CINXE.COM

Μιγαδικός αριθμός - Βικιπαίδεια

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="el" dir="ltr"> <head> <meta charset="UTF-8"> <title>Μιγαδικός αριθμός - Βικιπαίδεια</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )elwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","Ιανουάριος","Φεβρουάριος","Μάρτιος","Απριλίου","Μαΐου","Ιουνίου","Ιουλίου","Αύγουστος","Σεπτέμβριος","Οκτώβριος","Νοέμβριος","Δεκέμβριος"],"wgRequestId":"47866a5d-b38f-4884-bbd5-a1f2e3a00237","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Μιγαδικός_αριθμός","wgTitle":"Μιγαδικός αριθμός","wgCurRevisionId":10698702,"wgRevisionId":10698702,"wgArticleId":20905,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Κατηγορία Commons με τίτλο σελίδας διαφορετικό από των Wikidata","Commonscat που τραβάει δεδομένα από Wikidata","Λήμματα Βικιπαίδειας με αναγνωριστικά LCCN", "Λήμματα Βικιπαίδειας με αναγνωριστικά GND","Λήμματα Βικιπαίδειας με αναγνωριστικά BNF","Μιγαδικοί αριθμοί","Μιγαδική ανάλυση"],"wgPageViewLanguage":"el","wgPageContentLanguage":"el","wgPageContentModel":"wikitext","wgRelevantPageName":"Μιγαδικός_αριθμός","wgRelevantArticleId":20905,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"el","pageLanguageDir":"ltr","pageVariantFallbacks":"el"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true, "wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11567","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready", "ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.imagelinks","ext.gadget.wikibugs","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=el&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=el&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=el&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/Complex_picture.svg/1200px-Complex_picture.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/Complex_picture.svg/800px-Complex_picture.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/Complex_picture.svg/640px-Complex_picture.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Μιγαδικός αριθμός - Βικιπαίδεια"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//el.m.wikipedia.org/wiki/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"> <link rel="alternate" type="application/x-wiki" title="Επεξεργασία" href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Βικιπαίδεια (el)"> <link rel="EditURI" type="application/rsd+xml" href="//el.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://el.wikipedia.org/wiki/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.el"> <link rel="alternate" type="application/atom+xml" title="Βικιπαίδεια ροή Atom" href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CF%81%CF%8C%CF%83%CF%86%CE%B1%CF%84%CE%B5%CF%82%CE%91%CE%BB%CE%BB%CE%B1%CE%B3%CE%AD%CF%82&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Μιγαδικός_αριθμός rootpage-Μιγαδικός_αριθμός skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Μετάβαση στο περιεχόμενο</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Ιστότοπος"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Κύριο μενού" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Κύριο μενού</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Κύριο μενού</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">μετακίνηση στην πλαϊνή μπάρα</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">απόκρυψη</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Πλοήγηση </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%CE%A0%CF%8D%CE%BB%CE%B7:%CE%9A%CF%8D%CF%81%CE%B9%CE%B1" title="Επισκεφθείτε την αρχική σελίδα [z]" accesskey="z"><span>Κύρια πύλη</span></a></li><li id="n-Θεματικές-πύλες" class="mw-list-item"><a href="/wiki/%CE%A0%CF%8D%CE%BB%CE%B7:%CE%98%CE%AD%CE%BC%CE%B1%CF%84%CE%B1"><span>Θεματικές πύλες</span></a></li><li id="n-Featuredcontent" class="mw-list-item"><a href="/wiki/%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1:%CE%A0%CF%81%CE%BF%CE%B2%CE%B5%CE%B2%CE%BB%CE%B7%CE%BC%CE%AD%CE%BD%CE%B1_%CE%BB%CE%AE%CE%BC%CE%BC%CE%B1%CF%84%CE%B1"><span>Προβεβλημένα λήμματα</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%CE%A0%CF%8D%CE%BB%CE%B7:%CE%A4%CF%81%CE%AD%CF%87%CE%BF%CE%BD%CF%84%CE%B1_%CE%B3%CE%B5%CE%B3%CE%BF%CE%BD%CF%8C%CF%84%CE%B1" title="Βρείτε βασικές πληροφορίες για τρέχοντα γεγονότα"><span>Τρέχοντα γεγονότα</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A4%CF%85%CF%87%CE%B1%CE%AF%CE%B1" title="Φόρτωση μιας τυχαίας σελίδας [x]" accesskey="x"><span>Τυχαίο λήμμα</span></a></li> </ul> </div> </div> <div id="p-Συμμετοχή" class="vector-menu mw-portlet mw-portlet-Συμμετοχή" > <div class="vector-menu-heading"> Συμμετοχή </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1:%CE%92%CE%BF%CE%AE%CE%B8%CE%B5%CE%B9%CE%B1" title="Το μέρος για να βρείτε αυτό που ψάχνετε"><span>Βοήθεια</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1:%CE%A0%CF%8D%CE%BB%CE%B7_%CE%9A%CE%BF%CE%B9%CE%BD%CF%8C%CF%84%CE%B7%CF%84%CE%B1%CF%82" title="Σχετικά με το εγχείρημα, τι μπορείτε να κάνετε, πού μπορείτε να βρείτε τι"><span>Πύλη Κοινότητας</span></a></li><li id="n-pump" class="mw-list-item"><a href="/wiki/%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1:%CE%91%CE%B3%CE%BF%CF%81%CE%AC"><span>Αγορά</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CF%81%CF%8C%CF%83%CF%86%CE%B1%CF%84%CE%B5%CF%82%CE%91%CE%BB%CE%BB%CE%B1%CE%B3%CE%AD%CF%82" title="Λίστα πρόσφατων αλλαγών στο wiki [r]" accesskey="r"><span>Πρόσφατες αλλαγές</span></a></li><li id="n-Επικοινωνία" class="mw-list-item"><a href="/wiki/%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1:%CE%95%CF%80%CE%B9%CE%BA%CE%BF%CE%B9%CE%BD%CF%89%CE%BD%CE%AF%CE%B1"><span>Επικοινωνία</span></a></li><li id="n-Δωρεές" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserLandingPage?uselang=el&amp;country=GR"><span>Δωρεές</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%CE%A0%CF%8D%CE%BB%CE%B7:%CE%9A%CF%8D%CF%81%CE%B9%CE%B1" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Βικιπαίδεια" src="/static/images/mobile/copyright/wikipedia-wordmark-el.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Η Ελεύθερη Εγκυκλοπαίδεια" src="/static/images/mobile/copyright/wikipedia-tagline-el.svg" width="120" height="10" style="width: 7.5em; height: 0.625em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%91%CE%BD%CE%B1%CE%B6%CE%AE%CF%84%CE%B7%CF%83%CE%B7" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Αναζήτηση στη Βικιπαίδεια [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Αναζήτηση</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Αναζήτηση σε Βικιπαίδεια" aria-label="Αναζήτηση σε Βικιπαίδεια" autocapitalize="sentences" title="Αναζήτηση στη Βικιπαίδεια [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Ειδικό:Αναζήτηση"> </div> <button class="cdx-button cdx-search-input__end-button">Αναζήτηση</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Προσωπικά εργαλεία"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Εμφάνιση"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Εμφάνιση" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Εμφάνιση</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_el.wikipedia.org&amp;uselang=el" class=""><span>Δωρεές</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%94%CE%B7%CE%BC%CE%B9%CE%BF%CF%85%CF%81%CE%B3%CE%AF%CE%B1%CE%9B%CE%BF%CE%B3%CE%B1%CF%81%CE%B9%CE%B1%CF%83%CE%BC%CE%BF%CF%8D&amp;returnto=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Σας ενθαρρύνουμε να δημιουργήσετε ένα λογαριασμό και να συνδεθείτε· ωστόσο, δεν είναι υποχρεωτικό" class=""><span>Δημιουργία λογαριασμού</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A3%CF%8D%CE%BD%CE%B4%CE%B5%CF%83%CE%B7%CE%A7%CF%81%CE%AE%CF%83%CF%84%CE%B7&amp;returnto=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Σας ενθαρρύνουμε να συνδεθείτε· ωστόσο, δεν είναι υποχρεωτικό [o]" accesskey="o" class=""><span>Σύνδεση</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Περισσότερες επιλογές" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Προσωπικά εργαλεία" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Προσωπικά εργαλεία</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Μενού χρήστη" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_el.wikipedia.org&amp;uselang=el"><span>Δωρεές</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%94%CE%B7%CE%BC%CE%B9%CE%BF%CF%85%CF%81%CE%B3%CE%AF%CE%B1%CE%9B%CE%BF%CE%B3%CE%B1%CF%81%CE%B9%CE%B1%CF%83%CE%BC%CE%BF%CF%8D&amp;returnto=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Σας ενθαρρύνουμε να δημιουργήσετε ένα λογαριασμό και να συνδεθείτε· ωστόσο, δεν είναι υποχρεωτικό"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Δημιουργία λογαριασμού</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A3%CF%8D%CE%BD%CE%B4%CE%B5%CF%83%CE%B7%CE%A7%CF%81%CE%AE%CF%83%CF%84%CE%B7&amp;returnto=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Σας ενθαρρύνουμε να συνδεθείτε· ωστόσο, δεν είναι υποχρεωτικό [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Σύνδεση</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Σελίδες για αποσυνδεμένους συντάκτες <a href="/wiki/%CE%92%CE%BF%CE%AE%CE%B8%CE%B5%CE%B9%CE%B1:%CE%95%CE%B9%CF%83%CE%B1%CE%B3%CF%89%CE%B3%CE%AE" aria-label="Μάθετε περισσότερα σχετικά με την επεξεργασία"><span>μάθετε περισσότερα</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%9F%CE%B9%CE%A3%CF%85%CE%BD%CE%B5%CE%B9%CF%83%CF%86%CE%BF%CF%81%CE%AD%CF%82%CE%9C%CE%BF%CF%85" title="Μια λίστα με τις επεξεργασίες που έγιναν από αυτή τη διεύθυνση IP [y]" accesskey="y"><span>Συνεισφορές</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%97%CE%A3%CF%85%CE%B6%CE%AE%CF%84%CE%B7%CF%83%CE%AE%CE%9C%CE%BF%CF%85" title="Συζήτηση σχετικά με τις αλλαγές που έγιναν από αυτή τη διεύθυνση IP [n]" accesskey="n"><span>Συζήτηση για αυτή την IP</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Ιστότοπος"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Περιεχόμενα" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Περιεχόμενα</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">μετακίνηση στην πλαϊνή μπάρα</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">απόκρυψη</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Αρχή</div> </a> </li> <li id="toc-Ιστορικό" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ιστορικό"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Ιστορικό</span> </div> </a> <ul id="toc-Ιστορικό-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ορισμοί" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ορισμοί"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Ορισμοί</span> </div> </a> <button aria-controls="toc-Ορισμοί-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Εναλλαγή Ορισμοί υποενότητας</span> </button> <ul id="toc-Ορισμοί-sublist" class="vector-toc-list"> <li id="toc-Συμβολισμοί_και_πράξεις" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Συμβολισμοί_και_πράξεις"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Συμβολισμοί και πράξεις</span> </div> </a> <ul id="toc-Συμβολισμοί_και_πράξεις-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Μιγαδικό_επίπεδο" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Μιγαδικό_επίπεδο"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Μιγαδικό επίπεδο</span> </div> </a> <ul id="toc-Μιγαδικό_επίπεδο-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Συζυγής_μιγαδικός" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Συζυγής_μιγαδικός"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Συζυγής μιγαδικός</span> </div> </a> <ul id="toc-Συζυγής_μιγαδικός-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Τριγωνομετρική_μορφή" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Τριγωνομετρική_μορφή"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Τριγωνομετρική μορφή</span> </div> </a> <ul id="toc-Τριγωνομετρική_μορφή-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Εκθετική_μορφή" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Εκθετική_μορφή"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Εκθετική μορφή</span> </div> </a> <ul id="toc-Εκθετική_μορφή-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Δείτε_επίσης" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Δείτε_επίσης"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Δείτε επίσης</span> </div> </a> <ul id="toc-Δείτε_επίσης-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Περαιτέρω_ανάγνωση" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Περαιτέρω_ανάγνωση"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Περαιτέρω ανάγνωση</span> </div> </a> <button aria-controls="toc-Περαιτέρω_ανάγνωση-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Εναλλαγή Περαιτέρω ανάγνωση υποενότητας</span> </button> <ul id="toc-Περαιτέρω_ανάγνωση-sublist" class="vector-toc-list"> <li id="toc-Εξωτερικοί_σύνδεσμοι" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Εξωτερικοί_σύνδεσμοι"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Εξωτερικοί σύνδεσμοι</span> </div> </a> <ul id="toc-Εξωτερικοί_σύνδεσμοι-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ελληνικά_άρθρα" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ελληνικά_άρθρα"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Ελληνικά άρθρα</span> </div> </a> <ul id="toc-Ελληνικά_άρθρα-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ξενόγλωσσα_άρθρα" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ξενόγλωσσα_άρθρα"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Ξενόγλωσσα άρθρα</span> </div> </a> <ul id="toc-Ξενόγλωσσα_άρθρα-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Βιβλιογραφία" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Βιβλιογραφία"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Βιβλιογραφία</span> </div> </a> <ul id="toc-Βιβλιογραφία-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Παραπομπές" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Παραπομπές"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Παραπομπές</span> </div> </a> <ul id="toc-Παραπομπές-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Εξωτερικοί_σύνδεσμοι_2" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Εξωτερικοί_σύνδεσμοι_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Εξωτερικοί σύνδεσμοι</span> </div> </a> <ul id="toc-Εξωτερικοί_σύνδεσμοι_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Περιεχόμενα" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Εναλλαγή του πίνακα περιεχομένων" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Εναλλαγή του πίνακα περιεχομένων</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Μιγαδικός αριθμός</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Μεταβείτε σε ένα λήμμα σε άλλη γλώσσα. Διαθέσιμο σε 132 γλώσσες" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-132" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">132 γλώσσες</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Komplekse_getal" title="Komplekse getal – Αφρικάανς" lang="af" hreflang="af" data-title="Komplekse getal" data-language-autonym="Afrikaans" data-language-local-name="Αφρικάανς" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Komplexe_Zahl" title="Komplexe Zahl – Γερμανικά Ελβετίας" lang="gsw" hreflang="gsw" data-title="Komplexe Zahl" data-language-autonym="Alemannisch" data-language-local-name="Γερμανικά Ελβετίας" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8B%A8%E1%8A%A0%E1%89%85%E1%8C%A3%E1%8C%AB_%E1%89%81%E1%8C%A5%E1%88%AD" title="የአቅጣጫ ቁጥር – Αμχαρικά" lang="am" hreflang="am" data-title="የአቅጣጫ ቁጥር" data-language-autonym="አማርኛ" data-language-local-name="Αμχαρικά" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Numero_complexo" title="Numero complexo – Αραγονικά" lang="an" hreflang="an" data-title="Numero complexo" data-language-autonym="Aragonés" data-language-local-name="Αραγονικά" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="समिश्र संख्या – Ανγκικά" lang="anp" hreflang="anp" data-title="समिश्र संख्या" data-language-autonym="अंगिका" data-language-local-name="Ανγκικά" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D9%85%D8%B1%D9%83%D8%A8" title="عدد مركب – Αραβικά" lang="ar" hreflang="ar" data-title="عدد مركب" data-language-autonym="العربية" data-language-local-name="Αραβικά" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%9C%E0%A6%9F%E0%A6%BF%E0%A6%B2_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="জটিল সংখ্যা – Ασαμικά" lang="as" hreflang="as" data-title="জটিল সংখ্যা" data-language-autonym="অসমীয়া" data-language-local-name="Ασαμικά" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/N%C3%BAmberu_complexu" title="Númberu complexu – Αστουριανά" lang="ast" hreflang="ast" data-title="Númberu