CINXE.COM
Search results for: diptera
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: diptera</title> <meta name="description" content="Search results for: diptera"> <meta name="keywords" content="diptera"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="diptera" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="diptera"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 49</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: diptera</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Description of a New Fruit Fly Species within Genus Bactrocera Macquart (Diptera: Tephritidae: Dacinae) Detected in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Riaz">Muhammad Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sarwar"> Muhammad Sarwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of broad trapping program for the collection of fruit flies fauna of Pakistan, adults or larvae samples of fruit flies were collected from different localities. After sampling, to characterize fruit fly fauna involved, the collected samples were brought to the laboratory for their species identification. In this study, based on extensive literature records, the presence of one fruit fly species Bactrocera abbasi (Diptera: Tephritidae: Dacinae) belonging to genus Bactrocera Macquar was recognized for the first time. This new species is described and illustrated on the basis of morphological characters, supported by data on its ecology and geographic distribution. Information is also given on host plant and location of type specimen, distinguish remarks and diagnosis are as well included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diptera" title="diptera">diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=tephritidae" title=" tephritidae"> tephritidae</a>, <a href="https://publications.waset.org/abstracts/search?q=bactrocera" title=" bactrocera"> bactrocera</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20species" title=" new species"> new species</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/11883/description-of-a-new-fruit-fly-species-within-genus-bactrocera-macquart-diptera-tephritidae-dacinae-detected-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> A Preliminary Study of the Effects of Abiotic Environmental Variables on Early Diptera Carrion Colonizers in Algiers, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Taleb">M. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tail"> G. Tail</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Kara"> F. Z. Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Djedouani%20T.%20Moussa"> B. Djedouani T. Moussa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Necrophagous insects usually colonize cadavers within a short time after death. However, they are influenced by weather conditions, and their distribution and activity vary according to different time scales, which can affect the post-mortem interval (PMI) estimation. As no data have been published in Algeria on necrophagous insects visiting corpses, two field surveys were conducted in July 2012 and March 2013 at the National Institute for Criminalistics and Criminology (INCC) using rabbit carcasses (Oryctolagus cuniculus L.). The trials were designed to identify the necrophagous Diptera fauna of Algiers, Algeria and examine their variations according to environmental variables. Four hundred and eighteen Diptera adults belonging to five families were captured during this study. The species which were identified on human corpses in different regions of Algeria were also observed on the rabbit carcasses. Although seasonal variations of the species were observed, their abundance did not significantly vary between the two seasons. In addition to seasonal effects, the ambient temperature, the wind speed, and precipitation affect the number of trapped flies. These conclusions highlight the necessity of considering the environmental factors at a scene to estimate the post-mortem interval accurately. It is hoped that these findings provide basic information regarding the necrophagous Diptera fauna of Algeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic%20entomology" title="forensic entomology">forensic entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=necrophagous%20diptera" title=" necrophagous diptera"> necrophagous diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=post-mortem%20interval" title=" post-mortem interval"> post-mortem interval</a>, <a href="https://publications.waset.org/abstracts/search?q=abiotic%20factors" title=" abiotic factors"> abiotic factors</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/34057/a-preliminary-study-of-the-effects-of-abiotic-environmental-variables-on-early-diptera-carrion-colonizers-in-algiers-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Elongation Factor 1 Alpha Molecular Phylogenetic Analysis for Anastrepha fraterculus Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Srivastava">Pratibha Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayyamperumal%20Jeyaprakash"> Ayyamperumal Jeyaprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Steck"> Gary Steck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exotic, invasive tephritid fruit flies (Diptera: Tephritidae) are a major concern to fruit and vegetable production in the USA. Timely detection and identification of these agricultural pests facilitate the possibility of eradication from newly invaded areas. They spread primarily as larvae in infested fruits carried in commerce or personal baggage. Identification of larval stages to species level is difficult but necessary to determine pest loads and their pathways into the USA. The main focus of this study is the New World genus, Anastrepha. Many of its constituent taxa are pests of major economic importance. This study is significant for national quarantine use, as morphological diagnostics to separate larvae of the various members remain poorly developed. Elongation factor 1 alpha sequences were amplified from Anastrepha fraterculus specimens collected from South America (Ecuador and Peru). Phylogenetic analysis was performed to characterize the Anastrepha fraterculus complex at a molecular level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anastrepha" title="anastrepha">anastrepha</a>, <a href="https://publications.waset.org/abstracts/search?q=diptera" title=" diptera"> diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=elongation%20factor" title=" elongation factor"> elongation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20fly" title=" fruit fly"> fruit fly</a> </p> <a href="https://publications.waset.org/abstracts/53407/elongation-factor-1-alpha-molecular-phylogenetic-analysis-for-anastrepha-fraterculus-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> First Survey of Seasonal Abundance and Daily Activity of Stomoxys calcitrans: In Zaouiet Sousse, the Sahel Area of Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Kalifa">Amira Kalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fa%C3%AFek%20Errouissi"> Faïek Errouissi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seasonal changes and the daily activity of Stomoxys calcitrans (Diptera: Muscidae) were examined, using Vavoua traps, in a dairy cattle farm in Zaouiet Sousse, the Sahel area of Tunisia during May 2014 to October 2014. Over this period, a total of 4366 hematophagous diptera were captured and Stomoxys calcitrans was the most commonly trapped species (96.52%). Analysis of the seasonal activity, showed that S.calcitrans is bivoltine, with two peaks: a significant peak is recorded in May-June, during the dry season, and a second peak at the end of October, which is quite weak. This seasonal pattern would depend on climatic factors, particularly the temperature of the manure and that of the air. The activity pattern of Stomoxys calcitrans was diurnal with seasonal variations. The daily rhythm shows a peak between 11:00 am to 15:00 pm in May and between 11:00 am to 17:00 pm in June. These vector flies are important pests of livestock in Tunisia, where they are known as a mechanical vector of several pathogens and have a considerable economic and health impact on livestock. A better knowledge of their ecology is a prerequisite for more efficient control measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cattle%20farm" title="cattle farm">cattle farm</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20rhythm" title=" daily rhythm"> daily rhythm</a>, <a href="https://publications.waset.org/abstracts/search?q=Stomoxys%20calcitrans" title=" Stomoxys calcitrans"> Stomoxys calcitrans</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20activity" title=" seasonal activity"> seasonal activity</a> </p> <a href="https://publications.waset.org/abstracts/67558/first-survey-of-seasonal-abundance-and-daily-activity-of-stomoxys-calcitrans-in-zaouiet-sousse-the-sahel-area-of-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Attraction and Identification of Early Scavenger Insects on Shaded and Sunny Liver Baits in a Saharian Region of South-Central Algeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Taleb">A. M. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Tail"> A. G. Tail</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Kara"> A. F. Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20Djedouani"> B. B. Djedouani</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Moussa"> C. T. Moussa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forensic entomology is the use of insects to aid legal investigations. The main purpose of forensic entomology is to establish the postmortem interval (PMI). In order to estimate the PMI, a forensic entomologist compares the case data with certain reference information relevant to the particular location and time of year. This reference information, including the local distribution of species, are not available in Algeria. Therefore, experiments need to be conducted to provide references for entomological evidence. The objective of this study was to identify the necrophagous flies species which arrive first to carrion using liver baits in Ghardaia, South Algeria. The study was carried out during the spring season in the palmeral of Beni Isguen, Ghardaia which is well known by its hot arid climate. The experiment site (32°28’0’’ N, 3°42’0’’ E), is situated at an altitude of about 526 metres above mean sea level. On April the 4th, 2014, a number of three replicates of liver baited traps were placed in the shade and other three baits were exposed to the sun. Flying insects and larvae were captured and identified. After few minutes, flies invaded the traps which were exposed to the sun. In contrast, no flies were observed in the other traps. A total number of fourty five (45) adult specimens belonging to three taxa were identified: Calliphora vicina (Robineau-Desvoidy, 1830) (Diptera, Calliphoridae) (51.11 %), Lucilia sericata (Meigen, 1826) (Diptera, Calliphoridae) (33.33 %) and Sarcophaga africa (Wiedemann, 1824) (Diptera: Sarcophagidae) (15.55 %). Six hundred and three (603) maggots belonging to two taxa were identified: Calliphora vicina (76.28 %) and Lucilia sericata (23.71 %). The data obtained from this study provides baseline information regarding the carrion fauna of this area. It will also form a basis for similar studies in different geographical and climatological regions of Algeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic%20entomology" title="forensic entomology">forensic entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20baits" title=" liver baits"> liver baits</a>, <a href="https://publications.waset.org/abstracts/search?q=necrophagous%20fly" title=" necrophagous fly"> necrophagous fly</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghardaia" title=" Ghardaia"> Ghardaia</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Algeria" title=" South Algeria"> South Algeria</a> </p> <a href="https://publications.waset.org/abstracts/34578/attraction-and-identification-of-early-scavenger-insects-on-shaded-and-sunny-liver-baits-in-a-saharian-region-of-south-central-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Abundance and Diversity of Fruit Flies (Tephritidae: Diptera) In Citrus Orchards in Sindhuli, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debraj%20Adhikari">Debraj Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Resham%20Bahadur%20Thapa"> Resham Bahadur Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samudra%20Lal%20Joshi"> Samudra Lal Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Jinping%20Du"> Jason Jinping Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Sundar%20Tiwari"> Sundar Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to keep a record of fruit fly species (Tephritidae: Diptera) in the sweet orange orchards of Sindhuli district, Nepal. Male fruit fly species were trapped and collected fortnightly using para-pheromone lures (methyl eugenol and cue lure) in Steiner traps at 25 orchards starting in March 2019 and continuing until February 2021. During the monitoring period, there was a significant variation in the occurrence of the fruit fly species. Fruit flies were captured in greater numbers during warm and rainy months (June, July, August, September) than during dry and winter months (December, January, February). Higher numbers of fruit flies were trapped in methyl eugenol than cue lure traps. Bactrocera dorsalis, B. zonata were major fruit fly species trapped in the methyl eugenol trap. Whereas, Zeugodacus tau, Z. cucurbitae, Z. scutellaris, and Dacus longicornis were major fruit fly species trapped in the cue lure trap. The findings of this study could be used to develop a long-term pest management strategy for the agro-ecological system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bactrocera" title="bactrocera">bactrocera</a>, <a href="https://publications.waset.org/abstracts/search?q=cue%20lure" title=" cue lure"> cue lure</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20eugenol" title=" methyl eugenol"> methyl eugenol</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=zeugodacus" title=" zeugodacus"> zeugodacus</a> </p> <a href="https://publications.waset.org/abstracts/149821/abundance-and-diversity-of-fruit-flies-tephritidae-diptera-in-citrus-orchards-in-sindhuli-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Relative Toxicity of Apparent Pesticides against Safflower Capsule Fly, Acanthiophilus helianthi Rossi (Diptera: Tephritidae) under Laboratory Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Saeidi">Karim Saeidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safflower capsule fly, Acanthiophilus helianthi Rossi (Diptera: Tephritidae), is a key pest of safflower in Iran. The toxicity of Methidathion, Malathion, Deltamethrin, and Lufenuron to adult males and females of Acanthiophilus helianthi was studied under laboratory conditions. Malathion was the most toxic among the tested compounds followed by Methidathion, Lufenuron, and Deltamethrin to Acanthiophilus helianthi at 24 h post treatment, the respective LC50 values were 0.40 ppm, 0.68 ppm, 10.99 ppm, and 11.75 ppm for males and 0.46 ppm, 0.97 ppm, 13.45 ppm, and 16.32 ppm for females. At 48 h post treatment, Malathion was the most toxic followed by Methidathion, Deltamethrin, and Lufenuron to Acanthiophilus helianthi, LC50 values were 0.08 ppm, 0.54 ppm, 1.80 ppm, and 1.96 ppm for males and 0.34 ppm, 0.64 ppm, 1.88 ppm, and 2.37 ppm for females. At 72 h post treatment, Malathion was the most toxic followed by Methidathion, Lufenuron, and Deltamethrin to Acanthiophilus helianthi LC50 values were 0.04 ppm, 0.33 ppm, 0.44 ppm, and 0.71 ppm for males and 0.09 ppm, 0.36 ppm, 0.75 ppm, and 0.82 ppm for females. It is observed that LC50 values for treated adult females increased more than in the treated adult males at 24 h, 48 h, and 72 h post treatment. It means that the adult males were more susceptible to the tested insecticides than the adult females. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safflower" title="safflower">safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=Methidathion" title=" Methidathion"> Methidathion</a>, <a href="https://publications.waset.org/abstracts/search?q=Deltamethrin" title=" Deltamethrin"> Deltamethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lufenuron" title=" Lufenuron"> Lufenuron</a>, <a href="https://publications.waset.org/abstracts/search?q=Malathion" title=" Malathion"> Malathion</a>, <a href="https://publications.waset.org/abstracts/search?q=Tephritidae" title=" Tephritidae"> Tephritidae</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower%20capsule%20fly" title=" safflower capsule fly"> safflower capsule fly</a>, <a href="https://publications.waset.org/abstracts/search?q=Acanthiophilus%20helianthi" title=" Acanthiophilus helianthi "> Acanthiophilus helianthi </a> </p> <a href="https://publications.waset.org/abstracts/17503/relative-toxicity-of-apparent-pesticides-against-safflower-capsule-fly-acanthiophilus-helianthi-rossi-diptera-tephritidae-under-laboratory-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Insecticide Resistance Detection on Filarial Vector, Simulium (Simulium) nobile (Diptera: Simuliidae) in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chee%20Dhang%20Chen">Chee Dhang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Takaoka"> Hiroyuki Takaoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Koon%20Weng%20Lau"> Koon Weng Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Poh%20Ruey%20Tan"> Poh Ruey Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ai%20Chdon%20Chin"> Ai Chdon Chin</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Lun%20Low"> Van Lun Low</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz%20Azidah"> Abdul Aziz Azidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Sofian-Azirun"> Mohd Sofian-Azirun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Susceptibility status of Simulium (Simulium) nobile (Diptera: Simuliidae) adults obtained from Pahang, Malaysia was evaluated against 11 adulticides representing four major insecticide classes: organochlorines (DDT, dieldrin), organophosphates (malathion, fenitrothion), carbamates (bendiocarb, propoxur) and pyrethroids (etofenprox, deltamethrin, lambdacyhalothrin, permethrin, cyfluthrin). The adult bioassay was conducted according to WHO standard protocol to determine the insecticide susceptibility. Mortality at 24 h post treatment was used as indicator for susceptibility status. The results revealed that S. nobile obtained was susceptible to propoxur, cyfluthrin and bendiocarb with 100% mortality. S. nobile was resistant or exhibited some tolerant against lambdacyhalothrin and deltamethrin with mortality ranged ≥ 90% but < 98%. S. nobile populations in Pahang exhibited different level of resistant against 11 adulticides with mortality ranged from 60.00 ± 10.00 to 100.00 ± 0.00. In conclusion, S. nobile populations in Pahang were susceptible to propoxur, cyfluthrin and bendiocarb. The susceptibility status of S. nobile in descending order was propoxur, cyfluthrin > bendicarb > deltamethrin > lambdacyhalothrin > permethrin > etofenprox > DDT > malathion > fenitrothion > dieldrin. Regular surveys should be conducted to monitor the susceptibility status of this insect vector in order to prevent further development of resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20fly" title="black fly">black fly</a>, <a href="https://publications.waset.org/abstracts/search?q=adult%20bioassay" title=" adult bioassay"> adult bioassay</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide%20resistance" title=" insecticide resistance"> insecticide resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/47792/insecticide-resistance-detection-on-filarial-vector-simulium-simulium-nobile-diptera-simuliidae-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Evaluation of Stable Isotope in Life History and Mating Behaviour of Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephidae) in Laboratory Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20AL-Khshemawee">Hasan AL-Khshemawee</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjree%20Agarwal"> Manjree Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Du"> Xin Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonglin%20Ren"> Yonglin Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility use of stable isotopes to study Medfly mating and life history were investigated in these experiments. 