CINXE.COM
Zoltan Soos - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Zoltan Soos - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="w1TjZqjEt3tBB7Gipl_otaeBhutEjEUI1ry1QNZz90OEXwYZwcutvCO618_deYrMy1wlG3XgfPuHMdsEZM5mbA" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="zoltan soos" /> <meta name="description" content="Zoltan Soos: 1 Follower, 1 Following, 91 Research papers. Research interests: Heart rate variability, Physical sciences, and Systems Biology." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'dc2ad41da5d7ea682babd20f90650302fb0a3a36'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14020,"monthly_visitors":"97 million","monthly_visitor_count":97692212,"monthly_visitor_count_in_millions":97,"user_count":282900966,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739708636000); window.Aedu.timeDifference = new Date().getTime() - 1739708636000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/ZoltanSoos" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-c0b60aedadfb9d46b698730fbbcb2e70645c886b405d825adeba3a031c02455d.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":49198,"name":"Heart rate variability","url":"https://www.academia.edu/Documents/in/Heart_rate_variability"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":5400,"name":"Systems Biology","url":"https://www.academia.edu/Documents/in/Systems_Biology"},{"id":9138,"name":"Applied Physics","url":"https://www.academia.edu/Documents/in/Applied_Physics"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/ZoltanSoos","location":"/ZoltanSoos","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/ZoltanSoos","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-83041c91-fe6e-4a8f-9015-8c63a2812a66"></div> <div id="ProfileCheckPaperUpdate-react-component-83041c91-fe6e-4a8f-9015-8c63a2812a66"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Zoltan Soos</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Zoltan" data-follow-user-id="38442456" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="38442456"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Follower</p><p class="data">1</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/ZoltanSoos/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/MMasino"><img class="profile-avatar u-positionAbsolute" alt="Matteo Masino" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/54959690/139986439/129468193/s200_matteo.masino.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/MMasino">Matteo Masino</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/AnnaPainelli"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AnnaPainelli">Anna Painelli</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/AldoBrillante"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AldoBrillante">Aldo Brillante</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/SilviaTomi%C4%87"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SilviaTomi%C4%87">Silvia Tomić</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/RaphaelPfattner"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/RaphaelPfattner">Raphael Pfattner</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://bose.academia.edu/manoranjankumar"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://bose.academia.edu/manoranjankumar">manoranjan kumar</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">S. N. Bose National Centre for Basic Sciences</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/NatashaKirova"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/NatashaKirova">Natasha Kirova</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/JFortkort"><img class="profile-avatar u-positionAbsolute" alt="John A. Fortkort" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/303866439/148869385/138434345/s200_john_a..fortkort.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/JFortkort">John A. Fortkort</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/MatteoMasino"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/MatteoMasino">Matteo Masino</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/ABrillante"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/ABrillante">A. Brillante</a></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38442456" href="https://www.academia.edu/Documents/in/Heart_rate_variability"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/ZoltanSoos","location":"/ZoltanSoos","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/ZoltanSoos","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Heart rate variability"]}" data-trace="false" data-dom-id="Pill-react-component-4b021804-3bbb-4ab8-9bcd-cf8fef1cb8da"></div> <div id="Pill-react-component-4b021804-3bbb-4ab8-9bcd-cf8fef1cb8da"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38442456" href="https://www.academia.edu/Documents/in/Physical_sciences"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Physical sciences"]}" data-trace="false" data-dom-id="Pill-react-component-99bf0268-0806-452f-8885-89df3f2a7e09"></div> <div id="Pill-react-component-99bf0268-0806-452f-8885-89df3f2a7e09"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38442456" href="https://www.academia.edu/Documents/in/Systems_Biology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Systems Biology"]}" data-trace="false" data-dom-id="Pill-react-component-2e4cda75-d99e-4d92-8087-9f716823b3b5"></div> <div id="Pill-react-component-2e4cda75-d99e-4d92-8087-9f716823b3b5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38442456" href="https://www.academia.edu/Documents/in/Applied_Physics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Applied Physics"]}" data-trace="false" data-dom-id="Pill-react-component-c390a20a-e302-4b7f-84cc-2133f73ea04d"></div> <div id="Pill-react-component-c390a20a-e302-4b7f-84cc-2133f73ea04d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38442456" href="https://www.academia.edu/Documents/in/Computational_Biology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computational Biology"]}" data-trace="false" data-dom-id="Pill-react-component-5cdecc9c-79a5-4db0-b537-92bc5db6b3cc"></div> <div id="Pill-react-component-5cdecc9c-79a5-4db0-b537-92bc5db6b3cc"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Zoltan Soos</h3></div><div class="js-work-strip profile--work_container" data-work-id="126414871"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414871/Metastable_domains_at_the_pressure_induced_neutral_ionic_transition_of_TTF_CA"><img alt="Research paper thumbnail of Metastable domains at the pressure induced neutral-ionic transition of TTF-CA" class="work-thumbnail" src="https://attachments.academia-assets.com/120294851/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414871/Metastable_domains_at_the_pressure_induced_neutral_ionic_transition_of_TTF_CA">Metastable domains at the pressure induced neutral-ionic transition of TTF-CA</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tetrathiafulvalene-Chloranil (TTF-CA) is the prototypical organic charge transfer (CT) salt whose...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tetrathiafulvalene-Chloranil (TTF-CA) is the prototypical organic charge transfer (CT) salt whose neutral-ionic and dimerization (Peierls) transitions have been studied on cooling or under pressure. Volume changes switch the ground state from a band insulator with a fractional CT from TTF to CA of rho˜ 0.3 in a regular stack to a Mott insulator with rho&gt; 0.5 in a dimerized stack. TTF-CA spectra indicate electron-vibration coupling to both lattice (e-ph) and molecular (e-mv) modes that lead to competing instabilities. Near the metallic point of the rigid system, a one-dimensional adiabatic Hubbard model with linear e-ph and e-mv coupling leads to metastable domains with different rho, rho&#39; that are thermally accessible at 300 K over a limited bistability range. The transition of TTF-CA single crystals at 1 GPa indicates a pressure range with two resolved rho, rho&#39;. The model also describes the first order transition at 81 K at ambient pressure and generates anharmonic pote...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5f88039b91543eac77c84132ad1f5600" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294851,"asset_id":126414871,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294851/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414871"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414871"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414871; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414871]").text(description); $(".js-view-count[data-work-id=126414871]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414871; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414871']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5f88039b91543eac77c84132ad1f5600" } } $('.js-work-strip[data-work-id=126414871]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414871,"title":"Metastable domains at the pressure induced neutral-ionic transition of TTF-CA","internal_url":"https://www.academia.edu/126414871/Metastable_domains_at_the_pressure_induced_neutral_ionic_transition_of_TTF_CA","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294851/thumbnails/1.jpg","file_name":"MWS_MAR07-2006-001222.pdf","download_url":"https://www.academia.edu/attachments/120294851/download_file","bulk_download_file_name":"Metastable_domains_at_the_pressure_induc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294851/MWS_MAR07-2006-001222-libre.pdf?1734523216=\u0026response-content-disposition=attachment%3B+filename%3DMetastable_domains_at_the_pressure_induc.pdf\u0026Expires=1739712236\u0026Signature=F4fOfvXbOrrwCFLmSTNvTIC66EOP1Crs6NKaVPqmmTtML9NJXf6b3dstLerCNYoY5OVaCSF8b~eGnloFwSNpNeJUSmoYLEgCJBtQ0iRgk4b90uRK1qTW6BI35Ih4~gtaQmGaO5UGUbNcvk-8YBDdN3KZ521Hb4WR6A-TOZVG1j3FKsTtw0cqNvpMhlKFDjnB3bhEu7F6k8YmirRH5erlt648WyEzIu1vuP2tBDxnFdbvz15V8lfC2gEWdysf5ZFzhAg2OVjg38iV56X6w7P2nwS~vUEfn979BsSVb42ZVZR--Bc9BRA0JcA6v6mD6-4F2sC7YcBbQBvOgh-FcLZ7hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414870"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414870/Thermal_and_Quantum_Peierls_Transitions_in_Organic_Charge_Transfer_Salts"><img alt="Research paper thumbnail of Thermal and Quantum Peierls Transitions in Organic Charge-Transfer Salts" class="work-thumbnail" src="https://attachments.academia-assets.com/120294850/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414870/Thermal_and_Quantum_Peierls_Transitions_in_Organic_Charge_Transfer_Salts">Thermal and Quantum Peierls Transitions in Organic Charge-Transfer Salts</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The choice of donors (D) and acceptors (A) governs the charge-transfer ρ in organic CT salts with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The choice of donors (D) and acceptors (A) governs the charge-transfer ρ in organic CT salts with mixed one-dimensional DADA stacks. Strong D and A yield ρ ˜ 0.9 stacks of radical ions with thermally accessible spin and charge degrees of freedom whose Peierls transition can be described by a Hubbard model with site energies. The same microscopic model describes CT salts with smaller and variable ρ ˜ 0.5 in which neutral-ionic and/or Peierls transitions occur in the ground electronic state. Quantum transitions are driven by volume changes, with negligible thermal population of excite states. CT salts with thermal or quantum Peierls transitions are identified. Conflicting magnetic, vibrational and structural data in several CT salts are resolved in terms of mobile spin solitons, a dimerized ground state and a Peierls transition beyond the crystal&#39;s thermal stability.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dd707786edcb18b67d475544e9e9d983" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294850,"asset_id":126414870,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294850/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414870"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414870"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414870; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414870]").text(description); $(".js-view-count[data-work-id=126414870]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414870; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414870']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dd707786edcb18b67d475544e9e9d983" } } $('.js-work-strip[data-work-id=126414870]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414870,"title":"Thermal and Quantum Peierls Transitions in Organic Charge-Transfer Salts","internal_url":"https://www.academia.edu/126414870/Thermal_and_Quantum_Peierls_Transitions_in_Organic_Charge_Transfer_Salts","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294850,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294850/thumbnails/1.jpg","file_name":"MWS_MAR06-2005-001693.pdf","download_url":"https://www.academia.edu/attachments/120294850/download_file","bulk_download_file_name":"Thermal_and_Quantum_Peierls_Transitions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294850/MWS_MAR06-2005-001693-libre.pdf?1734523217=\u0026response-content-disposition=attachment%3B+filename%3DThermal_and_Quantum_Peierls_Transitions.pdf\u0026Expires=1739712236\u0026Signature=Xoz7PD8UKuu-3MhhWCYZ8UU0WEFqasRKVlVll~YBkjffmatPWzRRsN7gPtHIBbbehtnz0cVWNqg2yZLWI7wYQvO4YNsjSxE9a8yfXsOTRBN6gFLGe86g1DiTIdsQAqPl~QjtWiaHv4c4v7D~oDKtzGVPLszGTWxYH4Mih9L1mKeNagCuekxZF1A9IavuZS356d84Ujs74Z~kEnMV4Jeo22EYZxIqO~-mwp15kLnDAuHsPiv5da3jrhfJMiC1FrzN63Tzvte9omq5DFuEkTZ5QKI0kMJrh1pPrDo1pGhPVN9kfKcQ0ZDE33k0LsobbdmbUFjZcNsNpDHr7G21vP3Vmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414869"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414869/Peierls_Transitions_in_Ionic_Organic_Charge_Transfer_Crystals_with_Spin_and_Charge_Degrees_of_Freedom"><img alt="Research paper thumbnail of Peierls Transitions in Ionic Organic Charge-Transfer Crystals with Spin and Charge Degrees of Freedom" class="work-thumbnail" src="https://attachments.academia-assets.com/120294853/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414869/Peierls_Transitions_in_Ionic_Organic_Charge_Transfer_Crystals_with_Spin_and_Charge_Degrees_of_Freedom">Peierls Transitions in Ionic Organic Charge-Transfer Crystals with Spin and Charge Degrees of Freedom</a></div><div class="wp-workCard_item"><span>The Journal of Physical Chemistry B</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The quasi-one-dimensional electronic structure of organic charge-transfer (CT) salts rationalizes...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The quasi-one-dimensional electronic structure of organic charge-transfer (CT) salts rationalizes Peierls transitions in mixed or segregated stacks of π-electron donors (D) and acceptors (A). A microscopic Peierls-Hubbard model, H CT , is presented for CT salts with mixed stacks (D F+ A F-) n and ionicity F > 0.7. Dimerization opens a Peierls gap that, due to electron correlation, is the singlet-triplet gap, E ST. In contrast to spin-Peierls systems, such as Heisenberg spin chains with F) 1 and T SP < 20 K, Peierls transitions in CT salts with F < 1 occur at higher T P and involve both spin and charge degrees of freedom. Linear electron-phonon coupling and an adiabatic approximation for a harmonic lattice are used to model the dimerization amplitude δ(T) for T < T P , the magnetic (spin) susceptibility (T), and the relative infrared intensity of totally symmetric molecular modes. Exact thermodynamics of H CT for stacks up to N) 12 sites are applied to two CT salts with T P ∼ 50 and 120 K whose magnetism and infrared have not been modeled previously and to CT salts with inaccessibly high T P > 350 K whose description has been difficult. Ionic CT salts are correlated Peierls systems with a degenerate ground state (GS) at T) 0 whose elementary excitations are spin solitons, while dimerized ionradical stacks that support triplet-spin excitons have nondegenerate GS. In less ionic CT salts, modulation of H CT parameters on cooling or under pressure leads to Peierls and/or neutral-ionic transitions of the GS, without appreciable thermal population of excited states. Correlations change the gap equation that relates E ST at T) 0 to T P compared to free electrons, and size convergence is fast in stacks with large δ(0) and high T P .