complexu" data-language-autonym="Asturianu" data-language-local-name="Αστουριανά" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Kompleks_%C9%99d%C9%99dl%C9%99r" title="Kompleks ədədlər – Αζερμπαϊτζανικά" lang="az" hreflang="az" data-title="Kompleks ədədlər" data-language-autonym="Azərbaycanca" data-language-local-name="Αζερμπαϊτζανικά" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%DA%A9%D9%88%D9%85%D9%BE%D9%84%DA%A9%D8%B3_%D8%B3%D8%A7%DB%8C%DB%8C%D9%84%D8%A7%D8%B1" title="کومپلکس ساییلار – South Azerbaijani" lang="azb" hreflang="azb" data-title="کومپلکس ساییلار" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BB%D1%8B_%D2%BB%D0%B0%D0%BD" title="Комплекслы һан – Μπασκίρ" lang="ba" hreflang="ba" data-title="Комплекслы һан" data-language-autonym="Башҡортса" data-language-local-name="Μπασκίρ" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Kuompleks%C4%97nis_skaitlios" title="Kuompleksėnis skaitlios – Samogitian" lang="sgs" hreflang="sgs" data-title="Kuompleksėnis skaitlios" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Камплексны лік – Λευκορωσικά" lang="be" hreflang="be" data-title="Камплексны лік" data-language-autonym="Беларуская" data-language-local-name="Λευκορωσικά" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Камплексны лік – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Камплексны лік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексно число – Βουλγαρικά" lang="bg" hreflang="bg" data-title="Комплексно число" data-language-autonym="Български" data-language-local-name="Βουλγαρικά" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9C%E0%A6%9F%E0%A6%BF%E0%A6%B2_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="জটিল সংখ্যা – Βεγγαλικά" lang="bn" hreflang="bn" data-title="জটিল সংখ্যা" data-language-autonym="বাংলা" data-language-local-name="Βεγγαλικά" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Kompleksan_broj" title="Kompleksan broj – Βοσνιακά" lang="bs" hreflang="bs" data-title="Kompleksan broj" data-language-autonym="Bosanski" data-language-local-name="Βοσνιακά" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%82%D0%BE%D0%BE" title="Комплекс тоо – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Комплекс тоо" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_complex" title="Nombre complex – Καταλανικά" lang="ca" hreflang="ca" data-title="Nombre complex" data-language-autonym="Català" data-language-local-name="Καταλανικά" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%D8%A6%D8%A7%D9%88%DB%8E%D8%AA%DB%95" title="ژمارەی ئاوێتە – Κεντρικά Κουρδικά" lang="ckb" hreflang="ckb" data-title="ژمارەی ئاوێتە" data-language-autonym="کوردی" data-language-local-name="Κεντρικά Κουρδικά" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo – Τσεχικά" lang="cs" hreflang="cs" data-title="Komplexní číslo" data-language-autonym="Čeština" data-language-local-name="Τσεχικά" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BB%C4%83_%D1%85%D0%B8%D1%81%D0%B5%D0%BF" title="Комплекслă хисеп – Τσουβασικά" lang="cv" hreflang="cv" data-title="Комплекслă хисеп" data-language-autonym="Чӑвашла" data-language-local-name="Τσουβασικά" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhif_cymhlyg" title="Rhif cymhlyg – Ουαλικά" lang="cy" hreflang="cy" data-title="Rhif cymhlyg" data-language-autonym="Cymraeg" data-language-local-name="Ουαλικά" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da badge-Q17559452 badge-recommendedarticle mw-list-item" title="προτεινόμενο λήμμα"><a href="https://da.wikipedia.org/wiki/Komplekse_tal" title="Komplekse tal – Δανικά" lang="da" hreflang="da" data-title="Komplekse tal" data-language-autonym="Dansk" data-language-local-name="Δανικά" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Komplexe_Zahl" title="Komplexe Zahl – Γερμανικά" lang="de" hreflang="de" data-title="Komplexe Zahl" data-language-autonym="Deutsch" data-language-local-name="Γερμανικά" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Amaro_kompleks" title="Amaro kompleks – Zazaki" lang="diq" hreflang="diq" data-title="Amaro kompleks" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B3mmer_cumpl%C3%AAs" title="Nómmer cumplês – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nómmer cumplês" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Complex_number" title="Complex number – Αγγλικά" lang="en" hreflang="en" data-title="Complex number" data-language-autonym="English" data-language-local-name="Αγγλικά" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kompleksa_nombro" title="Kompleksa nombro – Εσπεράντο" lang="eo" hreflang="eo" data-title="Kompleksa nombro" data-language-autonym="Esperanto" data-language-local-name="Εσπεράντο" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_complejo" title="Número complejo – Ισπανικά" lang="es" hreflang="es" data-title="Número complejo" data-language-autonym="Español" data-language-local-name="Ισπανικά" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kompleksarv" title="Kompleksarv – Εσθονικά" lang="et" hreflang="et" data-title="Kompleksarv" data-language-autonym="Eesti" data-language-local-name="Εσθονικά" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zenbaki_konplexu" title="Zenbaki konplexu – Βασκικά" lang="eu" hreflang="eu" data-title="Zenbaki konplexu" data-language-autonym="Euskara" data-language-local-name="Βασκικά" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D9%85%D8%AE%D8%AA%D9%84%D8%B7" title="عدد مختلط – Περσικά" lang="fa" hreflang="fa" data-title="عدد مختلط" data-language-autonym="فارسی" data-language-local-name="Περσικά" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kompleksiluku" title="Kompleksiluku – Φινλανδικά" lang="fi" hreflang="fi" data-title="Kompleksiluku" data-language-autonym="Suomi" data-language-local-name="Φινλανδικά" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Kompleksarv" title="Kompleksarv – Võro" lang="vro" hreflang="vro" data-title="Kompleksarv" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Komplekst_tal" title="Komplekst tal – Φεροϊκά" lang="fo" hreflang="fo" data-title="Komplekst tal" data-language-autonym="Føroyskt" data-language-local-name="Φεροϊκά" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_complexe" title="Nombre complexe – Γαλλικά" lang="fr" hreflang="fr" data-title="Nombre complexe" data-language-autonym="Français" data-language-local-name="Γαλλικά" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Kompleks_taal" title="Kompleks taal – Βόρεια Φριζιανά" lang="frr" hreflang="frr" data-title="Kompleks taal" data-language-autonym="Nordfriisk" data-language-local-name="Βόρεια Φριζιανά" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Kompleks_getal" title="Kompleks getal – Δυτικά Φριζικά" lang="fy" hreflang="fy" data-title="Kompleks getal" data-language-autonym="Frysk" data-language-local-name="Δυτικά Φριζικά" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Uimhir_choimpl%C3%A9ascach" title="Uimhir choimpléascach – Ιρλανδικά" lang="ga" hreflang="ga" data-title="Uimhir choimpléascach" data-language-autonym="Gaeilge" data-language-local-name="Ιρλανδικά" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 – Gan" lang="gan" hreflang="gan" data-title="複數" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Nonm_kompleks" title="Nonm kompleks – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Nonm kompleks" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_complexo" title="Número complexo – Γαλικιανά" lang="gl" hreflang="gl" data-title="Número complexo" data-language-autonym="Galego" data-language-local-name="Γαλικιανά" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Papapy_rypy%27%C5%A9" title="Papapy rypy&#039;ũ – Γκουαρανί" lang="gn" hreflang="gn" data-title="Papapy rypy&#039;ũ" data-language-autonym="Avañe&#039;ẽ" data-language-local-name="Γκουαρανί" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%B8%E0%AA%82%E0%AA%95%E0%AA%B0_%E0%AA%B8%E0%AA%82%E0%AA%96%E0%AB%8D%E0%AA%AF%E0%AA%BE%E0%AA%93" title="સંકર સંખ્યાઓ – Γκουτζαρατικά" lang="gu" hreflang="gu" data-title="સંકર સંખ્યાઓ" data-language-autonym="ગુજરાતી" data-language-local-name="Γκουτζαρατικά" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%9E%D7%A8%D7%95%D7%9B%D7%91" title="מספר מרוכב – Εβραϊκά" lang="he" hreflang="he" data-title="מספר מרוכב" data-language-autonym="עברית" data-language-local-name="Εβραϊκά" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="समिश्र संख्या – Χίντι" lang="hi" hreflang="hi" data-title="समिश्र संख्या" data-language-autonym="हिन्दी" data-language-local-name="Χίντι" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Jatil_ginti" title="Jatil ginti – Fiji Hindi" lang="hif" hreflang="hif" data-title="Jatil ginti" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Kompleksni_broj" title="Kompleksni broj – Κροατικά" lang="hr" hreflang="hr" data-title="Kompleksni broj" data-language-autonym="Hrvatski" data-language-local-name="Κροατικά" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Komplex_sz%C3%A1mok" title="Komplex számok – Ουγγρικά" lang="hu" hreflang="hu" data-title="Komplex számok" data-language-autonym="Magyar" data-language-local-name="Ουγγρικά" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%B8%D5%B4%D5%BA%D5%AC%D5%A5%D6%84%D5%BD_%D5%A9%D5%AB%D5%BE" title="Կոմպլեքս թիվ – Αρμενικά" lang="hy" hreflang="hy" data-title="Կոմպլեքս թիվ" data-language-autonym="Հայերեն" data-language-local-name="Αρμενικά" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Numero_complexe" title="Numero complexe – Ιντερλίνγκουα" lang="ia" hreflang="ia" data-title="Numero complexe" data-language-autonym="Interlingua" data-language-local-name="Ιντερλίνγκουα" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Lumur_kompleks" title="Lumur kompleks – Ιμπάν" lang="iba" hreflang="iba" data-title="Lumur kompleks" data-language-autonym="Jaku Iban" data-language-local-name="Ιμπάν" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bilangan_kompleks" title="Bilangan kompleks – Ινδονησιακά" lang="id" hreflang="id" data-title="Bilangan kompleks" data-language-autonym="Bahasa Indonesia" data-language-local-name="Ινδονησιακά" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Komplexa_nombro" title="Komplexa nombro – Ίντο" lang="io" hreflang="io" data-title="Komplexa nombro" data-language-autonym="Ido" data-language-local-name="Ίντο" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Tvinnt%C3%B6lur" title="Tvinntölur – Ισλανδικά" lang="is" hreflang="is" data-title="Tvinntölur" data-language-autonym="Íslenska" data-language-local-name="Ισλανδικά" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numero_complesso" title="Numero complesso – Ιταλικά" lang="it" hreflang="it" data-title="Numero complesso" data-language-autonym="Italiano" data-language-local-name="Ιταλικά" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E6%95%B0" title="複素数 – Ιαπωνικά" lang="ja" hreflang="ja" data-title="複素数" data-language-autonym="日本語" data-language-local-name="Ιαπωνικά" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Komplex_nomba" title="Komplex nomba – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Komplex nomba" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/relcimdyna%27u" title="relcimdyna&#039;u – Λόζμπαν" lang="jbo" hreflang="jbo" data-title="relcimdyna&#039;u" data-language-autonym="La .lojban." data-language-local-name="Λόζμπαν" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%99%E1%83%9D%E1%83%9B%E1%83%9E%E1%83%9A%E1%83%94%E1%83%A5%E1%83%A1%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98" title="კომპლექსური რიცხვი – Γεωργιανά" lang="ka" hreflang="ka" data-title="კომპლექსური რიცხვი" data-language-autonym="ქართული" data-language-local-name="Γεωργιανά" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Am%E1%B8%8Dan_asemlal" title="Amḍan asemlal – Καμπίλε" lang="kab" hreflang="kab" data-title="Amḍan asemlal" data-language-autonym="Taqbaylit" data-language-local-name="Καμπίλε" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Nd%C9%A9_nd%C9%A9_%C3%B1%CA%8A%C5%8B" title="Ndɩ ndɩ ñʊŋ – Kabiye" lang="kbp" hreflang="kbp" data-title="Ndɩ ndɩ ñʊŋ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B5%D1%88%D0%B5%D0%BD_%D1%81%D0%B0%D0%BD" title="Кешен сан – Καζακικά" lang="kk" hreflang="kk" data-title="Кешен сан" data-language-autonym="Қазақша" data-language-local-name="Καζακικά" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9F%86%E1%9E%93%E1%9E%BD%E1%9E%93%E1%9E%80%E1%9E%BB%E1%9F%86%E1%9E%95%E1%9F%92%E1%9E%9B%E1%9E%B7%E1%9E%85" title="ចំនួនកុំផ្លិច – Χμερ" lang="km" hreflang="km" data-title="ចំនួនកុំផ្លិច" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Χμερ" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B3%B5%EC%86%8C%EC%88%98" title="복소수 – Κορεατικά" lang="ko" hreflang="ko" data-title="복소수" data-language-autonym="한국어" data-language-local-name="Κορεατικά" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Niver_kompleth" title="Niver kompleth – Κορνουαλικά" lang="kw" hreflang="kw" data-title="Niver kompleth" data-language-autonym="Kernowek" data-language-local-name="Κορνουαλικά" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D1%82%D2%AF%D2%AF_%D1%81%D0%B0%D0%BD" title="Комплекстүү сан – Κιργιζικά" lang="ky" hreflang="ky" data-title="Комплекстүү сан" data-language-autonym="Кыргызча" data-language-local-name="Κιργιζικά" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_complexus" title="Numerus complexus – Λατινικά" lang="la" hreflang="la" data-title="Numerus complexus" data-language-autonym="Latina" data-language-local-name="Λατινικά" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Complex_getal" title="Complex getal – Λιμβουργιανά" lang="li" hreflang="li" data-title="Complex getal" data-language-autonym="Limburgs" data-language-local-name="Λιμβουργιανά" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Numer_compless" title="Numer compless – Lombard" lang="lmo" hreflang="lmo" data-title="Numer compless" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%88%E0%BA%B3%E0%BA%99%E0%BA%A7%E0%BA%99%E0%BA%AA%E0%BA%BB%E0%BA%99" title="ຈຳນວນສົນ – Λαοτινά" lang="lo" hreflang="lo" data-title="ຈຳນວນສົນ" data-language-autonym="ລາວ" data-language-local-name="Λαοτινά" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Kompleksinis_skai%C4%8Dius" title="Kompleksinis skaičius – Λιθουανικά" lang="lt" hreflang="lt" data-title="Kompleksinis skaičius" data-language-autonym="Lietuvių" data-language-local-name="Λιθουανικά" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Komplekss_skaitlis" title="Komplekss skaitlis – Λετονικά" lang="lv" hreflang="lv" data-title="Komplekss skaitlis" data-language-autonym="Latviešu" data-language-local-name="Λετονικά" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Isa_haro" title="Isa haro – Μαλγασικά" lang="mg" hreflang="mg" data-title="Isa haro" data-language-autonym="Malagasy" data-language-local-name="Μαλγασικά" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B5%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Комплексен број – Σλαβομακεδονικά" lang="mk" hreflang="mk" data-title="Комплексен број" data-language-autonym="Македонски" data-language-local-name="Σλαβομακεδονικά" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AE%E0%B4%BF%E0%B4%B6%E0%B5%8D%E0%B4%B0%E0%B4%B8%E0%B4%82%E0%B4%96%E0%B5%8D%E0%B4%AF" title="മിശ്രസംഖ്യ – Μαλαγιαλαμικά" lang="ml" hreflang="ml" data-title="മിശ്രസംഖ്യ" data-language-autonym="മലയാളം" data-language-local-name="Μαλαγιαλαμικά" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%82%D0%BE%D0%BE" title="Комплекс тоо – Μογγολικά" lang="mn" hreflang="mn" data-title="Комплекс тоо" data-language-autonym="Монгол" data-language-local-name="Μογγολικά" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B8%E0%A4%82%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="संमिश्र संख्या – Μαραθικά" lang="mr" hreflang="mr" data-title="संमिश्र संख्या" data-language-autonym="मराठी" data-language-local-name="Μαραθικά" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Nombor_kompleks" title="Nombor kompleks – Μαλαισιανά" lang="ms" hreflang="ms" data-title="Nombor kompleks" data-language-autonym="Bahasa Melayu" data-language-local-name="Μαλαισιανά" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%80%E1%80%BD%E1%80%94%E1%80%BA%E1%80%95%E1%80%9C%E1%80%80%E1%80%BA%E1%80%85%E1%80%BA%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8" title="ကွန်ပလက်စ်ကိန်း – Βιρμανικά" lang="my" hreflang="my" data-title="ကွန်ပလက်စ်ကိန်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Βιρμανικά" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Komplexe_Tall" title="Komplexe Tall – Κάτω Γερμανικά" lang="nds" hreflang="nds" data-title="Komplexe