CINXE.COM
Search results for: displacement fields
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: displacement fields</title> <meta name="description" content="Search results for: displacement fields"> <meta name="keywords" content="displacement fields"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="displacement fields" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="displacement fields"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3183</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: displacement fields</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3183</span> A Closed-Form Solution and Comparison for a One-Dimensional Orthorhombic Quasicrystal and Crystal Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpit%20Bhardwaj">Arpit Bhardwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Koushik%20Roy"> Koushik Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work includes derivation of the exact-closed form solution for simply supported quasicrystal and crystal plates by using propagator matrix method under surface loading and free vibration. As a numerical example a quasicrystal and a crystal plate are considered, and after investigation, the variation of displacement and stress fields along the thickness of these two plates are presented. Further, it includes analyzing the displacement and stress fields for two plates having two different stacking arrangement, i.e., QuasiCrystal/Crystal/QuasiCrystal and Crystal/QuasiCrystal/Crystal and comparing their results. This will not only tell us the change in the behavior of displacement and stress fields in two different materials but also how these get changed after trying their different combinations. For the free vibration case, Crystal and Quasicrystal plates along with their different stacking arrangements are considered, and displacements are plotted in all directions for different Mode Shapes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title="free vibration">free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayered%20plates" title=" multilayered plates"> multilayered plates</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20loading" title=" surface loading"> surface loading</a>, <a href="https://publications.waset.org/abstracts/search?q=quasicrystals" title=" quasicrystals"> quasicrystals</a> </p> <a href="https://publications.waset.org/abstracts/84780/a-closed-form-solution-and-comparison-for-a-one-dimensional-orthorhombic-quasicrystal-and-crystal-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3182</span> Displacement Fields in Footing-Sand Interactions under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Joseph%20Antony">S. Joseph Antony</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20K.%20Jahanger"> Z. K. Jahanger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=DPIV" title=" DPIV"> DPIV</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interactions" title=" soil-structure interactions"> soil-structure interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20footing" title=" strip footing"> strip footing</a> </p> <a href="https://publications.waset.org/abstracts/99457/displacement-fields-in-footing-sand-interactions-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3181</span> A Comparative Assessment Method For Map Alignment Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rema%20Daher">Rema Daher</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodor%20Chakhachiro"> Theodor Chakhachiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Asmar"> Daniel Asmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the era of autonomous robot mapping, assessing the goodness of the generated maps is important, and is usually performed by aligning them to ground truth. Map alignment is difficult for two reasons: first, the query maps can be significantly distorted from ground truth, and second, establishing what constitutes ground truth for different settings is challenging. Most map alignment techniques to this date have addressed the first problem, while paying too little importance to the second. In this paper, we propose a benchmark dataset, which consists of synthetically transformed maps with their corresponding displacement fields. Furthermore, we propose a new system for comparison, where the displacement field of any map alignment technique can be computed and compared to the ground truth using statistical measures. The local information in displacement fields renders the evaluation system applicable to any alignment technique, whether it is linear or not. In our experiments, the proposed method was applied to different alignment methods from the literature, allowing for a comparative assessment between them all. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment%20methods" title="assessment methods">assessment methods</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmark" title=" benchmark"> benchmark</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20deformation" title=" image deformation"> image deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20alignment" title=" map alignment"> map alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20mapping" title=" robot mapping"> robot mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20motion" title=" robot motion"> robot motion</a> </p> <a href="https://publications.waset.org/abstracts/128817/a-comparative-assessment-method-for-map-alignment-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3180</span> Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamal%20Hamadi">Djamal Hamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sifeddine%20Abderrahmani"> Sifeddine Abderrahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Maalem"> Toufik Maalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Temami"> Oussama Temami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement%20fields" title="displacement fields">displacement fields</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20bending" title=" plate bending"> plate bending</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirchhoff%20theory" title=" Kirchhoff theory"> Kirchhoff