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4c4fe8a3e433638159ba178288502537" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294853,"asset_id":126414869,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294853/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414869"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414869"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414869; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414869]").text(description); $(".js-view-count[data-work-id=126414869]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414869; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414869']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4c4fe8a3e433638159ba178288502537" } } $('.js-work-strip[data-work-id=126414869]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414869,"title":"Peierls Transitions in Ionic Organic Charge-Transfer Crystals with Spin and Charge Degrees of Freedom","internal_url":"https://www.academia.edu/126414869/Peierls_Transitions_in_Ionic_Organic_Charge_Transfer_Crystals_with_Spin_and_Charge_Degrees_of_Freedom","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294853/thumbnails/1.jpg","file_name":"jp055202220241218-1-6o46ye.pdf","download_url":"https://www.academia.edu/attachments/120294853/download_file","bulk_download_file_name":"Peierls_Transitions_in_Ionic_Organic_Cha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294853/jp055202220241218-1-6o46ye-libre.pdf?1734523226=\u0026response-content-disposition=attachment%3B+filename%3DPeierls_Transitions_in_Ionic_Organic_Cha.pdf\u0026Expires=1739712236\u0026Signature=HgIaz2XJjHVKFmEWmFpyBovZCiAl4hsqxZJugGI4U~r-1VIkiUmCu-33p-FRCzGCCNi18IUhzJsVnh7E8vs-RDRcWVuQjuxMIIxKFGyKQ9Q61j05zTo-WekheiaWUQVVD5VPGRdlB0~WVF9gQPLWJ3MLFkSoQjQMDtj8kU-BRP3doNc59H8r5P46Amddg7PFuk8O1dc8VteGHge4dRc2yZvNN-fQi7EwkjFm99c7QGJzIRAS~Vd2cprY~SokI7678z74qY3XgR-lLbIIQwY5ChfXaUR5Z5Xoy7FYtPykQvC92cKxOC0pxhUqwTsTW956k4kb9OeEb0GSA9hdNm-6uw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414868"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414868/Orbital_contributions_to_the_magnetic_susceptibility_of_one_dimensional_Hubbard_models_with_partial_filling_and_strong_correlation"><img alt="Research paper thumbnail of Orbital contributions to the magnetic susceptibility of one-dimensional Hubbard models with partial filling and strong correlation" class="work-thumbnail" src="https://attachments.academia-assets.com/120294848/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414868/Orbital_contributions_to_the_magnetic_susceptibility_of_one_dimensional_Hubbard_models_with_partial_filling_and_strong_correlation">Orbital contributions to the magnetic susceptibility of one-dimensional Hubbard models with partial filling and strong correlation</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The one-dimensional ͑1D͒ Hubbard model with partial filling Ͻ 1 and strong correlation U Ͼ 4t is ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The one-dimensional ͑1D͒ Hubbard model with partial filling Ͻ 1 and strong correlation U Ͼ 4t is approximated by a t-J model with real transfers t between adjacent occupied and empty sites, and virtual transfers J between adjacent spin-paired sites. Finite t-J models with Ͻ 1 preserve spin-charge separation in the atomic limit ͑J =0͒ for open boundary conditions, but not for periodic boundary conditions. The absolute magnetic susceptibility ͑T͒ of finite systems is found exactly and shown to converge to the infinite chain when k B T exceeds J. Strong orbital contributions to ͑T͒ are demonstrated in systems with t, J, and chosen to have identical ͑0͒ per electron, as known exactly for the 1D Hubbard model. Orbital contributions for Ͻ 1 preclude treating the spin susceptibility of partly filled bands in terms of = 1 systems such as Heisenberg spin chains, as assumed previously. Orbital contributions at = 0.6 are used to model the spin susceptibility of tetrathiafulvalene-tetracyanoquinodimethan above the metal-insulator transition, both at constant spacing along the stack and with a linear t͑T͒. The parameters at T ϳ 100 K are t = 0.15 eV and J =2t 2 / U = 0.053 eV, indicative of strong correlation U Ͼ 4t in this prototypical organic salt.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c07bbe6a3760072fdfc327954cad66b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294848,"asset_id":126414868,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294848/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414868"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414868"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414868; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414868]").text(description); $(".js-view-count[data-work-id=126414868]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414868; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414868']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c07bbe6a3760072fdfc327954cad66b7" } } $('.js-work-strip[data-work-id=126414868]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414868,"title":"Orbital contributions to the magnetic susceptibility of one-dimensional Hubbard models with partial filling and strong correlation","internal_url":"https://www.academia.edu/126414868/Orbital_contributions_to_the_magnetic_susceptibility_of_one_dimensional_Hubbard_models_with_partial_filling_and_strong_correlation","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294848/thumbnails/1.jpg","file_name":"PhysRevB.74.20512520241218-1-pahtvq.pdf","download_url":"https://www.academia.edu/attachments/120294848/download_file","bulk_download_file_name":"Orbital_contributions_to_the_magnetic_su.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294848/PhysRevB.74.20512520241218-1-pahtvq-libre.pdf?1734523225=\u0026response-content-disposition=attachment%3B+filename%3DOrbital_contributions_to_the_magnetic_su.pdf\u0026Expires=1739712236\u0026Signature=MvTl2HD~xEs3aoygSFEgBiwM5rUfhh1eBkmlafArbXoTM~X-WjT~isKoxh1o8QrxZ8qSt4WHC23~VZs9VrxT2JjN3Qv5awsjJ8yAvj-TtMFjgQk2cZTrX6Evv1BF2xGD2j1fXFgjc2pCuOtT3h82WfQAMYdq3jJaU31K2hnlGh6yWzky31d5UZFcLol46GYu9OFG94QXsAP85ooO3iHrzKmrGoW~QKbEi1CYbkpUB8HD85CZ-sbZR6E3abNjKFpAOclw26ecN-nufHKLRENxWUEmHSy-3hN~OJVhNG80-MiXj1vAJTnNlLcwr6zshm~233Jov5bCaLXpg96NX8n-ZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414867"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414867/Temperature_Dependence_of_the_Two_Photon_Absorption_Spectrum_of_Poly_di_n_Hexylsilane_"><img alt="Research paper thumbnail of Temperature Dependence of the Two-Photon Absorption Spectrum of Poly(di-n-Hexylsilane)" class="work-thumbnail" src="https://attachments.academia-assets.com/120294854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414867/Temperature_Dependence_of_the_Two_Photon_Absorption_Spectrum_of_Poly_di_n_Hexylsilane_">Temperature Dependence of the Two-Photon Absorption Spectrum of Poly(di-n-Hexylsilane)</a></div><div class="wp-workCard_item"><span>Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have measured the temperature dependence of the intensity of the lowest energy two-photon abso...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have measured the temperature dependence of the intensity of the lowest energy two-photon absorption line in poly(di-nhexylsilane) and find that it does not change between ambient temperature and 14 K. The line width decreases by about a factor of three.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9c8ec5db734569724c82ad55706212d5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294854,"asset_id":126414867,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294854/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414867"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414867"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414867; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414867]").text(description); $(".js-view-count[data-work-id=126414867]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414867; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414867']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9c8ec5db734569724c82ad55706212d5" } } $('.js-work-strip[data-work-id=126414867]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414867,"title":"Temperature Dependence of the Two-Photon Absorption Spectrum of Poly(di-n-Hexylsilane)","internal_url":"https://www.academia.edu/126414867/Temperature_Dependence_of_the_Two_Photon_Absorption_Spectrum_of_Poly_di_n_Hexylsilane_","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294854/thumbnails/1.jpg","file_name":"10136171.pdf","download_url":"https://www.academia.edu/attachments/120294854/download_file","bulk_download_file_name":"Temperature_Dependence_of_the_Two_Photon.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294854/10136171-libre.pdf?1734523222=\u0026response-content-disposition=attachment%3B+filename%3DTemperature_Dependence_of_the_Two_Photon.pdf\u0026Expires=1739712236\u0026Signature=J3kjBYfsdyx2hRgCl6w2s2b9paAAizbHuM0Hj7gw08fvHAUT5E92T4kkdX39dgjFKRf~ajcz8GpIc23WbQkn-yti4qz88mZX0gk50sjbxhCq~Epf~D~qCKNMSyT5Gs1INNphpjHPnEDuFcUInOlEu3qpLQF1Y9PmuZDpC4Noq-50Jirj1JuOhXHN4rSE9sZRqAXrOayMA1gUX~QoH35kGcxzvp801~kFkRBACfNE2d29YvnLWu2UtrjZgtUFk9Dw17gQa5MBsDqXUXmudRHg3Rlr7jJU4tFsRTDtOs-3q-ug-LK9F4ryvqrNu53xTfGKm5b5vl9YXw1YrZknmiVVQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414865"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414865/Motion_of_Localized_Triplet_Excitons"><img alt="Research paper thumbnail of Motion of Localized Triplet Excitons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414865/Motion_of_Localized_Triplet_Excitons">Motion of Localized Triplet Excitons</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1965</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A theory is developed for exciton—phonon interactions in ionic molecular crystals showing triplet...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A theory is developed for exciton—phonon interactions in ionic molecular crystals showing triplet-exciton magnetic resonance. By using a simple model for the phonon Hamiltonian it is shown that the triplet excitons tend to be localized, or ``self-trapped,&#39;&#39; and to move in a diffusional manner. The activation energy for diffusion is found to be essentially ½Λ, where Λ is the ``self-energy&#39;&#39; of the triplet exciton due to exciton—phonon interaction. It is suggested that the anomalous excess activation energy for exciton—exciton spin-exchange line broadening is ½Λ rather than the phonon-coupled exciton—exciton repulsion suggested previously. It is also shown that exciton creation and annihilation with the absorption and emission of phonons has no significant effect on the exciton magnetic resonance linewidths at low temperatures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414865"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414865"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414865; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414865]").text(description); $(".js-view-count[data-work-id=126414865]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414865; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414865']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414865]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414865,"title":"Motion of Localized Triplet Excitons","internal_url":"https://www.academia.edu/126414865/Motion_of_Localized_Triplet_Excitons","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414864"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414864/Magnetic_Excitations_in_Charge_Transfer_Complexes_I_p_Phenylenediamine_Chloranil"><img alt="Research paper thumbnail of Magnetic Excitations in Charge-Transfer Complexes. I. p-Phenylenediamine–Chloranil" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414864/Magnetic_Excitations_in_Charge_Transfer_Complexes_I_p_Phenylenediamine_Chloranil">Magnetic Excitations in Charge-Transfer Complexes. I. p-Phenylenediamine–Chloranil</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1968</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The electron magnetic resonance of single crystals of p-phenylenediamine–chloranil (PDC) at 160 M...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The electron magnetic resonance of single crystals of p-phenylenediamine–chloranil (PDC) at 160 Mc/sec, 9.5, and 35 Gc/sec is reported. The thermally accessible (activation energy 0.13 ± 0.01 eV) magnetic excitations for the linear chains of exchange-coupled, alternately PD cation and chloranil anion radicals (S = 12) are described by a single, almost axially symmetric g factor, with g‖ = 2.0024 ± 0.0002, g⊥ = 2.0054 ± 0.0002, and | gx − gy | ∼ 0.0001. Temperature-dependent g-factor splittings are observed below 315°K, while a single, strongly exchange-narrowed line (width ∼ 250 mG) is observed above 315° for any orientation of the crystal. The angular dependence of the splittings below 270°K corresponds to three magnetically inequivalent, independent free-radical chains related to each other by a threefold axis parallel to the chain axis, with a 6° angle between the chain axis and the normal to the molecular planes of the radicals. The collapse of the splittings between 270° and 31...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414864"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414864"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414864; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414864]").text(description); $(".js-view-count[data-work-id=126414864]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414864; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414864']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414864]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414864,"title":"Magnetic Excitations in Charge-Transfer Complexes. I. p-Phenylenediamine–Chloranil","internal_url":"https://www.academia.edu/126414864/Magnetic_Excitations_in_Charge_Transfer_Complexes_I_p_Phenylenediamine_Chloranil","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414863"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414863/Erratum_The_noncrossing_rule_and_degeneracy_in_Hubbard_models_Cyclobutadiene_and_benzene_J_Chem_Phys_7_1_3807_1979_"><img alt="Research paper thumbnail of Erratum: The noncrossing rule and degeneracy in Hubbard models: Cyclobutadiene and benzene [J. Chem. Phys. 7 1, 3807 (1979)]" class="work-thumbnail" src="https://attachments.academia-assets.com/120294849/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414863/Erratum_The_noncrossing_rule_and_degeneracy_in_Hubbard_models_Cyclobutadiene_and_benzene_J_Chem_Phys_7_1_3807_1979_">Erratum: The noncrossing rule and degeneracy in Hubbard models: Cyclobutadiene and benzene [J. Chem. Phys. 7 1, 3807 (1979)]</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1980</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ca1dac53837645f70d93a7a18a452935" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294849,"asset_id":126414863,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294849/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414863"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414863"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414863; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414863]").text(description); $(".js-view-count[data-work-id=126414863]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414863; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414863']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ca1dac53837645f70d93a7a18a452935" } } $('.js-work-strip[data-work-id=126414863]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414863,"title":"Erratum: The noncrossing rule and degeneracy in Hubbard models: Cyclobutadiene and benzene [J. Chem. Phys. 7 1, 3807 (1979)]","internal_url":"https://www.academia.edu/126414863/Erratum_The_noncrossing_rule_and_degeneracy_in_Hubbard_models_Cyclobutadiene_and_benzene_J_Chem_Phys_7_1_3807_1979_","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294849,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294849/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/120294849/download_file","bulk_download_file_name":"Erratum_The_noncrossing_rule_and_degener.