13C6 glucose was incorporated in the diet of the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephidae). Treatments included labelling and unlabelled of either the media or adult sugar water. The measured started from egg hatching till the adults have died. After mating, the adults were analysed for 13C6 glucose ratio using Liquid chromatography-mass spectrometry LC-MS in two periods of time immediately and after three days of mating. Results showed that stable isotopes were used successfully for labelling Medfly in laboratory conditions, and there were significant differences between labelled and unlabelled treatment in eggs hatching, larval development, pupae emergence, survival of adults and mating behaviour. Labelling during larval development and combined labelling of larvae and adults resulted in detectable values. The label glucose in larvae stage did not effect on mating behaviour, however, the label glucose in adults’ stage was affected by mating behaviour. We recommended that it is possible to label adults of Mediterranean fruit fly C. capitata and detected the label after mating. This method offers good tools to study mating behaviour in Medfly and other types of insects and could be providing useful tools in genetic studies, sterile insect technique (SIT) or agricultural pest management. Also, we recommended using this technique in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stable%20isotope" title="stable isotope">stable isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=sterile%20insect%20technique%20%28SIT%29" title=" sterile insect technique (SIT)"> sterile insect technique (SIT)</a>, <a href="https://publications.waset.org/abstracts/search?q=medfly" title=" medfly"> medfly</a>, <a href="https://publications.waset.org/abstracts/search?q=mating%20behaviour" title=" mating behaviour"> mating behaviour</a> </p> <a href="https://publications.waset.org/abstracts/71742/evaluation-of-stable-isotope-in-life-history-and-mating-behaviour-of-mediterranean-fruit-fly-ceratitis-capitata-diptera-tephidae-in-laboratory-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Effect of Diazepam on Internal Organs of Chrysomya megacephala Using Micro-Computed Tomograph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangkhao%20M.">Sangkhao M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Butcher%20B.%20A."> Butcher B. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diazepam (known as valium) is a medication for calming effect. Many reports on committed suicide cases shown that diazepam is frequently used for this purpose. This research aims to study effect of diazepam on the development of forensically important blowflies, Chrysomya megacephala (Diptera: Calliphoridae) using micro-computed tomography (micro CT). In this study, four rabbits were treated with three different lethal doses of diazepam and one control (LD₀, LD₅₀, LD₁₀₀ and LC). The rabbit’s livers were removed for rearing the blowflies. Pupae were sampled for two series (ages; S1: 24h and S2: 120h) of development. After preparing the specimens, all samples were performed Micro CT using Skyscan 1172. The results shown the effect of diazepam on internal organs and tissues such as brain, cavity of the body, gas bubble, meconium and especially fat body. In the control group, in series 1 (LCS1), fat body was equally dispersed in the head, thorax, and abdomen, development of internal organs were not completed, however, brain, thoracic muscle, wings, legs and rectum were able to observe at 24h after developing into the pupal stage. Development of each organ in the control group in the series two was completed. In the treatment groups, LD₀, LD₅₀, LD₁₀₀ (Series 1 and Series 2), tissues are different, such as gas bubble in LD₀S1, was observed due to rapidity morphological changes during the metamorphosis of blowfly’s pupa in this treatment. Meconium was observed in LD₅₀S2 group because excretion of metabolic waste was not completed. All of the samples in the treatment groups had differentiation of fat bodies because metabolic activities were not completed and these changes affected on functions of every internal system. Discovering of differentiated fat bodies are important results because fat bodies of insect functions as liver in human, therefore it is shown that toxin eliminates from blowfly’s body and homeostatic maintenance of the hemolymph proteins, lipid and carbohydrates in each treatment group are abnormal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic%20toxicology" title="forensic toxicology">forensic toxicology</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20entomology" title=" forensic entomology"> forensic entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=diptera" title=" diptera"> diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=diazepam" title=" diazepam"> diazepam</a> </p> <a href="https://publications.waset.org/abstracts/95334/effect-of-diazepam-on-internal-organs-of-chrysomya-megacephala-using-micro-computed-tomograph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Efficacy of Gamma Radiation on the Productivity of Bactrocera oleae Gmelin (Diptera: Tephritidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ahmadi">Mehrdad Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Babaie"> Mohamad Babaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Osouli"> Shiva Osouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Salehi"> Bahareh Salehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Kalantaraian"> Nadia Kalantaraian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive fruit fly, <em>Bactrocera oleae </em>Gmelin (Diptera: Tephritidae), is one of the most serious pests in olive orchards in growing province in Iran. The female lay eggs in green olive fruit and larvae hatch inside the fruit, where they feed upon the fruit matters. One of the main ecologically friendly and species-specific systems of pest control is the sterile insect technique (SIT) which is based on the release of large numbers of sterilized insects. The objective of our work was to develop a SIT against <em>B. oleae</em> by using of gamma radiation for the laboratory and field trial in Iran. Oviposition of female mated by irradiated males is one of the main parameters to determine achievement of SIT. To conclude the sterile dose, pupae were placed under 0 to 160 Gy of gamma radiation. The main factor in SIT is the productivity of females which are mated by irradiated males. The emerged adults from irradiated pupae were mated with untreated adults of the same age by confining them inside the transparent cages. The fecundity of the irradiated males mated with non-irradiated females was decreased with the increasing radiation dose level. It was observed that the number of eggs and also the percentage of the egg hatching was significantly (P < 0.05) affected in either IM x NF crosses compared with NM x NF crosses in F<sub>1</sub> generation at all doses. Also, the statistical analysis showed a significant difference (P < 0.05) in the mean number of eggs laid between irradiated and non-irradiated females crossed with irradiated males, which suggests that the males were susceptible to gamma radiation. The egg hatching percentage declined markedly with the increase of the radiation dose of the treated males in mating trials which demonstrated that egg hatch rate was dose dependent. Our results specified that gamma radiation affects the longevity of irradiated <em>B. oleae</em> larvae (established from irradiated pupae) and significantly increased their larval duration. Results show the gamma radiation, and SIT can be used successfully against olive fruit flies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertility" title="fertility">fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20fruit%20fly" title=" olive fruit fly"> olive fruit fly</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=sterile%20insect%20technique" title=" sterile insect technique"> sterile insect technique</a> </p> <a href="https://publications.waset.org/abstracts/75753/efficacy-of-gamma-radiation-on-the-productivity-of-bactrocera-oleae-gmelin-diptera-tephritidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> An Ecofriendly Approach for the Management of Aedes aegypti L (Diptera: Culicidae) by Ocimum sanctum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Shazad">Mohd Shazad</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Kumar%20Gupta"> Kamal Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aedes aegypti (Diptera: Culicidae), commonly known as tiger mosquito is the vector of dengue fever, yellow fever, chikungunya and zika virus. In the absence of any effective vaccine against these diseases, control the mosquito population is the only promising mean to prevent the diseases. Currently used chemical insecticides cause environmental contamination, high mammalian toxicity and hazards to non-target organisms, insecticide resistance and vector resurgence. Present research work aimed to explore the potentials of phytochemicals present in the Ocimum sanctum in management of mosquito population. The leaves of Ocimum were extracted with ethanol by ‘cold extraction method’. 