Tall" data-language-autonym="Plattdüütsch" data-language-local-name="Κάτω Γερμανικά" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Complex_getal" title="Complex getal – Ολλανδικά" lang="nl" hreflang="nl" data-title="Complex getal" data-language-autonym="Nederlands" data-language-local-name="Ολλανδικά" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Komplekse_tal" title="Komplekse tal – Νορβηγικά Νινόρσκ" lang="nn" hreflang="nn" data-title="Komplekse tal" data-language-autonym="Norsk nynorsk" data-language-local-name="Νορβηγικά Νινόρσκ" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Komplekst_tall" title="Komplekst tall – Νορβηγικά Μποκμάλ" lang="nb" hreflang="nb" data-title="Komplekst tall" data-language-autonym="Norsk bokmål" data-language-local-name="Νορβηγικά Μποκμάλ" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Nombre_compl%C3%A8xe" title="Nombre complèxe – Οξιτανικά" lang="oc" hreflang="oc" data-title="Nombre complèxe" data-language-autonym="Occitan" data-language-local-name="Οξιτανικά" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Lakkoofsa_Xaxxamaa" title="Lakkoofsa Xaxxamaa – Ορόμο" lang="om" hreflang="om" data-title="Lakkoofsa Xaxxamaa" data-language-autonym="Oromoo" data-language-local-name="Ορόμο" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BE%D0%BD_%D0%BD%D1%8B%D0%BC%C3%A6%D1%86" title="Комплексон нымæц – Οσετικά" lang="os" hreflang="os" data-title="Комплексон нымæц" data-language-autonym="Ирон" data-language-local-name="Οσετικά" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A9%B0%E0%A8%AA%E0%A8%B2%E0%A9%88%E0%A8%95%E0%A8%B8_%E0%A8%A8%E0%A9%B0%E0%A8%AC%E0%A8%B0" title="ਕੰਪਲੈਕਸ ਨੰਬਰ – Παντζαπικά" lang="pa" hreflang="pa" data-title="ਕੰਪਲੈਕਸ ਨੰਬਰ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Παντζαπικά" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_zespolone" title="Liczby zespolone – Πολωνικά" lang="pl" hreflang="pl" data-title="Liczby zespolone" data-language-autonym="Polski" data-language-local-name="Πολωνικά" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/N%C3%B9mer_compless" title="Nùmer compless – Piedmontese" lang="pms" hreflang="pms" data-title="Nùmer compless" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%A9%D9%85%D9%BE%D9%84%DB%8C%DA%A9%D8%B3_%D9%86%D9%85%D8%A8%D8%B1" title="کمپلیکس نمبر – Western Punjabi" lang="pnb" hreflang="pnb" data-title="کمپلیکس نمبر" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmero_complexo" title="Número complexo – Πορτογαλικά" lang="pt" hreflang="pt" data-title="Número complexo" data-language-autonym="Português" data-language-local-name="Πορτογαλικά" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_complex" title="Număr complex – Ρουμανικά" lang="ro" hreflang="ro" data-title="Număr complex" data-language-autonym="Română" data-language-local-name="Ρουμανικά" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437796 badge-featuredarticle mw-list-item" title="προβεβλημένο λήμμα"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексное число – Ρωσικά" lang="ru" hreflang="ru" data-title="Комплексное число" data-language-autonym="Русский" data-language-local-name="Ρωσικά" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B5_%D1%87%D1%96%D1%81%D0%BB%D0%BE" title="Комплексне чісло – Rusyn" lang="rue" hreflang="rue" data-title="Комплексне чісло" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D0%B0%D1%85%D1%81%D0%B0%D0%B0%D0%BD" title="Комплекс ахсаан – Σαχά" lang="sah" hreflang="sah" data-title="Комплекс ахсаан" data-language-autonym="Саха тыла" data-language-local-name="Σαχά" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/N%C3%B9mmuru_cumplessu" title="Nùmmuru cumplessu – Σικελικά" lang="scn" hreflang="scn" data-title="Nùmmuru cumplessu" data-language-autonym="Sicilianu" data-language-local-name="Σικελικά" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Complex_nummer" title="Complex nummer – Σκωτικά" lang="sco" hreflang="sco" data-title="Complex nummer" data-language-autonym="Scots" data-language-local-name="Σκωτικά" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Kompleksan_broj" title="Kompleksan broj – Σερβοκροατικά" lang="sh" hreflang="sh" data-title="Kompleksan broj" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Σερβοκροατικά" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%83%E0%B6%82%E0%B6%9A%E0%B7%93%E0%B6%BB%E0%B7%8A%E0%B6%AB_%E0%B7%83%E0%B6%82%E0%B6%9B%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F" title="සංකීර්ණ සංඛ්‍යා – Σινχαλεζικά" lang="si" hreflang="si" data-title="සංකීර්ණ සංඛ්‍යා" data-language-autonym="සිංහල" data-language-local-name="Σινχαλεζικά" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Complex_number" title="Complex number – Simple English" lang="en-simple" hreflang="en-simple" data-title="Complex number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Komplexn%C3%A9_%C4%8D%C3%ADslo" title="Komplexné číslo – Σλοβακικά" lang="sk" hreflang="sk" data-title="Komplexné číslo" data-language-autonym="Slovenčina" data-language-local-name="Σλοβακικά" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kompleksno_%C5%A1tevilo" title="Kompleksno število – Σλοβενικά" lang="sl" hreflang="sl" data-title="Kompleksno število" data-language-autonym="Slovenščina" data-language-local-name="Σλοβενικά" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Kompleksloho" title="Kompleksloho – Ινάρι Σάμι" lang="smn" hreflang="smn" data-title="Kompleksloho" data-language-autonym="Anarâškielâ" data-language-local-name="Ινάρι Σάμι" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Thiin_kakan" title="Thiin kakan – Σομαλικά" lang="so" hreflang="so" data-title="Thiin kakan" data-language-autonym="Soomaaliga" data-language-local-name="Σομαλικά" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numrat_kompleks%C3%AB" title="Numrat kompleksë – Αλβανικά" lang="sq" hreflang="sq" data-title="Numrat kompleksë" data-language-autonym="Shqip" data-language-local-name="Αλβανικά" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Комплексан број – Σερβικά" lang="sr" hreflang="sr" data-title="Комплексан број" data-language-autonym="Српски / srpski" data-language-local-name="Σερβικά" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Komplexa_tal" title="Komplexa tal – Σουηδικά" lang="sv" hreflang="sv" data-title="Komplexa tal" data-language-autonym="Svenska" data-language-local-name="Σουηδικά" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Namba_changamano" title="Namba changamano – Σουαχίλι" lang="sw" hreflang="sw" data-title="Namba changamano" data-language-autonym="Kiswahili" data-language-local-name="Σουαχίλι" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BF%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%B2%E0%AF%86%E0%AE%A3%E0%AF%8D" title="சிக்கலெண் – Ταμιλικά" lang="ta" hreflang="ta" data-title="சிக்கலெண்" data-language-autonym="தமிழ்" data-language-local-name="Ταμιλικά" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B8%E0%B0%82%E0%B0%95%E0%B1%80%E0%B0%B0%E0%B1%8D%E0%B0%A3_%E0%B0%B8%E0%B0%82%E0%B0%96%E0%B1%8D%E0%B0%AF%E0%B0%B2%E0%B1%81" title="సంకీర్ణ సంఖ్యలు – Τελούγκου" lang="te" hreflang="te" data-title="సంకీర్ణ సంఖ్యలు" data-language-autonym="తెలుగు" data-language-local-name="Τελούγκου" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%B4%D0%B0%D0%B4%D0%B8_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D3%A3" title="Адади комплексӣ – Τατζικικά" lang="tg" hreflang="tg" data-title="Адади комплексӣ" data-language-autonym="Тоҷикӣ" data-language-local-name="Τατζικικά" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B8%8B%E0%B9%89%E0%B8%AD%E0%B8%99" title="จำนวนเชิงซ้อน – Ταϊλανδικά" lang="th" hreflang="th" data-title="จำนวนเชิงซ้อน" data-language-autonym="ไทย" data-language-local-name="Ταϊλανδικά" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Komplikadong_bilang" title="Komplikadong bilang – Τάγκαλογκ" lang="tl" hreflang="tl" data-title="Komplikadong bilang" data-language-autonym="Tagalog" data-language-local-name="Τάγκαλογκ" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Karma%C5%9F%C4%B1k_say%C4%B1" title="Karmaşık sayı – Τουρκικά" lang="tr" hreflang="tr" data-title="Karmaşık sayı" data-language-autonym="Türkçe" data-language-local-name="Τουρκικά" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%81%D0%B0%D0%BD" title="Комплекс сан – Ταταρικά" lang="tt" hreflang="tt" data-title="Комплекс сан" data-language-autonym="Татарча / tatarça" data-language-local-name="Ταταρικά" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексне число – Ουκρανικά" lang="uk" hreflang="uk" data-title="Комплексне число" data-language-autonym="Українська" data-language-local-name="Ουκρανικά" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%AE%D9%84%D9%88%D8%B7_%D8%B9%D8%AF%D8%AF" title="مخلوط عدد – Ούρντου" lang="ur" hreflang="ur" data-title="مخلوط عدد" data-language-autonym="اردو" data-language-local-name="Ούρντου" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Kompleks_sonlar" title="Kompleks sonlar – Ουζμπεκικά" lang="uz" hreflang="uz" data-title="Kompleks sonlar" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Ουζμπεκικά" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Numaro_conpleso" title="Numaro conpleso – Venetian" lang="vec" hreflang="vec" data-title="Numaro conpleso" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%91_ph%E1%BB%A9c" title="Số phức – Βιετναμικά" lang="vi" hreflang="vi" data-title="Số phức" data-language-autonym="Tiếng Việt" data-language-local-name="Βιετναμικά" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Complexe_getalln" title="Complexe getalln – West Flemish" lang="vls" hreflang="vls" data-title="Complexe getalln" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Komplikado_nga_ihap" title="Komplikado nga ihap – Γουάραϊ" lang="war" hreflang="war" data-title="Komplikado nga ihap" data-language-autonym="Winaray" data-language-local-name="Γουάραϊ" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%A4%8D%E6%95%B0%EF%BC%88%E6%95%B0%E5%AD%A6%EF%BC%89" title="复数(数学) – Κινεζικά Γου" lang="wuu" hreflang="wuu" data-title="复数(数学)" data-language-autonym="吴语" data-language-local-name="Κινεζικά Γου" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B8%D0%BD_%D1%82%D0%BE%D0%B9%D0%B3" title="Комплексин тойг – Καλμίκ" lang="xal" hreflang="xal" data-title="Комплексин тойг" data-language-autonym="Хальмг" data-language-local-name="Καλμίκ" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A7%D7%90%D7%9E%D7%A4%D7%9C%D7%A2%D7%A7%D7%A1%D7%A2_%D7%A6%D7%90%D7%9C" title="קאמפלעקסע צאל – Γίντις" lang="yi" hreflang="yi" data-title="קאמפלעקסע צאל" data-language-autonym="ייִדיש" data-language-local-name="Γίντις" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/N%E1%BB%8D%CC%81mb%C3%A0_t%C3%B3%E1%B9%A3%C3%B2ro" title="Nọ́mbà tóṣòro – Γιορούμπα" lang="yo" hreflang="yo" data-title="Nọ́mbà tóṣòro" data-language-autonym="Yorùbá" data-language-local-name="Γιορούμπα" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%A4%8D%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="复数 (数学) – Κινεζικά" lang="zh" hreflang="zh" data-title="复数 (数学)" data-language-autonym="中文" data-language-local-name="Κινεζικά" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="複數" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Ho%CC%8Dk-cha%CC%8Dp-s%C3%B2%CD%98" title="Ho̍k-cha̍p-sò͘ – Minnan" lang="nan" hreflang="nan" data-title="Ho̍k-cha̍p-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 – Καντονέζικα" lang="yue" hreflang="yue" data-title="複數" data-language-autonym="粵語" data-language-local-name="Καντονέζικα" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11567#sitelinks-wikipedia" title="Επεξεργασία διαγλωσσικών συνδέσεων" class="wbc-editpage">Επεξεργασία συνδέσμων</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Ονοματοχώροι"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Προβολή της σελίδας περιεχομένου [c]" accesskey="c"><span>Λήμμα</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%CE%A3%CF%85%CE%B6%CE%AE%CF%84%CE%B7%CF%83%CE%B7:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" rel="discussion" title="Συζήτηση για τη σελίδα περιεχομένου [t]" accesskey="t"><span>Συζήτηση</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Αλλαγή παραλλαγής γλώσσας" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Ελληνικά</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Προβολές"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span>Ανάγνωση</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit" title="Επεξεργασία αυτής της σελίδας [v]" accesskey="v"><span>Επεξεργασία</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit" title="Επεξεργασία του πηγαίου κώδικα της σελίδας [e]" accesskey="e"><span>Επεξεργασία κώδικα</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=history" title="Παλιές αναθεωρήσεις της σελίδας [h]" accesskey="h"><span>Προβολή ιστορικού</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Εργαλεία σελίδων"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Εργαλεία" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Εργαλεία</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Εργαλεία</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">μετακίνηση στην πλαϊνή μπάρα</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">απόκρυψη</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Περισσότερες επιλογές" > <div class="vector-menu-heading"> Ενέργειες </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span>Ανάγνωση</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit" title="Επεξεργασία αυτής της σελίδας [v]" accesskey="v"><span>Επεξεργασία</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit" title="Επεξεργασία του πηγαίου κώδικα της σελίδας [e]" accesskey="e"><span>Επεξεργασία κώδικα</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=history"><span>Προβολή ιστορικού</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Γενικά </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A4%CE%B9%CE%A3%CF%85%CE%BD%CE%B4%CE%AD%CE%B5%CE%B9%CE%95%CE%B4%CF%8E/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Κατάλογος όλων των σελίδων wiki που έχουν συνδέσμους προς εδώ [j]" accesskey="j"><span>Συνδέσεις προς εδώ</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A3%CF%85%CE%BD%CE%B4%CE%B5%CE%B4%CE%B5%CE%BC%CE%AD%CE%BD%CE%B5%CF%82%CE%A0%CF%81%CF%8C%CF%83%CF%86%CE%B1%CF%84%CE%B5%CF%82%CE%91%CE%BB%CE%BB%CE%B1%CE%B3%CE%AD%CF%82/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" rel="nofollow" title="Πρόσφατες αλλαγές σε σελίδες που παραπέμπουν οι σύνδεσμοι αυτής της σελίδας [k]" accesskey="k"><span>Σχετικές αλλαγές</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CE%AD%CF%82%CE%A3%CE%B5%CE%BB%CE%AF%CE%B4%CE%B5%CF%82" title="Κατάλογος με όλες τις ειδικές σελίδες [q]" accesskey="q"><span>Ειδικές σελίδες</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;oldid=10698702" title="Μόνιμος σύνδεσμος προς αυτήν την αναθεώρηση αυτής της σελίδας"><span>Σταθερός σύνδεσμος</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=info" title="Περισσότερες πληροφορίες σχετικά με αυτήν τη σελίδα"><span>Πληροφορίες σελίδας</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B1%CF%81%CE%B1%CF%80%CE%BF%CE%BC%CF%80%CE%AE%CE%91%CF%85%CF%84%CE%AE%CE%A4%CE%B7%CE%A3%CE%B5%CE%BB%CE%AF%CE%B4%CE%B1&amp;page=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;id=10698702&amp;wpFormIdentifier=titleform" title="Πληροφορίες για το πώς να δημιουργήσετε παραπομπή αυτής της σελίδας"><span>Παραπομπή</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:UrlShortener&amp;url=https%3A%2F%2Fel.wikipedia.org%2Fwiki%2F%25CE%259C%25CE%25B9%25CE%25B3%25CE%25B1%25CE%25B4%25CE%25B9%25CE%25BA%25CF%258C%25CF%2582_%25CE%25B1%25CF%2581%25CE%25B9%25CE%25B8%25CE%25BC%25CF%258C%25CF%2582"><span>Λάβετε συντομευμένη διεύθυνση URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:QrCode&amp;url=https%3A%2F%2Fel.wikipedia.org%2Fwiki%2F%25CE%259C%25CE%25B9%25CE%25B3%25CE%25B1%25CE%25B4%25CE%25B9%25CE%25BA%25CF%258C%25CF%2582_%25CE%25B1%25CF%2581%25CE%25B9%25CE%25B8%25CE%25BC%25CF%258C%25CF%2582"><span>Λήψη κωδικού QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Εκτύπωση/εξαγωγή </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A3%CF%85%CE%BB%CE%BB%CE%BF%CE%B3%CE%AE&amp;bookcmd=book_creator&amp;referer=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span>Δημιουργία βιβλίου</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:DownloadAsPdf&amp;page=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=show-download-screen"><span>Κατέβασμα ως PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;printable=yes" title="Εκτυπώσιμη έκδοση αυτής της σελίδας [p]" accesskey="p"><span>Εκτυπώσιμη έκδοση</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Σε άλλα εγχειρήματα </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Complex_numbers" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11567" title="Σύνδεσμος προς το συνδεδεμένο αντικείμενο δεδομένων [g]" accesskey="g"><span>Αντικείμενο Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Εργαλεία σελίδων"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Εμφάνιση"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Εμφάνιση</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">μετακίνηση στην πλαϊνή μπάρα</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">απόκρυψη</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="el" dir="ltr"><figure typeof="mw:File/Thumb"><a href="/wiki/%CE%91%CF%81%CF%87%CE%B5%CE%AF%CE%BF:Complex_picture.