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294849/1-libre.pdf?1734523223=\u0026response-content-disposition=attachment%3B+filename%3DErratum_The_noncrossing_rule_and_degener.pdf\u0026Expires=1739712236\u0026Signature=ZTGWV05D5S3kf2NDoqaHyEYYey9EL4dyYcxmIoNwhnqPKGfwWoRxvsRVoIOd0PiJ4yx1o~yl1Ytj9-H777qNilCcuANifgjV1R74fTOVPS2H0lgPMesZ4bArVtFT0B5mLWrXnRt3o8ETKSe-tVJhxlBayyE7ymidsfdvYqrHd8mbTFvvNi9k7KuqavAOVYs3HCQOvfF6z-N-BDbTkPP9s9dKbLns47CQoQz8YG36Z~iqH9HW703C2MP-Q3pELc-VZcDDGQyZ-i8ygRpmNqeDl54usb0E-qXRMyjUe01SShhnaTcv8~0kaXTTY6k-dU5LaRmiIxX5zHA~Gr2DiP22Ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414861"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414861/Erratum_Valence_bond_approach_to_exact_nonlinear_optical_properties_of_conjugated_systems_J_Chem_Phys_9_0_1067_1989_"><img alt="Research paper thumbnail of Erratum: Valence bond approach to exact nonlinear optical properties of conjugated systems [J. Chem. Phys. 9 0, 1067 (1989)]" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414861/Erratum_Valence_bond_approach_to_exact_nonlinear_optical_properties_of_conjugated_systems_J_Chem_Phys_9_0_1067_1989_">Erratum: Valence bond approach to exact nonlinear optical properties of conjugated systems [J. Chem. Phys. 9 0, 1067 (1989)]</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414861"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414861"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414861; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414861]").text(description); $(".js-view-count[data-work-id=126414861]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414861; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414861']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414861]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414861,"title":"Erratum: Valence bond approach to exact nonlinear optical properties of conjugated systems [J. Chem. Phys. 9 0, 1067 (1989)]","internal_url":"https://www.academia.edu/126414861/Erratum_Valence_bond_approach_to_exact_nonlinear_optical_properties_of_conjugated_systems_J_Chem_Phys_9_0_1067_1989_","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414860"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414860/Electron_phonon_coupling_in_conjugated_polymers_Reference_force_field_and_transferable_coupling_constants_for_polyacetylene"><img alt="Research paper thumbnail of Electron–phonon coupling in conjugated polymers: Reference force field and transferable coupling constants for polyacetylene" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414860/Electron_phonon_coupling_in_conjugated_polymers_Reference_force_field_and_transferable_coupling_constants_for_polyacetylene">Electron–phonon coupling in conjugated polymers: Reference force field and transferable coupling constants for polyacetylene</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A Herzberg–Teller expansion for π electrons in the ground state of conjugated polymers identifies...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A Herzberg–Teller expansion for π electrons in the ground state of conjugated polymers identifies quadratic electron–phonon (e–ph) contributions and suggests a σ+π reference force field F0 based on butadiene. Linear response theory then fixes linear e–ph coupling constants for the Raman shifts in polyacetylene (PA) due to π-electron fluctuations. The same coupling constants and the known isotopic dependences of the reference accurately give the Raman frequencies of (CD)x and (13CH)x; with a different susceptibility, F0 and the coupling constants also account for Raman modes of polyenes and for photo- or dopant-induced infrared modes of PA and its isotopes. We develop a general phenomenological approach for identifying modes coupled to π-electron fluctuations and show that both CCC and CCH bends are weakly active in PA. Linear and quadratic e–ph coupling constants and various susceptibilities are related to π-electron Hamiltonians, primarily to Hückel models and to Coulomb interactio...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414860"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414860"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414860; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414860]").text(description); $(".js-view-count[data-work-id=126414860]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414860; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414860']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414860]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414860,"title":"Electron–phonon coupling in conjugated polymers: Reference force field and transferable coupling constants for polyacetylene","internal_url":"https://www.academia.edu/126414860/Electron_phonon_coupling_in_conjugated_polymers_Reference_force_field_and_transferable_coupling_constants_for_polyacetylene","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414859"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414859/Electronic_correlations_and_midgap_absorption_in_polyacetylene"><img alt="Research paper thumbnail of Electronic correlations and midgap absorption in polyacetylene" class="work-thumbnail" src="https://attachments.academia-assets.com/120294846/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414859/Electronic_correlations_and_midgap_absorption_in_polyacetylene">Electronic correlations and midgap absorption in polyacetylene</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electronic correlations are important when they lift degeneracies of Huckel models. Standard Pari...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electronic correlations are important when they lift degeneracies of Huckel models. Standard Pariser–Parr–Pople (PPP) parameters split the degenerate midgap absorption of neutral solitons in undoped trans polyacetylene (CH)x. The dipole intensity goes entirely to the upper state close to the optical gap Eg. PPP correlations lower slightly the nondegenerate transition at Eg/2 of charged solitons, which consequently provide all the E∼Eg/2 intensity. Exact symmetries of correlated states and finite-chain computations are exploited in associating the midgap absorption of neat and lightly doped (CH)x entirely with charged solitons.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="332dd0020de4d5775cbb55c30214d241" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294846,"asset_id":126414859,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294846/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414859"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414859"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414859; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414859]").text(description); $(".js-view-count[data-work-id=126414859]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414859; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414859']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "332dd0020de4d5775cbb55c30214d241" } } $('.js-work-strip[data-work-id=126414859]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414859,"title":"Electronic correlations and midgap absorption in polyacetylene","internal_url":"https://www.academia.edu/126414859/Electronic_correlations_and_midgap_absorption_in_polyacetylene","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294846,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294846/thumbnails/1.jpg","file_name":"ajp-jphyscol198344C393.pdf","download_url":"https://www.academia.edu/attachments/120294846/download_file","bulk_download_file_name":"Electronic_correlations_and_midgap_absor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294846/ajp-jphyscol198344C393-libre.pdf?1734523227=\u0026response-content-disposition=attachment%3B+filename%3DElectronic_correlations_and_midgap_absor.pdf\u0026Expires=1739712236\u0026Signature=aNCG1qnk-4MZnwx9bj6vjSNr7nzbR3p08YxZiI62ZxScxmde15iHWfrxda9AaHMpnXIcyGbaMhXpnR1IgCUqQjDOJRvtvqD1oA1pVkSmnqHO187oPC0klqf2Q2tAKmVdGMoXQ0Z1hgvwRbYpA7kOcUwLAskMumK9h0sCt79t5ClwMNlcjzos8cjoaHPqLQKKP-4BwNIBgbAEQ520kWCYxxs16vuP8J1Q0QuNvc25zse9C6CSoGyP5hGeHG4kJ6gMij~wEtiz9EEXvpBA8buCyyndHB6x4ForfQQfAmFI3V4XwWEpcQLePilnOXJenfkVQOFLusipM7FVLYOR6roV~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414857"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414857/Erratum_Second_hyperpolarizability_of_H%C3%BCckel_rings_Analytical_results_for_size_and_alternation_dependencies_J_Chem_Phys_99_9265_1993_"><img alt="Research paper thumbnail of Erratum: Second hyperpolarizability of Hückel rings: Analytical results for size and alternation dependencies [J. Chem. Phys. 99, 9265 (1993)]" class="work-thumbnail" src="https://attachments.academia-assets.com/120294847/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414857/Erratum_Second_hyperpolarizability_of_H%C3%BCckel_rings_Analytical_results_for_size_and_alternation_dependencies_J_Chem_Phys_99_9265_1993_">Erratum: Second hyperpolarizability of Hückel rings: Analytical results for size and alternation dependencies [J. Chem. Phys. 99, 9265 (1993)]</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Due to a transcription error the second half of Eq. (A2) was inadvertently omitted. The complete ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Due to a transcription error the second half of Eq. (A2) was inadvertently omitted. The complete form is A-ea </J(k]±2'TrIN)-</J(k 1) (klk2/,ux/k3 k 4) = 4 sin('TrIN) cos 2 0"-3,k 1 ±2'TT!N°k 4 ,k 2 ea </J(k 2 ±2'TrIN)-</J(k 2) + 4 sin('TrIN) cos 2 Ok3,kl0k4,k2±2'TTIN' In addition, a sign error was detected in Eq. (Al) and the first boundary condition. The correct forms are and-ea (G/,ux/ kk)= 4 sin('TrIN) cos </J(k){Ok,-'TTI2+'TTIN+Ok,'TT/2-'TTIN}' Finally, the correct definition of the two double excited states used in (A3) is All of the equations, figures and conclusions in the main text are unaffected by these changes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4e9b7f06f686d1d7af9a0bd85a2fe0c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294847,"asset_id":126414857,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294847/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414857"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414857"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414857; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414857]").text(description); $(".js-view-count[data-work-id=126414857]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414857; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414857']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4e9b7f06f686d1d7af9a0bd85a2fe0c8" } } $('.js-work-strip[data-work-id=126414857]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414857,"title":"Erratum: Second hyperpolarizability of Hückel rings: Analytical results for size and alternation dependencies [J. Chem. Phys. 99, 9265 (1993)]","internal_url":"https://www.academia.edu/126414857/Erratum_Second_hyperpolarizability_of_H%C3%BCckel_rings_Analytical_results_for_size_and_alternation_dependencies_J_Chem_Phys_99_9265_1993_","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294847,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294847/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/120294847/download_file","bulk_download_file_name":"Erratum_Second_hyperpolarizability_of_Hu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294847/1-libre.pdf?1734523223=\u0026response-content-disposition=attachment%3B+filename%3DErratum_Second_hyperpolarizability_of_Hu.pdf\u0026Expires=1739712236\u0026Signature=fik70G~FqeT7IXJBO70DG5NIi6fcNEFiUOwBBPPckMb3qFF6miHt8ATG-nilh8MTxZnRa9~SYVEHs~Lms8CY9Vu1WJFiDPd2le-Gd-If8~s-JJooiMjaRcVheaPFidzQdNQa1GFcBXsCRmdZm65l~c4J3jl-RSshKdvjt5~i4GvffBsyRQvCpywteBAcF1fdR4xBZLtJqXl9q-xODlSUD3m31mfC9g62npxo0XY0L50dLo3v3II-agqpL1MQs~ymu6TQV0d5xrxn8SPDnO5OHaoRqJ3sf~J2-gGCjrFKd3lETweltJCUnq~U420ddxmslYIXHcjoLehq5lpBZQ-dnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414856"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414856/Correlated_%CF%80_electronic_states_Pyrene_16_site_polyene_and_D2h_symmetry_adaptation"><img alt="Research paper thumbnail of Correlated π-electronic states: Pyrene, 16-site polyene, and D2h symmetry adaptation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414856/Correlated_%CF%80_electronic_states_Pyrene_16_site_polyene_and_D2h_symmetry_adaptation">Correlated π-electronic states: Pyrene, 16-site polyene, and D2h symmetry adaptation</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Diagrammatic valence bond (DVB) theory is a general approach to electron correlations in quantum ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Diagrammatic valence bond (DVB) theory is a general approach to electron correlations in quantum cell models that conserve total spin. VB diagrams are a convenient many-electron basis for combining spin, point-group, and other symmetries in oligomers with a large but finite basis. Half-filled Hubbard or Pariser–Parr–Pople (PPP) models with 16 sites have ∼34.7×106 singlet diagrams. Improved DVB methods yield exact low-lying states of the 16-site polyene in C2h symmetry and of pyrene in D2h symmetry. Several generalizations of symmetry adaptation are necessary for large bases, including new rules for linearly independent basis vectors and an iterative method for Hamiltonian matrix elements that avoids overlap and inversion. The number and dimensions of the disjoint invariant subspaces Sm encountered in symmetry adaptation depend on the connectivity. D2h symmetry adaptation is much simpler for acenes than for pyrene, linear stilbene, or polyphenyls. Standard PPP parameters account well...