CINXE.COM

Search results for: freight traffic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: freight traffic</title> <meta name="description" content="Search results for: freight traffic"> <meta name="keywords" content="freight traffic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="freight traffic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="freight traffic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1237</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: freight traffic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Impacting the Processes of Freight Logistics at Upper Austrian Companies by the Use of Mobility Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theresa%20Steiner">Theresa Steiner</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Pajones"> Markus Pajones</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Haider"> Christian Haider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic is being induced by companies due to their economic behavior. Basically, two different types of traffic occur at company sites: freight traffic and commuting traffic. Due to the fact that these traffic types are connected to each other in different kinds, an integrated approach to manage them is useful. Mobility management is a proved method for companies, to handle the traffic processes caused by their business activities. According to recent trend analysis in Austria, the freight traffic as well as the individual traffic, as part of the commuting traffic, will continue to increase. More traffic jams, as well as negative environmental impacts, are expected impacts for the future. Mobility management is a tool to control the traffic behavior with the scope to reduce emissions and other negative effects which are caused by traffic. Until now, mobility management is mainly used for optimizing commuting traffic without taking the freight logistics processes into consideration. However, the method of mobility management can be used to improve the freight traffic area of a company as well. The focus of this paper will be particularly laid on analyzing to what extent companies are already using mobility management to influence not only the commuting traffic they produce but also their processes of freight logistics. A further objective is to acquire knowledge about the motivating factors which persuade companies to introduce and apply mobility management. Additionally, advantages and disadvantages of this tool will be defined as well as limitations and factors of success, with a special focus on freight logistics, will be depicted. The first step of this paper is to conduct a literature review on the issue of mobility management with a special focus on freight logistics processes. To compare the theoretical findings with the practice, interviews, following a structured interview guidline, with mobility managers of different companies in Upper Austria will be undertaken. A qualitative analysis of these surveys will in a first step show the motivation behind using mobility management to improve traffic processes and how far this approach is already being used to especially influence the freight traffic of the companies. An evaluation to what extent the method of mobility management is already being approached at Upper Austrian companies to regulate freight logistics processes will be one outcome of this publication. Furthermore, the results of the theoretical and practical analysis will reveal not only the possibilities but also the limitations of using mobility management to influence the processes of freight logistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freight%20logistics%20processes" title="freight logistics processes">freight logistics processes</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20traffic" title=" freight traffic"> freight traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20management" title=" mobility management"> mobility management</a>, <a href="https://publications.waset.org/abstracts/search?q=passenger%20traffic" title=" passenger traffic"> passenger traffic</a> </p> <a href="https://publications.waset.org/abstracts/67953/impacting-the-processes-of-freight-logistics-at-upper-austrian-companies-by-the-use-of-mobility-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> Urban Freight Station: An Innovative Approach to Urban Freight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Jain">Amit Kumar Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Jain"> Surbhi Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congestion" title="congestion">congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20freight" title=" urban freight"> urban freight</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20system" title=" intelligent transport system"> intelligent transport system</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/51283/urban-freight-station-an-innovative-approach-to-urban-freight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1235</span> Diagnostic and Analysis of the Performance of Freight Transportation on Urban Logistics System in the City of Sfax</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarak%20Barhoumi">Tarak Barhoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Younes%20Boujelbene"> Younes Boujelbene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the problems of freight transport pose logistical constraints on the urban system in the city. The aim of this article is to gain a better understanding of the interactions between local traffic and interurban traffic on the one hand and between the location system and the transport system on the other hand. Thus, in a simulation and analysis approach cannot be restricted to the only transport system. The proposed approach is based on an assessment of the impact of freight transport, which is closely linked to the diagnostic method, based on two surveys carried out on the territory of the urban community of Sfax. These surveys are based on two main components 'establishment component' first and 'driver component' second. The results propose a reorganization of freight transport in the city of Sfax. First, an orientation of the heavy goods vehicles traffic towards the major axes of transport namely the ring roads (ring road N° 2, ring road N° 4 and ring road N° 11) and the penetrating news of the city. Then, the implementation of a retail goods delivery policy and the strengthening of logistics in the city. The creation of a logistics zone at the ring road N° 11 where various modes of freight transport meet, in order to decongest the roads of heavy goods traffic, reduce the cost of transport and thus improve the competitiveness of the economy regional. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20logistics%20systems" title="urban logistics systems">urban logistics systems</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20freight" title=" transport freight"> transport freight</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/92044/diagnostic-and-analysis-of-the-performance-of-freight-transportation-on-urban-logistics-system-in-the-city-of-sfax" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1234</span> Relation Between Traffic Mix and Traffic Accidents in a Mixed Industrial Urban Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Eliane%20Hern%C3%A1ndez-Garc%C3%ADa">Michelle Eliane Hernández-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Lozano"> Angélica Lozano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traffic accidents study usually contemplates the relation between factors such as the type of vehicle, its operation, and the road infrastructure. Traffic accidents can be explained by different factors, which have a greater or lower relevance. Two zones are studied, a mixed industrial zone and the extended zone of it. The first zone has mainly residential (57%), and industrial (23%) land uses. Trucks are mainly on the roads where industries are located. Four sensors give information about traffic and speed on the main roads. The extended zone (which includes the first zone) has mainly residential (47%) and mixed residential (43%) land use, and just 3% of industrial use. The traffic mix is composed mainly of non-trucks. 