%; text-align: left; float:right; margin: 0 0 1em 1em;;padding:3px"><table class="nowraplinks collapsible collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="background:#CCCCFF;"><div class="plainlinks hlist navbar mini"><ul><li class="nv-view"><span typeof="mw:File"><a href="/wiki/Plantilla:Nombres" title="Plantilla:Nombres"><img alt="Vegeu aquesta plantilla" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/Commons-emblem-notice.svg/18px-Commons-emblem-notice.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/Commons-emblem-notice.svg/27px-Commons-emblem-notice.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/28/Commons-emblem-notice.svg/36px-Commons-emblem-notice.svg.png 2x" data-file-width="48" data-file-height="48" /></a></span></li></ul></div><div id="Sistema_de_nombresen_matemàtiques" style="font-size:114%;margin:0 4em">Sistema de <a href="/wiki/Nombres" class="mw-redirect" title="Nombres">nombres</a><br />en <a href="/wiki/Matem%C3%A0tiques" title="Matemàtiques">matemàtiques</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks collapsible collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style=";background:#f7f8ff;"><div id="Conjunts_de_nombres" style="font-size:114%;margin:0 4em">Conjunts de nombres</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"><span style="white-space:nowrap;">ℕ ⊆ ℤ ⊆ ℚ ⊆ ℝ ⊆ ℂ</span><br /> <ul><li><b><a href="/wiki/Nombre_natural" title="Nombre natural">naturals</a></b> ℕ<br /></li> <li><b><a href="/wiki/Nombre_negatiu" title="Nombre negatiu">negatius</a></b> <br /></li> <li><b><a href="/wiki/Nombre_positiu" title="Nombre positiu">positius</a></b> <br /></li> <li><b><a href="/wiki/Nombre_enter" title="Nombre enter">enters</a></b> ℤ<br /></li> <li><b><a href="/wiki/Nombre_racional" title="Nombre racional">racionals</a></b> ℚ<br /></li> <li><b><a href="/wiki/Nombre_irracional" title="Nombre irracional">irracionals</a></b><br /></li> <li><b><a href="/wiki/Nombre_real" title="Nombre real">reals</a></b> ℝ<br /></li> <li><b><a href="/wiki/Nombre_algebraic" title="Nombre algebraic">algebraics</a></b><br /></li> <li><b><a href="/wiki/Nombre_transcendent" title="Nombre transcendent">transcendents</a></b><br /></li> <li><b><a class="mw-selflink selflink">complexos</a></b> ℂ<br /></li></ul></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks collapsible collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style=";background:#f7f8ff;"><div id="Nombres_destacables" style="font-size:114%;margin:0 4em">Nombres destacables</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <li><i><b><a href="/wiki/Nombre_%CF%80" title="Nombre π">π</a></b></i> ≈ 3,14159265...<br /></li> <li><i><b><a href="/wiki/Nombre_e" title="Nombre e">e</a></b></i> ≈ 2,7182818284...<br /></li> <li><b><a href="/wiki/Nombre_auri" class="mw-redirect" title="Nombre auri">Φ</a></b> ≈ 1,6180339887...<br /></li> <li><i><b><a href="/wiki/Unitat_imagin%C3%A0ria" title="Unitat imaginària">i</a></b></i> (amb <i>i</i> ² = −1) <br /></li> <li><a href="/wiki/Constant_matem%C3%A0tica" title="Constant matemàtica">Constants matemàtiques</a> <br /></li> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks collapsible uncollapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style=";background:#f7f8ff;"><div id="Nombres_enters_amb_propietats_destacables" style="font-size:114%;margin:0 4em">Nombres enters amb propietats destacables</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/Nombre_primer" title="Nombre primer">Primers</a>, <a href="/wiki/Nombre_abundant" title="Nombre abundant">abundants</a>, <a href="/wiki/Nombres_amics" title="Nombres amics">amics</a>, <a href="/wiki/Nombre_compost" title="Nombre compost">compostos</a>, <a href="/wiki/Nombre_defectiu" class="mw-redirect" title="Nombre defectiu">defectius</a>, <a href="/wiki/Nombre_perfecte" title="Nombre perfecte">perfectes</a>, <a href="/wiki/Nombres_sociables" title="Nombres sociables">sociables</a></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks collapsible uncollapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style=";background:#f7f8ff;"><div id="Altres_extensions_dels_nombres_reals" style="font-size:114%;margin:0 4em">Altres extensions dels nombres reals</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Quaterni%C3%B3" title="Quaternió">quaternions</a> <br /></li> <li><a href="/wiki/Octoni%C3%B3" title="Octonió">octonions</a> <br /></li> <li><a href="/wiki/Nombre_bicomplex" title="Nombre bicomplex">bicomplexos</a> <br /></li> <li><a href="/wiki/Nombre_hipercomplex" title="Nombre hipercomplex">hipercomplexos</a><br /></li> <li><a href="/wiki/Nombre_superreal" title="Nombre superreal">superreals</a> <br /></li> <li><a href="/wiki/Nombre_hiperreal" title="Nombre hiperreal">hiperreals</a> <br /></li> <li><a href="/wiki/Nombre_surreal" title="Nombre surreal">surreals</a> <br /></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks collapsible uncollapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style=";background:#f7f8ff;"><div id="Nombres_especials" style="font-size:114%;margin:0 4em">Nombres especials</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Nombre_ordinal" title="Nombre ordinal">Ordinals</a> {1r, 2n, ...}<br /></li> <li><a href="/wiki/Nombre_cardinal" title="Nombre cardinal">Cardinals</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\aleph _{0},\aleph _{1},...\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\aleph _{0},\aleph _{1},...\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5e11d48eb91ba523b0a499e3135fdcecc40063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.444ex; height:2.843ex;" alt="{\displaystyle \{\aleph _{0},\aleph _{1},...\}}"></span> <br /></li> <li><a href="/wiki/Infinit" title="Infinit">Infinit</a> <big>∞</big><br /></li> <li><a href="/wiki/Nombre_infinit" title="Nombre infinit">Nombres infinits</a><br /></li> <li><a href="/wiki/Nombre_transfinit" class="mw-redirect" title="Nombre transfinit">Nombres transfinits</a></li></ul> <p><a href="/wiki/Sistema_de_numeraci%C3%B3" title="Sistema de numeració">Sistemes de numeració</a> </p> <hr /> <p><a href="/wiki/Numeraci%C3%B3_ar%C3%A0biga" title="Numeració aràbiga">Àrab</a>, <a href="/wiki/Numeraci%C3%B3_arm%C3%A8nia" title="Numeració armènia">armeni</a>, <a href="/wiki/Numeraci%C3%B3_%C3%A0tica" title="Numeració àtica">àtica (grega)</a>, <a href="/wiki/Numeraci%C3%B3_babil%C3%B2nica" title="Numeració babilònica">babilònica</a>, <a href="/wiki/Numeraci%C3%B3_cir%C3%ADl%C2%B7lica" title="Numeració ciríl·lica">ciríl·lica</a>, <a href="/wiki/Numeraci%C3%B3_eg%C3%ADpcia" title="Numeració egípcia">egípcia</a>, <a href="/wiki/Numeraci%C3%B3_etrusca" title="Numeració etrusca">etrusca</a>, <a href="/wiki/Numeraci%C3%B3_grega" title="Numeració grega">grega (jònica)</a>, <a href="/wiki/Numeraci%C3%B3_hebrea" title="Numeració hebrea">hebrea</a>, <a href="/wiki/Numeraci%C3%B3_%C3%ADndia" title="Numeració índia">índia</a>, <a href="/wiki/Numeraci%C3%B3_japonesa" title="Numeració japonesa">japonesa</a>, <a href="/wiki/Numeraci%C3%B3_khmer" title="Numeració khmer">khmer</a>, <a href="/wiki/Numeraci%C3%B3_maia" title="Numeració maia">maia</a>, <a href="/wiki/Numeraci%C3%B3_romana" title="Numeració romana">romana</a>, <a href="/wiki/Numeraci%C3%B3_tailandesa" title="Numeració tailandesa">tailandesa</a>, <a href="/wiki/Numeraci%C3%B3_xinesa" title="Numeració xinesa">xinesa</a>. </p> <hr /> <ul><li><a href="/wiki/Numeraci%C3%B3_en_base_constant" title="Numeració en base constant">Numerals en base constant:</a></li></ul> <ul><li><a href="/wiki/Sistema_binari" title="Sistema binari">binari (2)</a></li> <li><a href="/wiki/Sistema_ternari" title="Sistema ternari">ternari (3)</a></li> <li><a href="/wiki/Sistema_quinari" title="Sistema quinari">quinari (5)</a></li> <li><a href="/wiki/Sistema_octal" title="Sistema octal">octal (8)</a></li> <li><a href="/wiki/Sistema_decimal" class="mw-redirect" title="Sistema decimal">decimal (10)</a></li> <li><a href="/wiki/Sistema_duodecimal" title="Sistema duodecimal">duodecimal (12)</a></li> <li><a href="/wiki/Sistema_hexadecimal" title="Sistema hexadecimal">hexadecimal (16)</a></li> <li><a href="/wiki/Sistema_vigesimal" title="Sistema vigesimal">vigesimal (20)</a></li> <li><a href="/wiki/Sistema_sexagesimal" title="Sistema sexagesimal">sexagesimal (60)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <p>En <a href="/wiki/Matem%C3%A0tiques" title="Matemàtiques">matemàtiques</a>, un <b>nombre complex</b> és un <a href="/wiki/Nombre" title="Nombre">nombre</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>, que es pot expressar en la forma </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620c1bda8ec9b4db812822c5ae29fb2d92a870d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.444ex; height:2.343ex;" alt="{\displaystyle z=a+bi\,}"></span>,</dd></dl> <p>on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> són <a href="/wiki/Nombre_real" title="Nombre real">nombres reals</a>, i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> és la <a href="/wiki/Unitat_imagin%C3%A0ria" title="Unitat imaginària">unitat imaginària</a>, que satisfà la propietat fonamental </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a42e29c3a72834bd1a11680212c617f8b52916d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.313ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1\,}"></span>.</dd></dl> <p>En l'expressió donada, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> s'anomea la <b>part real</b> del nombre complex, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=\operatorname {Re} \,(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>Re</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=\operatorname {Re} \,(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5490af32f55901563115ef000b4d59f6ef41f15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.356ex; height:2.843ex;" alt="{\displaystyle a=\operatorname {Re} \,(z)}"></span>, i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> la <b>part imaginària,</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=\operatorname {Im} \,(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>Im</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=\operatorname {Im} \,(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50d6e4b1194b78d0920d6c0932fd2858c7ffe035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.156ex; height:2.843ex;" alt="{\displaystyle b=\operatorname {Im} \,(z)}"></span> <sup id="cite_ref-:0_1-0" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>El <a href="/wiki/Conjunt" title="Conjunt">conjunt</a> dels nombres complexos es representa per <b>C</b>, o per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>. Com que cada nombre complex ve determinat per les seves parts real i imaginària, <a href="/wiki/Geometria" title="Geometria">geomètricament</a> es pot identificar <b>C</b> amb els punts d'un <a href="/wiki/Pla" title="Pla">pla</a>, el <a href="/wiki/Pla_complex" title="Pla complex">pla complex</a>, o <i>pla d'Argand</i>. En aquest pla, l'<a href="/wiki/Eix_d%27abscisses" class="mw-redirect" title="Eix d'abscisses">eix d'abscisses</a> correspon als complexos amb part imaginària nul·la, que es poden identificar amb els nombres reals; així, el pla complex conté la <a href="/wiki/Recta_num%C3%A8rica" title="Recta numèrica">recta numèrica</a>. En el mateix pla, l'<a href="/wiki/Eix_d%27ordenades" class="mw-redirect" title="Eix d'ordenades">eix d'ordenades</a> correspon als complexos amb part real nul·la, anomenats <a href="/wiki/Nombre_imaginari" title="Nombre imaginari">imaginaris purs</a>; són els complexos de la forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15767baf886d1bba7f8bad83618f7ade5715e7a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.8ex; height:2.176ex;" alt="{\displaystyle bi}"></span>, amb <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> real. </p><p>A banda de la seva importància en àlgebra, els nombres complexos són una eina fonamental en pràcticament totes les branques de les matemàtiques. Igual com amb funcions de variable real, es pot fer <a href="/wiki/An%C3%A0lisi_matem%C3%A0tica" title="Anàlisi matemàtica">anàlisi matemàtica</a> amb funcions de variable complexa; la teoria corresponent s'anomena <a href="/wiki/An%C3%A0lisi_complexa" title="Anàlisi complexa">anàlisi complexa</a>, i té característiques que la fan molt diferent de l'anàlisi real. </p><p>Més enllà de les matemàtiques, els nombres complexos tenen aplicacions en la major part de les ciències i la tecnologia. Moltes d'aquestes aplicacions són simplement una conseqüència dels avantatges de treballar amb nombres complexos en lloc de reals, però en alguns camps específics, com ara la <a href="/wiki/Mec%C3%A0nica_qu%C3%A0ntica" title="Mecànica quàntica">mecànica quàntica</a> o la <a href="/wiki/Teoria_qu%C3%A0ntica_de_camps" title="Teoria quàntica de camps">teoria quàntica de camps</a>, l'ús de la variable complexa en la descripció de les entitats físiques és essencial. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Sumari">Sumari</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=1" title="Modifica la secció: Sumari"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Motivació"><span id="Motivaci.C3.B3"></span>Motivació</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=2" title="Modifica la secció: Motivació"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Els nombres complexos permeten obtenir solucions per algunes equacions que no tenen solució en els nombres reals. Per exemple, l'equació </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+9=0\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+9=0\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9162d0f060223124be9a02061bfbfbf37e456925" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.035ex; height:2.843ex;" alt="{\displaystyle x^{2}+9=0\,}"></span>,</dd></dl> <p>no té solució real, ja que el quadrat d'un nombre real no pot ser negatiu. Els nombres complexos aporten una solució aquesta equació utilitzant la unitat imaginaria <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, que satisfà la propietat <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>. Aleshores, podem provar que tant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=3i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>3</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=3i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cda57a4c463bb37517e2c0e12c3386b969722b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.393ex; height:2.176ex;" alt="{\displaystyle x=3i}"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=-3i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=-3i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e9ab41005393fe9c1258d7bc010332ee83209a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.201ex; height:2.343ex;" alt="{\displaystyle x=-3i}"></span> són solucions de l'equació anterior </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3i)^{2}+9=3^{2}i^{2}+9=9(-1)+9=-9+9=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>9</mn> <mo>=</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mn>9</mn> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mo>−<!-- − --></mo> <mn>9</mn> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3i)^{2}+9=3^{2}i^{2}+9=9(-1)+9=-9+9=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc5a6f7c6fd0bc8e4fc15e7eb0f25d7a9e1a224a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.382ex; height:3.176ex;" alt="{\displaystyle (3i)^{2}+9=3^{2}i^{2}+9=9(-1)+9=-9+9=0}"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-3i)^{2}+9=(-3)^{2}i^{2}+9=9(-1)+9=-9+9=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mn>9</mn> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mo>−<!-- − --></mo> <mn>9</mn> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-3i)^{2}+9=(-3)^{2}i^{2}+9=9(-1)+9=-9+9=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8fa9a192ddc72616c98e73df1af6f33af424da6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.808ex; height:3.176ex;" alt="{\displaystyle (-3i)^{2}+9=(-3)^{2}i^{2}+9=9(-1)+9=-9+9=0}"></span>.