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414856"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414856"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414856; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414856]").text(description); $(".js-view-count[data-work-id=126414856]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414856; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414856']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414856]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414856,"title":"Correlated π-electronic states: Pyrene, 16-site polyene, and D2h symmetry adaptation","internal_url":"https://www.academia.edu/126414856/Correlated_%CF%80_electronic_states_Pyrene_16_site_polyene_and_D2h_symmetry_adaptation","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414855"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414855/Charge_redistribution_and_electronic_polarization_in_organic_molecular_crystals"><img alt="Research paper thumbnail of Charge redistribution and electronic polarization in organic molecular crystals" class="work-thumbnail" src="https://attachments.academia-assets.com/120294862/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414855/Charge_redistribution_and_electronic_polarization_in_organic_molecular_crystals">Charge redistribution and electronic polarization in organic molecular crystals</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The electronic polarization of organic molecular crystals is obtained using the atom±atom polariz...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The electronic polarization of organic molecular crystals is obtained using the atom±atom polarizability tensor and charge redistribution in addition to previous theory based on induced dipoles. The dielectric tensors of anthracene and perylenetetracarboxylic acid dianhydride (PTCDA) crystals are successfully related to molecular polarizabilities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f5310ea5675572ad7396144996c77fe8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294862,"asset_id":126414855,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294862/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414855"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414855"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414855; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414855]").text(description); $(".js-view-count[data-work-id=126414855]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414855; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414855']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f5310ea5675572ad7396144996c77fe8" } } $('.js-work-strip[data-work-id=126414855]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414855,"title":"Charge redistribution and electronic polarization in organic molecular crystals","internal_url":"https://www.academia.edu/126414855/Charge_redistribution_and_electronic_polarization_in_organic_molecular_crystals","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294862,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294862/thumbnails/1.jpg","file_name":"epsilon.pdf","download_url":"https://www.academia.edu/attachments/120294862/download_file","bulk_download_file_name":"Charge_redistribution_and_electronic_pol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294862/epsilon-libre.pdf?1734523218=\u0026response-content-disposition=attachment%3B+filename%3DCharge_redistribution_and_electronic_pol.pdf\u0026Expires=1739712236\u0026Signature=SrsoZZHBW84A0w-6Ifm-9O1PZq6BXmLmO43k0lrzE~vujliN94pi2fa-6cVbSg9-6B53pKg2G7y2tYo1~-V3L8WSnSD8SLcz94fhrYKkyxQ~Sy~m4itOpVEteXOxRPUYNx6ccBOFatbjDwW0~U3oy8LbXc2TjSwAaWT2EBaTEJyjPZInQ~Om27bVAufFQvdQv2zPBsR9CAeINXY8FamVc90lwieMMKnacejdmLePvNabQf5T8mDBEkxBll9vhwB3KmhncRCdzdvvjFCG2H5MAukddC~JJ7pHyJZxG7nXOkRMIkCUyetpD0gWF1e79E1FEWiWgSUzL7jeBE0zfyNZjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414854"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414854/Electronic_polarization_at_surfaces_and_thin_films_of_organic_molecular_crystals_PTCDA"><img alt="Research paper thumbnail of Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA" class="work-thumbnail" src="https://attachments.academia-assets.com/120294840/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414854/Electronic_polarization_at_surfaces_and_thin_films_of_organic_molecular_crystals_PTCDA">Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The electronic polarization energies, P = P+ + P−, of a PTCDA (perylenetetracarboxylic acid dianh...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The electronic polarization energies, P = P+ + P−, of a PTCDA (perylenetetracarboxylic acid dianhydride) cation and anion in a crystalline thin film on a metallic substrate are computed and compared with measurements of the PTCDA transport gap on gold and silver. Both experiments and theory show that P is 500 meV larger in a PTCDA monolayer than in 50Å films. Electronic polarization in systems with surfaces and interfaces are obtained self-consistently in terms of charge redistribution within molecules.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9cb2ec923b424d3b8f2de1a17d42fa3a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294840,"asset_id":126414854,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294840/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414854"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414854"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414854; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414854]").text(description); $(".js-view-count[data-work-id=126414854]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414854; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414854']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9cb2ec923b424d3b8f2de1a17d42fa3a" } } $('.js-work-strip[data-work-id=126414854]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414854,"title":"Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA","internal_url":"https://www.academia.edu/126414854/Electronic_polarization_at_surfaces_and_thin_films_of_organic_molecular_crystals_PTCDA","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294840,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294840/thumbnails/1.jpg","file_name":"0205351.pdf","download_url":"https://www.academia.edu/attachments/120294840/download_file","bulk_download_file_name":"Electronic_polarization_at_surfaces_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294840/0205351-libre.pdf?1734523220=\u0026response-content-disposition=attachment%3B+filename%3DElectronic_polarization_at_surfaces_and.pdf\u0026Expires=1739712236\u0026Signature=YmFOXKER27tq5jsF6MVyiTxAYa0TZWFoCB5IyHRevRmscwx3iPEjcIyHVje11FTKRRzLE~1NyKCsLW0QgJP--H9T7WzblriBKOVFjoI~Y~vr93LzhmOnIZDCxRshEbiiDxOhpX29GszAY-fgIilxHH3WodTK6Np3sTKGpJkpyOYeXreaDL~43xWJl4Al~jV6QRp3WGv9AuahltWrDXenwCAr0MB0zUZ~CDMluRSWySNqkdPZ4cEs3cc6aEMauY2lLh4Ned50z29sZ~GGvfwk73zm~oNaMfh-v40Th7WisujDKDwT4QqIE9mRotuFnF1ZBrp7mpKJp7zc5iLJ8vOwHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414853/Charge_separation_energy_in_films_of_%CF%80_conjugated_organic_molecules"><img alt="Research paper thumbnail of Charge-separation energy in films of π-conjugated organic molecules" class="work-thumbnail" src="https://attachments.academia-assets.com/120294852/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414853/Charge_separation_energy_in_films_of_%CF%80_conjugated_organic_molecules">Charge-separation energy in films of π-conjugated organic molecules</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ž. Ž. We use inverse photoelectron spectroscopy IPES and ultraviolet photoelectron spectroscopy U...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ž. Ž. We use inverse photoelectron spectroscopy IPES and ultraviolet photoelectron spectroscopy UPS to investigate Ž. unoccupied and occupied electronic states of five organic semiconductor materials: CuPc copper phthalocyanine , PTCDA Ž. Ž. Ž X X</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a7cd778621616a14f189d90390e7cfe" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294852,"asset_id":126414853,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294852/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414853]").text(description); $(".js-view-count[data-work-id=126414853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a7cd778621616a14f189d90390e7cfe" } } $('.js-work-strip[data-work-id=126414853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414853,"title":"Charge-separation energy in films of π-conjugated organic molecules","internal_url":"https://www.academia.edu/126414853/Charge_separation_energy_in_films_of_%CF%80_conjugated_organic_molecules","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294852/thumbnails/1.jpg","file_name":"e-h_energy_cpl.pdf","download_url":"https://www.academia.edu/attachments/120294852/download_file","bulk_download_file_name":"Charge_separation_energy_in_films_of__c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294852/e-h_energy_cpl-libre.pdf?1734523219=\u0026response-content-disposition=attachment%3B+filename%3DCharge_separation_energy_in_films_of__c.pdf\u0026Expires=1739712236\u0026Signature=RXDXI4s4OY169udWX4NFeBjkUjS~oMfReDSolHJmOsIrcz1sKAdtu2iBY-36zZ~tvMxBnu4GOz0SFIaYRxobcTrAUtc6KW7N~~aqWG224po1RUBJ-fBls0Hzp26PZpT9C98xPZQxqfO6V8BAbASl3BhJs~Wc4UMT-U7jJ9U0oDEL~z7m2jfaBKz6olNaYZGsgWzk9j4a-VdzUjH4gNK4ISKeErfac-r2UgfYUbU8KBDA4dlYn5zbXhWp4iRVd97rZ5i65pyShx0RrB8akERZah0UaE38agwGn~0nEspYvyI0qKIkS5BMIP9iorrp1BC3nXrYgaYnhWjq9V47k5pfvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414852"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414852/Compensation_temperature_in_molecularly_doped_polymers"><img alt="Research paper thumbnail of Compensation temperature in molecularly doped polymers" class="work-thumbnail" src="https://attachments.academia-assets.com/120294839/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414852/Compensation_temperature_in_molecularly_doped_polymers">Compensation temperature in molecularly doped polymers</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The origin of the compensation temperature T , at which the mobility of holes in molecularly dope...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The origin of the compensation temperature T , at which the mobility of holes in molecularly doped polymers becomes 0 field-independent, is related to competition between positional or orientational disorder, which are treated explicitly, and energetic disorder, which is assumed to be Gaussian. Compensation is shown to occur for hopping rates with different intrinsic field dependencies by considering the strong-disorder limit. Mobility simulations with Marcus rates indicate low T 0 at low doping, as found in dilute systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6527a1bd8382284bd447183aca11de96" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294839,"asset_id":126414852,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294839/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414852"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414852"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414852; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414852]").text(description); $(".js-view-count[data-work-id=126414852]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414852; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414852']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6527a1bd8382284bd447183aca11de96" } } $('.js-work-strip[data-work-id=126414852]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414852,"title":"Compensation temperature in molecularly doped polymers","internal_url":"https://www.academia.edu/126414852/Compensation_temperature_in_molecularly_doped_polymers","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294839/thumbnails/1.jpg","file_name":"s0009-261428002900078-620241218-1-ekwwmg.pdf","download_url":"https://www.academia.edu/attachments/120294839/download_file","bulk_download_file_name":"Compensation_temperature_in_molecularly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294839/s0009-261428002900078-620241218-1-ekwwmg-libre.pdf?1734523219=\u0026response-content-disposition=attachment%3B+filename%3DCompensation_temperature_in_molecularly.pdf\u0026Expires=1739712236\u0026Signature=PFku8QB253UKXGaTEKUOlXSzFnvDlX8Gt2nNqsBfL1QOuy9QNF6zOr5FurKi~2RQq3PchqcH4vaxMOz1GtehA1VTqubQe~S~OULXotv7XShe7QCHO2iTzWpdnppqmwRFfNmO0q7Kq7WR5sHzJ3kiat5K48zonvwo-fWrh91LNs-2aoEJeaubZYT~myIL~0bPFoXkBzGpI96dKwVMUybBKLNO3Zkel2il4Y4OyM4HER4c4~agBX9Gm6fTqgZs89TMgFLlsS5mfgvlpdMpoSoJ4fNGXRkFQpWCXytyPXSOP96XV5XhwNWB1V~chIJYoB1KD3dOUD8099XQoLMFD3qnPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414851/Perylenes_and_polyenes_a_second_%CF%80_electron_approximation"><img alt="Research paper thumbnail of Perylenes and polyenes: a second π-electron approximation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414851/Perylenes_and_polyenes_a_second_%CF%80_electron_approximation">Perylenes and polyenes: a second π-electron approximation</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414851]").text(description); $(".js-view-count[data-work-id=126414851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414851,"title":"Perylenes and polyenes: a second π-electron approximation","internal_url":"https://www.academia.edu/126414851/Perylenes_and_polyenes_a_second_%CF%80_electron_approximation","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414850"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414850/Real_space_treatment_of_spin_Peierls_transitions_Gap_equation_and_magnetic_crossover_of_the_linear_Heisenberg_antiferromagnet"><img alt="Research paper thumbnail of Real-space treatment of spin-Peierls transitions: Gap equation and magnetic crossover of the linear Heisenberg antiferromagnet" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414850/Real_space_treatment_of_spin_Peierls_transitions_Gap_equation_and_magnetic_crossover_of_the_linear_Heisenberg_antiferromagnet">Real-space treatment of spin-Peierls transitions: Gap equation and magnetic crossover of the linear Heisenberg antiferromagnet</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The spin-Peierls transition at TSP of s = 1/2 Heisenberg antiferromagnetic chains with l...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The spin-Peierls transition at TSP of s = 1/2 Heisenberg antiferromagnetic chains with linear spin–phonon (sp–ph) coupling is modeled by exact solution up to N = 18 spins. Spin correlation alters the relation between TSP and the singlet–triplet gap, EST, from the free-fermion or mean-field (MF) result by 30%. Direct solution accounts for the transition, spin susceptibility and magnetization of a well-characterized chain of tetrathiafulvalene cation radicals. Strong sp–ph coupling is required for size convergence. Exact analysis conserves total spin, S, while only Sz is conserved in approximate treatments of spinless fermions in infinite chains.