39 traffic and speed sensors are located on main roads. The traffic mix in a mixed land use zone, could be related to traffic accidents. To understand this relation, it is required to identify the elements of the traffic mix which are linked to traffic accidents. Models that attempt to explain what factors are related to traffic accidents have faced multiple methodological problems for obtaining robust databases. Poisson regression models are used to explain the accidents. The objective of the Poisson analysis is to estimate a vector to provide an estimate of the natural logarithm of the mean number of accidents per period; this estimate is achieved by standard maximum likelihood procedures. For the estimation of the relation between traffic accidents and the traffic mix, the database is integrated of eight variables, with 17,520 observations and six vectors. In the model, the dependent variable is the occurrence or non-occurrence of accidents, and the vectors that seek to explain it, correspond to the vehicle classes: C1, C2, C3, C4, C5, and C6, respectively, standing for car, microbus, and van, bus, unitary trucks (2 to 6 axles), articulated trucks (3 to 6 axles) and bi-articulated trucks (5 to 9 axles); in addition, there is a vector for the average speed of the traffic mix. A Poisson model is applied, using a logarithmic link function and a Poisson family. For the first zone, the Poisson model shows a positive relation among traffic accidents and C6, average speed, C3, C2, and C1 (in a decreasing order). The analysis of the coefficient shows a high relation with bi-articulated truck and bus (C6 and the C3), indicating an important participation of freight trucks. For the expanded zone, the Poisson model shows a positive relation among traffic accidents and speed average, biarticulated truck (C6), and microbus and vans (C2). The coefficients obtained in both Poisson models shows a higher relation among freight trucks and traffic accidents in the first industrial zone than in the expanded zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freight%20transport" title="freight transport">freight transport</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20zone" title=" industrial zone"> industrial zone</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20accidents" title=" traffic accidents"> traffic accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20mix" title=" traffic mix"> traffic mix</a>, <a href="https://publications.waset.org/abstracts/search?q=trucks" title=" trucks"> trucks</a> </p> <a href="https://publications.waset.org/abstracts/147496/relation-between-traffic-mix-and-traffic-accidents-in-a-mixed-industrial-urban-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1233</span> An Empirical Analysis of the Freight Forwarders’ Buying Behaviour: Implications for the Ocean Container Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Dzakah%20Fanam">Peter Dzakah Fanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20O.%20Nguyen"> Hong O. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Cahoon"> Stephen Cahoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to explore the buying behavior of the freight forwarders and to evaluate how their buying decision affects the ocean container carriers’ market share. This study analysed the buying decisions of the freight forwarders and validated the process of stages that the freight forwarders’ pass through before choosing an ocean container carrier. Factor analysis was applied to data collected from 105 freight forwarding companies to unveil the influential factors the freight forwarders’ consider important when selecting an ocean container carrier. This study did not only analysed the buying behaviour of the freight forwarders but also unveiled the influential factors affecting the competitiveness of the ocean container carriers in their market share maximisation. Furthermore, the study have made a methodological contribution that helps in better understanding of the critical factors influencing the selection of the ocean container carriers from the freight forwarders’ perspective. The implications of the freight forwarders’ buying behaviour is important to the ocean container carriers because it have severe effect on the market share of the ocean container carriers and the percentage of customers they control within the liner shipping sector. The findings of this study will help the ocean container carriers to formulate relevant marketing strategies in attracting the freight forwarders in purchasing the liner shipping service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ocean%20carrier" title="ocean carrier">ocean carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20forwarder" title=" freight forwarder"> freight forwarder</a>, <a href="https://publications.waset.org/abstracts/search?q=buying%20behaviour" title=" buying behaviour"> buying behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=influential%20factors" title=" influential factors"> influential factors</a> </p> <a href="https://publications.waset.org/abstracts/53684/an-empirical-analysis-of-the-freight-forwarders-buying-behaviour-implications-for-the-ocean-container-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1232</span> A Study on Accident Result Contribution of Individual Major Variables Using Multi-Body System of Accident Reconstruction Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donghun%20Jeong">Donghun Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Somyoung%20Shin"> Somyoung Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeoil%20Yun"> Yeoil Yun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large-scale traffic accident refers to an accident in which more than three people die or more than thirty people are dead or injured. In order to prevent a large-scale traffic accident from causing a big loss of lives or establish effective improvement measures, it is important to analyze accident situations in-depth and understand the effects of major accident variables on an accident. This study aims to analyze the contribution of individual accident variables to accident results, based on the accurate reconstruction of traffic accidents using PC-Crash’s Multi-Body, which is an accident reconstruction program, and simulation of each scenario. Multi-Body system of PC-Crash accident reconstruction program is used for multi-body accident reconstruction that shows motions in diverse directions that were not approached previously. MB System is to design and reproduce a form of body, which shows realistic motions, using several bodies. Targeting the 'freight truck cargo drop accident around the Changwon Tunnel' that happened in November 2017, this study conducted a simulation of the freight truck cargo drop accident and analyzed the contribution of individual accident majors. Then on the basis of the driving speed, cargo load, and stacking method, six scenarios were devised. The simulation analysis result displayed that the freight car was driven at a speed of 118km/h(speed limit: 70km/h) right before the accident, carried 196 oil containers with a weight of 7,880kg (maximum load: 4,600kg) and was not fully equipped with anchoring equipment that could prevent a drop of cargo. The vehicle speed, cargo load, and cargo anchoring equipment were major accident variables, and the accident contribution analysis results of individual variables are as follows. When the freight car only obeyed the speed limit, the scattering distance of oil containers decreased by 15%, and the number of dropped oil containers decreased by 39%. When the freight car only obeyed the cargo load, the scattering distance of