theory</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20based%20approach" title=" strain based approach"> strain based approach</a> </p> <a href="https://publications.waset.org/abstracts/10902/efficiency-of-the-strain-based-approach-formulation-for-plate-bending-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3179</span> Perceptual Organization within Temporal Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michele%20Sinico">Michele Sinico</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The psychological present has an actual extension. When a sequence of instantaneous stimuli falls in this short interval of time, observers perceive a compresence of events in succession and the temporal order depends on the qualitative relationships between the perceptual properties of the events. Two experiments were carried out to study the influence of perceptual grouping, with and without temporal displacement, on the duration of auditory sequences. The psychophysical method of adjustment was adopted. The first experiment investigated the effect of temporal displacement of a white noise on sequence duration. The second experiment investigated the effect of temporal displacement, along the pitch dimension, on temporal shortening of sequence. The results suggest that the temporal order of sounds, in the case of temporal displacement, is organized along the pitch dimension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title="time perception">time perception</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20present" title=" perceptual present"> perceptual present</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20displacement" title=" temporal displacement"> temporal displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=Gestalt%20laws%20of%20perceptual%20organization" title=" Gestalt laws of perceptual organization"> Gestalt laws of perceptual organization</a> </p> <a href="https://publications.waset.org/abstracts/76211/perceptual-organization-within-temporal-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3178</span> Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dragan%20Ribari%C4%87">Dragan Ribarić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindlin%20plate%20theory" title="Mindlin plate theory">Mindlin plate theory</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-independent%20linked%20interpolation" title=" problem-independent linked interpolation"> problem-independent linked interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-dependent%20interpolation" title=" problem-dependent interpolation"> problem-dependent interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrilateral%20displacement-based%20plate%20finite%20elements" title=" quadrilateral displacement-based plate finite elements"> quadrilateral displacement-based plate finite elements</a> </p> <a href="https://publications.waset.org/abstracts/47597/comparison-between-the-quadratic-and-the-cubic-linked-interpolation-on-the-mindlin-plate-four-node-quadrilateral-finite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3177</span> Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ahmadabadi">Mojtaba Ahmadabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Masoudi"> Akbar Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Rezai"> Morteza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title="retaining wall">retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=fem" title=" fem"> fem</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20wall%20interaction" title=" soil and wall interaction"> soil and wall interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction%20of%20the%20soil" title=" angle of internal friction of the soil"> angle of internal friction of the soil</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20displacement" title=" wall displacement"> wall displacement</a> </p> <a href="https://publications.waset.org/abstracts/44288/studying-the-impact-of-soil-characteristics-in-displacement-of-retaining-walls-using-finite-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3176</span> Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Xu">Chao Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title="vulnerability">vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20seismic%20demand%20analysis" title=" probability seismic demand analysis"> probability seismic demand analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion%20intensity%20measure" title=" ground motion intensity measure"> ground motion intensity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=sufficiency" title=" sufficiency"> sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20time%20history%20analysis" title=" inelastic time history analysis"> inelastic time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/48653/vulnerability-assessment-of-reinforced-concrete-frames-based-on-inelastic-spectral-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3175</span> Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanrui%20Xu">Yuanrui Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zailin%20Yang"> Zailin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunqiu%20Song"> Yunqiu Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanxixi%20Jiang"> Guanxixi Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20of%20region%20matching" title="method of region matching">method of region matching</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20of%20SH%20wave" title=" scattering of SH wave"> scattering of SH wave</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20cavity" title=" subsurface cavity"> subsurface cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20hill" title=" trapezoidal hill"> trapezoidal hill</a> </p> <a href="https://publications.waset.org/abstracts/116536/interaction-between-trapezoidal-hill-and-subsurface-cavity-under-sh-wave-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3174</span> Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Epackachi">Siamak Epackachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20S.%20Whittaker"> Andrew S. Whittaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20H.