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Complex_picture.svg/239px-Complex_picture.svg.png" decoding="async" width="239" height="239" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Complex_picture.svg/359px-Complex_picture.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/46/Complex_picture.svg/478px-Complex_picture.svg.png 2x" data-file-width="240" data-file-height="240" /></a><figcaption>Γραφική παράσταση του μιγαδικού <span class="texhtml"><i>x</i> + i <i>y</i> = <i>r</i> e<small style="font-size:0.8em"><sup>i<i>φ</i></sup></small></span> χρησιμοποιώντας ένα διάνυσμα. </figcaption></figure> <p>Στα <a href="/wiki/%CE%9C%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC" title="Μαθηματικά">μαθηματικά</a>, οι <b>μιγαδικοί αριθμοί</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> είναι μία επέκταση του συνόλου των <a href="/wiki/%CE%A0%CF%81%CE%B1%CE%B3%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πραγματικός αριθμός">πραγματικών αριθμών</a> με την προσθήκη του στοιχείου <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, που λέγεται <a href="/wiki/%CE%A6%CE%B1%CE%BD%CF%84%CE%B1%CF%83%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Φανταστικός αριθμός">φανταστική μονάδα</a> και έχει την ιδιότητα: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span> </p><p>Κάθε μιγαδικός αριθμός μπορεί να γραφτεί με τη μορφή <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span>, όπου τα <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> και <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> είναι <a href="/wiki/%CE%A0%CF%81%CE%B1%CE%B3%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πραγματικός αριθμός">πραγματικοί αριθμοί</a> και λέγονται <i>πραγματικό μέρος</i> και <i>φανταστικό μέρος</i> του μιγαδικού αριθμού αντίστοιχα. </p><p>Για παράδειγμα, ο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3+2i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3+2i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcee5e7cefb0e4705d363776295a2c09702067db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.968ex; height:2.343ex;" alt="{\displaystyle 3+2i}"></span> είναι ένας μιγαδικός, με <i>πραγματικό μέρος</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> και <i>φανταστικό μέρος</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span>. </p><p>Για τους μιγαδικούς αριθμούς ορίζονται οι πράξεις της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού και της διαίρεσης, όπως και στους πραγματικούς αριθμούς<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>. Στην ορολογία των μαθηματικών, αυτό σημαίνει ότι το σύνολο των μιγαδικών είναι <a href="/wiki/%CE%A3%CF%8E%CE%BC%CE%B1_(%CE%AC%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1)" title="Σώμα (άλγεβρα)">σώμα</a>. </p><p>Η βασική διαφορά των μιγαδικών αριθμών με τους <a href="/wiki/%CE%A0%CF%81%CE%B1%CE%B3%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πραγματικός αριθμός">πραγματικούς</a> είναι η ύπαρξη του στοιχείου <i>i</i> και των πολλαπλασίων του, που όταν υψωθούν στο τετράγωνο δίνουν αρνητικούς πραγματικούς αριθμούς. Επιπλέον, στους μιγαδικούς δεν ορίζεται η <i>διάταξη</i>, δηλαδή δεν έχει έννοια να συγκρίνουμε δύο μιγαδικούς ώστε να πούμε ότι ένας μιγαδικός αριθμός είναι <i>μεγαλύτερος</i> ή <i>μικρότερος</i> από κάποιον άλλον μιγαδικό αριθμό. </p><p>Οι μιγαδικοί αριθμοί έχουν, μεταξύ άλλων, σημαντικές εφαρμογές στη λύση <a href="/wiki/%CE%94%CE%B9%CE%B1%CF%86%CE%BF%CF%81%CE%B9%CE%BA%CE%AE_%CE%B5%CE%BE%CE%AF%CF%83%CF%89%CF%83%CE%B7" title="Διαφορική εξίσωση">διαφορικών εξισώσεων</a> αλλά και στη μελέτη διάφορων φυσικών προβλημάτων <a href="/wiki/%CE%9F%CF%80%CF%84%CE%B9%CE%BA%CE%AE" title="Οπτική">οπτικής</a>, <a href="/wiki/%CE%97%CE%BB%CE%B5%CE%BA%CF%84%CF%81%CE%BF%CE%BC%CE%B1%CE%B3%CE%BD%CE%B7%CF%84%CE%B9%CF%83%CE%BC%CF%8C%CF%82" title="Ηλεκτρομαγνητισμός">κυματικής</a>, <a href="/wiki/%CE%9A%CE%B2%CE%B1%CE%BD%CF%84%CE%B9%CE%BA%CE%AE_%CE%BC%CE%B7%CF%87%CE%B1%CE%BD%CE%B9%CE%BA%CE%AE" title="Κβαντική μηχανική">κβαντομηχανικής</a> και <a href="/wiki/%CE%97%CE%BB%CE%B5%CE%BA%CF%84%CF%81%CE%BF%CE%BD%CE%B9%CE%BA%CE%AE" title="Ηλεκτρονική">ηλεκτρονικής</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Ιστορικό"><span id=".CE.99.CF.83.CF.84.CE.BF.CF.81.CE.B9.CE.BA.CF.8C"></span>Ιστορικό</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=1" title="Επεξεργασία ενότητας: Ιστορικό" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=1" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Ιστορικό"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Οι μιγαδικοί αριθμοί επινοήθηκαν από τον Ιταλό <a href="/wiki/%CE%9C%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82" title="Μαθηματικός">μαθηματικό</a> <a href="/wiki/%CE%A4%CE%B6%CE%B5%CF%81%CF%8C%CE%BB%CE%B1%CE%BC%CE%BF_%CE%9A%CE%B1%CF%81%CE%BD%CF%84%CE%AC%CE%BD%CE%BF" title="Τζερόλαμο Καρντάνο">Τζερόλαμο Καρντάνο</a>, ο οποίος τους χαρακτήριζε ως <i>φανταστικούς</i>, στην προσπάθειά του να βρει αναλυτικές λύσεις σε κυβικές εξισώσεις<sup id="cite_ref-:0_3-0" class="reference"><a href="#cite_note-:0-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>. Η διαδικασία επίλυσης τέτοιων εξισώσεων απαιτεί ενδιάμεσους υπολογισμούς, οι οποίοι μπορεί να περιλαμβάνουν τετραγωνικές ρίζες αρνητικών αριθμών, ακόμα κι όταν η <a href="/wiki/%CE%A1%CE%AF%CE%B6%CE%B1_(%CE%BC%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC)" title="Ρίζα (μαθηματικά)">ρίζα</a> είναι πραγματικός αριθμός. Το γεγονός αυτό οδήγησε τελικά στο <a href="/wiki/%CE%98%CE%B5%CE%BC%CE%B5%CE%BB%CE%B9%CF%8E%CE%B4%CE%B5%CF%82_%CE%B8%CE%B5%CF%8E%CF%81%CE%B7%CE%BC%CE%B1_%CE%AC%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1%CF%82" title="Θεμελιώδες θεώρημα άλγεβρας">Θεμελιώδες Θεώρημα της Άλγεβρας</a>, που δείχνει ότι στο σώμα των μιγαδικών αριθμών κάθε μη μηδενικό <a href="/wiki/%CE%A0%CE%BF%CE%BB%CF%85%CF%8E%CE%BD%CF%85%CE%BC%CE%BF" title="Πολυώνυμο">πολυώνυμο</a> έχει τουλάχιστον μια ρίζα.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Ορισμοί"><span id=".CE.9F.CF.81.CE.B9.CF.83.CE.BC.CE.BF.CE.AF"></span>Ορισμοί</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=2" title="Επεξεργασία ενότητας: Ορισμοί" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=2" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Ορισμοί"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Συμβολισμοί_και_πράξεις"><span id=".CE.A3.CF.85.CE.BC.CE.B2.CE.BF.CE.BB.CE.B9.CF.83.CE.BC.CE.BF.CE.AF_.CE.BA.CE.B1.CE.B9_.CF.80.CF.81.CE.AC.CE.BE.CE.B5.CE.B9.CF.82"></span>Συμβολισμοί και πράξεις</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=3" title="Επεξεργασία ενότητας: Συμβολισμοί και πράξεις" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=3" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Συμβολισμοί και πράξεις"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Το <a href="/wiki/%CE%A3%CF%8D%CE%BD%CE%BF%CE%BB%CE%BF" title="Σύνολο">σύνολο</a> όλων των μιγαδικών αριθμών συμβολίζεται συνήθως ως <b>C</b> ή <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> και ορίζεται ως εξής: <sup id="cite_ref-:0_3-1" class="reference"><a href="#cite_note-:0-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} =\lbrace a+ib~\vert \ a,b\in \mathbb {R} ,\ i^{2}=-1\rbrace }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mtext>&#xA0;</mtext> <mo fence="false" stretchy="false">|</mo> <mtext>&#xA0;</mtext> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} =\lbrace a+ib~\vert \ a,b\in \mathbb {R} ,\ i^{2}=-1\rbrace }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7431523b39bdb6e2b6b89b8fef5a86d0d136403b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.1ex; height:3.176ex;" alt="{\displaystyle \mathbb {C} =\lbrace a+ib~\vert \ a,b\in \mathbb {R} ,\ i^{2}=-1\rbrace }"></span> </p><p>Το σύνολο των μιγαδικών περιέχει επιπλέον όλους τους πραγματικούς αριθμούς, καθώς κάθε πραγματικός αριθμός μπορεί να γραφτεί ως ένας μιγαδικός με μηδενικό φανταστικό μέρος<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :\ a+0i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:</mo> <mtext>&#xA0;</mtext> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :\ a+0i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3190671aa0ffeaed4f1f68d18aa7e6bbd7f2193" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.908ex; height:2.343ex;" alt="{\displaystyle :\ a+0i}"></span>. </p><p>Αν το φανταστικό μέρος ενός μιγαδικού είναι ίσο με το <a href="/wiki/%CE%9C%CE%B7%CE%B4%CE%AD%CE%BD" class="mw-redirect" title="Μηδέν">μηδέν</a>, τότε αυτός ο μιγαδικός ταυτίζεται με τον πραγματικό αριθμό <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>. </p><p>Το πραγματικό μέρος ενός μιγαδικού <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+ib}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+ib}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768804bf1e5f2b40378497f93bb04a10ce64098b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+ib}"></span> συμβολίζεται με <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Re(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>e</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Re(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/349b80794869ba5678424ecf7855050a9e0357a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.745ex; height:2.843ex;" alt="{\displaystyle Re(z)}"></span> ενώ το φανταστικό μέρος με <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Im(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>m</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Im(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391e328c7a231eba7768dd9c74a9632db1e50371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.11ex; height:2.843ex;" alt="{\displaystyle Im(z)}"></span>, δηλαδή ισχύει: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Re(z)=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>e</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Re(z)=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf1258883589d2303b36bc0fc034faae1c6ea9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.073ex; height:2.843ex;" alt="{\displaystyle Re(z)=a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Im(z)=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>m</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Im(z)=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64a6a38fa595fc3392bfaee47420562cead09378" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.206ex; height:2.843ex;" alt="{\displaystyle Im(z)=b}"></span></li></ul> <p>Δύο μιγαδικοί αριθμοί, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1}=x_{1}+iy_{1},\ z_{2}=x_{2}+iy_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1}=x_{1}+iy_{1},\ z_{2}=x_{2}+iy_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fa926093a8e5dc8964baf4758910d863b277075" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:28.523ex; height:2.509ex;" alt="{\displaystyle z_{1}=x_{1}+iy_{1},\ z_{2}=x_{2}+iy_{2}}"></span>, είναι ίσοι μεταξύ τους <a href="/wiki/%CE%91%CE%BD_%CE%BA%CE%B1%CE%B9_%CE%BC%CF%8C%CE%BD%CE%BF_%CE%B1%CE%BD" title="Αν και μόνο αν">αν και μόνο αν</a> τα πραγματικά τους μέρη και τα φανταστικά τους μέρη είναι μεταξύ τους ίσα. Δηλαδή αν <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}=x_{2},\ y_{1}=y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}=x_{2},\ y_{1}=y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d3c8f58f220ff66fbe2814422858919aa7e3b88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.966ex; height:2.009ex;" alt="{\displaystyle x_{1}=x_{2},\ y_{1}=y_{2}}"></span>. </p><p>Πράξεις μεταξύ μιγαδικών αριθμών γίνονται με βάση τους γνωστούς κανόνες αντιμετάθεσης, προσεταιρισμού και επιμερισμού, της <a href="/wiki/%CE%86%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1" title="Άλγεβρα">Άλγεβρας</a>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+ib)+(c+id)=(a+c)+i(b+d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>i</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+ib)+(c+id)=(a+c)+i(b+d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a96b6595dc71e4d560d4cf1358fbb325118cac2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.686ex; height:2.843ex;" alt="{\displaystyle (a+ib)+(c+id)=(a+c)+i(b+d)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+ib)-(c+id)=(a-c)+i(b-d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>i</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+ib)-(c+id)=(a-c)+i(b-d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/513bec08d26ff774ce58545cf5901ae99140eb86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.686ex; height:2.843ex;" alt="{\displaystyle (a+ib)-(c+id)=(a-c)+i(b-d)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+ib)(c+id)=ac+ibc+iad+i^{2}bd=(ac-bd)+i(bc+ad)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>i</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mi>c</mi> <mo>+</mo> <mi>i</mi> <mi>a</mi> <mi>d</mi> <mo>+</mo> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>b</mi> <mi>d</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mi>c</mi> <mo>+</mo> <mi>a</mi> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+ib)(c+id)=ac+ibc+iad+i^{2}bd=(ac-bd)+i(bc+ad)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93737bb878a25f7496c7629aace6f57d03181874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:64.277ex; height:3.176ex;" alt="{\displaystyle (a+ib)(c+id)=ac+ibc+iad+i^{2}bd=(ac-bd)+i(bc+ad)}"></span></li></ul> <p>Πιο αυστηρά, οι μιγαδικοί αριθμοί ορίζονται ως το σώμα <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} =\left\{(a,b),\oplus ,\otimes \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2295;<!-- ⊕ --></mo> <mo>,</mo> <mo>&#x2297;<!-- ⊗ --></mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} =\left\{(a,b),\oplus ,\otimes \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2270fab01f77fb17cf4930dede78286dce1826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.856ex; height:2.843ex;" alt="{\displaystyle \mathbb {C} =\left\{(a,b),\oplus ,\otimes \right\}}"></span> με <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\in \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\in \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/548c6ba1fd1d323a5b61cf3a7418d60a814af8ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.644ex; height:3.176ex;" alt="{\displaystyle (a,b)\in \mathbb {R} ^{2}}"></span> και </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus :}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2295;<!-- ⊕ --></mo> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus :}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b4722a41e9798e6efaf2f5b69bfb7fb334426e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.1ex; height:2.176ex;" alt="{\displaystyle \oplus :}"></span> προσθετική πράξη <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}\times \mathbb {R} ^{2}\to \mathbb {R} ^{2}:(a,b)\oplus (c,d)=(a+c,b+d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>:</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2295;<!-- ⊕ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo>,</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}\times \mathbb {R} ^{2}\to \mathbb {R} ^{2}:(a,b)\oplus (c,d)=(a+c,b+d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a630e45ac36d665b7cceb9a194151ad9210967" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.638ex; height:3.176ex;" alt="{\displaystyle \mathbb {R} ^{2}\times \mathbb {R} ^{2}\to \mathbb {R} ^{2}:(a,b)\oplus (c,d)=(a+c,b+d)}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \otimes :}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2297;<!