</dd></dl> <p>Segons el <a href="/wiki/Teorema_fonamental_de_l%27%C3%A0lgebra" title="Teorema fonamental de l'àlgebra">teorema fonamental de l'àlgebra</a>, qualsevol <a href="/wiki/Equaci%C3%B3_polin%C3%B2mica" title="Equació polinòmica">equació polinòmica</a> amb coeficients reals o complexos en una sola variable té solució en els nombres complexos. </p> <div class="mw-heading mw-heading3"><h3 id="Definició"><span id="Definici.C3.B3"></span>Definició</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=3" title="Modifica la secció: Definició"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un nombre complex és un nombre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> que es pot expressar en la forma </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span>,</dd></dl> <p>on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> són <a href="/wiki/Nombre_real" title="Nombre real">nombres reals</a>, i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> és la <a href="/wiki/Unitat_imagin%C3%A0ria" title="Unitat imaginària">unitat imaginària</a>, que satisfà la propietat fonamental </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a42e29c3a72834bd1a11680212c617f8b52916d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.313ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1\,}"></span>.</dd></dl> <p>Per exemple el nombre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3+4i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3+4i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d31e12f69fdceedc9e7e77952a1d1eb1d938a2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.968ex; height:2.343ex;" alt="{\displaystyle 3+4i}"></span> és un nombre complex. En l'expressió donada, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> s'anomena la part real del nombre complex i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> la part imaginaria i es nota com </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=\operatorname {Re} \,(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>Re</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=\operatorname {Re} \,(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5490af32f55901563115ef000b4d59f6ef41f15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.356ex; height:2.843ex;" alt="{\displaystyle a=\operatorname {Re} \,(z)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=\operatorname {Im} \,(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>Im</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=\operatorname {Im} \,(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50d6e4b1194b78d0920d6c0932fd2858c7ffe035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.156ex; height:2.843ex;" alt="{\displaystyle b=\operatorname {Im} \,(z)}"></span>.</dd></dl> <p>Per exemple, en l'exemple anterior, les parts real i imaginaries correspondrien a </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (3+4i)=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (3+4i)=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c49a22cd4f452598dc22f0ddf6a74bade4108d7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.781ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (3+4i)=3}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Im} (3+4i)=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Im</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Im} (3+4i)=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/419a43b8f4396d13c831a2a27e3b90e95a6c46cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.813ex; height:2.843ex;" alt="{\displaystyle \operatorname {Im} (3+4i)=4}"></span>.</dd></dl> <p>Per tant, en termes de la seva part real i imaginària un nombre complex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> es pot escriure com </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=\operatorname {Re} (z)+\operatorname {Im} (z)i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>Re</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>Im</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=\operatorname {Re} (z)+\operatorname {Im} (z)i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa257251412575ceea5ebad3a1213575c3e33de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.143ex; height:2.843ex;" alt="{\displaystyle z=\operatorname {Re} (z)+\operatorname {Im} (z)i}"></span>.</dd></dl> <p>Aquesta notació es coneix habitualment com a notació cartesiana. </p><p>Un nombre real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> pot ser considerat com un nombre complex de la forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+0\cdot i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+0\cdot i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eab0bbc0fe1a23d319fa087dcbb99061c492a9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.714ex; height:2.343ex;" alt="{\displaystyle a+0\cdot i}"></span> amb part imaginària nul·la. Un nombre complex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> és anomenat <a href="/wiki/Nombre_imaginari" title="Nombre imaginari">nombre imaginari</a> si és de la forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df31d1a0bb6bc7e78a4053ee9b7c64349c59f5ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.803ex; height:2.343ex;" alt="{\displaystyle 0+bi}"></span> amb part real nul·la. </p><p>El <a href="/wiki/Conjunt" title="Conjunt">conjunt</a> dels nombres complexos es representa per <b>C</b>, o per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Pla_complex_o_Diagrama_d'Argand"><span id="Pla_complex_o_Diagrama_d.27Argand"></span>Pla complex o Diagrama d'Argand</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=4" title="Modifica la secció: Pla complex o Diagrama d'Argand"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r30997230">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Article principal: <a href="/wiki/Pla_complex" title="Pla complex">Pla complex</a></div> <p>Per a visualitzar geomètricament els nombres complexos es poden representar en un pla com un punt o un vector. Habitualment es representen gràficament utilitzant la part real com la component horitzontal i la part imaginària com a component vertical (vegeu Figura 1). Aquest pla s'anomena <a href="/wiki/Pla_complex" title="Pla complex">pla complex</a> o diagrama d'Argand<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> anomenat així per <a href="/wiki/Jean-Robert_Argand" title="Jean-Robert Argand">Jean-Robert Argand</a>. </p><p>Per tant, tenim una <a href="/wiki/Funci%C3%B3_bijectiva" title="Funció bijectiva">bijecció</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}\simeq \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}\simeq \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7d0d618ecf73de47ca7b658c7dc4d24b297d456" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.509ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}\simeq \mathbb {C} }"></span> que identifica el nombre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b\cdot i\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b\cdot i\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c6a00eb25df01265776812536e4af99fbb323cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.068ex; height:2.343ex;" alt="{\displaystyle a+b\cdot i\in \mathbb {C} }"></span> amb el vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\in \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\in \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/548c6ba1fd1d323a5b61cf3a7418d60a814af8ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.644ex; height:3.176ex;" alt="{\displaystyle (a,b)\in \mathbb {R} ^{2}}"></span>. D'aquesta manera podem visualitzar el conjunt dels nombres complexos com un pla. </p><p>El concepte de <a href="/wiki/Pla_complex" title="Pla complex">pla complex</a> permet interpretar geomètricament els nombres complexos. La suma de nombres complexos es pot relacionar amb la suma amb vectors, i la multiplicació de nombres complexos pot expressar-se simplement utilitzant coordenades polars, on la magnitud del producte es el producte de les magnituds dels termes, i l'angle comptat des de l'eix real del producte és la suma dels angles dels termes. </p><p>Els diagrames d'Argand s'utilitzen freqüentment per a mostrar les posicions dels <a href="/w/index.php?title=Pol_simple&action=edit&redlink=1" class="new" title="Pol simple (encara no existeix)">pols</a> i els zeros d'una funció en el pla complex. </p> <div class="mw-heading mw-heading2"><h2 id="Notació"><span id="Notaci.C3.B3"></span>Notació</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=5" title="Modifica la secció: Notació"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Els nombres complexos es poden representar de dues maneres, com a suma de les components real i imaginària (representació cartesiana), o bé com a mòdul amb angle (<a href="/wiki/Coordenades_polars" title="Coordenades polars">representació polar</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Notació_cartesiana"><span id="Notaci.C3.B3_cartesiana"></span>Notació cartesiana</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=6" title="Modifica la secció: Notació cartesiana"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En la seva representació cartesiana, un complex pren la forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> és la component real, i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> és la component imaginària. Per exemple: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3+5i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>+</mo> <mn>5</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3+5i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaf83e3be4825dc2e178b26bcca49c74665c995e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.968ex; height:2.343ex;" alt="{\displaystyle 3+5i}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 57-3i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>57</mn> <mo>−<!-- − --></mo> <mn>3</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 57-3i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19b2fc91f5252e850a6ae0f7cedce7e6352e26b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.13ex; height:2.343ex;" alt="{\displaystyle 57-3i}"></span> o <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edb5f0c4a36958a0a13c749107ee8ade738e9a54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.127ex; height:2.176ex;" alt="{\displaystyle 10i}"></span> són nombres complexos. </p><p>Aquesta notació es pot representar gràficament en el pla complex identificant el nombre complex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span> amb el vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>, (vegeu Figura 1). </p> <div class="mw-heading mw-heading3"><h3 id="Notació_polar"><span id="Notaci.C3.B3_polar"></span>Notació polar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=7" title="Modifica la secció: Notació polar"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un nombre complex es pot representar també en forma <a href="/wiki/Coordenades_polars" title="Coordenades polars">polar</a>, això és: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r_{\phi }} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r_{\phi }} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369362f20d10089ce2d432deb218e75caee82c95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.314ex; height:2.343ex;" alt="{\displaystyle \mathbf {r_{\phi }} }"></span>, on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> és el mòdul del nombre complex, i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\phi } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\phi } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03b16c8b97a15009afffb576b1424e184f48f6b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \mathbf {\phi } }"></span> és l'angle del complex, interpretant el nombre en el diagrama d'Argand. </p><p>Però, és necessari destacar, que la notació polar habitual segueix la <a href="/wiki/F%C3%B3rmula_d%27Euler" title="Fórmula d'Euler">fórmula d'Euler</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r_{\phi }} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r_{\phi }} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369362f20d10089ce2d432deb218e75caee82c95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.314ex; height:2.343ex;" alt="{\displaystyle \mathbf {r_{\phi }} }"></span> es representa com <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {r} }\,\mathrm {e} ^{i\,\mathbf {\phi } }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {r} }\,\mathrm {e} ^{i\,\mathbf {\phi } }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22b9640df794c04869b328e4a1d5449160b82ef4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.688ex; height:2.676ex;" alt="{\displaystyle {\mathbf {r} }\,\mathrm {e} ^{i\,\mathbf {\phi } }}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {e} ^{i\,\mathbf {\phi } }=\cos \phi +i\sin \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {e} ^{i\,\mathbf {\phi } }=\cos \phi +i\sin \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d41ee1c795418db94d0e38be2b5ddb6f896e3f90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.839ex; height:3.009ex;" alt="{\displaystyle \mathrm {e} ^{i\,\mathbf {\phi } }=\cos \phi +i\sin \phi }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Equivalències_entre_notació_cartesiana_i_notació_polar"><span id="Equival.C3.A8ncies_entre_notaci.C3.B3_cartesiana_i_notaci.C3.B3_polar"></span>Equivalències entre notació cartesiana i notació polar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=8" title="Modifica la secció: Equivalències entre notació cartesiana i notació polar"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/Fitxer:Complex_number.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Complex_number.jpg/220px-Complex_number.jpg" decoding="async" width="220" height="350" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Complex_number.jpg/330px-Complex_number.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/Complex_number.jpg/440px-Complex_number.jpg 2x" data-file-width="889" data-file-height="1416" /></a><figcaption>Figura 2: Nombre complex</figcaption></figure> <p>Per passar d'un tipus de notació a una altra s'utilitzen les següents expressions: </p> <ul><li>Pas de cartesiana a polar (part real no negativa):</li></ul> <p>A partir del <a href="/wiki/Teorema_de_Pit%C3%A0gores" title="Teorema de Pitàgores">Teorema de Pitàgores</a> (i entenent el nombre complex com un vector amb dues coordenades, (a, b)), podem dir: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} ={\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} ={\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1b35475a058dc10691421f6ac066168a06584a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.701ex; height:3.509ex;" alt="{\displaystyle \mathbf {r} ={\sqrt {a^{2}+b^{2}}}}"></span></dd></dl> <p>I sabent que el quocient entre el catet oposat i el catet contigu d'un angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {\phi } }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {\phi } }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f861ba27f85a8758433bda5bd6928a5c4b8319c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle {\mathbf {\phi } }}"></span> és la tangent d'aquest angle, tenim: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan {\mathbf {\phi } }={\frac {\mathbf {b} }{\mathbf {a} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan {\mathbf {\phi } }={\frac {\mathbf {b} }{\mathbf {a} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/006e32d3a32536979f57b541bdee20943ada9db1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.552ex; height:5.343ex;" alt="{\displaystyle \tan {\mathbf {\phi } }={\frac {\mathbf {b} }{\mathbf {a} }}}"></span></dd></dl> <p>L'<a href="/wiki/Arctangent" class="mw-redirect" title="Arctangent">arctangent</a> retorna angles entre −<i>π</i> i <i>π</i>, per tant per a complexos amb part real positiva l'angle es calcula com: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\phi } =\arctan {\frac {\mathbf {b} }{\mathbf {a} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>=</mo> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\phi } =\arctan {\frac {\mathbf {b} }{\mathbf {a} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed6132405212c191438370c960dcbe5d6a3539a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.659ex; height:5.343ex;" alt="{\displaystyle \mathbf {\phi } =\arctan {\frac {\mathbf {b} }{\mathbf {a} }}}"></span></dd></dl> <p>Si el complex té part real negativa es transforma en un complex de part real positiva prenent −1 = 1<sub><i>π</i></sub> com a factor comú. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} +\mathbf {b} \cdot i=-1\cdot (-\mathbf {a} -\mathbf {b} \cdot i)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>i</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} +\mathbf {b} \cdot i=-1\cdot (-\mathbf {a} -\mathbf {b} \cdot i)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f019db33cb0566208cf3af5fdc69c7332e53856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.579ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} +\mathbf {b} \cdot i=-1\cdot (-\mathbf {a} -\mathbf {b} \cdot i)}"></span>. L'angle s'obté com: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\phi } =\pi +\arctan {\frac {-\mathbf {b} }{-\mathbf {a} }}=\pi +\arctan {\frac {\mathbf {b} }{\mathbf {a} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>=</mo> <mi>π<!-- π --></mi> <mo>+</mo> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>π<!-- π --></mi> <mo>+</mo> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\phi } =\pi +\arctan {\frac {-\mathbf {b} }{-\mathbf {a} }}=\pi +\arctan {\frac {\mathbf {b} }{\mathbf {a} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16d640c02ba4673604da7eda000e143c5ca89985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:36.085ex; height:5.509ex;" alt="{\displaystyle \mathbf {\phi } =\pi +\arctan {\frac {-\mathbf {b} }{-\mathbf {a} }}=\pi +\arctan {\frac {\mathbf {b} }{\mathbf {a} }}}"></span></dd></dl> <ul><li>Pas de polar a cartesiana</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =\mathbf {r} \cdot \cos \mathbf {\phi } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =\mathbf {r} \cdot \cos \mathbf {\phi } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c27e428f2cb9ec50092ebf54f4e61dd912fe39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.063ex; height:2.509ex;" alt="{\displaystyle \mathbf {a} =\mathbf {r} \cdot \cos \mathbf {\phi } }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} =\mathbf {r} \cdot \sin \mathbf {\phi } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} =\mathbf {r} \cdot \sin \mathbf {\phi } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d141c877bc0cc3996d638fa65866408a8ad867d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.993ex; height:2.509ex;" alt="{\displaystyle \mathbf {b} =\mathbf {r} \cdot \sin \mathbf {\phi } }"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Operacions">Operacions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=9" title="Modifica la secció: Operacions"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Les operacions amb nombres complexos<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> demanaran una notació cartesiana o polar, depenent de l'operació que es faci. Per això, és important saber passar d'un tipus de notació a una altra per poder operar amb nombres complexos. </p> <div class="mw-heading mw-heading3"><h3 id="Suma_i_resta">Suma i resta</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=10" title="Modifica la secció: Suma i resta"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Per <a href="/wiki/Suma" title="Suma">sumar</a> dos nombres complexos s'ha d'utilitzar la notació cartesiana. </p> <ul><li>Notació cartesiana:</li></ul> <p>Es sumen les components reals dels sumands i les components imaginàries per separat: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi+a'+b'i=(a+a')+(b+b')i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>+</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mi>i</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi+a'+b'i=(a+a')+(b+b')i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e8b9793080474243f58878938d26ce26f16521e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.202ex; height:3.009ex;" alt="{\displaystyle a+bi+a'+b'i=(a+a')+(b+b')i\,}"></span></dd></dl> <p>Exemple: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2+3i+(3-5i)=5-2i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mi>i</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>−<!-- − --></mo> <mn>5</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>5</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2+3i+(3-5i)=5-2i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6a454267e4873e471ffa94193a037365a519a28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.039ex; height:2.843ex;" alt="{\displaystyle 2+3i+(3-5i)=5-2i\,}"></span></dd></dl> <p>Per <a href="/wiki/Resta" title="Resta">restar</a> es fa de manera semblant: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi-(a'+b'i)=a+bi+(-a')+(-b')i=(a-a')+(b-b')i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mi>i</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi-(a'+b'i)=a+bi+(-a')+(-b')i=(a-a')+(b-b')i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/701ea29e7de8a2a1bf1bdfc5c0ca3a9125dc030a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:66.295ex; height:3.009ex;" alt="{\displaystyle a+bi-(a'+b'i)=a+bi+(-a')+(-b')i=(a-a')+(b-b')i\,}"></span></dd></dl> <p>Exemple: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2-4i-(3-5i)=(2-3)+(-4+5)i=-1+1i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>−<!-- − --></mo> <mn>4</mn> <mi>i</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>−<!-- − --></mo> <mn>5</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>4</mn> <mo>+</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mi>i</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2-4i-(3-5i)=(2-3)+(-4+5)i=-1+1i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/388fc037e21831c4dbbab4a587ef9aa4c8bfdad8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.345ex; height:2.843ex;" alt="{\displaystyle 2-4i-(3-5i)=(2-3)+(-4+5)i=-1+1i\,}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Multiplicació"><span id="Multiplicaci.C3.B3"></span>Multiplicació</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=11" title="Modifica la secció: Multiplicació"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Per <a href="/wiki/Multiplicaci%C3%B3" title="Multiplicació">multiplicar</a> dos nombres complexos es pot utilitzar qualsevol de les dues notacions: </p> <ul><li>Notació cartesiana:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+bi)\cdot (a'+b'i)=a\cdot a'+a\cdot b'i+bi\cdot a'+bi\cdot b'i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mi>i</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+bi)\cdot (a'+b'i)=a\cdot a'+a\cdot b'i+bi\cdot a'+bi\cdot b'i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53eca40eefd23d338251d1aab4cc90ef8c0c3b31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.989ex; height:3.009ex;" alt="{\displaystyle (a+bi)\cdot (a'+b'i)=a\cdot a'+a\cdot b'i+bi\cdot a'+bi\cdot b'i\,}"></span></dd></dl> <p>Com que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\cdot i=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>⋅<!-- ⋅ --></mo> <mi>i</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\cdot i=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b2e6e1554fd2feb811423a06d40e774481ed3df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.353ex; height:2.343ex;" alt="{\displaystyle i\cdot i=-1}"></span> i agrupant els sumands resulta que: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+bi)\cdot (a'+b'i)=(a\cdot a'-b.b')+(a\cdot b'+b\cdot a')i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mi>b</mi> <mo>.</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+bi)\cdot (a'+b'i)=(a\cdot a'-b.b')+(a\cdot b'+b\cdot a')i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dfe43cce436054e2ed5a56c04d390898a5bb909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.555ex; height:3.009ex;" alt="{\displaystyle (a+bi)\cdot (a'+b'i)=(a\cdot a'-b.b')+(a\cdot b'+b\cdot a')i\,}"></span></dd></dl> <p>Exemple: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2-4i)\cdot (3+5i)=(2\cdot 3-(-4)\cdot 5)+(2\cdot 5+(-4)\cdot 3)=26-2i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>4</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>5</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>26</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2-4i)\cdot (3+5i)=(2\cdot 3-(-4)\cdot 5)+(2\cdot 5+(-4)\cdot 3)=26-2i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00a54ed9eb6dcf44d2ce118d74ae85cf7d9ec8e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:66.338ex; height:2.843ex;" alt="{\displaystyle (2-4i)\cdot (3+5i)=(2\cdot 3-(-4)\cdot 5)+(2\cdot 5+(-4)\cdot 3)=26-2i\,}"></span></dd></dl> <ul><li>Notació polar</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{\phi }\cdot r'_{\phi '}=r\cdot r'_{\phi +\phi '}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>ϕ<!-- ϕ --></mi> <mo>′</mo> </msup> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mi>r</mi> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <msup> <mi>ϕ<!-- ϕ --></mi> <mo>′</mo> </msup> </mrow> <mo>′</mo> </msubsup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{\phi }\cdot r'_{\phi '}=r\cdot r'_{\phi +\phi '}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2c68c82139bcc87a04a8ac2899e03d8b4c8998a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:17.995ex; height:3.343ex;" alt="{\displaystyle r_{\phi }\cdot r'_{\phi '}=r\cdot r'_{\phi +\phi '}\,}"></span></dd></dl> <p>Exemple: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10_{30}\cdot 5_{10}=10\cdot 5_{30+10}=50_{40}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>=</mo> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> <mo>+</mo> <mn>10</mn> </mrow> </msub> <mo>=</mo> <msub> <mn>50</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>40</mn> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10_{30}\cdot 5_{10}=10\cdot 5_{30+10}=50_{40}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e44774968a6f34158f5acfe650626691a480f1fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.669ex; height:2.509ex;" alt="{\displaystyle 10_{30}\cdot 5_{10}=10\cdot 5_{30+10}=50_{40}\,}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Demostració"><span id="Demostraci.C3.B3"></span>Demostració</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=12" title="Modifica la secció: Demostració"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Passant de notació cartesiana a polar s'obté: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{\phi }\cdot {r}'_{{\phi }'}=\left[r\cos \left(\phi \right)+ir\sin \left(\phi \right)\right]\cdot \left[{r}'\cos \left({{\phi }'}\right)+i{r}'\sin \left({{\phi }'}\right)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mi>r</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <mi>r</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>[</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msup> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msup> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{\phi }\cdot {r}'_{{\phi }'}=\left[r\cos \left(\phi \right)+ir\sin \left(\phi \right)\right]\cdot \left[{r}'\cos \left({{\phi }'}\right)+i{r}'\sin \left({{\phi }'}\right)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6200475db3e8d235aea89e6b48ee13ba68089af2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:55.863ex; height:3.676ex;" alt="{\displaystyle r_{\phi }\cdot {r}'_{{\phi }'}=\left[r\cos \left(\phi \right)+ir\sin \left(\phi \right)\right]\cdot \left[{r}'\cos \left({{\phi }'}\right)+i{r}'\sin \left({{\phi }'}\right)\right]}"></span></dd></dl> <p>Operant resulta: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{\phi }\cdot {r}'_{{\phi }'}=r{r}'\left[\cos \left(\phi \right)\cos \left({{\phi }'}\right)-\sin \left(\phi \right)\sin \left({{\phi }'}\right)\right]+r{r}'i\left[\cos \left(\phi \right)\sin \left({{\phi }'}\right)+\sin \left(\phi \right)\cos \left({{\phi }'}\right)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msup> <mrow> <mo>[</mo> <mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>)</mo> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>)</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msup> <mi>i</mi> <mrow> <mo>[</mo> <mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>)</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>)</mo> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{\phi }\cdot {r}'_{{\phi }'}=r{r}'\left[\cos \left(\phi \right)\cos \left({{\phi }'}\right)-\sin \left(\phi \right)\sin \left({{\phi }'}\right)\right]+r{r}'i\left[\cos \left(\phi \right)\sin \left({{\phi }'}\right)+\sin \left(\phi \right)\cos \left({{\phi }'}\right)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/523f840c0b31bb7c5f3c2793a6b68bae2612e126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:84.365ex; height:3.676ex;" alt="{\displaystyle r_{\phi }\cdot {r}'_{{\phi }'}=r{r}'\left[\cos \left(\phi \right)\cos \left({{\phi }'}\right)-\sin \left(\phi \right)\sin \left({{\phi }'}\right)\right]+r{r}'i\left[\cos \left(\phi \right)\sin \left({{\phi }'}\right)+\sin \left(\phi \right)\cos \left({{\phi }'}\right)\right]}"></span></dd></dl> <p>Que tenint en compte les identitats trigonomètriques del <a href="/wiki/Demostraci%C3%B3_de_les_identitats_trigonom%C3%A8triques#Identitats_de_la_suma_d'angles" title="Demostració de les identitats trigonomètriques">sinus i el cosinus de la suma d'angles</a> i tornant a passar a notació polar s'obté: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}r_{\phi }\cdot {r}'_{{\phi }'}&=r{r}'\cos \left(\phi +{\phi }'\right)+r{r}'i\sin \left(\phi +{\phi }'\right)\\&=\left(r\cdot {r}'\right)_{\phi +{\phi }'}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msup> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msup> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}r_{\phi }\cdot {r}'_{{\phi }'}&=r{r}'\cos \left(\phi +{\phi }'\right)+r{r}'i\sin \left(\phi +{\phi }'\right)\\&=\left(r\cdot {r}'\right)_{\phi +{\phi }'}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddba343ebf5df9ca199fba82b73c8490cb240b5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.381ex; height:7.509ex;" alt="{\displaystyle {\begin{aligned}r_{\phi }\cdot {r}'_{{\phi }'}&=r{r}'\cos \left(\phi +{\phi }'\right)+r{r}'i\sin \left(\phi +{\phi }'\right)\\&=\left(r\cdot {r}'\right)_{\phi +{\phi }'}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Divisió"><span id="Divisi.C3.B3"></span>Divisió</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=13" title="Modifica la secció: Divisió"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Per <a href="/wiki/Divisi%C3%B3" title="Divisió">dividir</a> dos nombres complexos s'utilitza normalment la notació polar, per ser la forma més fàcil. Tot i així també es pot operar amb la notació cartesiana. </p> <ul><li>Notació polar</li></ul> <p>Com que per multiplicar es multipliquen els mòduls i se sumen els angles, per trobar un nombre que multiplicat pel divisor doni el dividend (és a dir per a dividir el dividend entre el divisor i trobar el quocient) caldrà trobar un nombre que multiplicat pel mòdul del divisor doni el mòdul del dividend (és a dir caldrà dividir el mòdul del dividend entre el mòdul del divisor) i caldrà trobar un argument que sumat a l'argument del divisor doni l'argument del dividend (és a dir caldrà restar de l'argument del dividend l'argument del divisor). </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {r_{\phi }}{r_{{\phi }'}}}=\left({\frac {r}{{r}'}}\right)_{\phi -{\phi }'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msup> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>′</mo> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {r_{\phi }}{r_{{\phi }'}}}=\left({\frac {r}{{r}'}}\right)_{\phi -{\phi }'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57c8967f2537405f9fb3f4d9b6ddcbe4e8a05b84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:16.073ex; height:6.009ex;" alt="{\displaystyle {\frac {r_{\phi }}{r_{{\phi }'}}}=\left({\frac {r}{{r}'}}\right)_{\phi -{\phi }'}}"></span></dd></dl> <p>Exemple: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {10_{30}}{5_{10}}}=\left({\frac {10}{5}}\right)_{30-10}=2_{20}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <msub> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>10</mn> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> <mo>−<!