%20Varma"> Amit H. Varma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel-plate%20composite%20shear%20wall" title="steel-plate composite shear wall">steel-plate composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=safety-related%20nuclear%20structure" title=" safety-related nuclear structure"> safety-related nuclear structure</a>, <a href="https://publications.waset.org/abstracts/search?q=flexure-critical%20wall" title=" flexure-critical wall"> flexure-critical wall</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a> </p> <a href="https://publications.waset.org/abstracts/25770/seismic-response-of-large-scale-rectangular-steel-plate-concrete-composite-shear-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3173</span> Evaluation of Double Displacement Process via Gas Dumpflood from Multiple Gas Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Rakjarit">B. Rakjarit</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Athichanagorn"> S. Athichanagorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Double displacement process is a method in which gas is injected at an updip well to displace the oil bypassed by waterflooding operation from downdip water injector. As gas injection is costly and a large amount of gas is needed, gas dump-flood from multiple gas reservoirs is an attractive alternative. The objective of this paper is to demonstrate the benefits of the novel approach of double displacement process via gas dump-flood from multiple gas reservoirs. A reservoir simulation model consisting of a dipping oil reservoir and several underlying layered gas reservoirs was constructed in order to investigate the performance of the proposed method. Initially, water was injected via the downdip well to displace oil towards the producer located updip. When the water cut at the producer became high, the updip well was shut in and perforated in the gas zones in order to dump gas into the oil reservoir. At this point, the downdip well was open for production. In order to optimize oil recovery, oil production and water injection rates and perforation strategy on the gas reservoirs were investigated for different numbers of gas reservoirs having various depths and thicknesses. Gas dump-flood from multiple gas reservoirs can help increase the oil recovery after implementation of waterflooding upto 10%. Although the amount of additional oil recovery is slightly lower than the one obtained in conventional double displacement process, the proposed process requires a small completion cost of the gas zones and no operating cost while the conventional method incurs high capital investment in gas compression facility and high-pressure gas pipeline and additional operating cost. From the simulation study, oil recovery can be optimized by producing oil at a suitable rate and perforating the gas zones with the right strategy which depends on depths, thicknesses and number of the gas reservoirs. Conventional double displacement process has been studied and successfully implemented in many fields around the world. However, the method of dumping gas into the oil reservoir instead of injecting it from surface during the second displacement process has never been studied. The study of this novel approach will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20dump-flood" title="gas dump-flood">gas dump-flood</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-gas%20layers" title=" multi-gas layers"> multi-gas layers</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20displacement%20process" title=" double displacement process"> double displacement process</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20simulation" title=" reservoir simulation"> reservoir simulation</a> </p> <a href="https://publications.waset.org/abstracts/30532/evaluation-of-double-displacement-process-via-gas-dumpflood-from-multiple-gas-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3172</span> Remediation and Health: A Systematic Review of the Role of Resulting Displacement in Damaging Health and Wellbeing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupert%20G.%20S.%20Legg">Rupert G. S. Legg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The connection between poor health outcomes and living near contaminated land has long been understood. Less examined has been the impact of remediation on residents’ health. The cleaning process undoubtedly changes the local area in which it occurs, leading to the possibility that local housing and rental prices could increase resulting in the displacement of those least able to cope. Whether or not this potential displacement resulting from remediation has a considerable impact on health remains unknown. This review aims to determine how these health effects have been approached in the health geography literature. A systematic review of health geographies literature was conducted, searching for two-word clusters: ‘health’ and ‘remediation’ (100 articles); and ‘health’, ‘displacement’ and ‘gentrification’ (43 articles). 43 articles were selected for their relevance (7 from the first cluster, 20 from the second, and 16 from those cited within the reviewed articles). Several of the reviewed cases identified that potential displacement was a contributor to stress and worry in residents living near remediation projects. Likewise, the experience of displacement in other cases beyond remediation was linked with several mental health issues. However, no remediation cases followed-up on the ultimate effects of experiencing displacement on residents’ health. A reason identified for this was a tendency for reviewed studies to adopt a contextual or compositional approach, as opposed to a relational approach, which is more concerned with dimensions of mobility and temporality. Given that remediation and displacement both involve changing mobility and temporality, focussing solely on contextual or compositional factors is problematic. This review concludes by suggesting that more thorough, relational research is conducted into the extent to which potential displacement resulting from remediation affects health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20geography" title=" health