-- ⊗ --></mo> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \otimes :}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a86c68507814cde57b1c48276f0a6238f234323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.1ex; height:2.176ex;" alt="{\displaystyle \otimes :}"></span> πολλαπλασιαστική πράξη <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}\times \mathbb {R} ^{2}\to \mathbb {R} ^{2}:(a,b)\otimes (c,d)=(a\cdot c-b\cdot d,a\cdot d+c\cdot b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>:</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mo>,</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mo>+</mo> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}\times \mathbb {R} ^{2}\to \mathbb {R} ^{2}:(a,b)\otimes (c,d)=(a\cdot c-b\cdot d,a\cdot d+c\cdot b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b44e0d2cc29747b80a874e4e46c2250689c7cf19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.805ex; height:3.176ex;" alt="{\displaystyle \mathbb {R} ^{2}\times \mathbb {R} ^{2}\to \mathbb {R} ^{2}:(a,b)\otimes (c,d)=(a\cdot c-b\cdot d,a\cdot d+c\cdot b)}"></span> </p><p>όπου + και <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> η κοινή πρόσθεση και ο κοινός πολλαπλασιασμός των πραγματικών. </p><p>Αποδεικνύεται εύκολα ότι το υποσύνολο του <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} =\lbrace (a,0)\vert a\in \mathbb {R} \rbrace }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">|</mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} =\lbrace (a,0)\vert a\in \mathbb {R} \rbrace }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc0ba834fa9a7f6ab4da34dcfa598d758e7ebaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.057ex; height:2.843ex;" alt="{\displaystyle \mathbf {R} =\lbrace (a,0)\vert a\in \mathbb {R} \rbrace }"></span> </p><p>είναι <a href="/w/index.php?title=%CE%A5%CF%80%CF%8C%CF%83%CF%89%CE%BC%CE%B1&amp;action=edit&amp;redlink=1" class="new" title="Υπόσωμα (δεν έχει γραφτεί ακόμα)">υπόσωμα</a> του <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> και είναι ισόμορφο με το <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. Με βάση αυτό, πολλές φορές συμβολίζουμε το <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb7e272c21fb886ae2ab806119c8cd35c2a52754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.236ex; height:2.843ex;" alt="{\displaystyle (a,0)}"></span> με <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, έτσι π.χ. συμβολίζουμε το <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3,0)=3,\ \left({\tfrac {5}{11}},0\right)={\tfrac {5}{11}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>5</mn> <mn>11</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>5</mn> <mn>11</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3,0)=3,\ \left({\tfrac {5}{11}},0\right)={\tfrac {5}{11}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80dbecfab3e6331276b8059108cf9f44bb72ae22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.461ex; height:4.843ex;" alt="{\displaystyle (3,0)=3,\ \left({\tfrac {5}{11}},0\right)={\tfrac {5}{11}}}"></span> κτλ. </p><p>Το στοιχείο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,1)\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,1)\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99df66e32e3a08c87a63f498ce1a26ec50b01d0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.687ex; height:2.843ex;" alt="{\displaystyle (0,1)\in \mathbb {C} }"></span> το συμβολίζουμε <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> και το ονομάζουμε φανταστική μονάδα. </p><p>Το αυστηρά ορισμένο αυτό σώμα έχει όλες τις ιδιότητες που προαναφέρθηκαν για τους μιγαδικούς και αποφεύγει την "αντιδιαισθητική" αναφορά στο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea1ea9ac61e6e1e84ac39130f78143c18865719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.906ex; height:3.009ex;" alt="{\displaystyle {\sqrt {-1}}}"></span>. Για το σώμα αυτό ισχύει: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=(0,1)\otimes (0,1)=(0\cdot 0-1\cdot 1,1\cdot 0+0\cdot 1)=(-1,0)=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>0</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>0</mn> <mo>+</mo> <mn>0</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=(0,1)\otimes (0,1)=(0\cdot 0-1\cdot 1,1\cdot 0+0\cdot 1)=(-1,0)=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c30a48837b855bcb53092e704033d06dfc300302" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.914ex; height:3.176ex;" alt="{\displaystyle i^{2}=(0,1)\otimes (0,1)=(0\cdot 0-1\cdot 1,1\cdot 0+0\cdot 1)=(-1,0)=-1}"></span> </p><p>όπου όμως το <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> δεν είναι ο πραγματικός <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> αλλά ο εναλλακτικός συμβολισμός του μιγαδικού <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8f5f5f03e9f4380e41314d8c5d0129861c8ecf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.976ex; height:2.843ex;" alt="{\displaystyle (-1,0)}"></span>, κι έτσι δεν δημιουργείται πρόβλημα. Οι μιγαδικοί, δηλαδή, δεν είναι μια αυθαίρετη επίκληση στην ύπαρξη ριζών αρνητικών πραγματικών, αλλά ένα εντελώς διαφορετικό σώμα, του οποίου τουλάχιστον ένα υπόσωμα είναι ισόμορφο με τους πραγματικούς. </p> <div class="mw-heading mw-heading3"><h3 id="Μιγαδικό_επίπεδο"><span id=".CE.9C.CE.B9.CE.B3.CE.B1.CE.B4.CE.B9.CE.BA.CF.8C_.CE.B5.CF.80.CE.AF.CF.80.CE.B5.CE.B4.CE.BF"></span>Μιγαδικό επίπεδο</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=4" title="Επεξεργασία ενότητας: Μιγαδικό επίπεδο" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=4" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Μιγαδικό επίπεδο"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/%CE%91%CF%81%CF%87%CE%B5%CE%AF%CE%BF:Complex_number_illustration.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/220px-Complex_number_illustration.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/330px-Complex_number_illustration.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_number_illustration.svg/440px-Complex_number_illustration.svg.png 2x" data-file-width="180" data-file-height="180" /></a><figcaption>Ένας μιγαδικός <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+ib}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+ib}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768804bf1e5f2b40378497f93bb04a10ce64098b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+ib}"></span> παριστάνεται και με το <a href="/wiki/%CE%94%CE%B9%CE%AC%CE%BD%CF%85%CF%83%CE%BC%CE%B1" title="Διάνυσμα">διάνυσμα</a> με αρχή το κέντρο των αξόνων και πέρας το σημείο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>. </figcaption></figure> <p>Κάθε μιγαδικός αριθμός <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+ib}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+ib}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768804bf1e5f2b40378497f93bb04a10ce64098b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+ib}"></span> μπορεί να αντιστοιχιστεί σε ένα σημείο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b5f58aeb44d07fb32a14d8fd8d065d7b23e1cfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.513ex; height:2.843ex;" alt="{\displaystyle M(a,b)}"></span> ενός δισδιάστατου <a href="/wiki/%CE%9A%CE%B1%CF%81%CF%84%CE%B5%CF%83%CE%B9%CE%B1%CE%BD%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CF%83%CF%85%CE%BD%CF%84%CE%B5%CF%84%CE%B1%CE%B3%CE%BC%CE%AD%CE%BD%CF%89%CE%BD" title="Καρτεσιανό σύστημα συντεταγμένων">καρτεσιανού συστήματος συντεταγμένων</a>. Κάθε τέτοιο σημείο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> λέγεται "εικόνα" του αντίστοιχου μιγαδικού αριθμού <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> και συμβολίζεται με <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b7703ad73053a9d1e8d6f43d873ac49825b1955" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.34ex; height:2.843ex;" alt="{\displaystyle M(z)}"></span> ή <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b5f58aeb44d07fb32a14d8fd8d065d7b23e1cfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.513ex; height:2.843ex;" alt="{\displaystyle M(a,b)}"></span>. Σε αυτή την περίπτωση, το καρτεσιανό σύστημα συντεταγμένων λέγεται "μιγαδικό επίπεδο" (ή "διάγραμμα Argand"). </p><p>Λόγω της παραπάνω αντιστοίχισης μιγαδικού με σημείο, κάθε μιγαδικός αριθμός <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> μπορεί να αναπαρασταθεί στο μιγαδικό επίπεδο με το <a href="/wiki/%CE%94%CE%B9%CE%AC%CE%BD%CF%85%CF%83%CE%BC%CE%B1" title="Διάνυσμα">διάνυσμα</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {OM}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>M</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {OM}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8a35bb30cf6e3998acb8ceeef6b2d23696a359e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.4ex; width:4.468ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {OM}}}"></span>, που έχει αρχή το κέντρο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> των αξόνων και τέλος το σημείο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b5f58aeb44d07fb32a14d8fd8d065d7b23e1cfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.513ex; height:2.843ex;" alt="{\displaystyle M(a,b)}"></span>. </p><p>Το <i><a href="/wiki/%CE%9C%CE%AD%CF%84%CF%81%CE%BF" title="Μέτρο">μέτρο</a></i> του μιγαδικού αριθμού ορίζεται ως το μέτρο του διανύσματος <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {OM}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>M</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {OM}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8a35bb30cf6e3998acb8ceeef6b2d23696a359e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.4ex; width:4.468ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {OM}}}"></span> ή, ισοδύναμα, ως η <a href="/wiki/%CE%91%CF%80%CF%8C%CF%83%CF%84%CE%B1%CF%83%CE%B7_(%CE%B3%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1)" title="Απόσταση (γεωμετρία)">απόσταση</a> του <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> από το κέντρο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> του μιγαδικού επιπέδου: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2240f45df233f1fefaca5becee847cce498ee0cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:19.504ex; height:4.843ex;" alt="{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}\geq 0}"></span> . </p> <div class="mw-heading mw-heading3"><h3 id="Συζυγής_μιγαδικός"><span id=".CE.A3.CF.85.CE.B6.CF.85.CE.B3.CE.AE.CF.82_.CE.BC.CE.B9.CE.B3.CE.B1.CE.B4.CE.B9.CE.BA.CF.8C.CF.82"></span>Συζυγής μιγαδικός</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=5" title="Επεξεργασία ενότητας: Συζυγής μιγαδικός" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=5" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Συζυγής μιγαδικός"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote noprint">Κύριο λήμμα&#58; <a href="/wiki/%CE%A3%CF%85%CE%B6%CF%85%CE%B3%CE%AE%CF%82_%CE%BC%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Συζυγής μιγαδικός αριθμός">Συζυγής μιγαδικός αριθμός</a></div> <p>Ο <i>συζυγής</i> ενός μιγαδικού αριθμού <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+ib}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+ib}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768804bf1e5f2b40378497f93bb04a10ce64098b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+ib}"></span> ορίζεται ως <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a-ib}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a-ib}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3193ee2f0687286ebfb7b61ca842f7adbe2473e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a-ib}"></span>, και συμβολίζεται <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52dd0599595d539f7d757ec21da6c6e6ac3ad427" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.296ex; height:2.009ex;" alt="{\displaystyle {\bar {z}}}"></span>. Γεωμετρικά, ο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52dd0599595d539f7d757ec21da6c6e6ac3ad427" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.296ex; height:2.009ex;" alt="{\displaystyle {\bar {z}}}"></span> αποτελεί τον κατοπτρισμό του <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> ως προς τον άξονα των πραγματικών (βλ. σχήμα). Για ένα μιγαδικό αριθμό <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>, τον συζυγή και το μέτρο του ισχύουν οι ακόλουθες σχέσεις: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|^{2}=z{\bar {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|^{2}=z{\bar {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57c5698608d237ae6087574109f6a4f427351c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.919ex; height:3.343ex;" alt="{\displaystyle |z|^{2}=z{\bar {z}}}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|=|{\bar {z}}|=|-z|=|{\bar {-z}}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|=|{\bar {z}}|=|-z|=|{\bar {-z}}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eafa39002903737a05d2cc8c9e54f8593c263dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.679ex; height:2.843ex;" alt="{\displaystyle |z|=|{\bar {z}}|=|-z|=|{\bar {-z}}|}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {z+w}}={\bar {z}}+{\bar {w}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>z</mi> <mo>+</mo> <mi>w</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {z+w}}={\bar {z}}+{\bar {w}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/920da5ee5dc0a6bde6aac4dae309e99f3a76ed1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.607ex; height:2.843ex;" alt="{\displaystyle {\overline {z+w}}={\bar {z}}+{\bar {w}}}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {zw}}={\bar {z}}{\bar {w}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>z</mi> <mi>w</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {zw}}={\bar {z}}{\bar {w}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ebb7ac2938e14771b542d90715cb5a26671f4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.926ex; height:2.343ex;" alt="{\displaystyle {\overline {zw}}={\bar {z}}{\bar {w}}}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\left({\frac {z}{w}}\right)}}={\frac {\bar {z}}{\bar {w}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mi>w</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\left({\frac {z}{w}}\right)}}={\frac {\bar {z}}{\bar {w}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0669a328f133051497ed414fe82090874781ec2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.989ex; height:5.509ex;" alt="{\displaystyle {\overline {\left({\frac {z}{w}}\right)}}={\frac {\bar {z}}{\bar {w}}}}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {z}}=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {z}}=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/186ebc6b8f091932c80249139d1221448d18bd4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.483ex; height:2.009ex;" alt="{\displaystyle {\bar {z}}=z}"></span> αν και μόνο αν <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Im(z)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>m</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Im(z)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9bf3ca6f43f0d191a9836fedd85c8ecdf375a0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.37ex; height:2.843ex;" alt="{\displaystyle Im(z)=0}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {z}}=-z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {z}}=-z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2e143c94de1a9622ad281dcac6d124666de0faa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.291ex; height:2.176ex;" alt="{\displaystyle {\bar {z}}=-z}"></span> αν και μόνο αν <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Re(z)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>e</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Re(z)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae102fbf938f77ce5cac19713e3d36a81639cdc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.006ex; height:2.843ex;" alt="{\displaystyle Re(z)=0}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\left({\bar {z}}\right)}}=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\left({\bar {z}}\right)}}=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6098bb5842099fa2e2567d0655f8858c1dce1f33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.407ex; height:3.676ex;" alt="{\displaystyle {\overline {\left({\bar {z}}\right)}}=z}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{z}}={\frac {\bar {z}}{|z|^{2}}},\ z\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>z</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{z}}={\frac {\bar {z}}{|z|^{2}}},\ z\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0649c9a4931fffbc901c744af7dfff92746cb31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.333ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{z}}={\frac {\bar {z}}{|z|^{2}}},\ z\neq 0}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Τριγωνομετρική_μορφή"><span id=".CE.A4.CF.81.CE.B9.CE.B3.CF.89.CE.BD.CE.BF.CE.BC.CE.B5.CF.84.CF.81.CE.B9.CE.BA.CE.AE_.CE.BC.CE.BF.CF.81.CF.86.CE.AE"></span>Τριγωνομετρική μορφή</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=6" title="Επεξεργασία ενότητας: Τριγωνομετρική μορφή" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=6" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Τριγωνομετρική μορφή"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/%CE%91%CF%81%CF%87%CE%B5%CE%AF%CE%BF:Complex_number.