-- − --></mo> <mn>10</mn> </mrow> </msub> <mo>=</mo> <msub> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {10_{30}}{5_{10}}}=\left({\frac {10}{5}}\right)_{30-10}=2_{20}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9dfdf4c8430b20dd1b9256486534edafcadb3e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.654ex; height:6.343ex;" alt="{\displaystyle {\frac {10_{30}}{5_{10}}}=\left({\frac {10}{5}}\right)_{30-10}=2_{20}}"></span></dd></dl> <ul><li>Notació cartesiana</li></ul> <p>En notació cartesiana, multiplicant el numerador i el denominador pel <a href="/wiki/Conjugat" title="Conjugat">conjugat</a> del denominador queda en el denominador un nombre real que es pot dividir per separat de la part real i de la part imaginària. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a+b\mathbf {i} }{a'+b'\mathbf {i} }}={\frac {(a+b\mathbf {i} )\cdot (a'-b'\mathbf {i} )}{(a'+b'\mathbf {i} )\cdot (a'-b'\mathbf {i} )}}={\frac {a\cdot a'-a\cdot b'\mathbf {i} +b\mathbf {i} \cdot a'-b\mathbf {i} \cdot b'\mathbf {i} }{a'^{2}-(b'\mathbf {i} )^{2}}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mrow> <mrow> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mrow> <mrow> <msup> <mi>a</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a+b\mathbf {i} }{a'+b'\mathbf {i} }}={\frac {(a+b\mathbf {i} )\cdot (a'-b'\mathbf {i} )}{(a'+b'\mathbf {i} )\cdot (a'-b'\mathbf {i} )}}={\frac {a\cdot a'-a\cdot b'\mathbf {i} +b\mathbf {i} \cdot a'-b\mathbf {i} \cdot b'\mathbf {i} }{a'^{2}-(b'\mathbf {i} )^{2}}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a81d4925c9f5085670c0877846708994fe997e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:67.848ex; height:6.509ex;" alt="{\displaystyle {\frac {a+b\mathbf {i} }{a'+b'\mathbf {i} }}={\frac {(a+b\mathbf {i} )\cdot (a'-b'\mathbf {i} )}{(a'+b'\mathbf {i} )\cdot (a'-b'\mathbf {i} )}}={\frac {a\cdot a'-a\cdot b'\mathbf {i} +b\mathbf {i} \cdot a'-b\mathbf {i} \cdot b'\mathbf {i} }{a'^{2}-(b'\mathbf {i} )^{2}}}=}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {(a\cdot a'+b\cdot b')+(b\cdot a'-a\cdot b')\mathbf {i} }{a'^{2}+b'^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mrow> <mrow> <msup> <mi>a</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {(a\cdot a'+b\cdot b')+(b\cdot a'-a\cdot b')\mathbf {i} }{a'^{2}+b'^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2a175ab8cf1007ab52a768168a8204f6697cdfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:34.536ex; height:6.176ex;" alt="{\displaystyle ={\frac {(a\cdot a'+b\cdot b')+(b\cdot a'-a\cdot b')\mathbf {i} }{a'^{2}+b'^{2}}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Potència"><span id="Pot.C3.A8ncia"></span>Potència</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=14" title="Modifica la secció: Potència"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El <a href="/wiki/Quadrat_(Pot%C3%A8ncia)" class="mw-redirect" title="Quadrat (Potència)">quadrat</a> d'un nombre complex és tal com segueix: </p> <ul><li>En notació cartesiana, cal emprar el <a href="/wiki/Binomi_de_Newton" title="Binomi de Newton">Binomi de Newton</a>; en concret, el quadrat (en potència de 2) és:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b\mathbf {i} )^{2}=(a+b\mathbf {i} )\cdot (a+b\mathbf {i} )=(a\cdot a-b\cdot b)+(a\cdot b+b\cdot a)\mathbf {i} =(a^{2}-b^{2})+(2ab)\mathbf {i} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>b</mi> <mo>+</mo> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b\mathbf {i} )^{2}=(a+b\mathbf {i} )\cdot (a+b\mathbf {i} )=(a\cdot a-b\cdot b)+(a\cdot b+b\cdot a)\mathbf {i} =(a^{2}-b^{2})+(2ab)\mathbf {i} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f307518227069bf1a61d7f57e5c1f6fdee7b4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:81.161ex; height:3.176ex;" alt="{\displaystyle (a+b\mathbf {i} )^{2}=(a+b\mathbf {i} )\cdot (a+b\mathbf {i} )=(a\cdot a-b\cdot b)+(a\cdot b+b\cdot a)\mathbf {i} =(a^{2}-b^{2})+(2ab)\mathbf {i} }"></span></dd></dl> <p>Aquest procediment és feixuc i llarg (especialment en potències de graus superiors a 2 o 3). En canvi, en notació polar és força més senzill: </p> <ul><li>En notació polar i generalitzant (on n=exponent):</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r_{\phi })^{n}=r_{\phi \cdot n}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r_{\phi })^{n}=r_{\phi \cdot n}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8795211897cfb11047f75806d9418b31b08d3647" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:12.091ex; height:3.343ex;" alt="{\displaystyle (r_{\phi })^{n}=r_{\phi \cdot n}^{n}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Arrels">Arrels</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=15" title="Modifica la secció: Arrels"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'<a href="/wiki/Arrel_quadrada" title="Arrel quadrada">arrel quadrada de <i>a</i> + <i>bi</i></a> (amb <i>b</i> ≠ 0) és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm (\gamma +\delta i)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>±<!-- ± --></mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mi>δ<!-- δ --></mi> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm (\gamma +\delta i)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb2b47ea62c4c8da8a94f3d7529dbd64fc1f6aef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.571ex; height:2.843ex;" alt="{\displaystyle \pm (\gamma +\delta i)}"></span>, on </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\sqrt {\frac {a+{\sqrt {a^{2}+b^{2}}}}{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\sqrt {\frac {a+{\sqrt {a^{2}+b^{2}}}}{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704c81398335c46acb3b42a729061750c766c45b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.091ex; height:7.676ex;" alt="{\displaystyle \gamma ={\sqrt {\frac {a+{\sqrt {a^{2}+b^{2}}}}{2}}}}"></span></dd></dl> <p>i </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta =\operatorname {sgn}(b){\sqrt {\frac {-a+{\sqrt {a^{2}+b^{2}}}}{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo>=</mo> <mi>sgn</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta =\operatorname {sgn}(b){\sqrt {\frac {-a+{\sqrt {a^{2}+b^{2}}}}{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3780e79d270f5aa9f24584c72f1e96032498b6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.863ex; height:7.676ex;" alt="{\displaystyle \delta =\operatorname {sgn}(b){\sqrt {\frac {-a+{\sqrt {a^{2}+b^{2}}}}{2}}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Conjugat">Conjugat</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=16" title="Modifica la secció: Conjugat"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fitxer:Complex_conjugate_picture.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Complex_conjugate_picture.svg/220px-Complex_conjugate_picture.svg.png" decoding="async" width="220" height="309" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Complex_conjugate_picture.svg/330px-Complex_conjugate_picture.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/Complex_conjugate_picture.svg/440px-Complex_conjugate_picture.svg.png 2x" data-file-width="300" data-file-height="422" /></a><figcaption>Representació geomètrica de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> i el seu conjugat <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52dd0599595d539f7d757ec21da6c6e6ac3ad427" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.296ex; height:2.009ex;" alt="{\displaystyle {\bar {z}}}"></span> al pla complex</figcaption></figure> <p>El <i><a href="/wiki/Conjugat_complex" class="mw-redirect" title="Conjugat complex">conjugat complex</a></i> del nombre complex <span style="white-space:nowrap"><i>z</i> = <i>x</i> + <i>yi</i></span> es defineix com a <i>x</i> − <i>yi</i>. Es denota com <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52dd0599595d539f7d757ec21da6c6e6ac3ad427" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.296ex; height:2.009ex;" alt="{\displaystyle {\bar {z}}}"></span> o <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{*}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{*}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1c6589760330c3db7277f40574e9ea99d25a608" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.532ex; height:2.343ex;" alt="{\displaystyle z^{*}\,}"></span>. Geomètricament, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52dd0599595d539f7d757ec21da6c6e6ac3ad427" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.296ex; height:2.009ex;" alt="{\displaystyle {\bar {z}}}"></span> és la reflexió de <i>z</i> sobre l'eix real. En particular, si conjuguem dos cops el nombre complex original: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\bar {z}}}=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\bar {z}}}=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/985065f661facb60c670e7151145caa1eaac4236" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.483ex; height:2.343ex;" alt="{\displaystyle {\bar {\bar {z}}}=z}"></span>. </p><p>Les parts reals i imaginàries d'un nombre complex poden ser extretes usant el conjugat: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} \,(z)={\tfrac {1}{2}}(z+{\bar {z}}),\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} \,(z)={\tfrac {1}{2}}(z+{\bar {z}}),\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cff30631c7cc296f2d2368e36a46162005f63612" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:18.852ex; height:3.509ex;" alt="{\displaystyle \operatorname {Re} \,(z)={\tfrac {1}{2}}(z+{\bar {z}}),\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Im} \,(z)={\tfrac {1}{2i}}(z-{\bar {z}}).\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Im</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Im} \,(z)={\tfrac {1}{2i}}(z-{\bar {z}}).\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e8260e087f6c43b6ddd4ba3009804481266f2f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.452ex; height:3.509ex;" alt="{\displaystyle \operatorname {Im} \,(z)={\tfrac {1}{2i}}(z-{\bar {z}}).\,}"></span></dd></dl> <p>A més, un nombre complex és real si, i només si, el seu conjugat és igual a ell. </p><p>La conjugació compleix la propietat distributiva sobre les operacions aritmètiques estàndard: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {z+w}}={\bar {z}}+{\bar {w}},\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>z</mi> <mo>+</mo> <mi>w</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {z+w}}={\bar {z}}+{\bar {w}},\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8495b0e3b122af9d4ec88f435b37994771c6307" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.641ex; height:3.009ex;" alt="{\displaystyle {\overline {z+w}}={\bar {z}}+{\bar {w}},\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {zw}}={\bar {z}}{\bar {w}},\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>z</mi> <mi>w</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {zw}}={\bar {z}}{\bar {w}},\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4273870dee01ef62e78e7f3971f061f8a679650f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.96ex; height:2.676ex;" alt="{\displaystyle {\overline {zw}}={\bar {z}}{\bar {w}},\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {(z/w)}}={\bar {z}}/{\bar {w}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>w</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {(z/w)}}={\bar {z}}/{\bar {w}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d9f08c1d324bab9149d8f7a33397618371547e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.447ex; height:3.676ex;" alt="{\displaystyle {\overline {(z/w)}}={\bar {z}}/{\bar {w}}\,}"></span> si <i>w</i> és no nul</dd></dl> <p>L'<a href="/wiki/Invers" class="mw-redirect" title="Invers">invers</a> d'un nombre complex diferent de zero <span style="white-space:nowrap"><i>z</i> = <i>x</i> + <i>yi</i></span> és donat per: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{z}}={\frac {\bar {z}}{z{\bar {z}}}}={\frac {\bar {z}}{x^{2}+y^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{z}}={\frac {\bar {z}}{z{\bar {z}}}}={\frac {\bar {z}}{x^{2}+y^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6850c5b8e58b12458e318dee17b9c994d9a4ecc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.338ex; height:5.843ex;" alt="{\displaystyle {\frac {1}{z}}={\frac {\bar {z}}{z{\bar {z}}}}={\frac {\bar {z}}{x^{2}+y^{2}}}.}"></span></dd></dl> <p>Aquesta fórmula es pot fer servir per calcular l'invers d'un nombre complex si ve donat en notació cartesiana. </p> <div class="mw-heading mw-heading2"><h2 id="Caracteritzacions_i_representacions_dels_nombres_complexos">Caracteritzacions i representacions dels nombres complexos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=17" title="Modifica la secció: Caracteritzacions i representacions dels nombres complexos"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tot i que normalment no són útils, les representacions alternatives dels nombres complexos poden donar una visió una mica més profunda sobre la seva naturalesa. </p> <div class="mw-heading mw-heading3"><h3 id="Representació_matricial_dels_nombres_complexos"><span id="Representaci.C3.B3_matricial_dels_nombres_complexos"></span>Representació matricial dels nombres complexos</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=18" title="Modifica la secció: Representació matricial dels nombres complexos"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Una representació particularment elegant, representa els nombres complexos com a <a href="/wiki/Matriu_(matem%C3%A0tiques)" title="Matriu (matemàtiques)">matrius</a> 2×2 amb coeficients <a href="/wiki/Nombre_real" title="Nombre real">reals</a> que corresponen a <a href="/wiki/Aplicaci%C3%B3_lineal" title="Aplicació lineal">aplicacions</a> que dilaten i giren els punts del pla. Cada una d'aquestes matrius té la forma </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}a&-b\\b&\;\;a\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>a</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}a&-b\\b&\;\;a\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/874762a513e504f9a2b5854c093217705dc57b43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.531ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}a&-b\\b&\;\;a\end{pmatrix}}}"></span></dd></dl> <p>on <i>a</i> i <i>b</i> són nombres real. La suma i el producte de dues matrius d'aquest tipus és una matriu que també té la mateixa forma, i l'operació producte de matrius d'aquesta forma és <a href="/wiki/Commutatiu" class="mw-redirect" title="Commutatiu">commutatiu</a> (fixeu-vos que el producte de matrius en general no ho és). Tota matriu d'aquesta forma diferent de zero és invertible, i la seva inversa és també de la mateixa forma. Per tant, les matrius d'aquesta forma són un <a href="/wiki/Cos_(matem%C3%A0tiques)" title="Cos (matemàtiques)">cos</a> <a href="/wiki/Isomorf" class="mw-redirect" title="Isomorf">isomorf</a> al cos dels nombres complexos. Cada una d'aquestes matrius es pot escriure com </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}a&-b\\b&\;\;a\end{pmatrix}}=a{\begin{pmatrix}1&\;\;0\\0&\;\;1\end{pmatrix}}+b{\begin{pmatrix}0&-1\\1&\;\;0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>a</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}a&-b\\b&\;\;a\end{pmatrix}}=a{\begin{pmatrix}1&\;\;0\\0&\;\;1\end{pmatrix}}+b{\begin{pmatrix}0&-1\\1&\;\;0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49a4e27a10aae761827bec573f19845f281e6d73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.436ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}a&-b\\b&\;\;a\end{pmatrix}}=a{\begin{pmatrix}1&\;\;0\\0&\;\;1\end{pmatrix}}+b{\begin{pmatrix}0&-1\\1&\;\;0\end{pmatrix}}}"></span></dd></dl> <p>El que suggereix que s'hauria d'identificar el nombre real 1 amb la matriu identitat </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&\;\;0\\0&\;\;1\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&\;\;0\\0&\;\;1\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d58c168ea1f3db6e0fb236a0147841e19dbf5189" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.757ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}1&\;\;0\\0&\;\;1\end{pmatrix}},}"></span></dd></dl> <p>I la unitat imaginària <i>i</i> amb </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}0&-1\\1&\;\;0\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}0&-1\\1&\;\;0\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/527098c81510b625a14d558ad518111ba351ce42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.275ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}0&-1\\1&\;\;0\end{pmatrix}},}"></span></dd></dl> <p>Una rotació en sentit contrari a les agulles del rellotge de 90 graus. Fixeu-vos que el quadrat d'aquesta última matriu és igual a la matriu 2×2 que representa −1. </p><p>El quadrat del valor absolut d'un nombre complex expressat com una matriu és igual al <a href="/wiki/Determinant_(matem%C3%A0tiques)" title="Determinant (matemàtiques)">determinant</a> de la matriu. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|^{2}={\begin{vmatrix}a&-b\\b&a\end{vmatrix}}=(a^{2})-((-b)(b))=a^{2}+b^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|^{2}={\begin{vmatrix}a&-b\\b&a\end{vmatrix}}=(a^{2})-((-b)(b))=a^{2}+b^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7fed49ad0de52932c9945b52cf1014e31e11ba6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.123ex; height:6.176ex;" alt="{\displaystyle |z|^{2}={\begin{vmatrix}a&-b\\b&a\end{vmatrix}}=(a^{2})-((-b)(b))=a^{2}+b^{2}.}"></span></dd></dl> <p>Si la matriu es veu com una transformació del pla, llavors la transformació gira els punts un angle igual a l'argument del nombre complex i li aplica un factor d'escala igual al valor absolut del nombre complex. El <a href="/wiki/Conjugat" title="Conjugat">conjugat</a> del nombre complex <i>z</i> correspon a la transformació que gira el mateix angle que <i>z</i> però en sentit oposat i aplica el mateix factor d'escala que <i>z</i>; això es pot representar per la <a href="/wiki/Transposada" class="mw-redirect" title="Transposada">transposada</a> de la matriu corresponent a <i>z</i>. </p><p>Si els elements de les matrius són ells mateixos nombres complexos, llavors l'àlgebra que resulta és la dels <a href="/wiki/Quaternions" class="mw-redirect" title="Quaternions">quaternions</a>. En altres paraules, la representació matricial és una forma d'expressar la <a href="/wiki/Construcci%C3%B3_de_Cayley-Dickson" title="Construcció de Cayley-Dickson">construcció de Cayley-Dickson</a> d'àlgebres. </p><p>També s'ha de destacar que els dos <a href="/wiki/Vector_propi" class="mw-redirect" title="Vector propi">vectors propis</a> de la matriu 2x2 que representa un nombre complex són el mateix nombre complex i el seu <a href="/wiki/Conjugat" title="Conjugat">conjugat</a>. </p><p>Mentre que l'anterior és una representació de <b>C</b> en les <a href="/w/index.php?title=Matrius_reals_(2_x_2)&action=edit&redlink=1" class="new" title="Matrius reals (2 x 2) (encara no existeix)">matrius reals (2 x 2)</a>, no és l'única. Qualsevol matriu </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M={\begin{pmatrix}p&q\\r&-p\end{pmatrix}},\quad p^{2}+qr+1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>p</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>q</mi> <mi>r</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M={\begin{pmatrix}p&q\\r&-p\end{pmatrix}},\quad p^{2}+qr+1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57369de91f9bc5e01e8ab87a9d168c6a984fa2a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.985ex; height:6.176ex;" alt="{\displaystyle M={\begin{pmatrix}p&q\\r&-p\end{pmatrix}},\quad p^{2}+qr+1=0}"></span></dd></dl> <p>té la propietat que el seu quadrat és la matriu identitat multiplicada per -1. Llavors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{z=aI+bM:a,b\in R\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mi>I</mi> <mo>+</mo> <mi>b</mi> <mi>M</mi> <mo>:</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mi>R</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{z=aI+bM:a,b\in R\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/009d576e060f4679f2e459710251809f30d1417b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.996ex; height:2.843ex;" alt="{\displaystyle \{z=aI+bM:a,b\in R\}}"></span> també és isomorf al cos <b>C</b>. </p> <div class="mw-heading mw-heading3"><h3 id="Espai_vectorial_real">Espai vectorial real</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=19" title="Modifica la secció: Espai vectorial real"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>C</b> és un <a href="/wiki/Espai_vectorial" title="Espai vectorial">espai vectorial</a> real de dimensió dos. A diferència dels reals, el conjunt dels nombres complexos no pot ser <a href="/wiki/Ordre_total" title="Ordre total">totalment ordenat</a> de cap manera que sigui compatible amb les seves operacions aritmètiques: <b>C</b> no es pot transformar en un <a href="/w/index.php?title=Cos_ordenat&action=edit&redlink=1" class="new" title="Cos ordenat (encara no existeix)">cos ordenat</a>. De forma més general, cap cos que contingui una arrel quadrada de −1 pot ser ordenat. </p><p>Les <a href="/wiki/Aplicaci%C3%B3_lineal" title="Aplicació lineal">aplicacions lineals</a> <b>C</b> → <b>C</b> tenen la forma general </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=az+b{\overline {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>z</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=az+b{\overline {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e80186b4326bfa73ba363b430cd6c9bbe65adc20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.638ex; height:2.843ex;" alt="{\displaystyle f(z)=az+b{\overline {z}}}"></span></dd></dl> <p>Amb coeficients complexos <i>a</i> i <i>b</i>. Només el primer terme és <b>C</b>-lineal, en altres paraules, només el primer terme és <a href="/wiki/Funci%C3%B3_holomorfa" title="Funció holomorfa">holomorfic</a>; el segon terme és <a href="/wiki/Funci%C3%B3_d%27una_variable_complexa_diferenciable_en_sentit_real" title="Funció d'una variable complexa diferenciable en sentit real">real-differenciable</a>, però si <i>b</i> ≠ 0, no satisfà les <a href="/wiki/Equacions_de_Cauchy-Riemann" title="Equacions de Cauchy-Riemann">equacions de Cauchy-Riemann</a>. </p><p>La funció </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=az\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>z</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=az\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2fc794925cae0ce2a398e437448e6d55bc275bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.98ex; height:2.843ex;" alt="{\displaystyle f(z)=az\,}"></span></dd></dl> <p>es correspon amb rotacions combinades amb escalats, mentre que la funció </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=b{\overline {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=b{\overline {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2f65472a1141d3b5fb25755249c5f44d7f395ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.48ex; height:2.843ex;" alt="{\displaystyle f(z)=b{\overline {z}}}"></span></dd></dl> <p>es correspon amb reflexions combinades amb escalats. </p> <div class="mw-heading mw-heading3"><h3 id="Solucions_d'equacions_polinòmiques"><span id="Solucions_d.27equacions_polin.C3.B2miques"></span>Solucions d'equacions polinòmiques</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=20" title="Modifica la secció: Solucions d'equacions polinòmiques"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Una <i>arrel</i> del <a href="/wiki/Polinomi" title="Polinomi">polinomi</a> <i>p</i> és un nombre complex <i>z</i> tal que <i>p</i>(<i>z</i>) = 0. Un resultat sorprenent en anàlisi complexa és que tots els polinomis de grau <i>n</i> amb coeficients reals o complexos tenen exactament <i>n</i> arrels complexes (contant les <a href="/w/index.php?title=Arrels_m%C3%BAltiples_d%27un_polinomi&action=edit&redlink=1" class="new" title="Arrels múltiples d'un polinomi (encara no existeix)">arrels múltiples</a> d'acord amb la seva multiplicitat). Això es coneix com el <a href="/wiki/Teorema_fonamental_de_l%27%C3%A0lgebra" title="Teorema fonamental de l'àlgebra">teorema fonamental de l'àlgebra</a>, i expressa que els nombres complexos són un <a href="/wiki/Cos_algebraicament_tancat" title="Cos algebraicament tancat">cos algebraicament tancat</a>. Per tant, els nombres complexos són la clausura algebraica dels nombres reals, tal com es descriu més avall. </p> <div class="mw-heading mw-heading3"><h3 id="Construcció_i_caracterització_algebraica"><span id="Construcci.C3.B3_i_caracteritzaci.C3.B3_algebraica"></span>Construcció i caracterització algebraica</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=21" title="Modifica la secció: Construcció i caracterització algebraica"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Una construcció de <b>C</b> és com una <a href="/wiki/Extensi%C3%B3_de_cos" class="mw-redirect" title="Extensió de cos">extensió de cos</a> del cos <b>R</b> dels nombres reals, en el qual s'hi afegeix una arrel de <i>x</i>²+1. Per construir aquesta extensió, es comença amb l'<a href="/w/index.php?title=Anell_dels_polinomis&action=edit&redlink=1" class="new" title="Anell dels polinomis (encara no existeix)">anell dels polinomis</a> <b>R</b>[<i>x</i>] de coeficients reals amb la variable <i>x</i>. Com que el polinomi <i>x</i>²+1 és <a href="/wiki/Polinomi_irreductible" title="Polinomi irreductible">irreductible</a> sobre <b>R</b>, l'<a href="/wiki/Anell_quocient" title="Anell quocient">anell quocient</a> <b>R</b>[<i>x</i>]/(<i>x</i>²+1) serà un cos. Aquesta extensió contindrà dues arrels quadrades de -1; se'n tria una i es denota <i>i</i>. El conjunt {1, <i>i</i>} formarà una base per l'extensió del cos sobre els reals, això vol dir que cada element del cos estès es pot escriure de la forma <i>a</i>+ <i>b</i>•<i>i</i>. De forma equivalent, els elements del cos estes es poden escriure com a parelles ordenades de nombres reals (<i>a</i>,<i>b</i>). </p><p>Tot i que només s'han afegit explícitament les arrels de <i>x</i>²+1 el cos complex que resulta és de fet <a href="/w/index.php?title=Algebraicament_tancat&action=edit&redlink=1" class="new" title="Algebraicament tancat (encara no existeix)">algebraicament tancat</a> – cada polinomi amb coeficients a <b>C</b> es descompon en factors que són polinomis lineals amb coeficients a <b>C</b>. Com que cada cos només té una clausura algebraica (tret d'isomorfismes), els nombres complexos es poden caracteritzar com la clausura algebraica dels nombres reals. </p><p>L'extensió de cos dona el ben conegut <a href="/wiki/Pla_complex" title="Pla complex">pla complex</a>, però només el caracteritza algebraicament. El cos <b>C</b> es <a href="/w/index.php?title=Caracteritzaci%C3%B3_(matem%C3%A0tiques)&action=edit&redlink=1" class="new" title="Caracterització (matemàtiques) (encara no existeix)">caracteritza</a> (tret d'<a href="/wiki/Isomorfisme" title="Isomorfisme">isomorfismes</a> de cos) per les següents tres propietats: </p> <ul><li>té <a href="/wiki/Caracter%C3%ADstica_(%C3%A0lgebra)" class="mw-redirect" title="Característica (àlgebra)">característica</a> 0</li> <li>el seu <a href="/w/index.php?title=Grau_de_transcend%C3%A8ncia&action=edit&redlink=1" class="new" title="Grau de transcendència (encara no existeix)">grau de transcendència</a> sobre el <a href="/w/index.php?title=Cos_primer&action=edit&redlink=1" class="new" title="Cos primer (encara no existeix)">cos primer</a> és la <a href="/wiki/Cardinalitat_del_continu" title="Cardinalitat del continu">cardinalitat del continu</a></li> <li>és <a href="/w/index.php?title=Algebraicament_tancat&action=edit&redlink=1" class="new" title="Algebraicament tancat (encara no existeix)">algebraicament tancat</a></li></ul> <p>Una conseqüència d'aquesta caracterització és que <b>C</b> conté molts subcossos propis que són isomorfs amb <b>C</b> (el mateix és cert de <b>R</b>, que conté molts subcossos propis isomorfs amb si mateix). Tal com es descriu més avall, calen consideracions topològiques per distingir aquests subcossos dels propis cossos <b>C</b> i <b>R</b>. </p> <div class="mw-heading mw-heading3"><h3 id="Caracterització_com_a_cos_topològic"><span id="Caracteritzaci.C3.B3_com_a_cos_topol.C3.B2gic"></span>Caracterització com a cos topològic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=22" title="Modifica la secció: Caracterització com a cos topològic"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Des del punt de vista <a href="/wiki/%C3%80lgebra" title="Àlgebra">algebraic</a>, el conjunt dels nombres complexos és un <a href="/wiki/Cos_(matem%C3%A0tiques)" title="Cos (matemàtiques)">cos</a>. Per tant, hi ha operacions d'addició i multiplicació. Aquestes operacions amb nombres complexos s'efectuen de la mateixa manera que si fossin polinomis en la "variable" <i>i</i>, però tenint en compte que <i>i</i>²=-1. Així doncs, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+bi)+(a'+b'i)=(a+a')+(b+b')i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+bi)+(a'+b'i)=(a+a')+(b+b')i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ccea5f449bc3f98fa8a2631e43e5d43bd7cb79f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.821ex; height:3.009ex;" alt="{\displaystyle (a+bi)+(a'+b'i)=(a+a')+(b+b')i\,}"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+bi)\cdot (a'+b'i)=(aa'-bb')+(ab'+ba')i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mi>b</mi> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>b</mi> <msup> <mi>a</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+bi)\cdot (a'+b'i)=(aa'-bb')+(ab'+ba')i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dbd4bb1a2b62e55b9a0a6a72a5f4d52d60b8571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.484ex; height:3.009ex;" alt="{\displaystyle (a+bi)\cdot (a'+b'i)=(aa'-bb')+(ab'+ba')i\,}"></span>.</dd></dl> <p>Formalment, el cos <b>C</b> es pot definir com l'<a href="/wiki/Extensi%C3%B3_de_cossos" title="Extensió de cossos">extensió</a> <b>R</b>[<i>i</i>] del cos dels nombres reals. La importància fonamental d'aquesta extensió es deu al fet que dintre dels complexos es poden resoldre <a href="/wiki/Equaci%C3%B3_algebraica" class="mw-redirect" title="Equació algebraica">equacions algebraiques</a> que dintre dels reals no tenen <a href="/wiki/Soluci%C3%B3" class="mw-redirect" title="Solució">solució</a>. Per exemple, l'equació <i>x</i>²=-1 no té cap solució real (ja que el quadrat d'un nombre real sempre és més gran o igual que zero), mentre que dins del complexos té dues solucions, <i>i</i> i el seu oposat, -<i>i</i>. Aquest és un fet més general: segons el <a href="/wiki/Teorema_fonamental_de_l%27%C3%A0lgebra" title="Teorema fonamental de l'àlgebra">teorema fonamental de l'àlgebra</a>, dins de <b>C</b> qualsevol equació algebraica de grau <i>n</i> té <i>n</i> solucions (comptades amb la seva multiplicitat); això també s'expresssa dient que <b>C</b> és un <a href="/wiki/Cos_algebraicament_tancat" title="Cos algebraicament tancat">cos algebraicament tancat</a>. Des del punt de vista històric, aquest va ser l'origen dels nombre complexos, que van ser introduïts per <a href="/wiki/Cardano" class="mw-redirect" title="Cardano">Cardano</a> i <a href="/wiki/Bombelli" class="mw-redirect" title="Bombelli">Bombelli</a> al s. XVI com a eina per a resoldre l'<a href="/wiki/Equaci%C3%B3_de_tercer_grau" title="Equació de tercer grau">equació de tercer grau</a>. </p><p>Tal com s'ha explicat, la caracterització algebraica de <b>C</b> no permet considerar algunes de les seves propietats topològiques més importants. Aquestes propietats són claus per a l'estudi de l'<a href="/wiki/An%C3%A0lisi_complexa" title="Anàlisi complexa">anàlisi complexa</a>, on els nombres complexos s'estudien com <a href="/w/index.php?title=Anell_topol%C3%B2gic&action=edit&redlink=1" class="new" title="Anell topològic (encara no existeix)">cossos topològics</a>. </p><p>Les següents propietats caracteritzen <b>C</b> com un cos topològic: </p> <ul><li><b>C</b> és un cos.