0-24h old fourth instar larvae of Aedes aegypti were treated with the extract of concentrations 50ppm, 100ppm, 200ppm and 400ppm for 24h. Survival, growth and development of the treated larvae were evaluated. The adults emerged from the treated larvae were used for the reproductive fitness studies. Our results indicate 77.2% mortality in the larvae exposed to 400 ppm. At lower doses, although there was no significant reduction in the survival after 24h however, it decreased during subsequent days of observations. In control experiments, no mortality was observed. It was also observed that the larvae survived after treatment showed severe growth and developmental abnormalities. There was significant increase in larval duration. In control, fourth instar moulted into pupa after 3 days while larvae treated with 400 ppm extract were moulted after 4.6 days. Larva-pupa intermediates and the pupa-adult intermediates were observed in many cases. The adults emerged from the treated larvae showed impaired mating and oviposition behaviour. The females exhibited longer preoviposition period, reduced oviposition rate and decreased egg output. GCMS analysis of the ethanol extract revealed presence of JH mimics and intermediates of JH biosynthetic pathway. Potentials of Ocimum sanctum in integrated vector management programme of Aedes aegypti were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aedes%20aegypti" title="Aedes aegypti">Aedes aegypti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ocimum%20sanctum" title=" Ocimum sanctum"> Ocimum sanctum</a>, <a href="https://publications.waset.org/abstracts/search?q=oviposition" title=" oviposition"> oviposition</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a> </p> <a href="https://publications.waset.org/abstracts/68977/an-ecofriendly-approach-for-the-management-of-aedes-aegypti-l-diptera-culicidae-by-ocimum-sanctum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Studies on Population and Management of Melon Fruit Fly Bactrocera cucurbitae (Coquillett) in Vegetables Agro-Ecosystem in District Hyderabada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abro%20Zain-Ul-Aabdin">Abro Zain-Ul-Aabdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Naheed%20Baloch"> Naheed Baloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Khuhro%20Niaz%20Hussain"> Khuhro Niaz Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Akbar"> Waseem Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Abid%20Saeed"> Noor Abid Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Melon Fruit Fly Bactrocera cucurbitae (Coq.) belongs to family: Tephritidae order: Diptera and is distributed throughout the vegetable growing areas of Pakistan. The B. cucurbitae is injurious pest of more than 125 species of the vegetables throughout the world. In the present studies we investigated the population of this important pest in cucurbit crops and influence of abiotic parameters such as: temperature, relative humidity and rainfall. The study was carried out at two different locations of District, Hyderabad. The locations were Jeay Shah and Dehli farm where three cucurbit vegetable crops, such as bottle gourd (Lagenaria siceraria), bitter gourd (Momordica charantia) and ridge gourd (Luffa acutangula) were grown. The traps were baited with Cue-lure and deployed at three meter height in the all locations from 01.01.2015 and up to 30.06.2015. Results revealed that overall significantly higher (P < 0.05) population was recorded on L.acutangula, M.charantia and L.siceraria (130.64, 127.21, and 122.91), respectively. However, significantly higher (P < 0.05) population was observed on L. acutangula (339.4±22.59) during the 4th week of May 2015 followed by M. charantia (334.6±22.76) L. siceraria (333.2±20.13). Whereas; lowest population was recorded on L. siceraria (5.8±1.39) followed by L. acutangula and M. charantia (6.8±0.80g, 8.0±1.30) respectively during the 4th week of January. The population of B. cucurbitae was significantly correlated with the temperature while negatively correlated with relative humidity. Meanwhile in the parasitism preference experiment pupal parasitoid Dirhinus giffardii showed significantly higher (P<0.05) parasitization when the pupae of B.cucurbitae were reared on Cucumber (Cucumis sativus) (24.8±0.48) and also female were yielded from pupae reared on C.sativus under no choice experiment. Similarly higher parasitization and female were recovered when pupae were supplied C. sativus under free choice experiment. Results of the present investigation would be useful in developing a sustainable pest management strategy in the vegetable agro-ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dirhinus%20giffardii" title="Dirhinus giffardii">Dirhinus giffardii</a>, <a href="https://publications.waset.org/abstracts/search?q=Bactrocera%20cucurbitae%20Cucumis%20sativus" title=" Bactrocera cucurbitae Cucumis sativus"> Bactrocera cucurbitae Cucumis sativus</a>, <a href="https://publications.waset.org/abstracts/search?q=diptera" title=" diptera"> diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20choice" title=" free choice"> free choice</a>, <a href="https://publications.waset.org/abstracts/search?q=parasitization" title=" parasitization"> parasitization</a> </p> <a href="https://publications.waset.org/abstracts/45554/studies-on-population-and-management-of-melon-fruit-fly-bactrocera-cucurbitae-coquillett-in-vegetables-agro-ecosystem-in-district-hyderabada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Rates of Hematophagous Ectoparasite Consumption during Grooming by an Endemic Madagascar Fruit Bat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riana%20V.%20Ramanantsalama">Riana V. Ramanantsalama</a>, <a href="https://publications.waset.org/abstracts/search?q=Aristide%20Andrianarimisa"> Aristide Andrianarimisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Achille%20P.%20Raselimanana"> Achille P. Raselimanana</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20M.%20Goodman"> Steven M. Goodman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Few details are available on the consumption of ectoparasites, specifically bat flies (Diptera: Nycteribiidae and Streblidae), by their chiropteran hosts while grooming. Such details could provide information on the dynamics of host-parasite interactions. This study presents data on ectoparasite ingestion rates for an endemic Malagasy fruit bat (Pteropodidae: Rousettus madagascariensis) occupying a cave day roost colony in northern Madagascar. Using quantified behavioral analyses, grooming and associated ingestion rates were measured from infrared videos taken in close proximity to day-roosting bats. The recorded individual bats could be visually identified to age (adult, juvenile) and sex (male, female), allowing analyses of the proportion of time these different classes allocated to consuming ectoparasites via auto-grooming (self) or allo-grooming (intraspecific) per 10 min video recording session. These figures could then be extrapolated to estimates of individual daily consumption rates. Based on video recordings, adults spent significantly more time auto-grooming and allo-grooming than juveniles. The latter group was not observed consuming ectoparasites. Grooming rates and the average number of ectoparasites consumed per day did not differ between adult males and females. The mean extrapolated number consumed on a daily basis for individual adults was 37 ectoparasites. When these figures are overlaid on the estimated number of adult Rousettus occurring at the roost site during the dry season, the projected daily consumption rate was 57,905 ectoparasites. To the best knowledge of the authors of this study, the details presented here represent the first quantified data on bat consumption rates of their ectoparasites, specifically dipterans. These results provide new insights into host-parasite predation dynamics. More research is needed to explore the mechanism zoonotic diseases isolated from bat flies might be transmitted to their bat hosts, specifically those pathogens that can be communicated via an oral route. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diptera" title="diptera">diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=host-parasite%20interactions" title=" host-parasite interactions"> host-parasite interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Madagascar" title=" Madagascar"> Madagascar</a>, <a href="https://publications.waset.org/abstracts/search?q=nycteribiidae" title=" nycteribiidae"> nycteribiidae</a>, <a href="https://publications.waset.org/abstracts/search?q=pteropodidae" title=" pteropodidae"> pteropodidae</a>, <a href="https://publications.waset.org/abstracts/search?q=Rousettus%20madagascariensis" title=" Rousettus madagascariensis"> Rousettus madagascariensis</a> </p> <a href="https://publications.waset.org/abstracts/93998/rates-of-hematophagous-ectoparasite-consumption-during-grooming-by-an-endemic-madagascar-fruit-bat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Isolation, Characterization, and Antibacterial Evaluation of Antimicrobial Peptides and Derivatives from Fly Larvae Sarconesiopsis magellanica (Diptera: Calliphoridae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D%C3%ADaz-Roa">A. Díaz-Roa</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Silva%20Junior"> P. I. Silva Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Bello"> F. J. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Dipterous maggots release diverse proteins and peptides contained in larval excretion and secretion (ES) products playing a key role in digestion. The most important mechanism for combating infection using larval therapy depends on larval ES. These larvae are protected against infection by a diverse spectrum of antimicrobial peptides (AMPs), one already known like lucifensin. Special interest in these peptides has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue and kill different bacteria during larval therapy. The action of larvae on wounds occurs through 3 mechanisms of action: removal of necrotic tissue, stimulation of granulation tissue, and antibacterial action of larval ES. Some components of the ES include calcium, urea, allantoin ammonium bicarbonate and reducing the viability of Gram positive and Gram negative bacteria. The Lucilia sericata fly larvae have been the most used, however, we need to evaluate new species that could potentially be similar or more effective than fly above. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES products for the first time and compared them with the common fly used L. sericata. These products were obtained from third-instar larvae taken from a previously established colony. For the first analysis, ES fractions were separate by Sep-Pak C18 disposable columns (first step). The material obtained was fractionated by RP-HPLC by using Júpiter C18 semi-preparative column. The products were then lyophilized and their antimicrobial activity was characterized by incubation with different bacterial strains. The first chromatographic analysis of ES from L. sericata gives 6 fractions with antimicrobial activity against Gram-positive bacteria Micrococus luteus, and 3 fractions with activity against Gram-negative bacteria Pseudomonae aeruginosa while the one from S. magellanica gaves 1 fraction against M. luteus and 4 against P. aeruginosa. Maybe one of these fractions could correspond to the peptide already known from L. sericata. These results show the first work for supporting further experiments aimed at validating S. magellanica use in larval therapy. We still need to search if we find some new molecules, by making mass spectrometry and ‘de novo sequencing’. Further studies are necessary to identify and characterize them to better understand their functioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title="antimicrobial peptides">antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=larval%20therapy" title=" larval therapy"> larval therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucilia%20sericata" title=" Lucilia sericata"> Lucilia sericata</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarconesiopsis%20magellanica" title=" Sarconesiopsis magellanica"> Sarconesiopsis magellanica</a> </p> <a href="https://publications.waset.org/abstracts/34404/isolation-characterization-and-antibacterial-evaluation-of-antimicrobial-peptides-and-derivatives-from-fly-larvae-sarconesiopsis-magellanica-diptera-calliphoridae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Distribution, Seasonal Phenology and Infestation Dispersal of the Chickpea Leafminer Liriomyza cicerina (Diptera: Agromizidae) on Two Winter and Spring Chickpea Varieties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Soltani">Abir Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Moez%20Amri"> Moez Amri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jouda%20Mediouni%20Ben%20Jem%C3%A2a"> Jouda Mediouni Ben Jemâa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In North Africa, the chickpea leafminer Liriomyza cicerina (Rondani) (Diptera: Agromizidae) is one of the major damaging pests affecting both spring and winter-planted chickpea. Damage is caused by the larvae which feed in the leaf mesophyll tissue, resulting in desiccation and premature leaf fall that can cause severe yield losses. In the present work, the distribution and the seasonal phenology of L. cicerina were studied on two chickpea varieties; a winter variety Beja 1 which is the most cultivated variety in Tunisia and a spring-sown variety Amdoun 1. The experiment was conducted during the cropping season 2015-2016. In the experimental research station Oued Beja, in the Beja region (36°44’N; 9°13’E). To determine the distribution and seasonal phenology of L. cicerina in both studied varieties Beja 1 and Amdoun 1, respectively 100 leave samples (50 from the top and 50 from the base) were collected from 10 chickpea plants randomly chosen from each field. The sampling was done during three development stages (i) 20-25 days before flowering (BFL), (ii) at flowering (FL) and (ii) at pod setting stage (PS). For each plant, leaves were checked from the base till the upper ones for the insect infestation progress into the plant in correlation with chickpea growth Stages. Fly adult populations were monitored using 8 yellow sticky traps together with weekly leaves sampling in each field. The traps were placed 70 cm above ground. Trap catches were collected once a week over the cropping season period. Results showed that L. cicerina distribution varied among both studied chickpea varieties and crop development stage all with seasonal phenology. For the winter chickpea variety Beja 1, infestation levels of 2%, 10.3% and 20.3% were recorded on the bases plant part for BFL, FL and PS stages respectively against 0%, 8.1% and 45.8% recorded for the upper plant part leaves for the same stages respectively. For the spring-sown variety Amdoun 1 the infestation level reached 71.5% during flowering stage. Population dynamic study revealed that for Beja 1 variety, L. cicerina accomplished three annual generations over the cropping season period with the third one being the most important with a capture level of 85 adult/trap by mid-May against a capture level of 139 adult/trap at the end May recorded for cv. Amdoun 1. Also, results showed that L. cicerina field infestation dispersal depends on the field part and on the crop growth stage. The border areas plants were more infested than the plants placed inside the plots. For cv. Beja 1, border areas infestations were 11%, 28% and 91.2% for BFL, FL and PS stages respectively, against 2%, 10.73% and 69.2% recorded on the on the inside plot plants during the for the same growth stages respectively. For the cv. Amdoun1 infestation level of 90% was observed on the border plants at FL and PS stages against an infestation level less than 65% recorded inside the plot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf%20miner" title="leaf miner">leaf miner</a>, <a href="https://publications.waset.org/abstracts/search?q=liriomyza%20cicerina" title=" liriomyza cicerina"> liriomyza cicerina</a>, <a href="https://publications.waset.org/abstracts/search?q=chickpea" title=" chickpea"> chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20phenology" title=" seasonal phenology"> seasonal phenology</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/58151/distribution-seasonal-phenology-and-infestation-dispersal-of-the-chickpea-leafminer-liriomyza-cicerina-diptera-agromizidae-on-two-winter-and-spring-chickpea-varieties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Vectorial Capacity and Age Determination of Anopheles Maculipinnis S. L. (Diptera: Culicidae), in Esfahan and Chahar Mahal and Bakhtiari Provinces, Central Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Sepahvand">Fariba Sepahvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hassan%20Moosa-kazemi"> Seyed Hassan Moosa-kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective was to determine the population dynamics of Anopheles maculipinnis s.l. in relation to probable malaria transmission. The study was carried out in three villages in Isfahan and charmahal bakhteari provinces of Iran, from April to March 2014. Mosquitoes were collected by Total catch, Human and Animal bait collection. An. maculipinnis play as a dominant vector with exophagic and endophilic behavior. Ovary dissection revealed four dilatations indicate at least 9% of the population can reach to the dangerous age to potentially malaria transmission. Two peaks of blood feeding were observed, 9.00-10.00 P.M, and the 12.00-00.01 A.M. The gonotrophic cycle, survival rate, life expectancy of the species was 4, 0.82 and five days, respectively. Vectorial capacity was measured as 0.028. In conclusion, moderate climatic conditions support the persistence, density and longevity of An maculipinnis s.l. could result in more significant malaria transmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20determination" title="age determination">age determination</a>, <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20maculipinnis" title=" Anopheles maculipinnis"> Anopheles maculipinnis</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20Iran" title=" center of Iran"> center of Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria "> Malaria </a> </p> <a href="https://publications.waset.org/abstracts/38710/vectorial-capacity-and-age-determination-of-anopheles-maculipinnis-s-l-diptera-culicidae-in-esfahan-and-chahar-mahal-and-bakhtiari-provinces-central-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Diversity of Insect Pests of Paddy in Panhala Tehasil, Kolhapur, Maharashtra, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjiri%20A.%20More">Manjiri A. More</a>, <a href="https://publications.waset.org/abstracts/search?q=Manisha%20M.