oil containers decreased by 5%, and the number of dropped oil containers decreased by 34%. When the freight car obeyed both the speed limit and cargo load, the scattering distance of oil containers fell by 38%, and the number of dropped oil containers fell by 64%. The analysis result of each scenario revealed that the overspeed and excessive cargo load of the freight car contributed to the dispersion of accident damage; in the case of a truck, which did not allow a fall of cargo, there was a different type of accident when driven too fast and carrying excessive cargo load, and when the freight car obeyed the speed limit and cargo load, there was the lowest possibility of causing an accident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20reconstruction" title="accident reconstruction">accident reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20traffic%20accident" title=" large-scale traffic accident"> large-scale traffic accident</a>, <a href="https://publications.waset.org/abstracts/search?q=PC-Crash" title=" PC-Crash"> PC-Crash</a>, <a href="https://publications.waset.org/abstracts/search?q=MB%20system" title=" MB system"> MB system</a> </p> <a href="https://publications.waset.org/abstracts/139043/a-study-on-accident-result-contribution-of-individual-major-variables-using-multi-body-system-of-accident-reconstruction-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1231</span> Regional Analysis of Freight Movement by Vehicle Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Koliou">Katerina Koliou</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20Parr"> Scott Parr</a>, <a href="https://publications.waset.org/abstracts/search?q=Evangelos%20Kaisar"> Evangelos Kaisar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The surface transportation of freight is particularly vulnerable to storm and hurricane disasters, while at the same time, it is the primary transportation mode for delivering medical supplies, fuel, water, and other essential goods. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The research investigation used Florida's statewide continuous-count station traffic volumes, where then compared between years, to identify locations where traffic was moving differently during the evacuation. The data was then used to identify days on which traffic was significantly different between years. While the literature on auto-based evacuations is extensive, the consideration of freight travel is lacking. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The goal of this research was to investigate the movement of vehicles by classification, with an emphasis on freight during two major evacuation events: hurricanes Irma (2017) and Michael (2018). The methodology of the research was divided into three phases: data collection and management, spatial analysis, and temporal comparisons. Data collection and management obtained continuous-co station data from the state of Florida for both 2017 and 2018 by vehicle classification. The data was then processed into a manageable format. The second phase used geographic information systems (GIS) to display where and when traffic varied across the state. The third and final phase was a quantitative investigation into which vehicle classifications were statistically different and on which dates statewide. This phase used a two-sample, two-tailed t-test to compare sensor volume by classification on similar days between years. Overall, increases in freight movement between years prevented a more precise paired analysis. This research sought to identify where and when different classes of vehicles were traveling leading up to hurricane landfall and post-storm reentry. Of the more significant findings, the research results showed that commercial-use vehicles may have underutilized rest areas during the evacuation, or perhaps these rest areas were closed. This may suggest that truckers are driving longer distances and possibly longer hours before hurricanes. Another significant finding of this research was that changes in traffic patterns for commercial-use vehicles occurred earlier and lasted longer than changes for personal-use vehicles. This finding suggests that commercial vehicles are perhaps evacuating in a fashion different from personal use vehicles. This paper may serve as the foundation for future research into commercial travel during evacuations and explore additional factors that may influence freight movements during evacuations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evacuation" title="evacuation">evacuation</a>, <a href="https://publications.waset.org/abstracts/search?q=freight" title=" freight"> freight</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20time" title=" travel time"> travel time</a>, <a href="https://publications.waset.org/abstracts/search?q=evacuation" title=" evacuation"> evacuation</a> </p> <a href="https://publications.waset.org/abstracts/177546/regional-analysis-of-freight-movement-by-vehicle-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1230</span> An Approach for Ensuring Data Flow in Freight Delivery and Management Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aurelija%20Burinskien%C4%97">Aurelija Burinskienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Dal%C4%97%20Dzemydien%C4%97"> Dalė Dzemydienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Ar%C5%ABnas%20Miliauskas"> Arūnas Miliauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transportation%20networks" title="transportation networks">transportation networks</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20delivery" title=" freight delivery"> freight delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20flow" title=" data flow"> data flow</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=e-services" title=" e-services"> e-services</a> </p> <a href="https://publications.waset.org/abstracts/125682/an-approach-for-ensuring-data-flow-in-freight-delivery-and-management-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1229</span> Effect of Freight Transport Intensity on Firm Performance: Mediating Role of Operational Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bonaventure%20Naab%20Dery">Bonaventure Naab Dery</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Muntaka%20Samad"> Abdul Muntaka Samad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past two decades, huge population growth has been recorded in developing countries. Thisled to an increase in the demand for transport services for human and merchandises. The study sought to examine the effect of freight transport intensity on firm performance. Among others, this study sought to examine the link between freight transport intensity and firm performance; the link between operational capability and firm performance, and the mediating role of operational capability on the relationship between freight transport intensity and firm performance. The study used a descriptive research design and a quantitative research approach. Questionnaireswereusedfor the data collection through snowball sampling and purposive sampling. SPSS and Mplus are being used to analyze the data. It is anticipated that, when the data is analyzed, it would validate the hypotheses that have been proposed by the researchers. Base on the findings, relevant recommendations would be made for managerial implications and future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freight%20transport%20intensity" title="freight transport intensity">freight transport intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20economy%20transport%20intensity" title=" freight economy transport intensity"> freight economy transport intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20efficiency%20transport%20intensity" title=" freight efficiency transport intensity"> freight efficiency transport intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20capability" title=" operational capability"> operational