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414850"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414850"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414850; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414850]").text(description); $(".js-view-count[data-work-id=126414850]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414850; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414850']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414850]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414850,"title":"Real-space treatment of spin-Peierls transitions: Gap equation and magnetic crossover of the linear Heisenberg antiferromagnet","internal_url":"https://www.academia.edu/126414850/Real_space_treatment_of_spin_Peierls_transitions_Gap_equation_and_magnetic_crossover_of_the_linear_Heisenberg_antiferromagnet","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414849"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414849/Spin_solitons_in_organic_charge_transfer_salts"><img alt="Research paper thumbnail of Spin solitons in organic charge-transfer salts" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414849/Spin_solitons_in_organic_charge_transfer_salts">Spin solitons in organic charge-transfer salts</a></div><div class="wp-workCard_item"><span>Chemical Physics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Organic charge-transfer (CT) salts that crystallize in face-to-face stacks of pi-electron donors ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Organic charge-transfer (CT) salts that crystallize in face-to-face stacks of pi-electron donors (D) and acceptors (A) are one-dimensional electronic systems with strong coupling to lattice and molecular vibrations. Peierls Hubbard models of CT salts resemble pi-electron theory of conjugated polymers, although transfer integrals t along mixed DA stacks are considerably smaller. Strong D and A yield Peierls systems with dimerized ground states of ion radicals, D+ and A-. Topological spin solitons separate regions of opposite dimerization, similarly to solitons in trans-polyacetylene, but are thermally accessible in ionic CT salts due to small t. Salts with still smaller t have Peierls transitions at TP &lt; 300 K to undimerized stacks. A Peierls Hubbard model, HCT, describes both types of salts and estimates of t are consistent with TP &lt; 300 K in some salts and spin solitons in others with higher TP. Electron paramagnetic resonance (epr) spectra of single crystals provide direct evidence for spin solitons and one-dimensional electronic states. Spin solitons and HCT resolve longstanding conflicts between vibrational and magnetic data that indicate dimerized stacks in several prototypical CT salts, while structural data point to undimerized stacks with large thermal ellipsoids. The low energy scale, availability of single crystals and diversity of CT salts offer opportunities for detailed modeling.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414849"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414849"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414849; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414849]").text(description); $(".js-view-count[data-work-id=126414849]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414849; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414849']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414849]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414849,"title":"Spin solitons in organic charge-transfer salts","internal_url":"https://www.academia.edu/126414849/Spin_solitons_in_organic_charge_transfer_salts","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4040328" id="papers"><div class="js-work-strip profile--work_container" data-work-id="126414871"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414871/Metastable_domains_at_the_pressure_induced_neutral_ionic_transition_of_TTF_CA"><img alt="Research paper thumbnail of Metastable domains at the pressure induced neutral-ionic transition of TTF-CA" class="work-thumbnail" src="https://attachments.academia-assets.com/120294851/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414871/Metastable_domains_at_the_pressure_induced_neutral_ionic_transition_of_TTF_CA">Metastable domains at the pressure induced neutral-ionic transition of TTF-CA</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tetrathiafulvalene-Chloranil (TTF-CA) is the prototypical organic charge transfer (CT) salt whose...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tetrathiafulvalene-Chloranil (TTF-CA) is the prototypical organic charge transfer (CT) salt whose neutral-ionic and dimerization (Peierls) transitions have been studied on cooling or under pressure. Volume changes switch the ground state from a band insulator with a fractional CT from TTF to CA of rho˜ 0.3 in a regular stack to a Mott insulator with rho&gt; 0.5 in a dimerized stack. TTF-CA spectra indicate electron-vibration coupling to both lattice (e-ph) and molecular (e-mv) modes that lead to competing instabilities. Near the metallic point of the rigid system, a one-dimensional adiabatic Hubbard model with linear e-ph and e-mv coupling leads to metastable domains with different rho, rho&#39; that are thermally accessible at 300 K over a limited bistability range. The transition of TTF-CA single crystals at 1 GPa indicates a pressure range with two resolved rho, rho&#39;. The model also describes the first order transition at 81 K at ambient pressure and generates anharmonic pote...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5f88039b91543eac77c84132ad1f5600" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294851,"asset_id":126414871,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294851/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414871"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414871"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414871; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414871]").text(description); $(".js-view-count[data-work-id=126414871]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414871; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414871']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5f88039b91543eac77c84132ad1f5600" } } $('.js-work-strip[data-work-id=126414871]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414871,"title":"Metastable domains at the pressure induced neutral-ionic transition of TTF-CA","internal_url":"https://www.academia.edu/126414871/Metastable_domains_at_the_pressure_induced_neutral_ionic_transition_of_TTF_CA","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294851/thumbnails/1.jpg","file_name":"MWS_MAR07-2006-001222.pdf","download_url":"https://www.academia.edu/attachments/120294851/download_file","bulk_download_file_name":"Metastable_domains_at_the_pressure_induc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294851/MWS_MAR07-2006-001222-libre.pdf?1734523216=\u0026response-content-disposition=attachment%3B+filename%3DMetastable_domains_at_the_pressure_induc.pdf\u0026Expires=1739712236\u0026Signature=F4fOfvXbOrrwCFLmSTNvTIC66EOP1Crs6NKaVPqmmTtML9NJXf6b3dstLerCNYoY5OVaCSF8b~eGnloFwSNpNeJUSmoYLEgCJBtQ0iRgk4b90uRK1qTW6BI35Ih4~gtaQmGaO5UGUbNcvk-8YBDdN3KZ521Hb4WR6A-TOZVG1j3FKsTtw0cqNvpMhlKFDjnB3bhEu7F6k8YmirRH5erlt648WyEzIu1vuP2tBDxnFdbvz15V8lfC2gEWdysf5ZFzhAg2OVjg38iV56X6w7P2nwS~vUEfn979BsSVb42ZVZR--Bc9BRA0JcA6v6mD6-4F2sC7YcBbQBvOgh-FcLZ7hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414870"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414870/Thermal_and_Quantum_Peierls_Transitions_in_Organic_Charge_Transfer_Salts"><img alt="Research paper thumbnail of Thermal and Quantum Peierls Transitions in Organic Charge-Transfer Salts" class="work-thumbnail" src="https://attachments.academia-assets.com/120294850/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414870/Thermal_and_Quantum_Peierls_Transitions_in_Organic_Charge_Transfer_Salts">Thermal and Quantum Peierls Transitions in Organic Charge-Transfer Salts</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The choice of donors (D) and acceptors (A) governs the charge-transfer ρ in organic CT salts with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The choice of donors (D) and acceptors (A) governs the charge-transfer ρ in organic CT salts with mixed one-dimensional DADA stacks. Strong D and A yield ρ ˜ 0.9 stacks of radical ions with thermally accessible spin and charge degrees of freedom whose Peierls transition can be described by a Hubbard model with site energies. The same microscopic model describes CT salts with smaller and variable ρ ˜ 0.5 in which neutral-ionic and/or Peierls transitions occur in the ground electronic state. Quantum transitions are driven by volume changes, with negligible thermal population of excite states. CT salts with thermal or quantum Peierls transitions are identified. Conflicting magnetic, vibrational and structural data in several CT salts are resolved in terms of mobile spin solitons, a dimerized ground state and a Peierls transition beyond the crystal&#39;s thermal stability.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dd707786edcb18b67d475544e9e9d983" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294850,"asset_id":126414870,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294850/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414870"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414870"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414870; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414870]").text(description); $(".js-view-count[data-work-id=126414870]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414870; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414870']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dd707786edcb18b67d475544e9e9d983" } } $('.js-work-strip[data-work-id=126414870]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414870,"title":"Thermal and Quantum Peierls Transitions in Organic Charge-Transfer Salts","internal_url":"https://www.academia.edu/126414870/Thermal_and_Quantum_Peierls_Transitions_in_Organic_Charge_Transfer_Salts","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294850,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294850/thumbnails/1.jpg","file_name":"MWS_MAR06-2005-001693.pdf","download_url":"https://www.academia.edu/attachments/120294850/download_file","bulk_download_file_name":"Thermal_and_Quantum_Peierls_Transitions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294850/MWS_MAR06-2005-001693-libre.pdf?1734523217=\u0026response-content-disposition=attachment%3B+filename%3DThermal_and_Quantum_Peierls_Transitions.pdf\u0026Expires=1739712236\u0026Signature=Xoz7PD8UKuu-3MhhWCYZ8UU0WEFqasRKVlVll~YBkjffmatPWzRRsN7gPtHIBbbehtnz0cVWNqg2yZLWI7wYQvO4YNsjSxE9a8yfXsOTRBN6gFLGe86g1DiTIdsQAqPl~QjtWiaHv4c4v7D~oDKtzGVPLszGTWxYH4Mih9L1mKeNagCuekxZF1A9IavuZS356d84Ujs74Z~kEnMV4Jeo22EYZxIqO~-mwp15kLnDAuHsPiv5da3jrhfJMiC1FrzN63Tzvte9omq5DFuEkTZ5QKI0kMJrh1pPrDo1pGhPVN9kfKcQ0ZDE33k0LsobbdmbUFjZcNsNpDHr7G21vP3Vmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414869"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414869/Peierls_Transitions_in_Ionic_Organic_Charge_Transfer_Crystals_with_Spin_and_Charge_Degrees_of_Freedom"><img alt="Research paper thumbnail of Peierls Transitions in Ionic Organic Charge-Transfer Crystals with Spin and Charge Degrees of Freedom" class="work-thumbnail" src="https://attachments.academia-assets.com/120294853/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414869/Peierls_Transitions_in_Ionic_Organic_Charge_Transfer_Crystals_with_Spin_and_Charge_Degrees_of_Freedom">Peierls Transitions in Ionic Organic Charge-Transfer Crystals with Spin and Charge Degrees of Freedom</a></div><div class="wp-workCard_item"><span>The Journal of Physical Chemistry B</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The quasi-one-dimensional electronic structure of organic charge-transfer (CT) salts rationalizes...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The quasi-one-dimensional electronic structure of organic charge-transfer (CT) salts rationalizes Peierls transitions in mixed or segregated stacks of π-electron donors (D) and acceptors (A). A microscopic Peierls-Hubbard model, H CT , is presented for CT salts with mixed stacks (D F+ A F-) n and ionicity F > 0.7. Dimerization opens a Peierls gap that, due to electron correlation, is the singlet-triplet gap, E ST. In contrast to spin-Peierls systems, such as Heisenberg spin chains with F) 1 and T SP < 20 K, Peierls transitions in CT salts with F < 1 occur at higher T P and involve both spin and charge degrees of freedom. Linear electron-phonon coupling and an adiabatic approximation for a harmonic lattice are used to model the dimerization amplitude δ(T) for T < T P , the magnetic (spin) susceptibility (T), and the relative infrared intensity of totally symmetric molecular modes. Exact thermodynamics of H CT for stacks up to N) 12 sites are applied to two CT salts with T P ∼ 50 and 120 K whose magnetism and infrared have not been modeled previously and to CT salts with inaccessibly high T P > 350 K whose description has been difficult. Ionic CT salts are correlated Peierls systems with a degenerate ground state (GS) at T) 0 whose elementary excitations are spin solitons, while dimerized ionradical stacks that support triplet-spin excitons have nondegenerate GS. In less ionic CT salts, modulation of H CT parameters on cooling or under pressure leads to Peierls and/or neutral-ionic transitions of the GS, without appreciable thermal population of excited states. Correlations change the gap equation that relates E ST at T) 0 to T P compared to free electrons, and size convergence is fast in stacks with large δ(0) and high T P .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4c4fe8a3e433638159ba178288502537" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294853,"asset_id":126414869,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294853/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414869"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414869"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414869; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414869]").text(description); $(".js-view-count[data-work-id=126414869]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414869; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414869']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4c4fe8a3e433638159ba178288502537" } } $('.js-work-strip[data-work-id=126414869]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414869,"title":"Peierls Transitions in Ionic Organic Charge-Transfer Crystals with Spin and Charge Degrees of Freedom","internal_url":"https://www.academia.edu/126414869/Peierls_Transitions_in_Ionic_Organic_Charge_Transfer_Crystals_with_Spin_and_Charge_Degrees_of_Freedom","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294853/thumbnails/1.jpg","file_name":"jp055202220241218-1-6o46ye.pdf","download_url":"https://www.academia.edu/attachments/120294853/download_file","bulk_download_file_name":"Peierls_Transitions_in_Ionic_Organic_Cha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294853/jp055202220241218-1-6o46ye-libre.pdf?1734523226=\u0026response-content-disposition=attachment%3B+filename%3DPeierls_Transitions_in_Ionic_Organic_Cha.pdf\u0026Expires=1739712236\u0026Signature=HgIaz2XJjHVKFmEWmFpyBovZCiAl4hsqxZJugGI4U~r-1VIkiUmCu-33p-FRCzGCCNi18IUhzJsVnh7E8vs-RDRcWVuQjuxMIIxKFGyKQ9Q61j05zTo-WekheiaWUQVVD5VPGRdlB0~WVF9gQPLWJ3MLFkSoQjQMDtj8kU-BRP3doNc59H8r5P46Amddg7PFuk8O1dc8VteGHge4dRc2yZvNN-fQi7EwkjFm99c7QGJzIRAS~Vd2cprY~SokI7678z74qY3XgR-lLbIIQwY5ChfXaUR5Z5Xoy7FYtPykQvC92cKxOC0pxhUqwTsTW956k4kb9OeEb0GSA9hdNm-6uw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414868"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414868/Orbital_contributions_to_the_magnetic_susceptibility_of_one_dimensional_Hubbard_models_with_partial_filling_and_strong_correlation"><img alt="Research paper thumbnail of Orbital contributions to the magnetic susceptibility of one-dimensional Hubbard models with partial filling and strong correlation" class="work-thumbnail" src="https://attachments.academia-assets.com/120294848/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414868/Orbital_contributions_to_the_magnetic_susceptibility_of_one_dimensional_Hubbard_models_with_partial_filling_and_strong_correlation">Orbital contributions to the magnetic susceptibility of one-dimensional Hubbard models with partial filling and strong correlation</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The one-dimensional ͑1D͒ Hubbard model with partial filling Ͻ 1 and strong correlation U Ͼ 4t is ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The one-dimensional ͑1D͒ Hubbard model with partial filling Ͻ 1 and strong correlation U Ͼ 4t is approximated by a t-J model with real transfers t between adjacent occupied and empty sites, and virtual transfers J between adjacent spin-paired sites. Finite t-J models with Ͻ 1 preserve spin-charge separation in the atomic limit ͑J =0͒ for open boundary conditions, but not for periodic boundary conditions. The absolute magnetic susceptibility ͑T͒ of finite systems is found exactly and shown to converge to the infinite chain when k B T exceeds J. Strong orbital contributions to ͑T͒ are demonstrated in systems with t, J, and chosen to have identical ͑0͒ per electron, as known exactly for the 1D Hubbard model. Orbital contributions for Ͻ 1 preclude treating the spin susceptibility of partly filled bands in terms of = 1 systems such as Heisenberg spin chains, as assumed previously. Orbital contributions at = 0.6 are used to model the spin susceptibility of tetrathiafulvalene-tetracyanoquinodimethan above the metal-insulator transition, both at constant spacing along the stack and with a linear t͑T͒. The parameters at T ϳ 100 K are t = 0.15 eV and J =2t 2 / U = 0.053 eV, indicative of strong correlation U Ͼ 4t in this prototypical organic salt.