geography"> health geography</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a> </p> <a href="https://publications.waset.org/abstracts/99490/remediation-and-health-a-systematic-review-of-the-role-of-resulting-displacement-in-damaging-health-and-wellbeing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3171</span> Impact of Forced Displacement on Place Attachment and Home Perception of Internally Displaced Turkish Cypriots </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makbule%20Oktay">Makbule Oktay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Home is a significant entity in people’s lives. It is a place that provides shelter to people and a place to which one feels a sense of attachment and belonging. It is an entity that people develop feelings and meaning to it. People – place bond, or in other words place attachment, and home perception might alter as a consequence of lifetime experiences. Thus, forced displacement appears as a dramatic experience for people who lose their homes, belongings and communities. It impacts people who involuntarily leave their homes and belongings behind, experience physical, social, cultural and economic disruption and are forced to settle in an unfamiliar environment. Place attachment and home perception of internally displaced people who involuntarily leave their homes might be different from those who haven’t experience forced displacement. Although place attachment, meaning of home and forced displacement are the subjects that have been broadly studied, there is a lack of studies which question the relation between the three subjects in general and on Turkish Cypriot case in particular. Considering this, it is the aim of this paper to investigate the impact of forced displacement to internally displaced people’s attachment to a particular place and home perception. To do so, the study focuses on internally displaced Turkish Cypriots who have been internally displaced as a result of conflict. Interview and questionnaire as two of the commonly used techniques in the place attachment and home perception studies have been used in this study too. The results of the study indicate that internal displacement has an apparent impact on place attachment of forcibly displaced people. As a consequence of longstanding displacement, forcibly displaced people developed multiple attachments. Compared to people who have not experienced displacement, forcibly displaced people have low attachments. Forced displacement does not strongly impact the home perception in terms of meaning of home in longstanding displacement situations even though displacement-related meanings of home exist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forcibly%20displaced%20people" title="forcibly displaced people">forcibly displaced people</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20perception" title=" home perception"> home perception</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20displacement" title=" internal displacement"> internal displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=place%20attachment" title=" place attachment"> place attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkish%20Cypriots" title=" Turkish Cypriots"> Turkish Cypriots</a> </p> <a href="https://publications.waset.org/abstracts/123839/impact-of-forced-displacement-on-place-attachment-and-home-perception-of-internally-displaced-turkish-cypriots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3170</span> Displacement Due to Natural Disasters Vis-à-Vis Policy Framework: Case Study of Mising Community of Majuli, Assam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mausumi%20Chetia">Mausumi Chetia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main causes of impoverishment of the rural areas of Assam has been the recurrent floods and riverbank erosion. One of the life-changing consequences is displacement. This results not only in a loss of livelihoods but also has wide-reaching socio-economic and cultural effects. Thus, due to such disasters, not only families but communities too are being displaced at large. This compels them to find temporary shelter and begin life from scratch. The role of the state has been highly negligible, with a displacement not being perceived as an ‘issue’ to be addressed. A more holistic approach is thus needed to take socio-economic, cultural, political as well as ecological considerations into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement" title="displacement">displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=policy-framework" title=" policy-framework"> policy-framework</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20disasters" title=" human-induced disasters"> human-induced disasters</a>, <a href="https://publications.waset.org/abstracts/search?q=marginalised%20communities" title=" marginalised communities"> marginalised communities</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=Assam" title=" Assam"> Assam</a> </p> <a href="https://publications.waset.org/abstracts/69872/displacement-due-to-natural-disasters-vis-a-vis-policy-framework-case-study-of-mising-community-of-majuli-assam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3169</span> Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Galvis-Castro">A. C. Galvis-Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20D.