</li> <li><b>C</b> conté un subconjunt <i>P</i> d'elements diferents de zero que compleix: <ul><li><i>P</i> és tancat respecte de la suma, la multiplicació i el càlcul d'¡inverses multiplicatives.</li> <li>Si x i y són elements diferents de <i>P</i>, llavors o bé <i>x-y</i> o <i>y-x</i> són a <i>P</i></li> <li>Si <i>S</i> és un subconjunt no buit de <i>P</i>, llavors <i>S+P=x+P</i> per algun <i>x</i> de <b>C</b>.</li></ul></li> <li><b>C</b> té un automorfisme involutiu no trivial <i>x→x* </i>, que fixa <i>P</i> i és tal que <i>xx* </i> és de <i>P</i> per qualsevol <i>x</i> de <b>C</b> diferent de zero.</li></ul> <p>Donat un conjunt amb aquestes propietats, es pot definir una topologia a base d'agafar els conjunts </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(x,p)=\{y|p-(y-x)(y-x)^{*}\in P\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>∈<!-- ∈ --></mo> <mi>P</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(x,p)=\{y|p-(y-x)(y-x)^{*}\in P\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/decb563a11457af079c740f5816e1b40091cb2fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.252ex; height:2.843ex;" alt="{\displaystyle B(x,p)=\{y|p-(y-x)(y-x)^{*}\in P\}}"></span></li></ul> <p>com a <a href="/wiki/Base_(topologia)" title="Base (topologia)">base</a>, on <i>x</i> varia sobre el cos i <i>p</i> varia sobre <i>P</i>. </p><p>Per veure que aquestes propietats caracteritzen <b>C</b> com un <a href="/w/index.php?title=Anell_topol%C3%B2gic&action=edit&redlink=1" class="new" title="Anell topològic (encara no existeix)">cos topològic</a>, s'observa que <i>P</i> ∪ {0} ∪ <i>-P</i> és un cos ordenat <a href="/w/index.php?title=Compleci%C3%B3_de_Dedekind&action=edit&redlink=1" class="new" title="Compleció de Dedekind (encara no existeix)">Dedekind-complet</a> i per tant es pot identificar amb els <a href="/wiki/Nombres_reals" class="mw-redirect" title="Nombres reals">nombres reals</a> <b>R</b> per mitjà d'un únic isomorfisme de cossos. es veu fàcilment que l'última propietat implica que el <a href="/wiki/Grup_de_Galois" title="Grup de Galois">grup de Galois</a> sobre els nombres reals és d'ordre dos, el que completa la caracterització. </p><p><a href="/wiki/Lev_Pontryagin" title="Lev Pontryagin">Pontryagin</a> va demostrar que els únics cossos topològics <a href="/wiki/Espai_connex" class="mw-redirect" title="Espai connex">connexos</a> <a href="/w/index.php?title=Localment_compacte&action=edit&redlink=1" class="new" title="Localment compacte (encara no existeix)">localment compactes</a> són <b>R</b> i <b>C</b>. Això dona una altra caracterització de <b>C</b> com a cos topològic, ja que <b>C</b> es pot distingir de <b>R</b> observant que el conjunt de nombres complexos diferents de zero és <a href="/wiki/Espai_connex" class="mw-redirect" title="Espai connex">connex</a>, mentre que el conjunt dels nombres reals diferents de zero no hi és. </p> <div class="mw-heading mw-heading2"><h2 id="Història"><span id="Hist.C3.B2ria"></span>Història</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=23" title="Modifica la secció: Història"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La primera referència coneguda d'arrels quadrades de nombres negatius prové del treball dels matemàtics grecs, com <a href="/wiki/Her%C3%B3_d%27Alexandria" title="Heró d'Alexandria">Heró d'Alexandria</a> al <a href="/wiki/Segle_I_aC" title="Segle I aC">segle I abans de Crist</a>, com a resultat d'una impossible secció d'una <a href="/wiki/Pir%C3%A0mide" title="Piràmide">piràmide</a>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Tot i això, no es va acceptar la seva existència fins molts anys després, ja que els antics grecs refusaven tot nombre que no tingués una relació amb la geometria. Per ells, tot nombre representava la longitud d'un segment o l'àrea d'una figura plana. Consideraven que la geometria era el cor de les matemàtiques, el que va retardar considerablement el desenvolupament dels sistemes numèrics. </p><p>Els nombres complexos obtingueren més importància al segle <span title="Nombre escrit en xifres romanes" style="font-variant:small-caps;">xvi</span>, quan matemàtics italians com <a href="/wiki/Tartaglia" class="mw-redirect" title="Tartaglia">Tartaglia</a> o <a href="/wiki/Gerolamo_Cardano" class="mw-redirect" title="Gerolamo Cardano">Cardano</a> van trobar fórmules que donaven les arrels exactes dels polinomis de segon i tercer grau. Encara que només estaven interessats en les arrels reals d'aquest tipus d'equacions, es trobaven amb la necessitat d'enfrontar-se amb arrels de nombres negatius. </p><p>Per exemple, la fórmula per resoldre l'<a href="/wiki/Equaci%C3%B3_de_tercer_grau" title="Equació de tercer grau">equació de tercer grau</a> de Tartaglia dona la solució següent a l'equació <i>x</i>³ − <i>x</i> = 0: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {3}}}\left({\sqrt {-1}}^{1/3}+{\frac {1}{{\sqrt {-1}}^{1/3}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {3}}}\left({\sqrt {-1}}^{1/3}+{\frac {1}{{\sqrt {-1}}^{1/3}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27076ae0425f7c63d2ccf6d63c9f5c4453d0240a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:27.923ex; height:7.676ex;" alt="{\displaystyle {\frac {1}{\sqrt {3}}}\left({\sqrt {-1}}^{1/3}+{\frac {1}{{\sqrt {-1}}^{1/3}}}\right).}"></span></dd></dl> <p>A primera vista això sembla no tenir sentit. Tanmateix els càlculs formals amb nombres complexos mostren que l'equació <i>z</i><sup>3</sup> = <i>i</i> té solucions <i>-i</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\scriptstyle {\frac {\sqrt {3}}{2}}}+{\scriptstyle {\frac {1}{2}}}i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\scriptstyle {\frac {\sqrt {3}}{2}}}+{\scriptstyle {\frac {1}{2}}}i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ae153e0139fdeca3dcbe31a1805bd8142b4f100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.761ex; height:3.676ex;" alt="{\displaystyle {\scriptstyle {\frac {\sqrt {3}}{2}}}+{\scriptstyle {\frac {1}{2}}}i}"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\scriptstyle {\frac {-{\sqrt {3}}}{2}}}+{\scriptstyle {\frac {1}{2}}}i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\scriptstyle {\frac {-{\sqrt {3}}}{2}}}+{\scriptstyle {\frac {1}{2}}}i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/211d7ba8cf9d676ffeb67076347d6e33c53349b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.799ex; height:3.676ex;" alt="{\displaystyle {\scriptstyle {\frac {-{\sqrt {3}}}{2}}}+{\scriptstyle {\frac {1}{2}}}i}"></span>. Substituint-los en lloc de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\scriptstyle {\sqrt {-1}}^{1/3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\scriptstyle {\sqrt {-1}}^{1/3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af5174bfd3f7b08cacf2a03fab2a9e9919dff4a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.636ex; height:2.843ex;" alt="{\displaystyle {\scriptstyle {\sqrt {-1}}^{1/3}}}"></span> en la fórmula de Tartaglia i simplificant, s'obté 0, 1 i −1 com les solucions de <i>x</i><sup>3</sup> – <i>x</i> = 0. <a href="/wiki/Rafael_Bombelli" title="Rafael Bombelli">Rafael Bombelli</a> va ser el primer a explorar explícitament aquestes aparentment paradoxals solucions d'equacions cúbiques i va desenvolupar les regles de l'aritmètica dels nombres complexos per resoldre aquests assumptes. </p><p>Això era doblement pertorbador atès que a l'època ni tan sols es considerava que els nombres negatius estiguessin ben fonamentats. </p><p>El terme <i>imaginari</i> per aquestes quantitats el va encunyar <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">Descartes</a> al <a href="/wiki/Segle_XVII" title="Segle XVII">segle <span title="Nombre escrit en xifres romanes" style="font-variant:small-caps;">xvii</span></a>. </p><p>Una altra font de confusió va ser que l'equació <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {-1}}^{2}={\sqrt {-1}}{\sqrt {-1}}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {-1}}^{2}={\sqrt {-1}}{\sqrt {-1}}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01130abdb35d388ef63d1484ac51a33dc02aec1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.941ex; height:3.509ex;" alt="{\displaystyle {\sqrt {-1}}^{2}={\sqrt {-1}}{\sqrt {-1}}=-1}"></span> semblava ser capriciosament incoherent amb la identitat algebraica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {a}}{\sqrt {b}}={\sqrt {ab}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> <mi>b</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {a}}{\sqrt {b}}={\sqrt {ab}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43a6fe99883dd2ee2bda43eab716e18d9bece3a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.361ex; height:3.343ex;" alt="{\displaystyle {\sqrt {a}}{\sqrt {b}}={\sqrt {ab}}}"></span>, que és vàlida per a nombres reals positius <i>a</i> i <i>b</i>, i que també es feia servir en càlculs amb nombres complexos amb un dels <i>a</i> i <i>b</i> positiu i l'altre negatiu. L'ús incorrecte d'aquesta identitat (i la identitat relacionada <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle 1/{\sqrt {a}}={\sqrt {1/a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle 1/{\sqrt {a}}={\sqrt {1/a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e224a6f0bb1bebca3a4f19cd5d179405a671af2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.318ex; height:2.676ex;" alt="{\displaystyle \scriptstyle 1/{\sqrt {a}}={\sqrt {1/a}}}"></span>) en el cas que els dos <i>a</i> i <i>b</i> són negatius va captivar fins i tot a <a href="/wiki/Euler" class="mw-redirect" title="Euler">Euler</a>. Aquesta dificultat finalment va conduir a la convenció d'utilitzar el símbol <i>i</i> en lloc de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea1ea9ac61e6e1e84ac39130f78143c18865719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.906ex; height:3.009ex;" alt="{\displaystyle {\sqrt {-1}}}"></span> per guardar-se'n d'aquesta equivocació. </p><p>Al segle <span title="Nombre escrit en xifres romanes" style="font-variant:small-caps;">xviii</span> els nombres complexos van guanyar un ús més ample, a mesura que s'adonaven que la manipulació formal d'expressions complexes es podria fer servir per simplificar càlculs que impliquen <a href="/wiki/Funcions_trigonom%C3%A8triques" class="mw-redirect" title="Funcions trigonomètriques">funcions trigonomètriques</a>. Per exemple, el <a href="/wiki/1730" title="1730">1730</a> <a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a> es va fixar que les complicades identitats, que relacionen funcions trigonomètriques d'un múltiple enter d'un angle amb potències de funcions trigonomètriques d'aquell angle, es podrien expressar simplement per la ben coneguda fórmula que avui porta el seu nom, la <a href="/wiki/F%C3%B3rmula_de_De_Moivre" title="Fórmula de De Moivre">fórmula de De Moivre</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cos \theta +i\sin \theta )^{n}=\cos n\theta +i\sin n\theta \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mi>θ<!-- θ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mi>θ<!-- θ --></mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cos \theta +i\sin \theta )^{n}=\cos n\theta +i\sin n\theta \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1d49657eb62d8d5499d8b9c967fa5a1be8e976b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.206ex; height:2.843ex;" alt="{\displaystyle (\cos \theta +i\sin \theta )^{n}=\cos n\theta +i\sin n\theta \,}"></span></dd></dl> <p>El 1748 <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> anava més enllà i obtenia la <a href="/wiki/F%C3%B3rmula_d%27Euler" title="Fórmula d'Euler">fórmula d'Euler</a> de l'<a href="/wiki/An%C3%A0lisi_complexa" title="Anàlisi complexa">anàlisi complexa</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \theta +i\sin \theta =e^{i\theta }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \theta +i\sin \theta =e^{i\theta }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae176f9e085faf5d04da4f7303460c0b028f331f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.092ex; height:2.843ex;" alt="{\displaystyle \cos \theta +i\sin \theta =e^{i\theta }\,}"></span></dd></dl> <p>a base de manipular formalment la <a href="/wiki/S%C3%A8rie_de_pot%C3%A8ncies" class="mw-redirect" title="Sèrie de potències">sèrie de potències</a> complexa i observant que aquesta fórmula es podria fer servir per reduir qualsevol <a href="/wiki/Llista_d%27identitats_trigonom%C3%A8triques" title="Llista d'identitats trigonomètriques">identitat trigonomètrica</a> a identitats exponencials molt més simples. </p><p>L'existència de nombres complexos no fou completament acceptada fins a la seva interpretació geomètrica que fou descrita per Wessel el <a href="/wiki/1799" title="1799">1799</a>, redescoberta uns anys més tard i popularitzada per <a href="/wiki/Carl_Friedrich_Gauss" class="mw-redirect" title="Carl Friedrich Gauss">Gauss</a>. </p><p>La memòria de Wessel apareixia en els <i>Proceedings</i> de l'<a href="/w/index.php?title=Acad%C3%A8mia_de_Copenhaguen&action=edit&redlink=1" class="new" title="Acadèmia de Copenhaguen (encara no existeix)">Acadèmia de Copenhaguen</a> del <a href="/wiki/1799" title="1799">1799</a>, i és extremadament clara i completa, fins i tot en comparació amb treballs moderns. També estudia l'esfera, i dona una teoria de <a href="/wiki/Quaternions" class="mw-redirect" title="Quaternions">quaternions</a> a partir de la qual desenvolupa una trigonometria esfèrica completa. El 1804 l'Abbé Buée independentment arribava a la mateixa idea que havia suggerit Wallis, que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm {\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>±<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm {\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b6895558c83e7bfb958447c4b5e0a001f772867" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.715ex; height:3.009ex;" alt="{\displaystyle \pm {\sqrt {-1}}}"></span> hauria de representar una recta de longitud unitat, i la seva negativa, perpendicular a l'eix real. L'article de <a href="/w/index.php?title=Bu%C3%A9e&action=edit&redlink=1" class="new" title="Buée (encara no existeix)">Buée</a> no es va publicar fins a <a href="/wiki/1806" title="1806">1806</a>, any en què <a href="/wiki/Jean-Robert_Argand" title="Jean-Robert Argand">Jean-Robert Argand</a> també publicava un pamflet sobre el mateix tema. És a l'assaig d'Argand al que generalment s'atribueix avui la fonamentació científica per la representació gràfica dels nombres complexos. No obstant això, el <a href="/wiki/1831" title="1831">1831</a> Gauss va trobar la teoria bastant desconeguda, i el <a href="/wiki/1832" title="1832">1832</a> va publicar la seva memòria principal sobre el tema, portant-lo així de forma prominent davant del món matemàtic. També s'hauria de fer de menció un excel·lent petit tractat de <a href="/w/index.php?title=Mourey&action=edit&redlink=1" class="new" title="Mourey (encara no existeix)">Mourey</a> (<a href="/wiki/1828" title="1828">1828</a>), en el qual s'estableixen científicament els fonaments per la teoria de nombres direccionals. L'acceptació general de la teoria és deguda, en no poca mesura, a causa dels treballs d'<a href="/wiki/Augustin_Louis_Cauchy" title="Augustin Louis Cauchy">Augustin Louis Cauchy</a> i <a href="/wiki/Niels_Henrik_Abel" title="Niels Henrik Abel">Niels Henrik Abel</a>, i especialment l'últim, que va ser el primer a fer servir de forma atrevida els nombres complexos amb un èxit ben conegut. </p><p>Els termes comuns utilitzats en la teoria es deuen principalment als fundadors. Argand anomenava <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \phi +i\sin \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \phi +i\sin \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b57b9de62060cda716895f1ed3152ca9e267f06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.542ex; height:2.509ex;" alt="{\displaystyle \cos \phi +i\sin \phi }"></span> el <i>factor de