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Complex_number.jpg/200px-Complex_number.jpg" decoding="async" width="200" height="319" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Complex_number.jpg/300px-Complex_number.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/Complex_number.jpg/400px-Complex_number.jpg 2x" data-file-width="889" data-file-height="1416" /></a><figcaption></figcaption></figure> <p>Εκτός από τις καρτεσιανές συντεταγμένες του, ένας μιγαδικός μπορεί να γραφεί και με <i>πολική</i> ή <i>τριγωνομετρική μορφή</i>. Οι <i><a href="/wiki/%CE%A0%CE%BF%CE%BB%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CF%83%CF%85%CE%BD%CF%84%CE%B5%CF%84%CE%B1%CE%B3%CE%BC%CE%AD%CE%BD%CF%89%CE%BD" title="Πολικό σύστημα συντεταγμένων">πολικές συντεταγμένες</a></i> ενός μιγαδικού <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> είναι το ζευγάρι <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,\phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,\phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/389994f381dc6fcbbf41cef5bb3f694b9bfef296" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.277ex; height:2.843ex;" alt="{\displaystyle (r,\phi )}"></span>, όπου <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=\left|z\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=\left|z\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/593f2fbbd2a6f019307286d6a898fdada8323496" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.529ex; height:2.843ex;" alt="{\displaystyle r=\left|z\right|}"></span>, είναι το <a href="/wiki/%CE%9C%CE%AD%CF%84%CF%81%CE%BF_(%CE%B4%CE%B9%CE%B1%CE%BD%CF%8D%CF%83%CE%BC%CE%B1%CF%84%CE%BF%CF%82)" class="mw-redirect" title="Μέτρο (διανύσματος)">μέτρο</a> του μιγαδικού και <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>, το <i>πρωτεύον όρισμα</i> του <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>. </p><p><i>Όρισμα</i> ενός μιγαδικού <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> είναι κάθε μία από τις γωνίες που σχηματίζει ο θετικός οριζόντιος ημιάξονας <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> με το αντίστοιχο διάνυσμα του <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>. <i>Πρωτεύον όρισμα</i> είναι η γωνία εκείνη που βρίσκεται στο διάστημα <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(-\pi ,\pi \right\rbrack }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(-\pi ,\pi \right\rbrack }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ee45e0f92e4505306d0eb2be9880d3f210bfcc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.058ex; height:2.843ex;" alt="{\displaystyle \left(-\pi ,\pi \right\rbrack }"></span>, και συμβολίζεται με <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Arg(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>r</mi> <mi>g</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Arg(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5bd83d592761bd1430ac0a2ed4598413f22aa95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.805ex; height:2.843ex;" alt="{\displaystyle Arg(z)}"></span>. Οπότε, κάθε άλλο όρισμα του <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>, διαφέρει κατά <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\kappa \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03BA;<!-- κ --></mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\kappa \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ef07fe054c9fcdb2455ffbd33badc322dd6f82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.833ex; height:2.176ex;" alt="{\displaystyle 2\kappa \pi }"></span> από το <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Arg(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>r</mi> <mi>g</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Arg(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5bd83d592761bd1430ac0a2ed4598413f22aa95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.805ex; height:2.843ex;" alt="{\displaystyle Arg(z)}"></span>, όπου <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa \in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa \in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abb397bc98bec3275893fdc06ad6ac80dec1f13f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.73ex; height:2.176ex;" alt="{\displaystyle \kappa \in \mathbb {Z} }"></span> (<a href="/wiki/%CE%91%CE%BA%CE%AD%CF%81%CE%B1%CE%B9%CE%BF%CF%82" class="mw-redirect" title="Ακέραιος">ακέραιος</a>). </p><p>Ισχύει ότι: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=x+iy=r(\cos \phi +i\sin \phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=x+iy=r(\cos \phi +i\sin \phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84efd6a7b94070b578fdaa2c2ce40aa6a9e06b63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.813ex; height:2.843ex;" alt="{\displaystyle z=x+iy=r(\cos \phi +i\sin \phi )}"></span> </p><p>όπου: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=|z|={\sqrt {x^{2}+y^{2}}}\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=|z|={\sqrt {x^{2}+y^{2}}}\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07870469a502b4eee7bfbcdce9fd3e2f1dc3a80b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:23.651ex; height:4.843ex;" alt="{\displaystyle r=|z|={\sqrt {x^{2}+y^{2}}}\geq 0}"></span> </p><p>και το όρισμα <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> προσδιορίζεται με προσθετέο <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\kappa \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03BA;<!-- κ --></mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\kappa \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ef07fe054c9fcdb2455ffbd33badc322dd6f82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.833ex; height:2.176ex;" alt="{\displaystyle 2\kappa \pi }"></span>, δηλαδή ορίσματα που διαφέρουν κατά ένα ακέραιο πολλαπλάσιο του <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> είναι ισοδύναμα. </p> <div class="mw-heading mw-heading3"><h3 id="Εκθετική_μορφή"><span id=".CE.95.CE.BA.CE.B8.CE.B5.CF.84.CE.B9.CE.BA.CE.AE_.CE.BC.CE.BF.CF.81.CF.86.CE.AE"></span>Εκθετική μορφή</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=7" title="Επεξεργασία ενότητας: Εκθετική μορφή" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=7" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Εκθετική μορφή"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Χρησιμοποιώντας την <a href="/wiki/%CE%A4%CE%B1%CF%85%CF%84%CF%8C%CF%84%CE%B7%CF%84%CE%B1_%CF%84%CE%BF%CF%85_%CE%8C%CE%B9%CE%BB%CE%B5%CF%81" title="Ταυτότητα του Όιλερ">εξίσωση του Όιλερ</a>, η τριγωνομετρική μορφή μετατρέπεται σε: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=|z|e^{i\phi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=|z|e^{i\phi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bffde18c4cf3519b650320bb98739c0f65121ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.431ex; height:3.176ex;" alt="{\displaystyle z=|z|e^{i\phi }}"></span></dd></dl> <p>που λέγεται <i>εκθετική μορφή</i>. </p><p>Με βάση την εκθετική μορφή των μιγαδικών αριθμών, μπορούν να οριστούν ο πολλαπλασιασμός ή η διαίρεσή τους ως εξής: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1}e^{i\phi _{1}}\cdot r_{2}e^{i\phi _{2}}=r_{1}r_{2}e^{i(\phi _{1}+\phi _{2})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo>=</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1}e^{i\phi _{1}}\cdot r_{2}e^{i\phi _{2}}=r_{1}r_{2}e^{i(\phi _{1}+\phi _{2})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfb71c46adc31a2b1a0308c6103b712bf4611e8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:28.641ex; height:3.176ex;" alt="{\displaystyle r_{1}e^{i\phi _{1}}\cdot r_{2}e^{i\phi _{2}}=r_{1}r_{2}e^{i(\phi _{1}+\phi _{2})}}"></span></dd></dl> <p>και </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {r_{1}e^{i\phi _{1}}}{r_{2}e^{i\phi _{2}}}}={\frac {r_{1}}{r_{2}}}e^{i(\phi _{1}-\phi _{2})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mrow> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {r_{1}e^{i\phi _{1}}}{r_{2}e^{i\phi _{2}}}}={\frac {r_{1}}{r_{2}}}e^{i(\phi _{1}-\phi _{2})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c104f21ffe86f6c763389204ebf70ced116ad5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.734ex; height:6.343ex;" alt="{\displaystyle {\frac {r_{1}e^{i\phi _{1}}}{r_{2}e^{i\phi _{2}}}}={\frac {r_{1}}{r_{2}}}e^{i(\phi _{1}-\phi _{2})}}"></span></dd></dl> <p>Κατά αυτό τον τρόπο, η πρόσθεση μιγαδικών ταυτίζεται με πρόσθεση διανυσμάτων ενώ ο πολλαπλασιασμός μπορεί να θεωρηθεί ως μία <i>στροφή</i> (και <i>ομοιοθεσία</i>, δηλ. επιμήκυνση ή σμίκρυνση) διανύσματος. Ο πολλαπλασιασμός με τον φανταστικό αριθμό <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> αντιστοιχεί σε μία στροφή <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 90^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 90^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c326d317eddef3ad3e6625e018a708e290a039f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.343ex;" alt="{\displaystyle 90^{\circ }}"></span> (με φορά αντίθετη των δεικτών του ρολογιού). Η γεωμετρική, επομένως, σημασία της εξίσωσης <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>, που ορίζει τη φανταστική μονάδα, είναι πως δύο διαδοχικές στροφές <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 90^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 90^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c326d317eddef3ad3e6625e018a708e290a039f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.343ex;" alt="{\displaystyle 90^{\circ }}"></span> ταυτίζονται με μία στροφή <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 180^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 180^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d0431ce231935522dc0cb52df7f2b406cdadc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.542ex; height:2.343ex;" alt="{\displaystyle 180^{\circ }}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Δείτε_επίσης"><span id=".CE.94.CE.B5.CE.AF.CF.84.CE.B5_.CE.B5.CF.80.CE.AF.CF.83.CE.B7.CF.82"></span>Δείτε επίσης</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=8" title="Επεξεργασία ενότητας: Δείτε επίσης" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=8" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Δείτε επίσης"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <table role="presentation" class="noprint mbox-small" style="border:1px solid var(--border-color-base, #a2a9b1); background-color:var(--background-color-notice-subtle, #f8f9fa); color:inherit;"> <tbody><tr> <td class="mbox-image"><figure class="mw-halign-none" typeof="mw:File"><span title="Commons logo"><img alt="Commons logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png" decoding="async" width="40" height="54" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/60px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/80px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span><figcaption>Commons logo</figcaption></figure></td> <td class="mbox-text plainlist" style="">Τα <a href="/wiki/Wikimedia_Commons" title="Wikimedia Commons">Wikimedia Commons</a> έχουν πολυμέσα σχετικά με το θέμα<br />&#160;&#160;<b><a href="https://commons.wikimedia.org/wiki/Category:Complex_numbers" class="extiw" title="commons:Category:Complex numbers"> Μιγαδικός αριθμός</a></b></td> </tr> </tbody></table> <ul><li><a href="/wiki/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%AE_%CE%B1%CE%BD%CE%AC%CE%BB%CF%85%CF%83%CE%B7" title="Μιγαδική ανάλυση">Μιγαδική ανάλυση</a></li> <li><a href="/wiki/%CE%A4%CE%B1%CF%85%CF%84%CF%8C%CF%84%CE%B7%CF%84%CE%B1_%CF%84%CE%BF%CF%85_%CE%8C%CE%B9%CE%BB%CE%B5%CF%81" title="Ταυτότητα του Όιλερ">Ταυτότητα του Όιλερ</a></li> <li><a href="/wiki/%CE%98%CE%B5%CE%BC%CE%B5%CE%BB%CE%B9%CF%8E%CE%B4%CE%B5%CF%82_%CE%B8%CE%B5%CF%8E%CF%81%CE%B7%CE%BC%CE%B1_%CE%AC%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1%CF%82" title="Θεμελιώδες θεώρημα άλγεβρας">Το Θεμελιώδες Θεώρημα της Άλγεβρας</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Περαιτέρω_ανάγνωση"><span id=".CE.A0.CE.B5.CF.81.CE.B1.CE.B9.CF.84.CE.AD.CF.81.CF.89_.CE.B1.CE.BD.CE.AC.CE.B3.CE.BD.CF.89.CF.83.CE.B7"></span>Περαιτέρω ανάγνωση</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=9" title="Επεξεργασία ενότητας: Περαιτέρω ανάγνωση" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=9" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Περαιτέρω ανάγνωση"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Εξωτερικοί_σύνδεσμοι"><span id=".CE.95.CE.BE.CF.89.CF.84.CE.B5.CF.81.CE.B9.CE.BA.CE.BF.CE.AF_.CF.83.CF.8D.CE.BD.CE.B4.CE.B5.CF.83.CE.BC.CE.BF.CE.B9"></span>Εξωτερικοί σύνδεσμοι</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=10" title="Επεξεργασία ενότητας: Εξωτερικοί σύνδεσμοι" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=10" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Εξωτερικοί σύνδεσμοι"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://www.geogebra.org/m/NCUrpsap">Μία εφαρμογή στο Geogebra για την ισότητα και πράξεις μιγαδικών</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Ελληνικά_άρθρα"><span id=".CE.95.CE.BB.CE.BB.CE.B7.CE.BD.CE.B9.CE.BA.CE.AC_.CE.AC.CF.81.CE.B8.CF.81.CE.B1"></span>Ελληνικά άρθρα</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=11" title="Επεξεργασία ενότητας: Ελληνικά άρθρα" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=11" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Ελληνικά άρθρα"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="citation Journal">Μαυρογιάννης,&#32;Ν. Σ.&#32;(Μαΐου 2016).&#32;<a rel="nofollow" class="external text" href="http://ekthetis.gr/Ekthetis016.pdf">«Μία εισαγωγή στους μιγαδικούς αριθμούς»</a>.&#32;<i>Εκθέτης Φύλλα Μαθηματικής Παιδείας</i>&#32;(16): 1-8<span class="printonly">.&#32;<a rel="nofollow" class="external free" href="http://ekthetis.gr/Ekthetis016.pdf">http://ekthetis.gr/Ekthetis016.pdf</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=%CE%9C%CE%AF%CE%B1+%CE%B5%CE%B9%CF%83%CE%B1%CE%B3%CF%89%CE%B3%CE%AE+%CF%83%CF%84%CE%BF%CF%85%CF%82+%CE%BC%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CF%8D%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CF%8D%CF%82&amp;rft.jtitle=%CE%95%CE%BA%CE%B8%CE%AD%CF%84%CE%B7%CF%82+%CE%A6%CF%8D%CE%BB%CE%BB%CE%B1+%CE%9C%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AE%CF%82+%CE%A0%CE%B1%CE%B9%CE%B4%CE%B5%CE%AF%CE%B1%CF%82&amp;rft.aulast=%CE%9C%CE%B1%CF%85%CF%81%CE%BF%CE%B3%CE%B9%CE%AC%CE%BD%CE%BD%CE%B7%CF%82&amp;rft.aufirst=%CE%9D.+%CE%A3.&amp;rft.au=%CE%9C%CE%B1%CF%85%CF%81%CE%BF%CE%B3%CE%B9%CE%AC%CE%BD%CE%BD%CE%B7%CF%82%2C%26%2332%3B%CE%9D.+%CE%A3.&amp;rft.date=%CE%9C%CE%B1%CE%90%CE%BF%CF%85+2016&amp;rft.issue=16&amp;rft.pages=1-8&amp;rft_id=http%3A%2F%2Fekthetis.gr%2FEkthetis016.pdf&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal">Τσαπακίδης,&#32;Γ.&#32;(Ιουλίου 2013).&#32;<a rel="nofollow" class="external text" href="http://www.hms.gr/sites/default/files/subsites/publications/issues_files/EYKLEIDHS_B_T89.pdf">«Μιγαδικοί αριθμοί και γεωμετρία»</a>.&#32;<i><a href="/wiki/%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B7%CF%82_%CE%92%CE%84" title="Ευκλείδης Β΄">Ευκλείδης Β΄</a></i>&#32;(89): 65-68<span class="printonly">.&#32;<a rel="nofollow" class="external free" href="http://www.hms.gr/sites/default/files/subsites/publications/issues_files/EYKLEIDHS_B_T89.pdf">http://www.hms.gr/sites/default/files/subsites/publications/issues_files/EYKLEIDHS_B_T89.pdf</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CE%AF+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF+%CE%BA%CE%B1%CE%B9+%CE%B3%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1&amp;rft.jtitle=%5B%5B%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B7%CF%82+%CE%92%CE%84%5D%5D&amp;rft.aulast=%CE%A4%CF%83%CE%B1%CF%80%CE%B1%CE%BA%CE%AF%CE%B4%CE%B7%CF%82&amp;rft.aufirst=%CE%93.