%20Tovar"> R. D. Tovar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Salgado"> R. Salgado</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Prezzi"> M. Prezzi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20resistance" title=" shaft resistance"> shaft resistance</a> </p> <a href="https://publications.waset.org/abstracts/73964/effect-of-installation-method-on-the-ratio-of-tensile-to-compressive-shaft-capacity-of-piles-in-dense-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3168</span> Political Economy of Internal Dispalcement, Migration and Human Security in Zimbabwe: 1800 to Present Day</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chupicai%20Manuel">Chupicai Manuel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this article is to examine the political economy and history of internal displacement, migration and human security in Zimbabwe from 1800 to present day. The article gives a timeline of major internal displacement, migration trends that took place in Zimbabwe before colonialism, through the colonial period up to the present day and examines the human security context of such periods. In view of the above, a political economy analysis will be employed to examine the different factors that promoted internal displacement and human movements from 1800 to the present day and explore the architecture of human security in Zimbabwe. The ultimate goal of this literature review is to provide a longitudinal analysis of internal displacement, migration and human security regimes that existed in Zimbabwe with the view of promoting social cohesion and nation building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20security" title="human security">human security</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20displacement" title=" internal displacement"> internal displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20economy" title=" political economy"> political economy</a> </p> <a href="https://publications.waset.org/abstracts/42348/political-economy-of-internal-dispalcement-migration-and-human-security-in-zimbabwe-1800-to-present-day" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3167</span> Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Nazari">A. J. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Honma"> S. Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21<sup>st</sup>, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow" title="fractional flow">fractional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20displacement" title=" oil displacement"> oil displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneously%20flow" title=" simultaneously flow"> simultaneously flow</a> </p> <a href="https://publications.waset.org/abstracts/59190/oil-displacement-by-water-in-hauterivian-sandstone-reservoir-of-kashkari-oil-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3166</span> New Modification Negative Stiffness Device with Constant Force-Displacement Characteristic for Seismic Protection of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huan%20Li">Huan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianchun%20Li"> Jianchun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yancheng%20Li"> Yancheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yu"> Yang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a seismic protection method of civil and engineering structures, weakening and damping is effective during the elastic region, while it somehow leads to the early yielding of the entire structure accompanying with large excursions and permanent deformations. Adaptive negative stiffness device is attractive for realizing yielding property without changing the stiffness of the primary structure. In this paper, a new modification negative stiffness device (MNSD) with constant force-displacement characteristic is proposed by combining a magnetic negative stiffness spring, a piecewise linear positive spring and a passive damper with a certain adaptive stiffness device. The proposed passive control MNSD preserves no effect under small excitation. When the displacement amplitude increases beyond the pre-defined yielding point, the force-displacement characteristics of the system with MNSD will keep constant. The seismic protection effect of the MNSD is evaluated by employing it to a single-degree-of-freedom system under sinusoidal excitation, and real earthquake waves. By comparative analysis, the system with MNSD performs better on reducing acceleration and displacement response under different displacement amplitudes than the scenario without it and the scenario with unmodified certain adaptive stiffness device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=negative%20stiffness" title="negative stiffness">negative stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20stiffness" title=" adaptive stiffness"> adaptive stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=weakening%20and%20yielding" title=" weakening and yielding"> weakening and yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20force-displacement%20characteristic" title=" constant force-displacement characteristic"> constant force-displacement characteristic</a> </p> <a href="https://publications.waset.org/abstracts/125646/new-modification-negative-stiffness-device-with-constant-force-displacement-characteristic-for-seismic-protection-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3165</span> Investigation of the Speckle Pattern Effect for Displacement Assessments by Digital Image Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20%C3%87al%C4%B1%C5%9Fkan">Salim Çalışkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Aky%C3%BCz"> Hakan Akyüz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital image correlation has been accustomed as a versatile and efficient method for measuring displacements on the article surfaces by comparing reference subsets in undeformed images with the define target subset in the distorted image. The theoretical model points out that the accuracy of the digital image correlation displacement data can be exactly anticipated based on the divergence of the image noise and the sum of the squares of the subset intensity gradients. The digital image correlation procedure locates each subset of the original image in the distorted image. The software then determines the displacement values of the centers of the subassemblies, providing the complete displacement measures. In this paper, the effect of the speckle distribution and its effect on displacements measured out plane displacement data as a function of the size of the subset was investigated. Nine groups of speckle patterns were used in this study: samples are sprayed randomly by pre-manufactured patterns of three different hole diameters, each with three coverage ratios, on a computer numerical control punch press. The resulting displacement values, referenced at the center of the subset, are evaluated based on the average of the displacements of the pixel’s interior the subset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=speckle%20pattern" title=" speckle pattern"> speckle pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20mechanics" title=" experimental mechanics"> experimental mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a> </p> <a href="https://publications.waset.org/abstracts/171900/investigation-of-the-speckle-pattern-effect-for-displacement-assessments-by-digital-image-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3164</span> Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20M.