direcció</i>, i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r={\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r={\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06427751d7f71ba70ddfae47fb47e6386324ae6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.647ex; height:3.509ex;" alt="{\displaystyle r={\sqrt {a^{2}+b^{2}}}}"></span> el mòdul; Cauchy (1828) anomenava <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \phi +i\sin \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \phi +i\sin \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b57b9de62060cda716895f1ed3152ca9e267f06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.542ex; height:2.509ex;" alt="{\displaystyle \cos \phi +i\sin \phi }"></span> la <a href="/w/index.php?title=Forma_redu%C3%AFda&action=edit&redlink=1" class="new" title="Forma reduïda (encara no existeix)">forma reduïda</a> (l'expression réduite); Gauss feia servir <i>i</i> per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea1ea9ac61e6e1e84ac39130f78143c18865719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.906ex; height:3.009ex;" alt="{\displaystyle {\sqrt {-1}}}"></span>, va introduir el terme <i>nombre complex</i> per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span>, i anomenava <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14fc28103c5d2aa9276728469f82c9f415f4b257" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.176ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}}"></span> la <i>norma</i>. </p><p>L'expressió <i>coeficient de direcció</i>, sovint utilitzat per a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \phi +i\sin \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \phi +i\sin \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b57b9de62060cda716895f1ed3152ca9e267f06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.542ex; height:2.509ex;" alt="{\displaystyle \cos \phi +i\sin \phi }"></span>, és degut a Hankel (1867), i <i>valor absolut</i>, per a <i>mòdul</i>, és degut a Weierstrass. </p><p>Seguint a Cauchy i Gauss hi ha hagut un cert nombre de contribuents de primera fila, dels quals els següents s'han d'esmentar especialment: <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Kummer</a> (1844), <a href="/wiki/Leopold_Kronecker" title="Leopold Kronecker">Leopold Kronecker</a> (1845), <a href="/wiki/Scheffler" class="mw-disambig" title="Scheffler">Scheffler</a> (1845, 1851, 1880), <a href="/wiki/Giusto_Bellavitis" title="Giusto Bellavitis">Bellavitis</a> (1835, 1852), <a href="/wiki/George_Peacock" title="George Peacock">Peacock</a> (1845), i <a href="/wiki/Augustus_De_Morgan" title="Augustus De Morgan">De Morgan</a> (1849). <a href="/wiki/August_Ferdinand_M%C3%B6bius" title="August Ferdinand Möbius">Möbius</a> també s'ha d'esmentar per les seves nombroses memòries sobre les aplicacions geomètriques dels nombres complexos, i <a href="/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet" title="Johann Peter Gustav Lejeune Dirichlet">Dirichlet</a> per l'expansió de la teoria per incloure-hi els primers, les congruències, la reciprocitat, etc., com en el cas dels nombres reals. </p><p>Un <a href="/wiki/Anell_(matem%C3%A0tiques)" title="Anell (matemàtiques)">anell (matemàtiques)</a> o un <a href="/wiki/Cos_(matem%C3%A0tiques)" title="Cos (matemàtiques)">cos</a> complex és un conjunt de nombres complexos que és <a href="/w/index.php?title=Clausura_(matem%C3%A0tiques)&action=edit&redlink=1" class="new" title="Clausura (matemàtiques) (encara no existeix)">tancat</a> respecte a l'addició, la subtracció, i la multiplicació. <a href="/wiki/Carl_Friedrich_Gauss" class="mw-redirect" title="Carl Friedrich Gauss">Gauss</a> va estudiar els nombres complexos de la forma <i>a</i> + <i>bi</i>, on <i>a'</i> i <i>b</i> són <a href="/wiki/Nombre_enter" title="Nombre enter">enters</a>, o <a href="/wiki/Nombre_racional" title="Nombre racional">racionals</a> (i <i>i</i> és una de les dues arrels de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e01c67127b28bb80e2102c934d0d01daa5c20a61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.648ex; height:2.843ex;" alt="{\displaystyle x^{2}+1=0}"></span>). El seu alumne, <a href="/wiki/Ferdinand_Eisenstein" title="Ferdinand Eisenstein">Ferdinand Eisenstein</a>, va estudiar el tipus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72f150f1a6252ecea8ec3a012426a7858870957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.514ex; height:2.343ex;" alt="{\displaystyle a+b\omega }"></span>, on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> és una arrel complexa de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{3}-1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{3}-1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c20206a9bf6ccbe5e90a69a37b0f1f33ff34e8b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.648ex; height:2.843ex;" alt="{\displaystyle x^{3}-1=0}"></span>. Altres classes d'aquest tipus (anomenades <a href="/w/index.php?title=Cos_ciclot%C3%B2mic&action=edit&redlink=1" class="new" title="Cos ciclotòmic (encara no existeix)">cossos ciclotòmics</a>) de nombres complexos s'obtenen a partir de les <a href="/wiki/Arrels_de_la_unitat" class="mw-redirect" title="Arrels de la unitat">arrels de la unitat</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{k}-1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{k}-1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37fbda08853fb710773a29c10ab69105633509bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.682ex; height:2.843ex;" alt="{\displaystyle x^{k}-1=0}"></span> per a valors més alts de <i>k</i>. Aquesta generalització és en gran part deguda a <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Kummer</a>, que també va inventar els <a href="/w/index.php?title=Nombre_ideal&action=edit&redlink=1" class="new" title="Nombre ideal (encara no existeix)">nombres ideals</a>, que van ser expressats com entitats geomètriques per <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> el <a href="/wiki/1893" title="1893">1893</a>. La teoria general de cossos va ser creada per <a href="/wiki/%C3%89variste_Galois" title="Évariste Galois">Évariste Galois</a>, que estudiava els cossos generats per les arrels de qualsevol equació polinòmica d'una variable. </p><p>Els últims autors (des de 1884) sobre la teoria general inclouen <a href="/wiki/Karl_Weierstrass" title="Karl Weierstrass">Weierstrass</a>, <a href="/wiki/Hermann_Schwarz" title="Hermann Schwarz">Schwarz</a>, <a href="/wiki/Richard_Dedekind" class="mw-redirect" title="Richard Dedekind">Richard Dedekind</a>, <a href="/wiki/Otto_H%C3%B6lder" title="Otto Hölder">Otto Hölder</a>, <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a>, <a href="/wiki/Eduard_Study" title="Eduard Study">Eduard Study</a>, i <a href="/w/index.php?title=Alexander_MacFarlane_(mathematician)&action=edit&redlink=1" class="new" title="Alexander MacFarlane (mathematician) (encara no existeix)">Alexander MacFarlane</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Aplicacions">Aplicacions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=24" title="Modifica la secció: Aplicacions"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Les paraules "real" i "imaginari" eren significatives quan els nombres complexos es feien servir principalment com a ajut per manipular nombres "reals", amb només la part "real" emprada directament per descriure el món. Aplicacions posteriors, i especialment el descobriment de la mecànica quàntica, mostra que la natura no té cap preferència pels nombres "reals" i les seves descripcions més reals sovint exigeixen nombres complexos, en els que els seves parts "imaginaries" són exactament tan físiques com les seves parts "reals". </p> <div class="mw-heading mw-heading3"><h3 id="Teoria_del_control">Teoria del control</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=25" title="Modifica la secció: Teoria del control"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En <a href="/wiki/Teoria_de_control" title="Teoria de control">teoria de control</a>, els sistemes es transformen sovint des del <a href="/wiki/Domini_temporal" title="Domini temporal">domini temporal</a> al <a href="/w/index.php?title=Domini_freq%C3%BC%C3%A8ncial&action=edit&redlink=1" class="new" title="Domini freqüèncial (encara no existeix)">domini freqüèncial</a> fent servir la <a href="/wiki/Transformada_de_Laplace" title="Transformada de Laplace">transformada de Laplace</a>. Llavors s'analitzen els <a href="/wiki/Pol_(an%C3%A0lisi_complexa)" title="Pol (anàlisi complexa)">pols</a> i els <a href="/w/index.php?title=Zero_(n%C3%A0lisi_complexa)&action=edit&redlink=1" class="new" title="Zero (nàlisi complexa) (encara no existeix)">zeros</a> del sistema al <a href="/wiki/Pla_complex" title="Pla complex">pla complex</a>. Les tècniques del <a href="/w/index.php?title=Lloc_de_les_arrels&action=edit&redlink=1" class="new" title="Lloc de les arrels (encara no existeix)">lloc de les arrels</a>, el <a href="/w/index.php?title=Diagrama_de_Nyquist&action=edit&redlink=1" class="new" title="Diagrama de Nyquist (encara no existeix)">diagrama de Nyquist</a>, i el <a href="/w/index.php?title=Diagrama_de_Nichols&action=edit&redlink=1" class="new" title="Diagrama de Nichols (encara no existeix)">diagrama de Nichols</a> fan servir totes el pla complex. </p><p>En el mètode del lloc de les arrels, és especialment important si els pols i els zeros estan als semiplans de l'esquerra o de la dreta, és a dir, tenen la part real més gan o més petita que zero. Si un sistema té pols que són </p> <ul><li>en el semiplà de la dreta, serà <a href="/w/index.php?title=Inestable&action=edit&redlink=1" class="new" title="Inestable (encara no existeix)">inestable</a>,</li> <li>tots en el semiplà de l'esquerra, serà <a href="/w/index.php?title=Estabilitat_d%27entrada_i_sortida_fitades&action=edit&redlink=1" class="new" title="Estabilitat d'entrada i sortida fitades (encara no existeix)">estable</a>,</li> <li>a l'eix imaginari, tindrà <a href="/wiki/Estabilitat_marginal" title="Estabilitat marginal">estabilitat marginal</a>.</li></ul> <p>Si un sistema té zeros en el semiplà de la dreta, és un sistema de <a href="/wiki/Fase_m%C3%ADnima" title="Fase mínima">fase no mínima</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Anàlisi_del_senyal"><span id="An.C3.A0lisi_del_senyal"></span>Anàlisi del senyal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=26" title="Modifica la secció: Anàlisi del senyal"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Els nombres complexos es fan servir en <a href="/w/index.php?title=An%C3%A0lisi_del_senyal&action=edit&redlink=1" class="new" title="Anàlisi del senyal (encara no existeix)">anàlisi del senyal</a> i en altres camps, per obtenir una descripció adequada de senyals que varien periòdicament. Per funcions reals donades que representen quantitats físiques, sovint en termes de sinus i cosinus, es fan servir les funcions complexes corresponents de les que es prenen les parts reals, de forma que representen les quantitats originals. Per a una <a href="/w/index.php?title=Ona_de_sinusoidal&action=edit&redlink=1" class="new" title="Ona de sinusoidal (encara no existeix)">ona de sinusoidal</a> d'una <a href="/wiki/Freq%C3%BC%C3%A8ncia" title="Freqüència">freqüència</a> donada, el valor absolut |<i>z</i>| del corresponent <i>z</i> és l'<a href="/wiki/Amplitud" title="Amplitud">amplitud</a> i l'argument arg(<i>z</i>) la <a href="/wiki/Fase_(ona)" title="Fase (ona)">fase</a>. </p><p>Si es fa servir l'<a href="/wiki/An%C3%A0lisi_de_Fourier" title="Anàlisi de Fourier">anàlisi de Fourier</a> per escriure un senyal donat amb valors reals com a suma de funcions periòdiques, aquestes funcions periòdiques s'escriuen sovint com funcions amb valors complexos de la forma </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)=ze^{i\omega t}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>ω<!-- ω --></mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)=ze^{i\omega t}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92f77db730b5346b090174af9baf9c06d9ab8f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12ex; height:3.176ex;" alt="{\displaystyle f(t)=ze^{i\omega t}\,}"></span></dd></dl> <p>on ω representa la <a href="/wiki/Freq%C3%BC%C3%A8ncia_angular" class="mw-redirect" title="Freqüència angular">freqüència angular</a> i el nombre complex <i>z</i> codifica la fase i l'amplitud tal com s'ha explicat abans. </p><p>En <a href="/wiki/Enginyeria_el%C3%A8ctrica" class="mw-redirect" title="Enginyeria elèctrica">enginyeria elèctrica</a>, la <a href="/wiki/Transformada_de_Fourier" title="Transformada de Fourier">transformada de Fourier</a> es fa servir per analitzar <a href="/wiki/Voltatge" class="mw-redirect" title="Voltatge">voltatges</a> i <a href="/wiki/Corrent_el%C3%A8ctric" title="Corrent elèctric">corrents</a> variables. Llavors es pot unificar el tractament de <a href="/wiki/Resist%C3%A8ncia_el%C3%A8ctrica_(component)" title="Resistència elèctrica (component)">resistències</a>, <a href="/wiki/Condensador" title="Condensador">condensadors</a>, i <a href="/wiki/Induct%C3%A0ncia" title="Inductància">inductàncies</a> introduint resistències imaginàries, que depenen de la freqüència pels dos últims components i que combinant les tres en un nombre complex senzill s'anomena la <a href="/wiki/Imped%C3%A0ncia" title="Impedància">impedància</a>. (Els enginyers elèctrics i alguns físics fan servir la lletra <i>j</i> per representar la unitat imaginària, ja que <i>i</i> es reserva típicament per a corrents i pot crear confusió.) Aquest enfocament s'anomena càlcul emprant <a href="/wiki/Fasor" title="Fasor">Fasors</a>. Aquesta aplicació també s'estén al <a href="/wiki/Processament_digital_del_senyal" class="mw-redirect" title="Processament digital del senyal">processament digital del senyal</a> i al <a href="/w/index.php?title=Processament_digital_de_la_imatge&action=edit&redlink=1" class="new" title="Processament digital de la imatge (encara no existeix)">processament digital de la imatge</a>, per fer-ho s'utilitzen versions digitals d'anàlisi de Fourier (i anàlisi de <a href="/wiki/Dwt" class="mw-redirect" title="Dwt">wavelet</a>) per transmetre, comprimir, restaurar, i en resum, processar senyals d'àudio digitals, imatges, fitxers, i senyals de <a href="/wiki/V%C3%ADdeo" title="Vídeo">vídeo</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Integrals_impròpies"><span id="Integrals_impr.C3.B2pies"></span>Integrals impròpies</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=27" title="Modifica la secció: Integrals impròpies"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En matemàtiques aplicades, els nombres complexos sovint es fan servir per calcular certes <a href="/wiki/Integrals_impr%C3%B2pies" class="mw-redirect" title="Integrals impròpies">integrals impròpies</a> amb valors reals, per mitjà de funcions amb valors complexos. Hi ha uns quants mètodes per fer-ho; vegeu <a href="/w/index.php?title=M%C3%A8todes_d%27integraci%C3%B3_de_contorn&action=edit&redlink=1" class="new" title="Mètodes d'integració de contorn (encara no existeix)">mètodes d'integració de contorn</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Mecànica_quàntica"><span id="Mec.C3.A0nica_qu.C3.A0ntica"></span>Mecànica quàntica</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=28" title="Modifica la secció: Mecànica quàntica"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El cos dels nombres complexos és rellevant en la <a href="/wiki/Formulaci%C3%B3_matem%C3%A0tica_de_la_mec%C3%A0nica_qu%C3%A0ntica" class="mw-redirect" title="Formulació matemàtica de la mecànica quàntica">formulació matemàtica de la mecànica quàntica</a> on els <a href="/wiki/Espais_de_Hilbert" class="mw-redirect" title="Espais de Hilbert">espais de Hilbert</a> complexos proporcionen el context per a una formulació adequada i potser la més estàndard. Les fórmules fonamentals originals de la mecànica quàntica (l'<a href="/wiki/Equaci%C3%B3_de_Schr%C3%B6dinger" title="Equació de Schrödinger">equació de Schrödinger</a> i la <a href="/w/index.php?title=Mec%C3%A0nica_matricial&action=edit&redlink=1" class="new" title="Mecànica matricial (encara no existeix)">mecànica matricial</a> de <a href="/wiki/Heisenberg" class="mw-redirect" title="Heisenberg">Heisenberg</a>) fan