%20Bhosale"> Manisha M. Bhosale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the backbone of Indian economy and India is one of the world’s largest producers of Rice. Today, paddy crop is facing a severe problem of insect pests and is attacked by more than 100 species of insects, among those 20 species cause economic damage. Rice is the staple food of people of panhala tehasil, Kolhapur, Maharashtra, India. During June 2017 to September 2017 efforts were made to study the diversity of insect pests associated with the paddy crop in the study region. The collection and preservation of the specimens were done by following standard procedure and the identification was done with the help standard literature, taxonomic keys, and webography. In all, 6 species were recorded as pests of paddy in which order Lepidoptera was dominant with 2 species, while orders Diptera, Orthoptera, Hemiptera, and Coleoptera were represented by 1 species each respectively. The results of the present investigation will be helpful for formulating control strategies against these paddy pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=insect%20pests" title=" insect pests"> insect pests</a>, <a href="https://publications.waset.org/abstracts/search?q=Panhala" title=" Panhala"> Panhala</a>, <a href="https://publications.waset.org/abstracts/search?q=staple" title=" staple"> staple</a> </p> <a href="https://publications.waset.org/abstracts/98200/diversity-of-insect-pests-of-paddy-in-panhala-tehasil-kolhapur-maharashtra-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Fungi Isolated from House Flies (Diptera: Muscidae) on Penned Cattle in South Texas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherity%20A.%20Ysquierdo">Cherity A. Ysquierdo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pia%20U.%20Olafson"> Pia U. Olafson</a>, <a href="https://publications.waset.org/abstracts/search?q=Donald%20B.%20Thomas"> Donald B. Thomas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Musca domestica L. were collected from cattle diagnosed with bovine ringworm to evaluate the potential of the house fly to disseminate Trichophyton verrucosum E. Bodin, a fungal dermatophyte that is the causative agent for ringworm in cattle. Fungal isolates were cultured from 45 individual flies on supplemented Sabouraud dextrose agar, and isolates were identified using morphological and microscopic approaches. Each isolate was further identified by PCR amplification of the ribosomal DNA locus with fungal specific primers and subsequent amplicon sequencing. No T. verrucosum were identified using these approaches. However, 36 different fungal species representing 17 genera were cultured from these flies, including several allergenic and pathogenic species. Several species within the fungal orders Hypocreales, Microascales, Onygenales, Saccharomycetales, Xylaniales, and Agaricales were observed for the first time on house flies. The most frequent fungus recovered was Cladosporium cladosporoides, which is known to be a ubiquitous, airborne allergen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20ringworm" title="bovine ringworm">bovine ringworm</a>, <a href="https://publications.waset.org/abstracts/search?q=Cladosporium" title=" Cladosporium"> Cladosporium</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatophyte" title=" dermatophyte"> dermatophyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Musca%20domestica" title=" Musca domestica"> Musca domestica</a> </p> <a href="https://publications.waset.org/abstracts/60294/fungi-isolated-from-house-flies-diptera-muscidae-on-penned-cattle-in-south-texas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Entomofauna Biodiversity of a Citrus Orchard in Baraki, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Guerzou">Ahlem Guerzou</a>, <a href="https://publications.waset.org/abstracts/search?q=Salheddine%20Doumandji"> Salheddine Doumandji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orchards and minimally processed with surrounding hedges form a significant source of biodiversity. These orchards are an entire ecosystem, home to a rich insect fauna associated with the presence of a large diversity of plant species. The values of the richness and diversity rise when the intensity of the chemical protection is reduced emphasizing the importance of such orchard in the conservation of biodiversity. To show the interest hedges fauna perspective, we conducted a study in an orange grove located Baraki surrounded by hedges and windbreaks consist of several plant species. With the sweep net there were the invertebrate fauna of the herbaceous and after a year of inventory was collected consists of a 2177 individuals distributed among 156 species grouped into five classes and 15 orders fauna. Hymenoptera and Diptera are in first place with 34 species (AR% = 19.3%), followed by Coleoptera with 27 species (AR% = 15.3%), Homoptera dominate in the workforce with 735 individuals (AR% = 34.1%). The Shannon-Weaver index calculated reflects a great diversity of population sampled equal to 5.2 bits. The equitability is 0.7, showing a strong trend of balance between the numbers of species present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20orchard" title=" citrus orchard"> citrus orchard</a>, <a href="https://publications.waset.org/abstracts/search?q=reaps%20net" title=" reaps net"> reaps net</a>, <a href="https://publications.waset.org/abstracts/search?q=hedges" title=" hedges"> hedges</a>, <a href="https://publications.waset.org/abstracts/search?q=Baraki" title=" Baraki"> Baraki</a> </p> <a href="https://publications.waset.org/abstracts/28971/entomofauna-biodiversity-of-a-citrus-orchard-in-baraki-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Cytochrome B Marker Reveals Three Distinct Genetic Lineages of the Oriental Latrine Fly Chrysomya megacephala (Diptera: Calliphoridae) in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajagopal%20Kavitha">Rajagopal Kavitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Lun%20Low"> Van Lun Low</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Sofian-Azirun"> Mohd Sofian-Azirun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Dhang%20Chen"> Chee Dhang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yusof%20Farida%20Zuraina"> Mohd Yusof Farida Zuraina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salleh%20Ahmad%20Firdaus"> Mohd Salleh Ahmad Firdaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Navaratnam%20Shanti"> Navaratnam Shanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Haiyee%20Zaibunnisa"> Abdul Haiyee Zaibunnisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the hidden genetic lineages in the oriental latrine fly Chrysomya megacephala (Fabricius) across four states (i.e., Johore, Pahang, Perak and Selangor) and a federal territory (i.e., Kuala Lumpur) in Malaysia using Cytochrome b (Cyt b) genetic marker. The Cyt b phylogenetic tree and haplotype network revealed three distinct genetic lineages of Ch. megacephala. Lineage A, the basal clade was restricted to flies that originated from Kuala Lumpur and Selangor, while Lineages B and C, comprised of flies from all studied populations. An overlap of the three genetically divergent groups of Ch. megacephala was observed. However, the flies from both Kuala Lumpur and Selangor populations consisted of three different lineages, indicating that they are genetically diverse compared to those from Pahang, Perak and Johore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic%20entomology" title="forensic entomology">forensic entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=calliphoridae" title=" calliphoridae"> calliphoridae</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20DNA" title=" mitochondrial DNA"> mitochondrial DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptic%20lineage" title=" cryptic lineage"> cryptic lineage</a> </p> <a href="https://publications.waset.org/abstracts/47473/cytochrome-b-marker-reveals-three-distinct-genetic-lineages-of-the-oriental-latrine-fly-chrysomya-megacephala-diptera-calliphoridae-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> A Faunistic Study of Syrphidae Flowerflies in Alfalfa Fields of North of Khouzestan, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Safaeian">Zahra Safaeian</a>, <a href="https://publications.waset.org/abstracts/search?q=Shila%20Goldasteh"> Shila Goldasteh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Radjabi"> Rouhollah Radjabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flowerflies of Syrphidae family is one of the largest families among the Diptera order that due to predatory habit of some species in larva stage has an important role for controlling aphids of the fields. In the present study, flowerflies fauna in the alfalfa fields of the north of Khouzestan were studied during 2012-2013. The species of the family were collected using appropriate methods including insect collecting sweeping net and Malaise traps. According to the fact that the shape of male genitalia in the male insect is important in identification of these species the male genitalia was separated from the body and microscopical slide was prepared then species identification was done considering the male genitalia, the patterns and figures on the abdomen and using available keys. Based on the finding four species of Sphaerophoria scripta, Sphaerophoria turkmenica, Melanostoma mellinu, Sphaerophoria ruppelli were collected and according to the abundance frequency of the collected species the most abundance was related to Sphaerophoria scripta, then Sphaerophoria turkmenica had the most abundance and the least abundance was related to Sphaerophoria ruppelli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=syrphidae" title="syrphidae">syrphidae</a>, <a href="https://publications.waset.org/abstracts/search?q=fauna" title=" fauna"> fauna</a>, <a href="https://publications.waset.org/abstracts/search?q=alfalfa" title=" alfalfa"> alfalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/34884/a-faunistic-study-of-syrphidae-flowerflies-in-alfalfa-fields-of-north-of-khouzestan-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus)) (Diptera: Culicidae) in Penang Island, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Maimusa">A. H. Maimusa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abu%20Hassan"> A. Abu Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Faeza%20A.