capability</a>, <a href="https://publications.waset.org/abstracts/search?q=firm%20performance" title=" firm performance"> firm performance</a> </p> <a href="https://publications.waset.org/abstracts/155103/effect-of-freight-transport-intensity-on-firm-performance-mediating-role-of-operational-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1228</span> Lean and Six Sigma in the Freight Railway Supplier Base in South Africa: Factors Leading to Their Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilda%20Kundai%20Chikwanda">Hilda Kundai Chikwanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20Thabo%20Mokhadi"> Lawrence Thabo Mokhadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aimed to review the factors that lead the freight railway suppliers base in South Africa (SA) to apply the Lean and Six Sigma (L&SS) methodologies. A thorough review of the factors that lead organisations, in the different industries, to implement these methodologies was done. L&SS applications were found to be prominent in the automotive industry. In particular, the railway industry in SA and the region were reviewed in terms of challenges in capturing the freight logistics market and growing market share. Qualitative methods have been used to collect primary data and descriptive statistics was used to calculate, describe, and summarize collected research data. The results show that external factors have a greater influence on the implementation of L&SS. The study drew inferences between freight railway supplier base and the application of Lean and Six Sigma (L&SS) methodologies in the SA context. It identified challenges that leads the SA freight railway to lose market share to road freight users. It further observes and recommends that L&SS methodologies are the ideal strategy required to implement a turnaround in the trajectory of freight railways as a competitive freight transport solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production" title="production">production</a>, <a href="https://publications.waset.org/abstracts/search?q=methodology" title=" methodology"> methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=lean" title=" lean"> lean</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title=" six sigma"> six sigma</a> </p> <a href="https://publications.waset.org/abstracts/182206/lean-and-six-sigma-in-the-freight-railway-supplier-base-in-south-africa-factors-leading-to-their-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1227</span> On Flow Consolidation Modelling in Urban Congested Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serban%20Stere">Serban Stere</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Burciu"> Stefan Burciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenging and continuously growing competition in the urban freight transport market emphasizes the need for optimal planning of transportation processes in terms of identifying the solution of consolidating traffic flows in congested urban areas. The aim of the present paper is to present the mathematical framework and propose a methodology of combining urban traffic flows between the distribution centers located at the boundary of a congested urban area. The three scenarios regarding traffic flow between consolidation centers that are taken into consideration in the paper are based on the same characteristics of traffic flows. The scenarios differ in terms of the accessibility of the four consolidation centers given by the infrastructure, the connections between them, and the possibility of consolidating traffic flows for one or multiple destinations. Also, synthetical indicators will allow us to compare the scenarios considered and chose the indicated for our distribution system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title="distribution system">distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20and%20multiple%20destinations" title=" single and multiple destinations"> single and multiple destinations</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20consolidation%20centers" title=" urban consolidation centers"> urban consolidation centers</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20consolidation%20schemes" title=" traffic flow consolidation schemes"> traffic flow consolidation schemes</a> </p> <a href="https://publications.waset.org/abstracts/136236/on-flow-consolidation-modelling-in-urban-congested-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1226</span> The Effects of Logistical Centers Realization on Society and Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Dolinayova">Anna Dolinayova</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Camaj"> Juraj Camaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Loch"> Martin Loch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Presently it is necessary to ensure the sustainable development of passenger and freight transport. Increasing performance of road freight have been a negative impact to environment and society. It is therefore necessary to increase the competitiveness of intermodal transport, which is more environmentally friendly. The study describe the effectiveness of logistical centers realization for companies and society and research how the partial internalization of external costs reflected in the efficient use of these centers and increase the competitiveness of intermodal transport to road freight. In our research, we use the method of comparative analysis and market research to describe the advantages of logistic centers for their users as well as for society as a whole. Method normal costing is used for calculation infrastructure and total costs, method of conversion costing for determine the external costs. We modelling of total society costs for road freight transport and inter modal transport chain (we assumed that most of the traffic is carried by rail) with different loading schemes for condition in the Slovak Republic. Our research has shown that higher utilization of inter modal transport chain do good not only for society, but for companies providing freight services too. Increase in use of inter modal transport chain can bring many benefits to society that do not bring direct immediate financial return. They often bring the multiplier effects, such as greater use of environmentally friendly transport mode and reduce the total society costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delivery%20time" title="delivery time">delivery time</a>, <a href="https://publications.waset.org/abstracts/search?q=economy%20effectiveness" title=" economy effectiveness"> economy effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=logistical%20centers" title=" logistical centers"> logistical centers</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20efficiency" title=" ecological efficiency"> ecological efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=society" title=" society"> society</a> </p> <a href="https://publications.waset.org/abstracts/24117/the-effects-of-logistical-centers-realization-on-society-and-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1225</span> A Taxonomy Proposal on Criterion Structure for Evaluating Freight Village Concepts in Early-Stage Design Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R%C4%B1za%20G%C3%BCrhan%20Korkut">Rıza Gürhan Korkut</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20%C3%87elik"> Metin Çelik</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%BCleyman%20%C3%96zkaynak"> Süleyman Özkaynak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The early-stage design and development projects for the freight village initiatives require a comprehensive analysis of both qualitative and quantitative data. Considering the literature review on structural and operational management requirements, this study proposed an original taxonomy on criterion structure to assess freight village conceptualization. The potential challenges and uncertainties of the