servir els nombres complexos. </p> <div class="mw-heading mw-heading3"><h3 id="Relativitat">Relativitat</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=29" title="Modifica la secció: Relativitat"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En <a href="/wiki/Relativitat_especial" title="Relativitat especial">relativitat especial</a> i <a href="/wiki/Relativitat_general" title="Relativitat general">general</a>, algunes fórmules sobre la mètrica en l'<a href="/wiki/Espaitemps" title="Espaitemps">espaitemps</a> es tornen més simples si es considera que la variable temps és imaginària. (Això ja no és habitual en relativitat clàssica, però es fa servir <a href="/w/index.php?title=Rotaci%C3%B3_de_Wick&action=edit&redlink=1" class="new" title="Rotació de Wick (encara no existeix)">essencialment</a> en <a href="/wiki/Teoria_qu%C3%A0ntica_de_camps" title="Teoria quàntica de camps">teoria quàntica de camps</a>.) Els nombres complexos són essencials pels <a href="/wiki/Espinor" title="Espinor">espinors</a>, que són una generalització dels <a href="/wiki/Tensor" title="Tensor">tensors</a> utilitzats en relativitat. </p> <div class="mw-heading mw-heading3"><h3 id="Matemàtiques_aplicades"><span id="Matem.C3.A0tiques_aplicades"></span>Matemàtiques aplicades</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=30" title="Modifica la secció: Matemàtiques aplicades"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En <a href="/wiki/Equacions_diferencials" class="mw-redirect" title="Equacions diferencials">equacions diferencials</a>, és habitual trobar primer totes les arrels complexes <i>r</i> de l'<a href="/w/index.php?title=Equaci%C3%B3_caracter%C3%ADstica&action=edit&redlink=1" class="new" title="Equació característica (encara no existeix)">equació característica</a> d'una <a href="/wiki/Equaci%C3%B3_diferencial_lineal" title="Equació diferencial lineal">equació diferencial lineal</a> i llavors intentar resoldre el sistema en termes de funcions base de la forma <i>f</i>(<i>t</i>) = <i>e</i><sup><i>rt</i></sup>. </p> <div class="mw-heading mw-heading3"><h3 id="Dinàmica_de_fluids"><span id="Din.C3.A0mica_de_fluids"></span>Dinàmica de fluids</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=31" title="Modifica la secció: Dinàmica de fluids"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En <a href="/wiki/Din%C3%A0mica_de_fluids" title="Dinàmica de fluids">dinàmica de fluids</a>, les funcions complexes es fan servir per descriure el <a href="/w/index.php?title=Flux_potencial&action=edit&redlink=1" class="new" title="Flux potencial (encara no existeix)">flux potencial</a> en dues dimensions. </p> <div class="mw-heading mw-heading3"><h3 id="Fractals">Fractals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=32" title="Modifica la secció: Fractals"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Certs <a href="/wiki/Fractal" title="Fractal">fractals</a> es dibuixen al <a href="/wiki/Pla_complex" title="Pla complex">pla complex</a>, per exemple el <a href="/wiki/Conjunt_de_Mandelbrot" title="Conjunt de Mandelbrot">conjunt de Mandelbrot</a> i els <a href="/wiki/Conjunt_de_Julia" title="Conjunt de Julia">conjunts de Julia</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Curiositats">Curiositats</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=33" title="Modifica la secció: Curiositats"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Els_nombres_complexos_i_els_polígons_regulars"><span id="Els_nombres_complexos_i_els_pol.C3.ADgons_regulars"></span>Els nombres complexos i els <a href="/wiki/Pol%C3%ADgon" title="Polígon">polígons</a> regulars</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=34" title="Modifica la secció: Els nombres complexos i els polígons regulars"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Donada una potència d'un nombre complex d'exponent 1/n (arrel n, on n ∈ ℝ), les seves n solucions en l'espai complex donen lloc a n vectors que són, alhora, vectors posició dels vèrtexs d'un polígon regular de n vèrtexs i centre a l'origen de coordenades. </p> <div class="mw-heading mw-heading2"><h2 id="Vegeu_també"><span id="Vegeu_tamb.C3.A9"></span>Vegeu també</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=35" title="Modifica la secció: Vegeu també"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Residu_(an%C3%A0lisi_complexa)" title="Residu (anàlisi complexa)">Residu (anàlisi complexa)</a>.</li> <li><a href="/wiki/M%C3%B2dul_d%27un_nombre_complex" title="Mòdul d'un nombre complex">Mòdul d'un nombre complex</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Referències"><span id="Refer.C3.A8ncies"></span>Referències</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nombre_complex&action=edit&section=36" title="Modifica la secció: Referències"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r33663753">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}.mw-parser-output .side-box-center{clear:both;margin:auto}}</style><div class="side-box metadata side-box-right plainlinks"> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">A <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/P%C3%A0gina_principal?uselang=ca">Wikimedia Commons</a></span> hi ha contingut multimèdia relatiu a: <i><b><a href="https://commons.wikimedia.org/wiki/Category:Complex_numbers" class="extiw" title="commons:Category:Complex numbers">Nombre complex</a></b></i></div></div> </div> <div class="reflist {{#if: | references-column-count references-column-count-{{{col}}}" style="list-style-type: decimal;"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-:0-1"><span class="mw-cite-backlink"><a href="#cite_ref-:0_1-0">↑</a></span> <span class="reference-text"><span class="citation book" style="font-style:normal" id="CITEREFBruna2008"><span style="font-variant: small-caps;">Bruna</span>, Joaquim. <i>Anàlisis Complexa</i>.  Bellaterra: Universitat Autònoma de Barcelona. Servei de Publicacions, 2008. <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/9788449025594" title="Especial:Fonts bibliogràfiques/9788449025594">ISBN 9788449025594</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An%C3%A0lisis+Complexa&rft.aulast=Bruna&rft.aufirst=Joaquim&rft.date=2008&rft.pub=Universitat+Aut%C3%B2noma+de+Barcelona.+Servei+de+Publicacions&rft.place=Bellaterra&rft.isbn=9788449025594"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><span class="citation book" style="font-style:normal" id="CITEREFPerelló,_Carles1994"><a href="/wiki/Carles_Perell%C3%B3_i_Valls" title="Carles Perelló i Valls"><span style="font-variant: small-caps;">Perelló, Carles</span></a>. <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/803392777"><i>Càlcul infinitesimal : amb mètodes numèrics i aplicacions</i></a>.  Barcelona: Enciclopèdia Catalana, 1994. <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/84-7739-518-7" title="Especial:Fonts bibliogràfiques/84-7739-518-7">ISBN 84-7739-518-7</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=C%C3%A0lcul+infinitesimal+%3A+amb+m%C3%A8todes+num%C3%A8rics+i+aplicacions&rft.aulast=Perell%C3%B3%2C+Carles&rft.date=1994&rft.pub=Enciclop%C3%A8dia+Catalana&rft.place=Barcelona&rft.isbn=84-7739-518-7&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F803392777"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><span class="citation book" style="font-style:normal" id="CITEREFGómez_Urgellés1994"><span style="font-variant: small-caps;">Gómez Urgellés</span>, Joan. <i>Variable complexa</i>.  Barcelona: Edicions UPC, 1994. <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/1400647219" title="Especial:Fonts bibliogràfiques/1400647219">ISBN 1400647219</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Variable+complexa&rft.aulast=G%C3%B3mez+Urgell%C3%A9s&rft.aufirst=Joan&rft.date=1994&rft.pub=Edicions+UPC&rft.place=Barcelona&rft.isbn=1400647219"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal">«<a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/ArgandDiagram.html">Argand Diagram</a>» (en anglés). [Consulta: 4 juliol 2017].</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal">«<a rel="nofollow" class="external text" href="https://es.khanacademy.org/math/precalculus/imaginary-and-complex-numbers">Números imaginarios y números complejos</a>» (en castellà).  Khan Academy. [Consulta: 4 juliol 2017].</span><sup class="noprint Inline-Template"><span title="" style="white-space: nowrap;"><i>[<a href="/wiki/Viquip%C3%A8dia:Enlla%C3%A7os_externs#Manteniment_d'enllaços_externs" title="Viquipèdia:Enllaços externs">Enllaç no actiu</a>]</i></span></sup></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal">«<a rel="nofollow" class="external text" href="https://web.archive.org/web/20061006172834/http://people.bath.ac.uk/aab20/complexnumbers.html"><i>A brief history of complex numbers</i></a>». Arxivat de l'<a rel="nofollow" class="external text" href="http://people.bath.ac.uk/aab20/complexnumbers.html">original</a> el 2006-10-06. [Consulta: 6 octubre 2006].</span></span> </li> </ol></div></div> <p><br /> </p> <div role="navigation" class="navbox" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Control_d%27autoritats" title="Control d'autoritats">Registres d'autoritat</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Biblioth%C3%A8que_nationale_de_France" class="mw-redirect" title="Bibliothèque nationale de France">BNF</a> <span class="uid"> (<a rel="nofollow" class="external text" href="http://catalogue.bnf.fr/ark:/12148/cb11981946j">1</a>)</span></li> <li><a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a> <span class="uid"> (<a rel="nofollow" class="external text" href="http://d-nb.info/gnd/4128698-4">1</a>)</span></li> <li><a href="/wiki/LCCN" class="mw-redirect" title="LCCN">LCCN</a> <span class="uid"> (<a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/subjects/sh85093211">1</a>)</span></li> <li><a href="/wiki/National_Diet_Library" class="mw-redirect" title="National Diet Library">NDL</a> <span class="uid"> (<a rel="nofollow" class="external text" href="http://id.ndl.go.jp/auth/ndlna/00563643">1</a>)</span></li> <li><a href="/wiki/Biblioteca_Nacional_de_la_Rep%C3%BAblica_Txeca" title="Biblioteca Nacional de la República Txeca">NKC</a> <span class="uid"> (<a rel="nofollow" class="external text" href="http://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph121761&CON_LNG=ENG">1</a>)</span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Bases d'informació</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/GEC" class="mw-redirect" title="GEC">GEC</a> <span class="uid"> (<a rel="nofollow" class="external text" href="https://www.enciclopedia.cat/gran-enciclopedia-catalana/nombre-complex">1</a>)</span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐847495b4dd‐82vvz Cached time: 20241128124420 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.425 seconds Real time usage: 0.753 seconds Preprocessor visited node count: 3360/1000000 Post‐expand include size: 54878/2097152 bytes Template argument size: 6378/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 11742/5000000 bytes Lua time usage: 0.096/10.000 seconds Lua memory usage: 2072440/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 294.738 1 -total 30.41% 89.616 1 Plantilla:Referències 24.45% 72.070 1 Plantilla:Commonscat 21.58% 63.615 1 Plantilla:Sister 20.74% 61.128 1 Plantilla:Caixa_lateral 17.82% 52.537 1 Plantilla:Nombres 17.39% 51.245 6 Plantilla:Caixa_de_navegació 15.93% 46.950 1 Plantilla:Navbox_Seccions 12.64% 37.261 3 Plantilla:Ref-llibre 12.25% 36.095 3 Plantilla:Ref-web --> <!-- Saved in parser cache with key cawiki:pcache:31386:|#|:idhash:canonical and timestamp 20241128124420 and revision id 33692525. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtingut de «<a dir="ltr" href="https://ca.wikipedia.org/w/index.php?title=Nombre_complex&oldid=33692525">https://ca.wikipedia.org/w/index.php?title=Nombre_complex&oldid=33692525</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categorias" title="Especial:Categorias">Categoria</a>: <ul><li><a href="/wiki/Categoria:Nombres_complexos" title="Categoria:Nombres complexos">Nombres complexos</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categories ocultes: <ul><li><a href="/wiki/Categoria:Articles_amb_enlla%C3%A7os_externs_no_actius" title="Categoria:Articles amb enllaços externs no actius">Articles amb enllaços externs no actius</a></li><li><a href="/wiki/Categoria:P%C3%A0gines_amb_enlla%C3%A7_commonscat_des_de_Wikidata" title="Categoria:Pàgines amb enllaç commonscat des de Wikidata">Pàgines amb enllaç commonscat des de Wikidata</a></li><li><a href="/wiki/Categoria:1.000_articles_fonamentals" title="Categoria:1.000 articles fonamentals">1.000 articles fonamentals</a></li><li><a href="/wiki/Categoria:Ci%C3%A8ncia_(Els_1000_de_META)" title="Categoria:Ciència (Els 1000 de META)">Ciència (Els 1000 de META)</a></li><li><a href="/wiki/Categoria:Control_d%27autoritats" title="Categoria:Control d'autoritats">Control d'autoritats</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La pàgina va ser modificada per darrera vegada el 14 jul 2024 a les 21:29.</li> <li id="footer-info-copyright">El text està disponible sota la <a href="/wiki/Viquip%C3%A8dia:Text_de_la_llic%C3%A8ncia_de_Creative_Commons_Reconeixement-Compartir_Igual_4.0_No_adaptada" title="Viquipèdia:Text de la llicència de Creative Commons Reconeixement-Compartir Igual 4.0 No adaptada"> Llicència de Creative Commons Reconeixement i Compartir-Igual</a>; es poden aplicar termes addicionals. Vegeu les <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ca">Condicions d'ús</a>. Wikipedia® (Viquipèdia™) és una <a href="/wiki/Marca_comercial" title="Marca comercial">marca registrada</a> de <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc</a>.<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Política de privadesa</a></li> <li id="footer-places-about"><a href="/wiki/Viquip%C3%A8dia:Quant_a_la_Viquip%C3%A8dia">Quant al projecte Viquipèdia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Viquip%C3%A8dia:Av%C3%ADs_d%27exempci%C3%B3_de_responsabilitat">Descàrrec de responsabilitat</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codi de conducta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Desenvolupadors</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ca.wikipedia.org">Estadístiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Declaració de cookies</a></li> <li id="footer-places-mobileview"><a href="//ca.m.wikipedia.org/w/index.php?title=Nombre_complex&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versió per a mòbils</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-78f4c97c5d-d5mqd","wgBackendResponseTime":189,"wgPageParseReport":{"limitreport":{"cputime":"0.425","walltime":"0.753","ppvisitednodes":{"value":3360,"limit":1000000},"postexpandincludesize":{"value":54878,"limit":2097152},"templateargumentsize":{"value":6378,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":11742,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 294.738 1 -total"," 30.41% 89.616 1 Plantilla:Referències"," 24.45% 72.070 1 Plantilla:Commonscat"," 21.58% 63.615 1 Plantilla:Sister"," 20.74% 61.128 1 Plantilla:Caixa_lateral"," 17.82% 52.537 1 Plantilla:Nombres"," 17.39% 51.245 6 Plantilla:Caixa_de_navegació"," 15.93% 46.950 1 Plantilla:Navbox_Seccions"," 12.64% 37.261 3 Plantilla:Ref-llibre"," 12.25% 36.095 3 Plantilla:Ref-web"]},"scribunto":{"limitreport-timeusage":{"value":"0.096","limit":"10.000"},"limitreport-memusage":{"value":2072440,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-847495b4dd-82vvz","timestamp":"20241128124420","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Nombre complex","url":"https:\/\/ca.wikipedia.org\/wiki\/Nombre_complex","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11567","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11567","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-03-24T14:46:05Z","dateModified":"2024-07-14T20:29:56Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/af\/Complex_number_illustration.svg","headline":"nombre de la forma a + bi, amb part real i part imagin\u00e0ria"}</script> </body> </html>