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c07bbe6a3760072fdfc327954cad66b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294848,"asset_id":126414868,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294848/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414868"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414868"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414868; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414868]").text(description); $(".js-view-count[data-work-id=126414868]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414868; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414868']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c07bbe6a3760072fdfc327954cad66b7" } } $('.js-work-strip[data-work-id=126414868]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414868,"title":"Orbital contributions to the magnetic susceptibility of one-dimensional Hubbard models with partial filling and strong correlation","internal_url":"https://www.academia.edu/126414868/Orbital_contributions_to_the_magnetic_susceptibility_of_one_dimensional_Hubbard_models_with_partial_filling_and_strong_correlation","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294848/thumbnails/1.jpg","file_name":"PhysRevB.74.20512520241218-1-pahtvq.pdf","download_url":"https://www.academia.edu/attachments/120294848/download_file","bulk_download_file_name":"Orbital_contributions_to_the_magnetic_su.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294848/PhysRevB.74.20512520241218-1-pahtvq-libre.pdf?1734523225=\u0026response-content-disposition=attachment%3B+filename%3DOrbital_contributions_to_the_magnetic_su.pdf\u0026Expires=1739712236\u0026Signature=MvTl2HD~xEs3aoygSFEgBiwM5rUfhh1eBkmlafArbXoTM~X-WjT~isKoxh1o8QrxZ8qSt4WHC23~VZs9VrxT2JjN3Qv5awsjJ8yAvj-TtMFjgQk2cZTrX6Evv1BF2xGD2j1fXFgjc2pCuOtT3h82WfQAMYdq3jJaU31K2hnlGh6yWzky31d5UZFcLol46GYu9OFG94QXsAP85ooO3iHrzKmrGoW~QKbEi1CYbkpUB8HD85CZ-sbZR6E3abNjKFpAOclw26ecN-nufHKLRENxWUEmHSy-3hN~OJVhNG80-MiXj1vAJTnNlLcwr6zshm~233Jov5bCaLXpg96NX8n-ZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414867"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414867/Temperature_Dependence_of_the_Two_Photon_Absorption_Spectrum_of_Poly_di_n_Hexylsilane_"><img alt="Research paper thumbnail of Temperature Dependence of the Two-Photon Absorption Spectrum of Poly(di-n-Hexylsilane)" class="work-thumbnail" src="https://attachments.academia-assets.com/120294854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414867/Temperature_Dependence_of_the_Two_Photon_Absorption_Spectrum_of_Poly_di_n_Hexylsilane_">Temperature Dependence of the Two-Photon Absorption Spectrum of Poly(di-n-Hexylsilane)</a></div><div class="wp-workCard_item"><span>Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have measured the temperature dependence of the intensity of the lowest energy two-photon abso...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have measured the temperature dependence of the intensity of the lowest energy two-photon absorption line in poly(di-nhexylsilane) and find that it does not change between ambient temperature and 14 K. The line width decreases by about a factor of three.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9c8ec5db734569724c82ad55706212d5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294854,"asset_id":126414867,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294854/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414867"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414867"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414867; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414867]").text(description); $(".js-view-count[data-work-id=126414867]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414867; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414867']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9c8ec5db734569724c82ad55706212d5" } } $('.js-work-strip[data-work-id=126414867]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414867,"title":"Temperature Dependence of the Two-Photon Absorption Spectrum of Poly(di-n-Hexylsilane)","internal_url":"https://www.academia.edu/126414867/Temperature_Dependence_of_the_Two_Photon_Absorption_Spectrum_of_Poly_di_n_Hexylsilane_","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294854/thumbnails/1.jpg","file_name":"10136171.pdf","download_url":"https://www.academia.edu/attachments/120294854/download_file","bulk_download_file_name":"Temperature_Dependence_of_the_Two_Photon.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294854/10136171-libre.pdf?1734523222=\u0026response-content-disposition=attachment%3B+filename%3DTemperature_Dependence_of_the_Two_Photon.pdf\u0026Expires=1739712236\u0026Signature=J3kjBYfsdyx2hRgCl6w2s2b9paAAizbHuM0Hj7gw08fvHAUT5E92T4kkdX39dgjFKRf~ajcz8GpIc23WbQkn-yti4qz88mZX0gk50sjbxhCq~Epf~D~qCKNMSyT5Gs1INNphpjHPnEDuFcUInOlEu3qpLQF1Y9PmuZDpC4Noq-50Jirj1JuOhXHN4rSE9sZRqAXrOayMA1gUX~QoH35kGcxzvp801~kFkRBACfNE2d29YvnLWu2UtrjZgtUFk9Dw17gQa5MBsDqXUXmudRHg3Rlr7jJU4tFsRTDtOs-3q-ug-LK9F4ryvqrNu53xTfGKm5b5vl9YXw1YrZknmiVVQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414865"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414865/Motion_of_Localized_Triplet_Excitons"><img alt="Research paper thumbnail of Motion of Localized Triplet Excitons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414865/Motion_of_Localized_Triplet_Excitons">Motion of Localized Triplet Excitons</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1965</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A theory is developed for exciton—phonon interactions in ionic molecular crystals showing triplet...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A theory is developed for exciton—phonon interactions in ionic molecular crystals showing triplet-exciton magnetic resonance. By using a simple model for the phonon Hamiltonian it is shown that the triplet excitons tend to be localized, or ``self-trapped,&#39;&#39; and to move in a diffusional manner. The activation energy for diffusion is found to be essentially ½Λ, where Λ is the ``self-energy&#39;&#39; of the triplet exciton due to exciton—phonon interaction. It is suggested that the anomalous excess activation energy for exciton—exciton spin-exchange line broadening is ½Λ rather than the phonon-coupled exciton—exciton repulsion suggested previously. It is also shown that exciton creation and annihilation with the absorption and emission of phonons has no significant effect on the exciton magnetic resonance linewidths at low temperatures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414865"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414865"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414865; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414865]").text(description); $(".js-view-count[data-work-id=126414865]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414865; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414865']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414865]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414865,"title":"Motion of Localized Triplet Excitons","internal_url":"https://www.academia.edu/126414865/Motion_of_Localized_Triplet_Excitons","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414864"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414864/Magnetic_Excitations_in_Charge_Transfer_Complexes_I_p_Phenylenediamine_Chloranil"><img alt="Research paper thumbnail of Magnetic Excitations in Charge-Transfer Complexes. I. p-Phenylenediamine–Chloranil" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414864/Magnetic_Excitations_in_Charge_Transfer_Complexes_I_p_Phenylenediamine_Chloranil">Magnetic Excitations in Charge-Transfer Complexes. I. p-Phenylenediamine–Chloranil</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1968</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The electron magnetic resonance of single crystals of p-phenylenediamine–chloranil (PDC) at 160 M...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The electron magnetic resonance of single crystals of p-phenylenediamine–chloranil (PDC) at 160 Mc/sec, 9.5, and 35 Gc/sec is reported. The thermally accessible (activation energy 0.13 ± 0.01 eV) magnetic excitations for the linear chains of exchange-coupled, alternately PD cation and chloranil anion radicals (S = 12) are described by a single, almost axially symmetric g factor, with g‖ = 2.0024 ± 0.0002, g⊥ = 2.0054 ± 0.0002, and | gx − gy | ∼ 0.0001. Temperature-dependent g-factor splittings are observed below 315°K, while a single, strongly exchange-narrowed line (width ∼ 250 mG) is observed above 315° for any orientation of the crystal. The angular dependence of the splittings below 270°K corresponds to three magnetically inequivalent, independent free-radical chains related to each other by a threefold axis parallel to the chain axis, with a 6° angle between the chain axis and the normal to the molecular planes of the radicals. The collapse of the splittings between 270° and 31...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414864"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414864"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414864; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414864]").text(description); $(".js-view-count[data-work-id=126414864]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414864; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414864']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414864]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414864,"title":"Magnetic Excitations in Charge-Transfer Complexes. I. p-Phenylenediamine–Chloranil","internal_url":"https://www.academia.edu/126414864/Magnetic_Excitations_in_Charge_Transfer_Complexes_I_p_Phenylenediamine_Chloranil","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414863"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414863/Erratum_The_noncrossing_rule_and_degeneracy_in_Hubbard_models_Cyclobutadiene_and_benzene_J_Chem_Phys_7_1_3807_1979_"><img alt="Research paper thumbnail of Erratum: The noncrossing rule and degeneracy in Hubbard models: Cyclobutadiene and benzene [J. Chem. Phys. 7 1, 3807 (1979)]" class="work-thumbnail" src="https://attachments.academia-assets.com/120294849/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414863/Erratum_The_noncrossing_rule_and_degeneracy_in_Hubbard_models_Cyclobutadiene_and_benzene_J_Chem_Phys_7_1_3807_1979_">Erratum: The noncrossing rule and degeneracy in Hubbard models: Cyclobutadiene and benzene [J. Chem. Phys. 7 1, 3807 (1979)]</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1980</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ca1dac53837645f70d93a7a18a452935" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294849,"asset_id":126414863,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294849/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414863"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414863"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414863; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414863]").text(description); $(".js-view-count[data-work-id=126414863]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414863; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414863']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ca1dac53837645f70d93a7a18a452935" } } $('.js-work-strip[data-work-id=126414863]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414863,"title":"Erratum: The noncrossing rule and degeneracy in Hubbard models: Cyclobutadiene and benzene [J. Chem. Phys. 7 1, 3807 (1979)]","internal_url":"https://www.academia.edu/126414863/Erratum_The_noncrossing_rule_and_degeneracy_in_Hubbard_models_Cyclobutadiene_and_benzene_J_Chem_Phys_7_1_3807_1979_","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294849,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294849/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/120294849/download_file","bulk_download_file_name":"Erratum_The_noncrossing_rule_and_degener.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294849/1-libre.pdf?1734523223=\u0026response-content-disposition=attachment%3B+filename%3DErratum_The_noncrossing_rule_and_degener.pdf\u0026Expires=1739712236\u0026Signature=ZTGWV05D5S3kf2NDoqaHyEYYey9EL4dyYcxmIoNwhnqPKGfwWoRxvsRVoIOd0PiJ4yx1o~yl1Ytj9-H777qNilCcuANifgjV1R74fTOVPS2H0lgPMesZ4bArVtFT0B5mLWrXnRt3o8ETKSe-tVJhxlBayyE7ymidsfdvYqrHd8mbTFvvNi9k7KuqavAOVYs3HCQOvfF6z-N-BDbTkPP9s9dKbLns47CQoQz8YG36Z~iqH9HW703C2MP-Q3pELc-VZcDDGQyZ-i8ygRpmNqeDl54usb0E-qXRMyjUe01SShhnaTcv8~0kaXTTY6k-dU5LaRmiIxX5zHA~Gr2DiP22Ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414861"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414861/Erratum_Valence_bond_approach_to_exact_nonlinear_optical_properties_of_conjugated_systems_J_Chem_Phys_9_0_1067_1989_"><img alt="Research paper thumbnail of Erratum: Valence bond approach to exact nonlinear optical properties of conjugated systems [J. Chem. Phys. 9 0, 1067 (1989)]" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414861/Erratum_Valence_bond_approach_to_exact_nonlinear_optical_properties_of_conjugated_systems_J_Chem_Phys_9_0_1067_1989_">Erratum: Valence bond approach to exact nonlinear optical properties of conjugated systems [J. Chem. Phys. 9 0, 1067 (1989)]</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414861"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414861"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414861; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414861]").text(description); $(".js-view-count[data-work-id=126414861]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414861; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414861']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414861]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414861,"title":"Erratum: Valence bond approach to exact nonlinear optical properties of conjugated systems [J. Chem. Phys. 9 0, 1067 (1989)]","internal_url":"https://www.academia.edu/126414861/Erratum_Valence_bond_approach_to_exact_nonlinear_optical_properties_of_conjugated_systems_J_Chem_Phys_9_0_1067_1989_","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414860"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414860/Electron_phonon_coupling_in_conjugated_polymers_Reference_force_field_and_transferable_coupling_constants_for_polyacetylene"><img alt="Research paper thumbnail of Electron–phonon coupling in conjugated polymers: Reference force field and transferable coupling constants for polyacetylene" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414860/Electron_phonon_coupling_in_conjugated_polymers_Reference_force_field_and_transferable_coupling_constants_for_polyacetylene">Electron–phonon coupling in conjugated polymers: Reference force field and transferable coupling constants for polyacetylene</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A Herzberg–Teller expansion for π electrons in the ground state of conjugated polymers identifies...