developed taxonomy are extended. Besides requirement analysis, this study is also expected to contribute to forthcoming research on benchmarking of freight villages in different regions. The methodology used in this research is a systematic review on several articles as per their modelling approaches, sustainability, entities and decisions made together with the uncertainties and features of their models taken into consideration. The major findings of the study that are the categories for assessing the projects attributes on their environmental, socio-economical, accessibility and location aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logistics%20centers" title="logistics centers">logistics centers</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20village" title=" freight village"> freight village</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20management" title=" operational management"> operational management</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/84930/a-taxonomy-proposal-on-criterion-structure-for-evaluating-freight-village-concepts-in-early-stage-design-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1224</span> Impact of Traffic Restrictions due to Covid19, on Emissions from Freight Transport in Mexico City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Nieto-Garz%C3%B3n">Oscar Nieto-Garzón</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Lozano"> Angélica Lozano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In urban areas, on-road freight transportation creates several social and environmental externalities. Then, it is crucial that freight transport considers not only economic aspects, like retailer distribution cost reduction and service improvement, but also environmental effects such as global CO2 and local emissions (e.g. Particulate Matter, NOX, CO) and noise. Inadequate infrastructure development, high rate of urbanization, the increase of motorization, and the lack of transportation planning are characteristics that urban areas from developing countries share. The Metropolitan Area of Mexico City (MAMC), the Metropolitan Area of São Paulo (MASP), and Bogota are three of the largest urban areas in Latin America where air pollution is often a problem associated with emissions from mobile sources. The effect of the lockdown due to COVID-19 was analyzedfor these urban areas, comparing the same period (January to August) of years 2016 – 2019 with 2020. A strong reduction in the concentration of primary criteria pollutants emitted by road traffic were observed at the beginning of 2020 and after the lockdown measures.Daily mean concentration of NOx decreased 40% in the MAMC, 34% in the MASP, and 62% in Bogota. Daily mean ozone levels increased after the lockdown measures in the three urban areas, 25% in MAMC, 30% in the MASP and 60% in Bogota. These changes in emission patterns from mobile sources drastically changed the ambient atmospheric concentrations of CO and NOX. The CO/NOX ratioat the morning hours is often used as an indicator of mobile sources emissions. In 2020, traffic from cars and light vehicles was significantly reduced due to the first lockdown, but buses and trucks had not restrictions. In theory, it implies a decrease in CO and NOX from cars or light vehicles, maintaining the levels of NOX by trucks(or lower levels due to the congestion reduction). At rush hours, traffic was reduced between 50% and 75%, so trucks could get higher speeds, which would reduce their emissions. By means an emission model, it was found that an increase in the average speed (75%) would reduce the emissions (CO, NOX, and PM) from diesel trucks by up to 30%. It was expected that the value of CO/NOXratio could change due to thelockdownrestrictions. However, although there was asignificant reduction of traffic, CO/NOX kept its trend, decreasing to 8-9 in 2020. Hence, traffic restrictions had no impact on the CO/NOX ratio, although they did reduce vehicle emissions of CO and NOX. Therefore, these emissions may not adequately represent the change in the vehicle emission patterns, or this ratio may not be a good indicator of emissions generated by vehicles. From the comparison of the theoretical data and those observed during the lockdown, results that the real NOX reduction was lower than the theoretical reduction. The reasons could be that there are other sources of NOX emissions, so there would be an over-representation of NOX emissions generated by diesel vehicles, or there is an underestimation of CO emissions. Further analysis needs to consider this ratioto evaluate the emission inventories and then to extend these results forthe determination of emission control policies to non-mobile sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20transport" title=" freight transport"> freight transport</a>, <a href="https://publications.waset.org/abstracts/search?q=latin%20American%20metropolis" title=" latin American metropolis"> latin American metropolis</a> </p> <a href="https://publications.waset.org/abstracts/147483/impact-of-traffic-restrictions-due-to-covid19-on-emissions-from-freight-transport-in-mexico-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1223</span> Evaluation of the Performance Measures of Two-Lane Roundabout and Turbo Roundabout with Varying Truck Percentages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evangelos%20Kaisar">Evangelos Kaisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anika%20Tabassum"> Anika Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=Taraneh%20Ardalan"> Taraneh Ardalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Majed%20Al-Ghandour"> Majed Al-Ghandour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The economy of any country is dependent on its ability to accommodate the movement and delivery of goods. The demand for goods movement and services increases truck traffic on highways and inside the cities. The livability of most cities is directly affected by the congestion and environmental impacts of trucks, which are the backbone of the urban freight system. Better operation of heavy vehicles on highways and arterials could lead to the network’s efficiency and reliability. In many cases, roundabouts can respond better than at-level intersections to enable traffic operations with increased safety for both cars and heavy vehicles. Recently emerged, the concept of turbo-roundabout is a viable alternative to the two-lane roundabout aiming to improve traffic efficiency. The primary objective of this study is to evaluate the operation and performance level of an at-grade intersection, a conventional two-lane roundabout, and a basic turbo roundabout for freight movements. To analyze and evaluate the performances of the signalized intersections and the roundabouts, micro simulation models were developed PTV VISSIM. The networks chosen for this analysis in this study are to experiment and evaluate changes in the performance of the movement of vehicles with different geometric and flow scenarios. There are several scenarios that were examined when attempting to assess the impacts of various geometric designs on vehicle movements. The overall traffic efficiency depends on the geometric layout of the intersections, which consists of traffic congestion rate, hourly volume, frequency of heavy vehicles, type of road, and the ratio of major-street versus side-street traffic. The traffic performance was determined by evaluating the delay time, number of stops, and queue length of each intersection for varying truck percentages. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. More specifically, it is clear that two-lane roundabouts are seen to have shorter queue lengths compared to signalized intersections and turbo-roundabouts. For instance, considering the scenario where the volume is highest, and the truck movement and left turn movement are maximum, the signalized intersection has 3 times, and the turbo-roundabout has 5 times longer queue length than a two-lane roundabout in major roads. Similarly, on minor roads, signalized intersections and turbo-roundabouts have 11 times longer queue lengths than two-lane roundabouts for the same scenario. As explained from all the developed scenarios, while the traffic demand lowers, the queue lengths of turbo-roundabouts shorten. This proves that turbo roundabouts perform well for low and medium traffic demand. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. Finally, this study provides recommendations on the conditions under which different intersections perform better than each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At-grade%20intersection" title="At-grade intersection">At-grade intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbo-roundabout" title=" turbo-roundabout"> turbo-roundabout</a>, <a href="https://publications.waset.org/abstracts/search?q=two-lane%20roundabout" title=" two-lane roundabout"> two-lane roundabout</a> </p> <a href="https://publications.waset.org/abstracts/177548/evaluation-of-the-performance-measures-of-two-lane-roundabout-and-turbo-roundabout-with-varying-truck-percentages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1222</span> Systematic Analysis of Logistics Location Search Methods under Aspects of Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markus%20Pajones">Markus Pajones</a>, <a href="https://publications.waset.org/abstracts/search?q=Theresa%20Steiner"> Theresa Steiner</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Neubauer"> Matthias Neubauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selecting a logistics location is vital for logistics providers, food retailing and other trading companies since the selection poses an essential factor for economic success. Therefore various location search methods like cost-benefit analysis and others are well known and under usage. The development of a logistics location can be related to considerable negative effects for the eco system such as sealing the surface, wrecking of biodiversity or CO2 and noise emissions generated by freight and commuting traffic. The increasing importance of sustainability demands for taking an informed decision when selecting a logistics location for the future. Sustainability considers economic, ecologic and social aspects which should be equally integrated in the process of location search. Objectives of this paper are to define various methods which support the selection of sustainable logistics locations and to generate knowledge about the suitability, assets and limitations of the methods within the selection process. This paper investigates the role of economical, ecological and social aspects when searching for new logistics locations. Thereby, related work targeted towards location search is analyzed with respect to encoded sustainability aspects. In addition, this research aims to gain knowledge on how to include aspects of sustainability and take an informed decision when searching for a logistics location. As a result, a decomposition of the various location search methods in there components leads to a comparative analysis in form of a matrix. The comparison within a matrix enables a transparent overview about the mentioned assets and limitations of the methods and their suitability for selecting sustainable logistics locations. A further result is to generate knowledge on how to combine the separate methods to a new method for a more efficient selection of logistics locations in the context of sustainability. Future work will especially investigate the above mentioned combination of various location search methods. The objective is to develop an innovative instrument, which supports the search for logistics locations with a focus on a balanced sustainability (economy, ecology, social). Because of an ideal selection of logistics locations, induced traffic should be reduced and a mode shift to rail and public transport should be facilitated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commuting%20traffic" title="commuting traffic">commuting traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20traffic" title=" freight traffic"> freight traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics%20location%20search" title=" logistics location search"> logistics location search</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20search%20method" title=" location search method"> location search method</a> </p> <a href="https://publications.waset.org/abstracts/67948/systematic-analysis-of-logistics-location-search-methods-under-aspects-of-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1221</span> Perception of Risk toward Traffic Violence among Road Users in Makassar, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulasmi%20Sudirman">Sulasmi Sudirman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmadanty%20Mujah%20Hartika"> Rachmadanty Mujah Hartika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic violence is currently a big issue in Indonesia. However, the road users perceived risk that is caused by traffic violence is low. The lack of safety driving awareness is one of the factors that road users committed to traffic violence. There are several lists of common traffic violence in Indonesia such as lack of physical fitness, not wearing helmet, unfasten seatbelt, breaking through the traffic light, not holding a driving license, and some more violence. This research sought to explore the perception of road users toward traffic violence. The participants were road users in Makassar, Indonesia who were using cars and motorbikes. The method of the research was a qualitative approach by using a personal interview to collect data. The research showed that there three main ideas of perceiving traffic violence which are motives, environment that supported traffic violence, and reinforcement. The road users committed traffic violence had particular motive, for example, rushing. The road users committed to traffic violence when other road users and significant other did the same. The road users committed traffic violence when the police were not there to give a ticket. It can be concluded that the perception of road users toward traffic violence determined by internal aspect, the social aspect, and regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perception" title="perception">perception</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20users" title=" road users"> road users</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=violence" title=" violence"> violence</a> </p> <a href="https://publications.waset.org/abstracts/105587/perception-of-risk-toward-traffic-violence-among-road-users-in-makassar-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1220</span> Implementation of Traffic Engineering Using MPLS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20H.%20Shukla">Vishal H. Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20B.