%20Youssef">Hamdy M. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Al-Lehaibi"> Eman A. Al-Lehaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adomian%E2%80%99s%20decomposition%20method" title="Adomian’s decomposition method">Adomian’s decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-thermoelasticity" title=" magneto-thermoelasticity"> magneto-thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20conductivity" title=" finite conductivity"> finite conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=iteration%20method" title=" iteration method"> iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20load" title=" thermal load"> thermal load</a> </p> <a href="https://publications.waset.org/abstracts/97851/adomians-decomposition-method-to-generalized-magneto-thermoelasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3163</span> Influence of Bra Band Tension and Underwire Angles on Breast Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheuk%20Wing%20Lee">Cheuk Wing Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kit%20Lun%20Yick"> Kit Lun Yick</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Pui%20Ng"> Sun Pui Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanne%20Yip"> Joanne Yip</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daily activities and exercise may result in large displacements of the breasts, which lead to breast pain and discomfort. Therefore, a proper bra design and fit can help to control excessive breast motion to prevent the over-stretching of the connective tissues. Nevertheless, bra fit problems, such as excessively high tension of the shoulder straps and a tight underband could have substantially negative effects on the wear comfort and health of the wearer. The purpose of this study is to, therefore, examine the effects of bra band tension on breast displacement. Usually, human wear trials are carried out, but there are inconsistencies during testing. Therefore, a soft manikin torso is used to examine breast displacement at walking speeds of 2.30 km/h and 4.08 km/h. The breast displacement itself is determined by using a VICON motion capture system. The 3D geometric changes of the underwire bra band tension and the corresponding control of breast movement are also analyzed by using a 3D handheld scanner along with Rapidform software. The results indicate that an appropriate bra band tension can help to reduce breast displacement and provide a comfortable angle for the underwire. The findings can be used by designers and bra engineers as a reference source to advance bra design and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bra%20band" title="bra band">bra band</a>, <a href="https://publications.waset.org/abstracts/search?q=bra%20features" title=" bra features"> bra features</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20displacement" title=" breast displacement"> breast displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=underwire%20angle" title=" underwire angle"> underwire angle</a> </p> <a href="https://publications.waset.org/abstracts/93789/influence-of-bra-band-tension-and-underwire-angles-on-breast-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3162</span> An Improved Mesh Deformation Method Based on Radial Basis Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Zhou">Xuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Litian%20Zhang"> Litian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuixiang%20Li"> Shuixiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesh deformation using radial basis function interpolation method has been demonstrated to produce quality meshes with relatively little computational cost using a concise algorithm. However, it still suffers from the limited deformation ability, especially in large deformation. In this paper, a pre-displacement improvement is proposed to improve the problem that illegal meshes always appear near the moving inner boundaries owing to the large relative displacement of the nodes near inner boundaries. In this improvement, nodes near the inner boundaries are first associated to the near boundary nodes, and a pre-displacement based on the displacements of associated boundary nodes is added to the nodes near boundaries in order to make the displacement closer to the boundary deformation and improve the deformation capability. Several 2D and 3D numerical simulation cases have shown that the pre-displacement improvement for radial basis function (RBF) method significantly improves the mesh quality near inner boundaries and deformation capability, with little computational burden increasement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesh%20deformation" title="mesh deformation">mesh deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20quality" title=" mesh quality"> mesh quality</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20mesh" title=" background mesh"> background mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a> </p> <a href="https://publications.waset.org/abstracts/65928/an-improved-mesh-deformation-method-based-on-radial-basis-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3161</span> Design and Optimization of Soil Nailing Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Akbari">Fereshteh Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farrokh%20Jalali%20Mosalam"> Farrokh Jalali Mosalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hedayatifar"> Ali Hedayatifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Aminjavaheri"> Amirreza Aminjavaheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soil