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A Herzberg–Teller expansion for π electrons in the ground state of conjugated polymers identifies quadratic electron–phonon (e–ph) contributions and suggests a σ+π reference force field F0 based on butadiene. Linear response theory then fixes linear e–ph coupling constants for the Raman shifts in polyacetylene (PA) due to π-electron fluctuations. The same coupling constants and the known isotopic dependences of the reference accurately give the Raman frequencies of (CD)x and (13CH)x; with a different susceptibility, F0 and the coupling constants also account for Raman modes of polyenes and for photo- or dopant-induced infrared modes of PA and its isotopes. We develop a general phenomenological approach for identifying modes coupled to π-electron fluctuations and show that both CCC and CCH bends are weakly active in PA. Linear and quadratic e–ph coupling constants and various susceptibilities are related to π-electron Hamiltonians, primarily to Hückel models and to Coulomb interactio...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414860"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414860"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414860; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414860]").text(description); $(".js-view-count[data-work-id=126414860]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414860; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414860']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414860]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414860,"title":"Electron–phonon coupling in conjugated polymers: Reference force field and transferable coupling constants for polyacetylene","internal_url":"https://www.academia.edu/126414860/Electron_phonon_coupling_in_conjugated_polymers_Reference_force_field_and_transferable_coupling_constants_for_polyacetylene","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414859"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414859/Electronic_correlations_and_midgap_absorption_in_polyacetylene"><img alt="Research paper thumbnail of Electronic correlations and midgap absorption in polyacetylene" class="work-thumbnail" src="https://attachments.academia-assets.com/120294846/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414859/Electronic_correlations_and_midgap_absorption_in_polyacetylene">Electronic correlations and midgap absorption in polyacetylene</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electronic correlations are important when they lift degeneracies of Huckel models. Standard Pari...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electronic correlations are important when they lift degeneracies of Huckel models. Standard Pariser–Parr–Pople (PPP) parameters split the degenerate midgap absorption of neutral solitons in undoped trans polyacetylene (CH)x. The dipole intensity goes entirely to the upper state close to the optical gap Eg. PPP correlations lower slightly the nondegenerate transition at Eg/2 of charged solitons, which consequently provide all the E∼Eg/2 intensity. Exact symmetries of correlated states and finite-chain computations are exploited in associating the midgap absorption of neat and lightly doped (CH)x entirely with charged solitons.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="332dd0020de4d5775cbb55c30214d241" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294846,"asset_id":126414859,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294846/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414859"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414859"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414859; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414859]").text(description); $(".js-view-count[data-work-id=126414859]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414859; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414859']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "332dd0020de4d5775cbb55c30214d241" } } $('.js-work-strip[data-work-id=126414859]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414859,"title":"Electronic correlations and midgap absorption in polyacetylene","internal_url":"https://www.academia.edu/126414859/Electronic_correlations_and_midgap_absorption_in_polyacetylene","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294846,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294846/thumbnails/1.jpg","file_name":"ajp-jphyscol198344C393.pdf","download_url":"https://www.academia.edu/attachments/120294846/download_file","bulk_download_file_name":"Electronic_correlations_and_midgap_absor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294846/ajp-jphyscol198344C393-libre.pdf?1734523227=\u0026response-content-disposition=attachment%3B+filename%3DElectronic_correlations_and_midgap_absor.pdf\u0026Expires=1739712236\u0026Signature=aNCG1qnk-4MZnwx9bj6vjSNr7nzbR3p08YxZiI62ZxScxmde15iHWfrxda9AaHMpnXIcyGbaMhXpnR1IgCUqQjDOJRvtvqD1oA1pVkSmnqHO187oPC0klqf2Q2tAKmVdGMoXQ0Z1hgvwRbYpA7kOcUwLAskMumK9h0sCt79t5ClwMNlcjzos8cjoaHPqLQKKP-4BwNIBgbAEQ520kWCYxxs16vuP8J1Q0QuNvc25zse9C6CSoGyP5hGeHG4kJ6gMij~wEtiz9EEXvpBA8buCyyndHB6x4ForfQQfAmFI3V4XwWEpcQLePilnOXJenfkVQOFLusipM7FVLYOR6roV~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414857"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414857/Erratum_Second_hyperpolarizability_of_H%C3%BCckel_rings_Analytical_results_for_size_and_alternation_dependencies_J_Chem_Phys_99_9265_1993_"><img alt="Research paper thumbnail of Erratum: Second hyperpolarizability of Hückel rings: Analytical results for size and alternation dependencies [J. Chem. Phys. 99, 9265 (1993)]" class="work-thumbnail" src="https://attachments.academia-assets.com/120294847/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414857/Erratum_Second_hyperpolarizability_of_H%C3%BCckel_rings_Analytical_results_for_size_and_alternation_dependencies_J_Chem_Phys_99_9265_1993_">Erratum: Second hyperpolarizability of Hückel rings: Analytical results for size and alternation dependencies [J. Chem. Phys. 99, 9265 (1993)]</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Due to a transcription error the second half of Eq. (A2) was inadvertently omitted. The complete ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Due to a transcription error the second half of Eq. (A2) was inadvertently omitted. The complete form is A-ea </J(k]±2'TrIN)-</J(k 1) (klk2/,ux/k3 k 4) = 4 sin('TrIN) cos 2 0"-3,k 1 ±2'TT!N°k 4 ,k 2 ea </J(k 2 ±2'TrIN)-</J(k 2) + 4 sin('TrIN) cos 2 Ok3,kl0k4,k2±2'TTIN' In addition, a sign error was detected in Eq. (Al) and the first boundary condition. The correct forms are and-ea (G/,ux/ kk)= 4 sin('TrIN) cos </J(k){Ok,-'TTI2+'TTIN+Ok,'TT/2-'TTIN}' Finally, the correct definition of the two double excited states used in (A3) is All of the equations, figures and conclusions in the main text are unaffected by these changes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4e9b7f06f686d1d7af9a0bd85a2fe0c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294847,"asset_id":126414857,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294847/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414857"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414857"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414857; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414857]").text(description); $(".js-view-count[data-work-id=126414857]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414857; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414857']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4e9b7f06f686d1d7af9a0bd85a2fe0c8" } } $('.js-work-strip[data-work-id=126414857]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414857,"title":"Erratum: Second hyperpolarizability of Hückel rings: Analytical results for size and alternation dependencies [J. Chem. Phys. 99, 9265 (1993)]","internal_url":"https://www.academia.edu/126414857/Erratum_Second_hyperpolarizability_of_H%C3%BCckel_rings_Analytical_results_for_size_and_alternation_dependencies_J_Chem_Phys_99_9265_1993_","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294847,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294847/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/120294847/download_file","bulk_download_file_name":"Erratum_Second_hyperpolarizability_of_Hu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294847/1-libre.pdf?1734523223=\u0026response-content-disposition=attachment%3B+filename%3DErratum_Second_hyperpolarizability_of_Hu.pdf\u0026Expires=1739712236\u0026Signature=fik70G~FqeT7IXJBO70DG5NIi6fcNEFiUOwBBPPckMb3qFF6miHt8ATG-nilh8MTxZnRa9~SYVEHs~Lms8CY9Vu1WJFiDPd2le-Gd-If8~s-JJooiMjaRcVheaPFidzQdNQa1GFcBXsCRmdZm65l~c4J3jl-RSshKdvjt5~i4GvffBsyRQvCpywteBAcF1fdR4xBZLtJqXl9q-xODlSUD3m31mfC9g62npxo0XY0L50dLo3v3II-agqpL1MQs~ymu6TQV0d5xrxn8SPDnO5OHaoRqJ3sf~J2-gGCjrFKd3lETweltJCUnq~U420ddxmslYIXHcjoLehq5lpBZQ-dnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414856"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414856/Correlated_%CF%80_electronic_states_Pyrene_16_site_polyene_and_D2h_symmetry_adaptation"><img alt="Research paper thumbnail of Correlated π-electronic states: Pyrene, 16-site polyene, and D2h symmetry adaptation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414856/Correlated_%CF%80_electronic_states_Pyrene_16_site_polyene_and_D2h_symmetry_adaptation">Correlated π-electronic states: Pyrene, 16-site polyene, and D2h symmetry adaptation</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Diagrammatic valence bond (DVB) theory is a general approach to electron correlations in quantum ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Diagrammatic valence bond (DVB) theory is a general approach to electron correlations in quantum cell models that conserve total spin. VB diagrams are a convenient many-electron basis for combining spin, point-group, and other symmetries in oligomers with a large but finite basis. Half-filled Hubbard or Pariser–Parr–Pople (PPP) models with 16 sites have ∼34.7×106 singlet diagrams. Improved DVB methods yield exact low-lying states of the 16-site polyene in C2h symmetry and of pyrene in D2h symmetry. Several generalizations of symmetry adaptation are necessary for large bases, including new rules for linearly independent basis vectors and an iterative method for Hamiltonian matrix elements that avoids overlap and inversion. The number and dimensions of the disjoint invariant subspaces Sm encountered in symmetry adaptation depend on the connectivity. D2h symmetry adaptation is much simpler for acenes than for pyrene, linear stilbene, or polyphenyls. Standard PPP parameters account well...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414856"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414856"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414856; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414856]").text(description); $(".js-view-count[data-work-id=126414856]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414856; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414856']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414856]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414856,"title":"Correlated π-electronic states: Pyrene, 16-site polyene, and D2h symmetry adaptation","internal_url":"https://www.academia.edu/126414856/Correlated_%CF%80_electronic_states_Pyrene_16_site_polyene_and_D2h_symmetry_adaptation","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414855"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414855/Charge_redistribution_and_electronic_polarization_in_organic_molecular_crystals"><img alt="Research paper thumbnail of Charge redistribution and electronic polarization in organic molecular crystals" class="work-thumbnail" src="https://attachments.academia-assets.com/120294862/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414855/Charge_redistribution_and_electronic_polarization_in_organic_molecular_crystals">Charge redistribution and electronic polarization in organic molecular crystals</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The electronic polarization of organic molecular crystals is obtained using the atom±atom polariz...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The electronic polarization of organic molecular crystals is obtained using the atom±atom polarizability tensor and charge redistribution in addition to previous theory based on induced dipoles. The dielectric tensors of anthracene and perylenetetracarboxylic acid dianhydride (PTCDA) crystals are successfully related to molecular polarizabilities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f5310ea5675572ad7396144996c77fe8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294862,"asset_id":126414855,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294862/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414855"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414855"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414855; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414855]").text(description); $(".js-view-count[data-work-id=126414855]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414855; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414855']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f5310ea5675572ad7396144996c77fe8" } } $('.js-work-strip[data-work-id=126414855]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414855,"title":"Charge redistribution and electronic polarization in organic molecular crystals","internal_url":"https://www.academia.edu/126414855/Charge_redistribution_and_electronic_polarization_in_organic_molecular_crystals","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294862,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294862/thumbnails/1.jpg","file_name":"epsilon.pdf","download_url":"https://www.academia.edu/attachments/120294862/download_file","bulk_download_file_name":"Charge_redistribution_and_electronic_pol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294862/epsilon-libre.pdf?1734523218=\u0026response-content-disposition=attachment%3B+filename%3DCharge_redistribution_and_electronic_pol.pdf\u0026Expires=1739712236\u0026Signature=SrsoZZHBW84A0w-6Ifm-9O1PZq6BXmLmO43k0lrzE~vujliN94pi2fa-6cVbSg9-6B53pKg2G7y2tYo1~-V3L8WSnSD8SLcz94fhrYKkyxQ~Sy~m4itOpVEteXOxRPUYNx6ccBOFatbjDwW0~U3oy8LbXc2TjSwAaWT2EBaTEJyjPZInQ~Om27bVAufFQvdQv2zPBsR9CAeINXY8FamVc90lwieMMKnacejdmLePvNabQf5T8mDBEkxBll9vhwB3KmhncRCdzdvvjFCG2H5MAukddC~JJ7pHyJZxG7nXOkRMIkCUyetpD0gWF1e79E1FEWiWgSUzL7jeBE0zfyNZjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414854"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414854/Electronic_polarization_at_surfaces_and_thin_films_of_organic_molecular_crystals_PTCDA"><img alt="Research paper thumbnail of Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA" class="work-thumbnail" src="https://attachments.academia-assets.com/120294840/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414854/Electronic_polarization_at_surfaces_and_thin_films_of_organic_molecular_crystals_PTCDA">Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The electronic polarization energies, P = P+ + P−, of a PTCDA (perylenetetracarboxylic acid dianh...