%20Kassim"> Nur Faeza A. Kassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we report on the main life table developmental attributes of laboratory colonies of wild strains Ae. albopictus and Ae. aegypti. The raw life history data of the two species were analyzed and compared based on the age-stage and two-sex life table. The total pre-adult development times were 9.47 days (Ae. albopictus) and 8.76 days (Ae. aegypti). The adult pre-oviposition periods (APOP) was 1.61 day for Ae. albopictus and 2.02 for Ae. aegypti. The total pre-oviposition period (TPOP) of Ae. albopictus is significantly longer (11.66 days) than (10.75 days) for Ae. aegypti. The mean intrinsic rate of increase (r) was 0.124 days (Ae. albopictus) and 1.151 days (Ae. aegypti) while the mean finite rate of increase (λ) was 1.13 day (Ae. albopictus) and (1.16 d) (Ae. aegypti). The net reproductive rates (Ro) were 8.10 and 10.75 for Ae. albopictus and Ae. aegypti, respectively. The mean generation time (T) for Ae. albopictus and Ae. aegypti, were 16.81 days and 15.77 days respectively. The mean development time for each stage insignificantly correlated with temperature (r = -0.208, p > 0.05) and (r = -0.312, p > 0.05) for Ae. albopictus and Ae. aegypti respectively. The life expectancy was 19.01 and 19.94 days for Ae. albopictus and Ae. aegypti respectively. Mortality occurred mostly during the adult stage and ranged between 0.01 and 0.07%. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategist characterized by a high r, a large Ro, and short T. This kind of information is crucial in understanding mosquito population dynamics in disease transmission and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ae.%20aegypti" title="Ae. aegypti">Ae. aegypti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ae.%20albopictus" title=" Ae. albopictus"> Ae. albopictus</a>, <a href="https://publications.waset.org/abstracts/search?q=age-stage" title=" age-stage"> age-stage</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20table" title=" life table"> life table</a>, <a href="https://publications.waset.org/abstracts/search?q=two-sex" title=" two-sex"> two-sex</a> </p> <a href="https://publications.waset.org/abstracts/31948/age-stage-two-sex-life-table-characteristics-of-aedes-albopictus-skuse-and-aedes-aegypti-linnaeus-diptera-culicidae-in-penang-island-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> The Survey of Phlebotomine Sandfly (Diptera: Psychodidae) of Al-Asaba Area in the Northwest Region of the Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asherf%20El-Abaied">Asherf El-Abaied</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsadik%20Anan"> Elsadik Anan</a>, <a href="https://publications.waset.org/abstracts/search?q=Badereddin%20Annajar"> Badereddin Annajar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Saieh"> Mustafa Saieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abudalnaser%20El-Buni"> Abudalnaser El-Buni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zoonotic Cutaneous Leishmaniasis (ZCL) has been endemic in the Northwestern region of Libya for over nine decades. Survey of sandfly fauna in the region revealed that 13 species have been recorded with various distribution and abundance patterns. Phlebotomus papatasi proved to be the main vector of the disease in many areas. To identify sandfly species present in the Al-Asaba town and determine their spatial and seasonal abundance. An epidemiological analysis of the data obtained from the recorded cases was also carried out. Sand flies collected from various sites using sticky traps and CDC miniature light traps during the period from March-November 2006. Recorded ZCL cases were collected from the local Primary Health Care Department and analysed using SPSS statistical package. Ten species of sandflies were identified, seven belong to the genus Phlebotomus and three belong to the genus Sergentomyia. P. papatasi was the most abundant species with peak season recorded in September. The prevalence of the disease was low however; notable increase of ZCL cases in last three years has been indicated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cutaneous%20leishmaniasis" title="Cutaneous leishmaniasis">Cutaneous leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=Phlebotomus%20papatasi" title=" Phlebotomus papatasi"> Phlebotomus papatasi</a>, <a href="https://publications.waset.org/abstracts/search?q=sandfly%20fauna" title=" sandfly fauna"> sandfly fauna</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a> </p> <a href="https://publications.waset.org/abstracts/5821/the-survey-of-phlebotomine-sandfly-diptera-psychodidae-of-al-asaba-area-in-the-northwest-region-of-the-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> The Diversity of Black Flies in Peninsular Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20D.%20Chen">C. D. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Takaoka"> H. Takaoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Ya%E2%80%99cob"> Z. Ya’cob</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20L.%20Low"> V. L. Low</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20W.%20Lau"> K. W. Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sofian-Azirun"> M. Sofian-Azirun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adult black flies (Diptera: Simuliidae) are small (1.5-6.0 mm long), two-winged insects, and are well known as one of the biting flies of medical and veterinary importance. Female of certain species, when they bite and take blood, not only cause severe skin diseases to human and cattle but also play a role as vectors of viral, protozoan and filarial diseases in humans and animals. Black flies also attract environmental biologist and ecologist because their immature states breed only in clean running fresh waters, and larvae are one of the principal processors of plant debris in streams. All these researches on medical and ecological aspects of black flies could not be reliably proceeded without sufficient basic knowledge of the fauna of black flies established by traditional but still important morphotaxonomy. Previously, only 39 species of black flies were recorded from Peninsular Malaysia, all of which are classified into four subgenus (Daviesellum, Gomphostilbia, Nevermannia and Simulium) of the genus Simulium. We carried out faunal surveys and taxonomic works of black flies in Peninsular Malaysia since November 2010. A total of 17 new species and 4 newly recorded species were collected. This increased the number of the described species of black flies in Peninsular Malaysia from 39 to 60. Our results suggest that a much higher diverse nature of black flies in Peninsular Malaysia will be clarified by further extensive surveys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20flies" title="black flies">black flies</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulium" title=" Simulium"> Simulium</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevermannia" title=" Nevermannia"> Nevermannia</a>, <a href="https://publications.waset.org/abstracts/search?q=feuerborni%20species-group" title=" feuerborni species-group"> feuerborni species-group</a> </p> <a href="https://publications.waset.org/abstracts/14051/the-diversity-of-black-flies-in-peninsular-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Lethal and Sublethal Effect of Azadirachtin on the Development of an Insect Model: Drosophila melanogaster (Diptera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bendjazia%20Radia">Bendjazia Radia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Kilani-Morakchi"> Samira Kilani-Morakchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Aribi"> Nadia Aribi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. It is one of the most biologically active natural inhibitors of insect growth and development and it is known to be an antagonist of the juvenile hormone and 20-hydroxyecdysone (20E). However, its mechanism of action remains still unknown. In the present study, the toxicity of a commercial formulation of Azadirachtin (Neem Azal, 1% azadirachtine) was evaluated by topical application at various doses (0.1, 0.25, 0.5, 1 and 2 µg/insect) on the third instars larvae of D. melanogaster. Lethal doses (LD25: 0.28µg and LD50: 0.67µg), were evaluated by cumulated mortality at the immature stages. The effects of azadirachtin (LD25 and LD50) were then evaluated on the development (duration of the larval and pupal instars, the weight of larvae, pupa and adults) of Drosophila melanogaster. Results showed that the insecticide increased significantly the larval and pupal instar duration. A reduction of larval and pupal weight is noted under azadirachtin treatment as compared to controls. In addition, the weight of surviving adults at the two tested dose was also reduced. In conclusion, azadirachtin seemed to interfere with the functions of the endocrine system resulting in development defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azadirachtin" title="azadirachtin">azadirachtin</a>, <a