nailing is an effective method to stabilize slopes and retaining structures. Consequently, the lateral and vertical displacement of retaining walls are important criteria to evaluate the safety risks of adjacent structures. This paper is devoted to the optimization problems of retaining walls based on ABAQOUS Software. The various parameters such as nail length, orientation, arrangement, horizontal spacing, and bond skin friction, on lateral and vertical displacement of retaining walls are investigated. In order to ensure accuracy, the mobilized shear stress acting around the perimeter of the nail-soil interface is also modeled in ABAQOUS software. The observed trend of results is compared to the previous researches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20walls" title="retaining walls">retaining walls</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nailing" title=" soil nailing"> soil nailing</a>, <a href="https://publications.waset.org/abstracts/search?q=ABAQOUS%20software" title=" ABAQOUS software"> ABAQOUS software</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20displacement" title=" lateral displacement"> lateral displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20displacement" title=" vertical displacement"> vertical displacement</a> </p> <a href="https://publications.waset.org/abstracts/154028/design-and-optimization-of-soil-nailing-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3160</span> Simulation of Wave Propagation in Multiphase Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edip%20Kemal">Edip Kemal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheshov%20Vlatko"> Sheshov Vlatko</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojadjieva%20Julijana"> Bojadjieva Julijana</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdanovic%20ALeksandra"> Bogdanovic ALeksandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gjorgjeska%20Irena"> Gjorgjeska Irena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title="wave propagation">wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20model" title=" multiphase model"> multiphase model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/144167/simulation-of-wave-propagation-in-multiphase-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3159</span> Ductility Reduction Factors for Displacement Spectra Corresponding to Soft Soil Zone of the Valley of Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=No%C3%A9%20D.%20Lazos-Gallardo">Noé D. Lazos-Gallardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20E.%20Ruiz"> Sonia E. Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Valenzuela-Beltran"> Federico Valenzuela-Beltran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simplified mathematical expression to estimate ductility reduction factors of the displacement spectra corresponding to the soft soil zone of Mexico City is proposed. The aim is to allow a better characterization of the displacement spectra and provide a simple expression to be used in displacement based design (DBD). Emphasis is on the Mexico City Building Code. The study is based on the analysis of single degree of freedom (SDOF) systems with elasto-plastic hysteretic behavior. Several seismic ground motions corresponding to subduction events with magnitudes equal to or greater than 6 and recorded in different stations of Mexico City are used. The proposed expression involves the ratio of elastic and inelastic pseudo-aceleration spectra, and depends on factors such the ductility demand and the vibration period of the structural system. The resulting ductility reduction factors obtained in this study are compared with others existing in the literature, and their advantages and disadvantages are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement%20based%20design" title="displacement based design">displacement based design</a>, <a href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum" title=" displacements spectrum"> displacements spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility%20reduction%20factors" title=" ductility reduction factors"> ductility reduction factors</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a> </p> <a href="https://publications.waset.org/abstracts/83199/ductility-reduction-factors-for-displacement-spectra-corresponding-to-soft-soil-zone-of-the-valley-of-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3158</span> A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamal%20Hamadi">Djamal Hamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Temami"> Oussama Temami</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Zatar"> Abdallah Zatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sifeddine%20Abderrahmani"> Sifeddine Abderrahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis and design of thin shell structures is a topic of interest in a variety of engineering applications. In structural mechanics problems the analyst seeks to determine the distribution of stresses throughout the structure to be designed. It is also necessary to calculate the displacements of certain points of the structure to ensure that specified allowable values are not exceeded. In this paper a comparative study between displacement and strain based finite elements applied to the analysis of some thin shell structures is presented. The results obtained from some examples show the efficiency and the performance of the strain based approach compared to the well known displacement formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement%20formulation" title="displacement formulation">displacement formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20based%20approach" title=" strain based approach"> strain based approach</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20structures" title=" shell structures"> shell structures</a> </p> <a href="https://publications.waset.org/abstracts/10801/a-comparative-study-between-displacement-and-strain-based-formulated-finite-elements-applied-to-the-analysis-of-thin-shell-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3157</span> The Regulation on Human Exposure to Electromagnetic Fields