%20Deshmukh"> Sanjay B. Deshmukh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic engineering, at its center, is the ability of moving traffic approximately so that traffic from a congested link is moved onto the unused capacity on another link. Traffic Engineering ensures the best possible use of the resources. Now to support traffic engineering in the today’s network, Multiprotocol Label Switching (MPLS) is being used which is very helpful for reliable packets delivery in an ongoing internet services. Here a topology is been implemented on GNS3 to focus on the analysis of the communication take place from one site to other through the ISP. The comparison is made between the IP network & MPLS network based on Bandwidth & Jitter which are one of the performance parameters using JPERF simulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNS3" title="GNS3">GNS3</a>, <a href="https://publications.waset.org/abstracts/search?q=JPERF" title=" JPERF"> JPERF</a>, <a href="https://publications.waset.org/abstracts/search?q=MPLS" title=" MPLS"> MPLS</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20engineering" title=" traffic engineering"> traffic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=VMware" title=" VMware"> VMware</a> </p> <a href="https://publications.waset.org/abstracts/23898/implementation-of-traffic-engineering-using-mpls-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1219</span> Approach to Freight Trip Attraction Areas Classification, in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adri%C3%A1n%20Esteban%20Ortiz-Valera">Adrián Esteban Ortiz-Valera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Lozano"> Angélica Lozano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing countries, informal trade is relevant, but it has been little studied in urban freight transport (UFT) context, although it is a challenge due to the non- contemplated demand it produces and the operational limitations it imposes. Hence, UFT operational improvements (initiatives) and freight attraction models must consider informal trade for developing countries. Afour phasesapproach for characterizing the commercial areas in developing countries (considering both formal and informal establishments) is proposed and applied to ten areas in Mexico City. This characterization is required to calculate real freight trip attraction and then select and/or adapt suitable initiatives. Phase 1 aims the delimitation of the study area. The following information is obtained for each establishment of a potential area: location or geographic coordinates, industrial sector, industrial subsector, and number of employees. Phase 2 characterizes the study area and proposes a set of indicators. This allows a broad view of the operations and constraints of UFT in the study area. Phase 3 classifies the study area according to seven indicators. Each indicator represents a level of conflict in the area due to the presence of formal (registered) and informal establishments on the sidewalks and streets, affecting urban freight transport (and other activities). Phase 4 determines preliminary initiatives which could be implemented in the study area to improve the operation of UFT. The indicators and initiatives relation allows a preliminary initiatives selection. This relation requires to know the following: a) the problems in the area (congested streets, lack of parking space for freight vehicles, etc.); b) the factors which limit initiatives due to informal establishments (reduced streets for freight vehicles; mobility and parking inability during a period, among others), c) the problems in the area due to its physical characteristics; and d) the factors which limit initiatives due to regulations of the area. Several differences in the study areas were observed. As the indicators increases, the areas tend to be less ordered, and the limitations for the initiatives become higher, causing a smaller number of susceptible initiatives. In ordered areas (similar to the commercial areas of developed countries), the current techniquesfor estimating freight trip attraction (FTA) can bedirectly applied, however, in the areas where the level of order is lower due to the presence of informal trade, this is not recommended because the real FTA would not be estimated. Therefore, a technique, which consider the characteristics of the areas in developing countries to obtain data and to estimate FTA, is required. This estimation can be the base for proposing feasible initiatives to such zones. The proposed approach provides a wide view of the needs of the commercial areas of developing countries. The knowledge of these needs would allow UFT´s operation to be improved and its negative impacts to be minimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freight%20initiatives" title="freight initiatives">freight initiatives</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20trip%20attraction" title=" freight trip attraction"> freight trip attraction</a>, <a href="https://publications.waset.org/abstracts/search?q=informal%20trade" title=" informal trade"> informal trade</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20freight%20transport" title=" urban freight transport"> urban freight transport</a> </p> <a href="https://publications.waset.org/abstracts/147473/approach-to-freight-trip-attraction-areas-classification-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1218</span> Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dale%20Dzemydiene">Dale Dzemydiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelija%20Burinskiene"> Aurelija Burinskiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunas%20Miliauskas"> Arunas Miliauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Ciziuniene"> Kristina Ciziuniene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms&#39; structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-objective" title="multi-objective">multi-objective</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20flow" title=" data flow"> data flow</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20delivery" title=" freight delivery"> freight delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=methodology" title=" methodology"> methodology</a> </p> <a href="https://publications.waset.org/abstracts/126041/methodology-for-the-multi-objective-analysis-of-data-sets-in-freight-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1217</span> Proposed Alternative System for Existing Traffic Signal System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alluri%20Swaroopa">Alluri Swaroopa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20N.%20Prasad"> L. V. N. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridges" title="bridges">bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=junctions" title=" junctions"> junctions</a>, <a href="https://publications.waset.org/abstracts/search?q=ramps" title=" ramps"> ramps</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20control" title=" urban traffic control"> urban traffic control</a> </p> <a href="https://publications.waset.org/abstracts/27580/proposed-alternative-system-for-existing-traffic-signal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1216</span> Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega &#039;Sabrang&#039;: A Case Study in Klaten, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chairul%20Fajar">Chairul Fajar</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nur%20Hidayat"> Muhammad Nur Hidayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Muksalmina"> Muksalmina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=over%20dimension%20over%20loading" title="over dimension over loading">over dimension over loading</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino" title=" Arduino"> Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=normality%20test" title=" normality test"> normality test</a>, <a href="https://publications.waset.org/abstracts/search?q=paired%20t-test" title=" paired t-test"> paired t-test</a> </p> <a href="https://publications.waset.org/abstracts/188384/prototype-of-over-dimension-over-loading-odol-freight-transportation-monitoring-system-based-on-arduino-mega-sabrang-a-case-study-in-klaten-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1215</span> Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathish%20Kumar%20Jayaraj">Sathish Kumar Jayaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20factor%20%28TFF%29" title="traffic flow factor (TFF)">traffic flow factor (TFF)</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20dynamics" title=" urban traffic dynamics"> urban traffic dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics%20principles" title=" fluid dynamics principles"> fluid dynamics principles</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20shearing%20resistance%20%28VSR%29" title=" vehicle shearing resistance (VSR)"> vehicle shearing resistance (VSR)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion%20management" title=" traffic congestion management"> traffic congestion management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20mobility" title=" sustainable urban mobility"> sustainable urban mobility</a> </p> <a href="https://publications.waset.org/abstracts/182540/urban-traffic-understanding-the-traffic-flow-factor-through-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1214</span> The Effect of User Comments on Traffic Application Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Gokasar">I. Gokasar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bakioglu"> G. Bakioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20app" title="traffic app">traffic app</a>, <a href="https://publications.waset.org/abstracts/search?q=real%E2%80%93time%20information" title=" real–time information"> real–time information</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion" title=" traffic congestion"> traffic congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dummy%20variables" title=" dummy variables"> dummy variables</a> </p> <a href="https://publications.waset.org/abstracts/52331/the-effect-of-user-comments-on-traffic-application-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1213</span> Robust and Real-Time Traffic Counting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossam%20M.%20Moftah">Hossam M. Moftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboul%20Ella%20Hassanien"> Aboul Ella Hassanien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20counting" title="traffic counting">traffic counting</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/43835/robust-and-real-time-traffic-counting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1212</span> The Kidney-Spine Traffic System: Future Cities, Ensuring World Class Civic Amenities in Urban India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Srivastava">Abhishek Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeevesh%20Nandan"> Jeevesh Nandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was taken to analyse the alternative source of traffic system for effective and more convenient traffic flow by reducing points of conflicts as well as angle of conflict and keeping in view to minimize the problem of unnecessarily long waiting time, delays, congestion, traffic jam and geometric delays due to intersection between circular and straight lanes. It is a twin kidney-spine type structure system with special allowance for Highway users for quicker passes. Thus reduction in number and intensity of accidents, significance reduction in traffic jam, conservation of valuable time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20system" title="traffic system">traffic system</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20reduction%20of%20vehicles" title=" collision reduction of vehicles"> collision reduction of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20flow%20of%20vehicles" title=" smooth flow of vehicles"> smooth flow of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20jam" title=" traffic jam"> traffic jam</a> </p> <a href="https://publications.waset.org/abstracts/15808/the-kidney-spine-traffic-system-future-cities-ensuring-world-class-civic-amenities-in-urban-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1211</span> Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Javier%20Herrera%20Ochoa">Oscar Javier Herrera Ochoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Dario%20Romero%20Fonseca"> Ivan Dario Romero Fonseca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogot&aacute;. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogot&aacute;. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transshipment%20model" title="transshipment model">transshipment model</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20programming" title=" mixed integer programming"> mixed integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=saving%20algorithm" title=" saving algorithm"> saving algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20freight%20transportation" title=" dry freight transportation"> dry freight transportation</a> </p> <a href="https://publications.waset.org/abstracts/92747/model-of-transhipment-and-routing-applied-to-the-cargo-sector-in-small-and-medium-enterprises-of-bogota-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1210</span> Closed Loop Traffic Control System Using PLC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinmay%20Shah">Chinmay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project is all about development of a close loop traffic light control system using PLC (Programmable Logic Controller). This project is divided into two parts which are hardware and software. The hardware part for this project is a model of four way junction of a traffic light. Three indicator lamps (Red, Yellow and Green) are installed at each lane for represents as traffic light signal. This traffic control model is a replica of actuated traffic control. Actuated traffic control system is a close loop traffic control system which controls the timing of the indicator lamps depending on the fluidity of traffic for a particular lane. To make it autonomous, in each lane three IR sensors are placed which helps to sense the percentage of traffic present on any particular lane. The IR Sensors and Indicator lamps are connected to LG PLC XGB series. The PLC controls every signal which is coming from the inputs (IR Sensors) to software and display to the outputs (Indicator lamps). Default timing for the indicator lamps is 30 seconds for each lane. But depending on the percentage of traffic present, if the traffic is nearly 30-35%, green lamp will be on for 10 seconds, for 65-70% traffic it will be 20 seconds, for full 100% traffic it will be on for full 30 seconds. The software part that operates with LG PLC is “XG 5000” Programmer. Using this software, the ladder logic diagram is programmed to control the traffic light base on the flow chart. At the end of this project, the traffic light system is actuated successfully by PLC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=close%20loop" title="close loop">close loop</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20sensor" title=" IR sensor"> IR sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20control%20system" title=" light control system "> light control system </a> </p> <a href="https://publications.waset.org/abstracts/13631/closed-loop-traffic-control-system-using-plc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1209</span> Distributed Actor System for Traffic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang">Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoxian%20Dai"> Zhuoxian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang"> Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zeng"> Zhenyu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actor%20system" title="actor system">actor system</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/128664/distributed-actor-system-for-traffic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1208</span> Artificial Neural Network and Statistical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Berhanu%20Bekele">Tomas Berhanu Bekele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20system%20%28ITS%29" title="intelligent transport system (ITS)">intelligent transport system (ITS)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20prediction" title=" traffic flow prediction"> traffic flow prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title=" artificial neural network (ANN)"> artificial neural network (ANN)</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a> </p> <a href="https://publications.waset.org/abstracts/183194/artificial-neural-network-and-statistical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freight%20traffic&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10