href="https://publications.waset.org/abstracts/search?q=d.melanogaster" title=" d.melanogaster"> d.melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/31101/lethal-and-sublethal-effect-of-azadirachtin-on-the-development-of-an-insect-model-drosophila-melanogaster-diptera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Current and Future Global Distribution of Drosophila suzukii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Naserzadeh">Yousef Naserzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloufar%20Mahmoudi"> Niloufar Mahmoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly native to South East Asia, has recently invaded Europe, North- and South America and is spreading rapidly. Species distribution modeling has been widely employed to indicate probable areas of invasion and to guide management strategies. Drosophila sp. is native to Asia, but since 2015, it has invaded almost every country in the world, including Africa, Australia, India, and most recently, the Americas. The growth of this species of Drosophila suzukii has been rapidly multiplying and spreading in the last decade. In fact, we examine and model the potential geographical distribution of D. suzukii for both present and future scenarios. Finally, we determine the environmental variables that affect its distribution, as well as assess the risk of encroachment on protected areas. D.suzukii has the potential to expand its occurrence, especially on continents that have already been invaded. The predictive models obtained in this study indicate potential regions that could be at risk of invasion by D. suzukii, including protected areas. These results are important and can assist in the establishment of management plans to avoid the possible harm caused by biological invasions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20suzukii" title=" Drosophila suzukii"> Drosophila suzukii</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20variables" title=" environmental variables"> environmental variables</a>, <a href="https://publications.waset.org/abstracts/search?q=host%20preference" title=" host preference"> host preference</a>, <a href="https://publications.waset.org/abstracts/search?q=host%20plant" title=" host plant"> host plant</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a> </p> <a href="https://publications.waset.org/abstracts/146306/current-and-future-global-distribution-of-drosophila-suzukii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Infestations of Olive Fruit Fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), in Different Olive Cultivars in Çanakkale, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanife%20Gen%C3%A7">Hanife Genç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive fruit fly, <em>Bactrocera oleae</em> (Rossi), is an economically important and endemic pest in olive (<em>Oleae europae</em>) orchards in Turkey. The aim of this study was to determine olive fruit fly infestation in different olive cultivars in the laboratory. Olive fly infested fruits were collected in Çanakkale province to establish wild fly population. After having reproductive olive fly colonies, 14 olive cultivars were tested in the controlled laboratory conditions, at 23±2 °C, 65% RH and 16:8 h (light: dark) photoperiod. The olive samples from 14 different olive cultivars were collected in October 2015, in Campus of Dardanos, Çanakkale Onsekiz Mart University. Observations were carried out detecting some biological parameters such as the number of oviposition stings, active infestation, total infestation, the number of pupae and the adult emergence. The results indicated that oviposition stings were not associated with pupal yield. A few pupae were found within olive fruits which were not able to exit. Screening of the varieties suggested that less susceptible cultivar to olive fruit fly attacks was Arbequin while Gemlik-2M 2/3 showed significant susceptibility. Ovipositional preference of olive fly females and the success of larval development in different olive varieties are crucial for establishing new olive orchards to prevent high olive fruit fly infestation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infestation" title="infestation">infestation</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20fruit%20fly" title=" olive fruit fly"> olive fruit fly</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20cultivars" title=" olive cultivars"> olive cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=oviposition%20sting" title=" oviposition sting"> oviposition sting</a> </p> <a href="https://publications.waset.org/abstracts/48621/infestations-of-olive-fruit-fly-bactrocera-oleae-rossi-diptera-tephritidae-in-different-olive-cultivars-in-canakkale-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Laboratory Evaluation of Bacillus subtilis Bioactivity on Musca domestica (Linn) (Diptera: Muscidae) Larvae from Poultry Farms in South Western Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Funmilola%20O.%20Omoya">Funmilola O. Omoya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Muscid flies are known to be vectors of disease agents and species that annoy humans and domesticated animals. An example of these flies is Musca domestica (house fly) whose adult and immature stages occur in a variety of filthy organic substances including household garbage and animal manures. They contribute to microbial contamination of foods. It is therefore imperative to control these flies as a result of their role in Public health. The second and third instars of Musca domestica (Linn) were infected with varying cell loads of Bacillus subtilis in vitro for a period of 48 hours to evaluate its larvicidal activities. Mortality of the larvae increased with incubation period after treatment with the varying cell loads. Investigation revealed that the second instars larvae were more susceptible to treatment than the third instars treatments. Values obtained from the third instar group were significantly different (P0.05) from those obtained from the second instars group in all the treatments. Lethal concentration (LC50) at 24 hours for 2nd instars was 2.35 while LC50 at 48 hours was 4.31.This study revealed that Bacillus subtilis possess good larvicidal potential for use in the control of Musca domestica in poultry farms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis" title="Bacillus subtilis">Bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=Musca%20domestica" title=" Musca domestica"> Musca domestica</a>, <a href="https://publications.waset.org/abstracts/search?q=larvicidal%20activities" title=" larvicidal activities"> larvicidal activities</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20farms" title=" poultry farms"> poultry farms</a> </p> <a href="https://publications.waset.org/abstracts/6176/laboratory-evaluation-of-bacillus-subtilis-bioactivity-on-musca-domestica-linn-diptera-muscidae-larvae-from-poultry-farms-in-south-western-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Feasibility Study on the Bioattactants from Pandanus Palm Extracts for Trapping Rice Insect Pests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pisit%20Poolprasert">Pisit Poolprasert</a>, <a href="https://publications.waset.org/abstracts/search?q=Phakin%20Kubchanan"> Phakin Kubchanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Keerati%20Tanruean"> Keerati Tanruean</a>, <a href="https://publications.waset.org/abstracts/search?q=Wisanu%20Thongchai"> Wisanu Thongchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuttasak%20Chammui"> Yuttasak Chammui</a>, <a href="https://publications.waset.org/abstracts/search?q=Wirot%20Likittrakulwong"> Wirot Likittrakulwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice insect pests are problems to rice production. Use of chemicals to minimize these problems of insect pests in paddy field can lead to the residue and affect the health of farmers. Therefore, botanical extracts applied for controlling rice serious enemies should be promoted especially use of plant extract as attractants to lure insects. This research aimed to feasibility study of bioattractants from pandanus palm extracts for trapping insect pets using two different trap models, including plastic bottle and yellow sticky traps. Two main growth and development stages of rice, namely tillering and booting stages, were selected and trapped. The results from both trap models revealed that four rice insect species, including Orseolia oryzae (Wood-Mason), Nilaparvata lugens, Recilia dorsalis, and Nephotettix nigropictus from three families (Cecidomyiidae, Cicadellidae and Delphacidae) and two main orders (Diptera and Hemiptera) were exhibited. All rice insect species mentioned could be found from the yellow sticky trap that were higher than in the bottle trap in which only O. oryzae could be only trapped. From this survey, it was indicated that the yellow sticky trap coated with pandanus palm extracts had a promising potential to use as an attractant for the detection of rice paddy insects in the next future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pandanus%20palm" title="pandanus palm">pandanus palm</a>, <a href="https://publications.waset.org/abstracts/search?q=bioattractant" title=" bioattractant"> bioattractant</a>, <a href="https://publications.waset.org/abstracts/search?q=bottle%20trap" title=" bottle trap"> bottle trap</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20sticky%20trap" title=" yellow sticky trap"> yellow sticky trap</a> </p> <a href="https://publications.waset.org/abstracts/160235/feasibility-study-on-the-bioattactants-from-pandanus-palm-extracts-for-trapping-rice-insect-pests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=diptera&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=diptera&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>