for Brazilian Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Manoel%20Olivera%20Da%20Silva">Hugo Manoel Olivera Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Silva%20Th%C3%A9%20Pontes"> Ricardo Silva Thé Pontes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, is presented an analysis of the Brazilian regulation on human exposure to electromagnetic fields, which provides limits to electric fields, magnetic and electromagnetic fields. The regulations for the electricity sector was in charge of the Agência Nacional de Energia Elétrica-ANEEL, the Brazilian Electricity Regulatory Agency, that made it through the Normative Resolution Nº 398/2010, resulting in a series of obligations for the agents of the electricity sector, especially in the areas of generation, transmission, and distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20effects" title="adverse effects">adverse effects</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20energy" title=" electric energy"> electric energy</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20and%20magnetic%20fields" title=" electric and magnetic fields"> electric and magnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health" title=" human health"> human health</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a> </p> <a href="https://publications.waset.org/abstracts/21066/the-regulation-on-human-exposure-to-electromagnetic-fields-for-brazilian-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3156</span> Analysis of a Damage-Control Target Displacement of Reinforced Concrete Bridge Pier for Seismic Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ritzman%20Abdul%20Karim">Mohd Ritzman Abdul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaohui%20Huang"> Zhaohui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A current focus in seismic engineering practice is the development of seismic design approach that focuses on the performance-based design. Performance-based design aims to design the structures to achieve specified performance based on the damage limit states. This damage limit is more restrictive limit than life safety and needs to be carefully estimated to avoid damage in piers due to failure in transverse reinforcement. In this paper, a different perspective of damage limit states has been explored by integrating two damage control material limit state, concrete and reinforcement by introduced parameters such as expected yield stress of transverse reinforcement where peak tension strain prior to bar buckling is introduced in a recent study. The different perspective of damage limit states with modified yield displacement and the modified plastic-hinge length is used in order to predict damage-control target displacement for reinforced concreate (RC) bridge pier. Three-dimensional (3D) finite element (FE) model has been developed for estimating damage target displacement to validate proposed damage limit states. The result from 3D FE analysis was validated with experimental study found in the literature. The validated model then was applied to predict the damage target displacement for RC bridge pier and to validate the proposed study. The tensile strain on reinforcement and compression on concrete were used to determine the predicted damage target displacement and compared with the proposed study. The result shows that the proposed damage limit states were efficient in predicting damage-control target displacement consistent with FE simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage-control%20target%20displacement" title="damage-control target displacement">damage-control target displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20limit%20states" title=" damage limit states"> damage limit states</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20bridge%20pier" title=" reinforced concrete bridge pier"> reinforced concrete bridge pier</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20displacement" title=" yield displacement"> yield displacement</a> </p> <a href="https://publications.waset.org/abstracts/99016/analysis-of-a-damage-control-target-displacement-of-reinforced-concrete-bridge-pier-for-seismic-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3155</span> Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juree%20Hong">Juree Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggeun%20Lee"> Sanggeun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmok%20Seo"> Jungmok Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeyoon%20Lee"> Taeyoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanic%20displacement%20reaction" title=" galvanic displacement reaction"> galvanic displacement reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sensor" title=" hydrogen sensor"> hydrogen sensor</a> </p> <a href="https://publications.waset.org/abstracts/18400/facile-synthesis-of-metal-nanoparticles-on-graphene-via-galvanic-displacement-reaction-for-sensing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3154</span> Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi">Khwaja Naweed Seddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zabihullah%20Mahdi"> Zabihullah Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Honma"> Shigeo Honma </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20reservoir%20engineering" title="petroleum reservoir engineering">petroleum reservoir engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20displacement%20in%20porous%20media" title=" immiscible displacement in porous media"> immiscible displacement in porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20method" title=" steady-state method"> steady-state method</a>, <a href="https://publications.waset.org/abstracts/search?q=waterflooding" title=" waterflooding"> waterflooding</a> </p> <a href="https://publications.waset.org/abstracts/59676/experimental-and-graphical-investigation-on-oil-recovery-by-buckley-leveret-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=106">106</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=107">107</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacement%20fields&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>