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The electronic polarization energies, P = P+ + P−, of a PTCDA (perylenetetracarboxylic acid dianhydride) cation and anion in a crystalline thin film on a metallic substrate are computed and compared with measurements of the PTCDA transport gap on gold and silver. Both experiments and theory show that P is 500 meV larger in a PTCDA monolayer than in 50Å films. Electronic polarization in systems with surfaces and interfaces are obtained self-consistently in terms of charge redistribution within molecules.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9cb2ec923b424d3b8f2de1a17d42fa3a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294840,"asset_id":126414854,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294840/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414854"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414854"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414854; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414854]").text(description); $(".js-view-count[data-work-id=126414854]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414854; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414854']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9cb2ec923b424d3b8f2de1a17d42fa3a" } } $('.js-work-strip[data-work-id=126414854]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414854,"title":"Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA","internal_url":"https://www.academia.edu/126414854/Electronic_polarization_at_surfaces_and_thin_films_of_organic_molecular_crystals_PTCDA","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294840,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294840/thumbnails/1.jpg","file_name":"0205351.pdf","download_url":"https://www.academia.edu/attachments/120294840/download_file","bulk_download_file_name":"Electronic_polarization_at_surfaces_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294840/0205351-libre.pdf?1734523220=\u0026response-content-disposition=attachment%3B+filename%3DElectronic_polarization_at_surfaces_and.pdf\u0026Expires=1739712236\u0026Signature=YmFOXKER27tq5jsF6MVyiTxAYa0TZWFoCB5IyHRevRmscwx3iPEjcIyHVje11FTKRRzLE~1NyKCsLW0QgJP--H9T7WzblriBKOVFjoI~Y~vr93LzhmOnIZDCxRshEbiiDxOhpX29GszAY-fgIilxHH3WodTK6Np3sTKGpJkpyOYeXreaDL~43xWJl4Al~jV6QRp3WGv9AuahltWrDXenwCAr0MB0zUZ~CDMluRSWySNqkdPZ4cEs3cc6aEMauY2lLh4Ned50z29sZ~GGvfwk73zm~oNaMfh-v40Th7WisujDKDwT4QqIE9mRotuFnF1ZBrp7mpKJp7zc5iLJ8vOwHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414853/Charge_separation_energy_in_films_of_%CF%80_conjugated_organic_molecules"><img alt="Research paper thumbnail of Charge-separation energy in films of π-conjugated organic molecules" class="work-thumbnail" src="https://attachments.academia-assets.com/120294852/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414853/Charge_separation_energy_in_films_of_%CF%80_conjugated_organic_molecules">Charge-separation energy in films of π-conjugated organic molecules</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ž. Ž. We use inverse photoelectron spectroscopy IPES and ultraviolet photoelectron spectroscopy U...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ž. Ž. We use inverse photoelectron spectroscopy IPES and ultraviolet photoelectron spectroscopy UPS to investigate Ž. unoccupied and occupied electronic states of five organic semiconductor materials: CuPc copper phthalocyanine , PTCDA Ž. Ž. Ž X X</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a7cd778621616a14f189d90390e7cfe" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294852,"asset_id":126414853,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294852/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414853]").text(description); $(".js-view-count[data-work-id=126414853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a7cd778621616a14f189d90390e7cfe" } } $('.js-work-strip[data-work-id=126414853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414853,"title":"Charge-separation energy in films of π-conjugated organic molecules","internal_url":"https://www.academia.edu/126414853/Charge_separation_energy_in_films_of_%CF%80_conjugated_organic_molecules","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294852/thumbnails/1.jpg","file_name":"e-h_energy_cpl.pdf","download_url":"https://www.academia.edu/attachments/120294852/download_file","bulk_download_file_name":"Charge_separation_energy_in_films_of__c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294852/e-h_energy_cpl-libre.pdf?1734523219=\u0026response-content-disposition=attachment%3B+filename%3DCharge_separation_energy_in_films_of__c.pdf\u0026Expires=1739712236\u0026Signature=RXDXI4s4OY169udWX4NFeBjkUjS~oMfReDSolHJmOsIrcz1sKAdtu2iBY-36zZ~tvMxBnu4GOz0SFIaYRxobcTrAUtc6KW7N~~aqWG224po1RUBJ-fBls0Hzp26PZpT9C98xPZQxqfO6V8BAbASl3BhJs~Wc4UMT-U7jJ9U0oDEL~z7m2jfaBKz6olNaYZGsgWzk9j4a-VdzUjH4gNK4ISKeErfac-r2UgfYUbU8KBDA4dlYn5zbXhWp4iRVd97rZ5i65pyShx0RrB8akERZah0UaE38agwGn~0nEspYvyI0qKIkS5BMIP9iorrp1BC3nXrYgaYnhWjq9V47k5pfvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414852"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126414852/Compensation_temperature_in_molecularly_doped_polymers"><img alt="Research paper thumbnail of Compensation temperature in molecularly doped polymers" class="work-thumbnail" src="https://attachments.academia-assets.com/120294839/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126414852/Compensation_temperature_in_molecularly_doped_polymers">Compensation temperature in molecularly doped polymers</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The origin of the compensation temperature T , at which the mobility of holes in molecularly dope...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The origin of the compensation temperature T , at which the mobility of holes in molecularly doped polymers becomes 0 field-independent, is related to competition between positional or orientational disorder, which are treated explicitly, and energetic disorder, which is assumed to be Gaussian. Compensation is shown to occur for hopping rates with different intrinsic field dependencies by considering the strong-disorder limit. Mobility simulations with Marcus rates indicate low T 0 at low doping, as found in dilute systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6527a1bd8382284bd447183aca11de96" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120294839,"asset_id":126414852,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120294839/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414852"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414852"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414852; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414852]").text(description); $(".js-view-count[data-work-id=126414852]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414852; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414852']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6527a1bd8382284bd447183aca11de96" } } $('.js-work-strip[data-work-id=126414852]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414852,"title":"Compensation temperature in molecularly doped polymers","internal_url":"https://www.academia.edu/126414852/Compensation_temperature_in_molecularly_doped_polymers","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[{"id":120294839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120294839/thumbnails/1.jpg","file_name":"s0009-261428002900078-620241218-1-ekwwmg.pdf","download_url":"https://www.academia.edu/attachments/120294839/download_file","bulk_download_file_name":"Compensation_temperature_in_molecularly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120294839/s0009-261428002900078-620241218-1-ekwwmg-libre.pdf?1734523219=\u0026response-content-disposition=attachment%3B+filename%3DCompensation_temperature_in_molecularly.pdf\u0026Expires=1739712236\u0026Signature=PFku8QB253UKXGaTEKUOlXSzFnvDlX8Gt2nNqsBfL1QOuy9QNF6zOr5FurKi~2RQq3PchqcH4vaxMOz1GtehA1VTqubQe~S~OULXotv7XShe7QCHO2iTzWpdnppqmwRFfNmO0q7Kq7WR5sHzJ3kiat5K48zonvwo-fWrh91LNs-2aoEJeaubZYT~myIL~0bPFoXkBzGpI96dKwVMUybBKLNO3Zkel2il4Y4OyM4HER4c4~agBX9Gm6fTqgZs89TMgFLlsS5mfgvlpdMpoSoJ4fNGXRkFQpWCXytyPXSOP96XV5XhwNWB1V~chIJYoB1KD3dOUD8099XQoLMFD3qnPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414851/Perylenes_and_polyenes_a_second_%CF%80_electron_approximation"><img alt="Research paper thumbnail of Perylenes and polyenes: a second π-electron approximation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414851/Perylenes_and_polyenes_a_second_%CF%80_electron_approximation">Perylenes and polyenes: a second π-electron approximation</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414851]").text(description); $(".js-view-count[data-work-id=126414851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414851,"title":"Perylenes and polyenes: a second π-electron approximation","internal_url":"https://www.academia.edu/126414851/Perylenes_and_polyenes_a_second_%CF%80_electron_approximation","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414850"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414850/Real_space_treatment_of_spin_Peierls_transitions_Gap_equation_and_magnetic_crossover_of_the_linear_Heisenberg_antiferromagnet"><img alt="Research paper thumbnail of Real-space treatment of spin-Peierls transitions: Gap equation and magnetic crossover of the linear Heisenberg antiferromagnet" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414850/Real_space_treatment_of_spin_Peierls_transitions_Gap_equation_and_magnetic_crossover_of_the_linear_Heisenberg_antiferromagnet">Real-space treatment of spin-Peierls transitions: Gap equation and magnetic crossover of the linear Heisenberg antiferromagnet</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The spin-Peierls transition at TSP of s = 1/2 Heisenberg antiferromagnetic chains with l...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The spin-Peierls transition at TSP of s = 1/2 Heisenberg antiferromagnetic chains with linear spin–phonon (sp–ph) coupling is modeled by exact solution up to N = 18 spins. Spin correlation alters the relation between TSP and the singlet–triplet gap, EST, from the free-fermion or mean-field (MF) result by 30%. Direct solution accounts for the transition, spin susceptibility and magnetization of a well-characterized chain of tetrathiafulvalene cation radicals. Strong sp–ph coupling is required for size convergence. Exact analysis conserves total spin, S, while only Sz is conserved in approximate treatments of spinless fermions in infinite chains.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414850"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414850"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414850; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414850]").text(description); $(".js-view-count[data-work-id=126414850]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414850; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414850']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414850]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414850,"title":"Real-space treatment of spin-Peierls transitions: Gap equation and magnetic crossover of the linear Heisenberg antiferromagnet","internal_url":"https://www.academia.edu/126414850/Real_space_treatment_of_spin_Peierls_transitions_Gap_equation_and_magnetic_crossover_of_the_linear_Heisenberg_antiferromagnet","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126414849"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126414849/Spin_solitons_in_organic_charge_transfer_salts"><img alt="Research paper thumbnail of Spin solitons in organic charge-transfer salts" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126414849/Spin_solitons_in_organic_charge_transfer_salts">Spin solitons in organic charge-transfer salts</a></div><div class="wp-workCard_item"><span>Chemical Physics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Organic charge-transfer (CT) salts that crystallize in face-to-face stacks of pi-electron donors ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Organic charge-transfer (CT) salts that crystallize in face-to-face stacks of pi-electron donors (D) and acceptors (A) are one-dimensional electronic systems with strong coupling to lattice and molecular vibrations. Peierls Hubbard models of CT salts resemble pi-electron theory of conjugated polymers, although transfer integrals t along mixed DA stacks are considerably smaller. Strong D and A yield Peierls systems with dimerized ground states of ion radicals, D+ and A-. Topological spin solitons separate regions of opposite dimerization, similarly to solitons in trans-polyacetylene, but are thermally accessible in ionic CT salts due to small t. Salts with still smaller t have Peierls transitions at TP &lt; 300 K to undimerized stacks. A Peierls Hubbard model, HCT, describes both types of salts and estimates of t are consistent with TP &lt; 300 K in some salts and spin solitons in others with higher TP. Electron paramagnetic resonance (epr) spectra of single crystals provide direct evidence for spin solitons and one-dimensional electronic states. Spin solitons and HCT resolve longstanding conflicts between vibrational and magnetic data that indicate dimerized stacks in several prototypical CT salts, while structural data point to undimerized stacks with large thermal ellipsoids. The low energy scale, availability of single crystals and diversity of CT salts offer opportunities for detailed modeling.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126414849"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126414849"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126414849; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126414849]").text(description); $(".js-view-count[data-work-id=126414849]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126414849; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126414849']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126414849]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126414849,"title":"Spin solitons in organic charge-transfer salts","internal_url":"https://www.academia.edu/126414849/Spin_solitons_in_organic_charge_transfer_salts","owner_id":38442456,"coauthors_can_edit":true,"owner":{"id":38442456,"first_name":"Zoltan","middle_initials":null,"last_name":"Soos","page_name":"ZoltanSoos","domain_name":"independent","created_at":"2015-11-16T05:02:22.525-08:00","display_name":"Zoltan Soos","url":"https://independent.academia.edu/ZoltanSoos"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "035efb79e65a1b11299094171a0389c9983f9ca2eafe63961d2f25f957d215b2", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="Mv-_fzmhcwEk7XX1cjDmBX8Vsvvzla-Wl83hmVO95wh19FoAUK5pxkZQE5gJFoR8E8gRC8L5lmXGQI_d4QB2Jw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/ZoltanSoos" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="S7AYrmQ_Ep-P0PkwFUfdM_FuJ7p_xCUxHgs_oRZgS2IMu_3RDTAIWO1tn11uYb9KnbOESk6oHMJPhlHlpN3aTQ" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>