&amp;rft.au=%CE%A4%CF%83%CE%B1%CF%80%CE%B1%CE%BA%CE%AF%CE%B4%CE%B7%CF%82%2C%26%2332%3B%CE%93.&amp;rft.date=%CE%99%CE%BF%CF%85%CE%BB%CE%AF%CE%BF%CF%85+2013&amp;rft.issue=89&amp;rft.pages=65-68&amp;rft_id=http%3A%2F%2Fwww.hms.gr%2Fsites%2Fdefault%2Ffiles%2Fsubsites%2Fpublications%2Fissues_files%2FEYKLEIDHS_B_T89.pdf&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal">Β. Γιαννακόπουλος&#59;&#32;Ν. Ζανής&#32;(1979).&#32;<a rel="nofollow" class="external text" href="http://www.hms.gr/apothema/?s=sa&amp;i=3563">«Για τη Β'Τάξη: Μιγαδικοί Αριθμοί»</a>.&#32;<i><a href="/wiki/%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B7%CF%82_%CE%92%CE%84" title="Ευκλείδης Β΄">Ευκλείδης Β΄</a></i>&#32;(1): 193-194<span class="printonly">.&#32;<a rel="nofollow" class="external free" href="http://www.hms.gr/apothema/?s=sa&amp;i=3563">http://www.hms.gr/apothema/?s=sa&amp;i=3563</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=%CE%93%CE%B9%CE%B1+%CF%84%CE%B7+%CE%92%27%CE%A4%CE%AC%CE%BE%CE%B7%3A+%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CE%AF+%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF&amp;rft.jtitle=%5B%5B%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B7%CF%82+%CE%92%CE%84%5D%5D&amp;rft.aulast=%CE%92.+%CE%93%CE%B9%CE%B1%CE%BD%CE%BD%CE%B1%CE%BA%CF%8C%CF%80%CE%BF%CF%85%CE%BB%CE%BF%CF%82&amp;rft.au=%CE%92.+%CE%93%CE%B9%CE%B1%CE%BD%CE%BD%CE%B1%CE%BA%CF%8C%CF%80%CE%BF%CF%85%CE%BB%CE%BF%CF%82&amp;rft.au=%CE%9D.+%CE%96%CE%B1%CE%BD%CE%AE%CF%82&amp;rft.date=1979&amp;rft.issue=1&amp;rft.pages=193-194&amp;rft_id=http%3A%2F%2Fwww.hms.gr%2Fapothema%2F%3Fs%3Dsa%26i%3D3563&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal">Γ. Θωμαΐδης&#32;(1987).&#32;<a rel="nofollow" class="external text" href="http://www.hms.gr/apothema/?s=sa&amp;i=3007">«Εισαγωγή των μιγαδικών αριθμών στα Μαθηματικά»</a>.&#32;<i><a href="/wiki/%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B7%CF%82_%CE%92%CE%84" title="Ευκλείδης Β΄">Ευκλείδης Β΄</a></i>&#32;(2): 67-71<span class="printonly">.&#32;<a rel="nofollow" class="external free" href="http://www.hms.gr/apothema/?s=sa&amp;i=3007">http://www.hms.gr/apothema/?s=sa&amp;i=3007</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=%CE%95%CE%B9%CF%83%CE%B1%CE%B3%CF%89%CE%B3%CE%AE+%CF%84%CF%89%CE%BD+%CE%BC%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8E%CE%BD+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8E%CE%BD+%CF%83%CF%84%CE%B1+%CE%9C%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC&amp;rft.jtitle=%5B%5B%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B7%CF%82+%CE%92%CE%84%5D%5D&amp;rft.aulast=%CE%93.+%CE%98%CF%89%CE%BC%CE%B1%CE%90%CE%B4%CE%B7%CF%82&amp;rft.au=%CE%93.+%CE%98%CF%89%CE%BC%CE%B1%CE%90%CE%B4%CE%B7%CF%82&amp;rft.date=1987&amp;rft.issue=2&amp;rft.pages=67-71&amp;rft_id=http%3A%2F%2Fwww.hms.gr%2Fapothema%2F%3Fs%3Dsa%26i%3D3007&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal">Βάθης Δημήτριος&#32;(1991).&#32;<a rel="nofollow" class="external text" href="http://www.hms.gr/apothema/?s=sa&amp;i=3072">«Οι Μιγαδικοί αριθμοί στη Γεωμετρία»</a>.&#32;<i><a href="/wiki/%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B7%CF%82_%CE%92%CE%84" title="Ευκλείδης Β΄">Ευκλείδης Β΄</a></i>&#32;(2): 33-36<span class="printonly">.&#32;<a rel="nofollow" class="external free" href="http://www.hms.gr/apothema/?s=sa&amp;i=3072">http://www.hms.gr/apothema/?s=sa&amp;i=3072</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=%CE%9F%CE%B9+%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CE%AF+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF+%CF%83%CF%84%CE%B7+%CE%93%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1&amp;rft.jtitle=%5B%5B%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B7%CF%82+%CE%92%CE%84%5D%5D&amp;rft.aulast=%CE%92%CE%AC%CE%B8%CE%B7%CF%82+%CE%94%CE%B7%CE%BC%CE%AE%CF%84%CF%81%CE%B9%CE%BF%CF%82&amp;rft.au=%CE%92%CE%AC%CE%B8%CE%B7%CF%82+%CE%94%CE%B7%CE%BC%CE%AE%CF%84%CF%81%CE%B9%CE%BF%CF%82&amp;rft.date=1991&amp;rft.issue=2&amp;rft.pages=33-36&amp;rft_id=http%3A%2F%2Fwww.hms.gr%2Fapothema%2F%3Fs%3Dsa%26i%3D3072&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Ξενόγλωσσα_άρθρα"><span id=".CE.9E.CE.B5.CE.BD.CF.8C.CE.B3.CE.BB.CF.89.CF.83.CF.83.CE.B1_.CE.AC.CF.81.CE.B8.CF.81.CE.B1"></span>Ξενόγλωσσα άρθρα</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=12" title="Επεξεργασία ενότητας: Ξενόγλωσσα άρθρα" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=12" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Ξενόγλωσσα άρθρα"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="citation Journal">Temple,&#32;G.&#32;(Ιουλίου 1937).&#32;<a rel="nofollow" class="external text" href="https://archive.org/details/sim_mathematical-gazette_1937-07_21_244/page/220">«The Theory of Complex Numbers»</a>.&#32;<i>The Mathematical Gazette</i>&#32;<b>21</b>&#32;(244): 220–225.&#32;<a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<span class="neverexpand"><a rel="nofollow" class="external text" href="https://dx.doi.org/10.2307%2F3605402">10.2307/3605402</a></span><span class="printonly">.&#32;<a rel="nofollow" class="external free" href="https://archive.org/details/sim_mathematical-gazette_1937-07_21_244/page/220">https://archive.org/details/sim_mathematical-gazette_1937-07_21_244/page/220</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+Theory+of+Complex+Numbers&amp;rft.jtitle=The+Mathematical+Gazette&amp;rft.aulast=Temple&amp;rft.aufirst=G.&amp;rft.au=Temple%2C%26%2332%3BG.&amp;rft.date=%CE%99%CE%BF%CF%85%CE%BB%CE%AF%CE%BF%CF%85+1937&amp;rft.volume=21&amp;rft.issue=244&amp;rft.pages=220%E2%80%93225&amp;rft_id=info:doi/10.2307%2F3605402&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsim_mathematical-gazette_1937-07_21_244%2Fpage%2F220&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal">Diamond,&#32;Louis E.&#32;(1 Μαΐου 1957).&#32;«Introduction to Complex Numbers».&#32;<i>Mathematics Magazine</i>&#32;<b>30</b>&#32;(5): 233.&#32;<a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<span class="neverexpand"><a rel="nofollow" class="external text" href="https://dx.doi.org/10.2307%2F3029166">10.2307/3029166</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Introduction+to+Complex+Numbers&amp;rft.jtitle=Mathematics+Magazine&amp;rft.aulast=Diamond&amp;rft.aufirst=Louis+E.&amp;rft.au=Diamond%2C%26%2332%3BLouis+E.&amp;rft.date=1+%CE%9C%CE%B1%CE%90%CE%BF%CF%85+1957&amp;rft.volume=30&amp;rft.issue=5&amp;rft.pages=233&amp;rft_id=info:doi/10.2307%2F3029166&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal">Jones,&#32;Phillip S.&#32;(1954).&#32;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27954624">«Complex numbers: an example of recurring themes in the development of mathematics—III»</a>.&#32;<i>The Mathematics Teacher</i>&#32;<b>47</b>&#32;(5): 340-345<span class="printonly">.&#32;<a rel="nofollow" class="external free" href="https://www.jstor.org/stable/27954624">https://www.jstor.org/stable/27954624</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Complex+numbers%3A+an+example+of+recurring+themes+in+the+development+of+mathematics%E2%80%94III&amp;rft.jtitle=The+Mathematics+Teacher&amp;rft.aulast=Jones&amp;rft.aufirst=Phillip+S.&amp;rft.au=Jones%2C%26%2332%3BPhillip+S.&amp;rft.date=1954&amp;rft.volume=47&amp;rft.issue=5&amp;rft.pages=340-345&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27954624&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal">Willson,&#32;William Wynne&#32;(Δεκεμβρίου 1970).&#32;<a rel="nofollow" class="external text" href="https://archive.org/details/sim_mathematical-gazette_1970-12_54_390/page/342">«An Approach to Complex Numbers»</a>.&#32;<i>The Mathematical Gazette</i>&#32;<b>54</b>&#32;(390): 342–346.&#32;<a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<span class="neverexpand"><a rel="nofollow" class="external text" href="https://dx.doi.org/10.2307%2F3613848">10.2307/3613848</a></span><span class="printonly">.&#32;<a rel="nofollow" class="external free" href="https://archive.org/details/sim_mathematical-gazette_1970-12_54_390/page/342">https://archive.org/details/sim_mathematical-gazette_1970-12_54_390/page/342</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=An+Approach+to+Complex+Numbers&amp;rft.jtitle=The+Mathematical+Gazette&amp;rft.aulast=Willson&amp;rft.aufirst=William+Wynne&amp;rft.au=Willson%2C%26%2332%3BWilliam+Wynne&amp;rft.date=%CE%94%CE%B5%CE%BA%CE%B5%CE%BC%CE%B2%CF%81%CE%AF%CE%BF%CF%85+1970&amp;rft.volume=54&amp;rft.issue=390&amp;rft.pages=342%E2%80%93346&amp;rft_id=info:doi/10.2307%2F3613848&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsim_mathematical-gazette_1970-12_54_390%2Fpage%2F342&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal">Green,&#32;D. R.&#32;(Ιουνίου 1976).&#32;<a rel="nofollow" class="external text" href="https://archive.org/details/sim_mathematical-gazette_1976-06_60_412/page/99">«The historical development of complex numbers»</a>.&#32;<i>The Mathematical Gazette</i>&#32;<b>60</b>&#32;(412): 99–107.&#32;<a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<span class="neverexpand"><a rel="nofollow" class="external text" href="https://dx.doi.org/10.2307%2F3616235">10.2307/3616235</a></span><span class="printonly">.&#32;<a rel="nofollow" class="external free" href="https://archive.org/details/sim_mathematical-gazette_1976-06_60_412/page/99">https://archive.org/details/sim_mathematical-gazette_1976-06_60_412/page/99</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+historical+development+of+complex+numbers&amp;rft.jtitle=The+Mathematical+Gazette&amp;rft.aulast=Green&amp;rft.aufirst=D.+R.&amp;rft.au=Green%2C%26%2332%3BD.+R.&amp;rft.date=%CE%99%CE%BF%CF%85%CE%BD%CE%AF%CE%BF%CF%85+1976&amp;rft.volume=60&amp;rft.issue=412&amp;rft.pages=99%E2%80%93107&amp;rft_id=info:doi/10.2307%2F3616235&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsim_mathematical-gazette_1976-06_60_412%2Fpage%2F99&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Βιβλιογραφία"><span id=".CE.92.CE.B9.CE.B2.CE.BB.CE.B9.CE.BF.CE.B3.CF.81.CE.B1.CF.86.CE.AF.CE.B1"></span>Βιβλιογραφία</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=13" title="Επεξεργασία ενότητας: Βιβλιογραφία" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=13" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Βιβλιογραφία"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r9162355">.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"«""»""\"""\"""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}</style><cite class="citation book"><a href="https://en.wikipedia.org/wiki/Lars_Ahlfors" class="extiw" title="en:Lars Ahlfors">Ahlfors, Lars</a> (1979). <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/lars-ahlfors-complex-analysis-third-edition-mcgraw-hill-science_engineering_math-1979/page/n1/mode/2up"><i>Complex analysis</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Απαιτείται δωρεάν εγγραφή"><img alt="Απαιτείται δωρεάν εγγραφή" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span> (3rd έκδοση). McGraw-Hill. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-07-000657-7" title="Ειδικό:ΠηγέςΒιβλίων/978-0-07-000657-7">978-0-07-000657-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Complex+analysis&amp;rft.edition=3rd&amp;rft.pub=McGraw-Hill&amp;rft.date=1979&amp;rft.isbn=978-0-07-000657-7&amp;rft.aulast=Ahlfors&amp;rft.aufirst=Lars&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flars-ahlfors-complex-analysis-third-edition-mcgraw-hill-science_engineering_math-1979%2Fpage%2Fn1%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book"><a href="/wiki/%CE%A4%CE%BF%CE%BC_%CE%86%CF%80%CE%BF%CF%83%CF%84%CE%BF%CE%BB" title="Τομ Άποστολ">Apostol, Tom</a> (1981). <i>Mathematical analysis</i>. Addison-Wesley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+analysis&amp;rft.pub=Addison-Wesley&amp;rft.date=1981&amp;rft.aulast=Apostol&amp;rft.aufirst=Tom&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><span class="citation Journal">Argand&#32;(1814).&#32;<a rel="nofollow" class="external text" href="https://babel.hathitrust.org/cgi/pt?id=uc1.$c126479&amp;view=1up&amp;seq=209">«Reflexions sur la nouvelle théorie des imaginaires, suives d'une application à la demonstration d'un theorème d'analise»</a>&#32;(στα γαλλικά).&#32;<i>Annales de mathématiques pures et appliquées</i>&#32;<b>5</b>: 197–209<span class="printonly">.&#32;<a rel="nofollow" class="external free" href="https://babel.hathitrust.org/cgi/pt?id=uc1.$c126479&amp;view=1up&amp;seq=209">https://babel.hathitrust.org/cgi/pt?id=uc1.$c126479&amp;view=1up&amp;seq=209</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Reflexions+sur+la+nouvelle+th%C3%A9orie+des+imaginaires%2C+suives+d%27une+application+%C3%A0+la+demonstration+d%27un+theor%C3%A8me+d%27analise&amp;rft.jtitle=Annales+de+math%C3%A9matiques+pures+et+appliqu%C3%A9es&amp;rft.aulast=Argand&amp;rft.au=Argand&amp;rft.date=1814&amp;rft.volume=5&amp;rft.pages=197%E2%80%93209&amp;rft_id=https%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Duc1.%24c126479%26view%3D1up%26seq%3D209&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation Journal"><a href="/wiki/Carl_Friedrich_Gauss" class="mw-redirect" title="Carl Friedrich Gauss">Gauss,&#32;C. F.</a>&#32;(1831).&#32;<a rel="nofollow" class="external text" href="https://babel.hathitrust.org/cgi/pt?id=mdp.39015073697180&amp;view=1up&amp;seq=292">«Theoria residuorum biquadraticorum. Commentatio secunda.»</a>&#32;(στα la).&#32;<i>Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores</i>&#32;<b>7</b>: 89–148<span class="printonly">.&#32;<a rel="nofollow" class="external free" href="https://babel.hathitrust.org/cgi/pt?id=mdp.39015073697180&amp;view=1up&amp;seq=292">https://babel.hathitrust.org/cgi/pt?id=mdp.39015073697180&amp;view=1up&amp;seq=292</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Theoria+residuorum+biquadraticorum.+Commentatio+secunda.&amp;rft.jtitle=Commentationes+Societatis+Regiae+Scientiarum+Gottingensis+Recentiores&amp;rft.aulast=Gauss&amp;rft.aufirst=C.+F.&amp;rft.au=Gauss%2C%26%2332%3BC.+F.&amp;rft.date=1831&amp;rft.volume=7&amp;rft.pages=89%E2%80%93148&amp;rft_id=https%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Dmdp.39015073697180%26view%3D1up%26seq%3D292&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><span class="citation" id="CITEREFSolomentsev2001">Solomentsev,&#32;E.D.&#32;(2001),&#32;<a rel="nofollow" class="external text" href="http://www.encyclopediaofmath.org/index.php?title=c/c024140">«Complex number»</a>,&#32;στο:&#32;Hazewinkel, Michiel,&#32;επιμ.,&#32;<i><a href="/wiki/Encyclopedia_of_Mathematics" class="mw-redirect" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>,&#32;<a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>,&#32;<a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a> <a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-1-55608-010-4" title="Ειδικό:ΠηγέςΒιβλίων/978-1-55608-010-4">978-1-55608-010-4</a><span class="printonly">,&#32;<a rel="nofollow" class="external free" href="http://www.encyclopediaofmath.org/index.php?title=c/c024140">http://www.encyclopediaofmath.org/index.php?title=c/c024140</a></span></span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.btitle=Complex+number&amp;rft.atitle=%5B%5BEncyclopedia+of+Mathematics%5D%5D&amp;rft.aulast=Solomentsev&amp;rft.aufirst=E.D.&amp;rft.au=Solomentsev%2C%26%2332%3BE.D.&amp;rft.date=2001&amp;rft.pub=%5B%5BSpringer+Science%2BBusiness+Media%7CSpringer%5D%5D&amp;rft.isbn=978-1-55608-010-4&amp;rft_id=&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book"><a href="https://en.wikipedia.org/wiki/Roger_Penrose" class="extiw" title="en:Roger Penrose">Penrose, Roger</a> (2005). <a rel="nofollow" class="external text" href="https://archive.org/details/roadtorealitycom00penr_0"><i>The Road to Reality: A complete guide to the laws of the universe</i></a>. Alfred A. Knopf. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-679-45443-4" title="Ειδικό:ΠηγέςΒιβλίων/978-0-679-45443-4">978-0-679-45443-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Road+to+Reality%3A+A+complete+guide+to+the+laws+of+the+universe&amp;rft.pub=Alfred+A.+Knopf&amp;rft.date=2005&amp;rft.isbn=978-0-679-45443-4&amp;rft.aulast=Penrose&amp;rft.aufirst=Roger&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Froadtorealitycom00penr_0&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book"><a href="https://en.wikipedia.org/wiki/John_Derbyshire" class="extiw" title="en:John Derbyshire">Derbyshire, John</a> (2006). <a rel="nofollow" class="external text" href="https://archive.org/details/isbn_9780309096577"><i>Unknown Quantity: A real and imaginary history of algebra</i></a>. Joseph Henry Press. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-309-09657-7" title="Ειδικό:ΠηγέςΒιβλίων/978-0-309-09657-7">978-0-309-09657-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Unknown+Quantity%3A+A+real+and+imaginary+history+of+algebra&amp;rft.pub=Joseph+Henry+Press&amp;rft.date=2006&amp;rft.isbn=978-0-309-09657-7&amp;rft.aulast=Derbyshire&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fisbn_9780309096577&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book">Needham, Tristan (1997). <a rel="nofollow" class="external text" href="https://archive.org/details/visualcomplexana0000need"><i>Visual Complex Analysis</i></a>. Clarendon Press. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-19-853447-1" title="Ειδικό:ΠηγέςΒιβλίων/978-0-19-853447-1">978-0-19-853447-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Visual+Complex+Analysis&amp;rft.pub=Clarendon+Press&amp;rft.date=1997&amp;rft.isbn=978-0-19-853447-1&amp;rft.aulast=Needham&amp;rft.aufirst=Tristan&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fvisualcomplexana0000need&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book"><a href="https://en.wikipedia.org/wiki/Lars_Ahlfors" class="extiw" title="en:Lars Ahlfors">Ahlfors, Lars</a> (1979). <a rel="nofollow" class="external text" href="https://archive.org/details/complexanalysisi0000ahlf_v7n1"><i>Complex analysis</i></a> (3rd έκδοση). McGraw-Hill. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-07-000657-7" title="Ειδικό:ΠηγέςΒιβλίων/978-0-07-000657-7">978-0-07-000657-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Complex+analysis&amp;rft.edition=3rd&amp;rft.pub=McGraw-Hill&amp;rft.date=1979&amp;rft.isbn=978-0-07-000657-7&amp;rft.aulast=Ahlfors&amp;rft.aufirst=Lars&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcomplexanalysisi0000ahlf_v7n1&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book">Conway, John B. (1986). <i>Functions of One Complex Variable I</i>. Springer. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-387-90328-6" title="Ειδικό:ΠηγέςΒιβλίων/978-0-387-90328-6">978-0-387-90328-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functions+of+One+Complex+Variable+I&amp;rft.pub=Springer&amp;rft.date=1986&amp;rft.isbn=978-0-387-90328-6&amp;rft.aulast=Conway&amp;rft.aufirst=John+B.&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book">Joshi, Kapil D. (1989). <i>Foundations of Discrete Mathematics</i>. New York: <a href="https://en.wikipedia.org/wiki/John_Wiley_%26_Sons" class="extiw" title="en:John Wiley &amp; Sons">en:John Wiley &amp; Sons</a>. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-470-21152-6" title="Ειδικό:ΠηγέςΒιβλίων/978-0-470-21152-6">978-0-470-21152-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Discrete+Mathematics&amp;rft.place=New+York&amp;rft.pub=%3Aen%3AJohn+Wiley+%26+Sons&amp;rft.date=1989&amp;rft.isbn=978-0-470-21152-6&amp;rft.aulast=Joshi&amp;rft.aufirst=Kapil+D.&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book"><a href="https://en.wikipedia.org/wiki/Daniel_Pedoe" class="extiw" title="en:Daniel Pedoe">Pedoe, Dan</a> (1988). <a rel="nofollow" class="external text" href="https://archive.org/details/geometrycomprehe0000pedo"><i>Geometry: A comprehensive course</i></a>. Dover. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-486-65812-4" title="Ειδικό:ΠηγέςΒιβλίων/978-0-486-65812-4">978-0-486-65812-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry%3A+A+comprehensive+course&amp;rft.pub=Dover&amp;rft.date=1988&amp;rft.isbn=978-0-486-65812-4&amp;rft.aulast=Pedoe&amp;rft.aufirst=Dan&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeometrycomprehe0000pedo&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book">Press, W.H.· Teukolsky, S.A.· Vetterling, W.T.· Flannery, B.P. (2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200313111530/http://apps.nrbook.com/empanel/index.html?pg=225">«Section 5.5 Complex Arithmetic»</a>. <i>Numerical Recipes: The art of scientific computing</i> (3rd έκδοση). New York: Cambridge University Press. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-521-88068-8" title="Ειδικό:ΠηγέςΒιβλίων/978-0-521-88068-8">978-0-521-88068-8</a>. Αρχειοθετήθηκε <a rel="nofollow" class="external text" href="http://apps.nrbook.com/empanel/index.html?pg=225">από το πρωτότυπο</a> στις 13 Μαρτίου 2020<span class="reference-accessdate">. Ανακτήθηκε στις 27 Μαΐου 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Section+5.5+Complex+Arithmetic&amp;rft.btitle=Numerical+Recipes%3A+The+art+of+scientific+computing&amp;rft.place=New+York&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-521-88068-8&amp;rft.aulast=Press&amp;rft.aufirst=W.H.&amp;rft.au=Teukolsky%2C+S.A.&amp;rft.au=Vetterling%2C+W.T.&amp;rft.au=Flannery%2C+B.P.&amp;rft_id=http%3A%2F%2Fapps.nrbook.com%2Fempanel%2Findex.html%3Fpg%3D225&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><span class="citation" id="CITEREFSolomentsev2001">Solomentsev,&#32;E.D.&#32;(2001),&#32;<a rel="nofollow" class="external text" href="http://www.encyclopediaofmath.org/index.php?title=c/c024140">«Complex number»</a>,&#32;στο:&#32;Hazewinkel, Michiel,&#32;επιμ.,&#32;<i><a href="/wiki/Encyclopedia_of_Mathematics" class="mw-redirect" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>,&#32;<a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>,&#32;<a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a> <a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-1-55608-010-4" title="Ειδικό:ΠηγέςΒιβλίων/978-1-55608-010-4">978-1-55608-010-4</a><span class="printonly">,&#32;<a rel="nofollow" class="external free" href="http://www.encyclopediaofmath.org/index.php?title=c/c024140">http://www.encyclopediaofmath.org/index.php?title=c/c024140</a></span></span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.btitle=Complex+number&amp;rft.atitle=%5B%5BEncyclopedia+of+Mathematics%5D%5D&amp;rft.aulast=Solomentsev&amp;rft.aufirst=E.D.&amp;rft.au=Solomentsev%2C%26%2332%3BE.D.&amp;rft.date=2001&amp;rft.pub=%5B%5BSpringer+Science%2BBusiness+Media%7CSpringer%5D%5D&amp;rft.isbn=978-1-55608-010-4&amp;rft_id=&amp;rfr_id=info:sid/el.wikipedia.org:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82"><span style="display: none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book"><a href="https://en.wikipedia.org/wiki/Nicolas_Bourbaki" class="extiw" title="en:Nicolas Bourbaki">Bourbaki, Nicolas</a> (1998). «Foundations of mathematics § logic: set theory». <i>Elements of the history of mathematics</i>. Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Foundations+of+mathematics+%C2%A7+logic%3A+set+theory&amp;rft.btitle=Elements+of+the+history+of+mathematics&amp;rft.pub=Springer&amp;rft.date=1998&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book">Burton, David M. (1995). <i>The History of Mathematics</i> (3rd έκδοση). New York: <a href="https://en.wikipedia.org/wiki/McGraw-Hill" class="extiw" title="en:McGraw-Hill">en:McGraw-Hill</a>. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-07-009465-9" title="Ειδικό:ΠηγέςΒιβλίων/978-0-07-009465-9">978-0-07-009465-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Mathematics&amp;rft.place=New+York&amp;rft.edition=3rd&amp;rft.pub=%3Aen%3AMcGraw-Hill&amp;rft.date=1995&amp;rft.isbn=978-0-07-009465-9&amp;rft.aulast=Burton&amp;rft.aufirst=David+M.&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book">Katz, Victor J. (2004). <i>A History of Mathematics, Brief Version</i>. <a href="https://en.wikipedia.org/wiki/Addison-Wesley" class="extiw" title="en:Addison-Wesley">en:Addison-Wesley</a>. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-321-16193-2" title="Ειδικό:ΠηγέςΒιβλίων/978-0-321-16193-2">978-0-321-16193-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics%2C+Brief+Version&amp;rft.pub=%3Aen%3AAddison-Wesley&amp;rft.date=2004&amp;rft.isbn=978-0-321-16193-2&amp;rft.aulast=Katz&amp;rft.aufirst=Victor+J.&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book">Nahin, Paul J. (1998). <i>An Imaginary Tale: The Story of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba09297ec8ad80d38116c988c033ae42e0d03ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.469ex; height:2.343ex;" alt="{\displaystyle \scriptstyle {\sqrt {-1}}}"></span></i>. Princeton University Press. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-691-02795-1" title="Ειδικό:ΠηγέςΒιβλίων/978-0-691-02795-1">978-0-691-02795-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Imaginary+Tale%3A+The+Story+of+MATH+RENDER+ERROR&amp;rft.pub=Princeton+University+Press&amp;rft.date=1998&amp;rft.isbn=978-0-691-02795-1&amp;rft.aulast=Nahin&amp;rft.aufirst=Paul+J.&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span> — A gentle introduction to the history of complex numbers and the beginnings of complex analysis.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation book">Ebbinghaus, H. D.· Hermes, H.· Hirzebruch, F.· Koecher, M.· Mainzer, K.· Neukirch, J.· Prestel, A.· Remmert, R. (1991). <i>Numbers</i> (hardcover έκδοση). Springer. <a href="/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82_%CF%80%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%B2%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%CF%85" title="Διεθνής πρότυπος αριθμός βιβλίου">ISBN</a>&#160;<a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%A0%CE%B7%CE%B3%CE%AD%CF%82%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CF%89%CE%BD/978-0-387-97497-2" title="Ειδικό:ΠηγέςΒιβλίων/978-0-387-97497-2">978-0-387-97497-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numbers&amp;rft.edition=hardcover&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-0-387-97497-2&amp;rft.aulast=Ebbinghaus&amp;rft.aufirst=H.+D.&amp;rft.au=Hermes%2C+H.&amp;rft.au=Hirzebruch%2C+F.&amp;rft.au=Koecher%2C+M.&amp;rft.au=Mainzer%2C+K.&amp;rft.au=Neukirch%2C+J.&amp;rft.au=Prestel%2C+A.&amp;rft.au=Remmert%2C+R.&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span> — An advanced perspective on the historical development of the concept of number.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Παραπομπές"><span id=".CE.A0.CE.B1.CF.81.CE.B1.CF.80.CE.BF.CE.BC.CF.80.CE.AD.CF.82"></span>Παραπομπές</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=14" title="Επεξεργασία ενότητας: Παραπομπές" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=14" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Παραπομπές"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation web"><a rel="nofollow" class="external text" href="http://ebooks.edu.gr/ebooks/v/html/8547/2754/Mathimatika-B-Lykeiou-ThSp_html-apli/index5_1.html">«5.1 Η έννοια του μιγαδικού αριθμού»</a>. <i>ebooks.edu.gr</i><span class="reference-accessdate">. Ανακτήθηκε στις 23 Αυγούστου 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ebooks.edu.gr&amp;rft.atitle=5.1+%CE%97+%CE%AD%CE%BD%CE%BD%CE%BF%CE%B9%CE%B1+%CF%84%CE%BF%CF%85+%CE%BC%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CF%8D+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CF%8D&amp;rft_id=http%3A%2F%2Febooks.edu.gr%2Febooks%2Fv%2Fhtml%2F8547%2F2754%2FMathimatika-B-Lykeiou-ThSp_html-apli%2Findex5_1.html&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation web"><a rel="nofollow" class="external text" href="https://physicsgg.files.wordpress.com/2015/06/cebfceb9-cf84ceb5cf84cf81ceb1ceb4ceb9cebacebfceaf-ceb1cf81ceb9ceb8cebccebfceaf.pdf">«Απλές πράξεις με μιγαδικούς αριθμούς. A. Mishchenko και Y. Solovyον»</a> <span style="font-size:85%;">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%CE%91%CF%80%CE%BB%CE%AD%CF%82+%CF%80%CF%81%CE%AC%CE%BE%CE%B5%CE%B9%CF%82+%CE%BC%CE%B5+%CE%BC%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CF%8D%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CF%8D%CF%82.+A.+Mishchenko+%CE%BA%CE%B1%CE%B9+Y.+Solovy%CE%BF%CE%BD&amp;rft_id=https%3A%2F%2Fphysicsgg.files.wordpress.com%2F2015%2F06%2Fcebfceb9-cf84ceb5cf84cf81ceb1ceb4ceb9cebacebfceaf-ceb1cf81ceb9ceb8cebccebfceaf.pdf&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-:0-3"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-:0_3-0">3,0</a></sup> <sup><a href="#cite_ref-:0_3-1">3,1</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation web"><a rel="nofollow" class="external text" href="http://me.math.uoa.gr/dipl/dipl_vasilaki%20maria.pdf">«Μιγαδικοί αριθμοί και Γεωμετρία»</a> <span style="font-size:85%;">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CE%AF+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF+%CE%BA%CE%B1%CE%B9+%CE%93%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1&amp;rft_id=http%3A%2F%2Fme.math.uoa.gr%2Fdipl%2Fdipl_vasilaki%2520maria.pdf&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r9162355"><cite class="citation web"><a rel="nofollow" class="external text" href="https://hellanicus.lib.aegean.gr/bitstream/handle/11610/19665/Ptixiaki3.pdf?sequence=1&amp;isAllowed=n">«Γεωμετρία και μιγαδικοί αριθμοί - Σωτήρης Τσεβάς»</a> <span style="font-size:85%;">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%CE%93%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1+%CE%BA%CE%B1%CE%B9+%CE%BC%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CE%AF+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF++-+%CE%A3%CF%89%CF%84%CE%AE%CF%81%CE%B7%CF%82+%CE%A4%CF%83%CE%B5%CE%B2%CE%AC%CF%82&amp;rft_id=https%3A%2F%2Fhellanicus.lib.aegean.gr%2Fbitstream%2Fhandle%2F11610%2F19665%2FPtixiaki3.pdf%3Fsequence%3D1%26isAllowed%3Dn&amp;rfr_id=info%3Asid%2Fel.wikipedia.org%3A%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82+%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Εξωτερικοί_σύνδεσμοι_2"><span id=".CE.95.CE.BE.CF.89.CF.84.CE.B5.CF.81.CE.B9.CE.BA.CE.BF.CE.AF_.CF.83.CF.8D.CE.BD.CE.B4.CE.B5.CF.83.CE.BC.CE.BF.CE.B9_2"></span>Εξωτερικοί σύνδεσμοι</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;veaction=edit&amp;section=15" title="Επεξεργασία ενότητας: Εξωτερικοί σύνδεσμοι" class="mw-editsection-visualeditor"><span>Επεξεργασία</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;section=15" title="Επεξεργαστείτε τον πηγαίο κώδικα της ενότητας: Εξωτερικοί σύνδεσμοι"><span>επεξεργασία κώδικα</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="https://el.wikibooks.org/wiki/en:Algebra/Complex_Numbers" class="extiw" title="b:en:Algebra/Complex Numbers">Βικιβιβλίο στην αγγλική έκδοση (Wikibooks)</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r10387572">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r10730911">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Σύνολα_αριθμών" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><style data-mw-deduplicate="TemplateStyles:r8595637">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:100%}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-προβολή"><a href="/wiki/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF" title="Πρότυπο:Αριθμοί"><abbr title="Προβολή του προτύπου">π</abbr></a></li><li class="nv-συζ."><a href="/w/index.php?title=%CE%A3%CF%85%CE%B6%CE%AE%CF%84%CE%B7%CF%83%CE%B7_%CF%80%CF%81%CE%BF%CF%84%CF%8D%CF%80%CE%BF%CF%85:%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF&amp;action=edit&amp;redlink=1" class="new" title="Συζήτηση προτύπου:Αριθμοί (δεν έχει γραφτεί ακόμα)"><abbr title="Συζήτηση του προτύπου">σ</abbr></a></li><li class="nv-επεξ."><a class="external text" href="https://el.wikipedia.org/w/index.php?title=%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF&amp;action=edit"><abbr title="Επεξεργασία του προτύπου">ε</abbr></a></li></ul></div><div id="Σύνολα_αριθμών" style="font-size:114%;margin:0 4em"><a href="/wiki/%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Αριθμός">Σύνολα αριθμών</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">κατά σειρά επέκτασης</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%CE%A6%CF%85%CF%83%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Φυσικός αριθμός">φυσικοί</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span>)</li> <li><a href="/wiki/%CE%91%CE%BA%CE%AD%CF%81%CE%B1%CE%B9%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Ακέραιος αριθμός">ακέραιοι</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li><a href="/wiki/%CE%A1%CE%B7%CF%84%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Ρητός αριθμός">ρητοί</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>)</li> <li><a href="/wiki/%CE%A0%CF%81%CE%B1%CE%B3%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πραγματικός αριθμός">πραγματικοί</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>)</li> <li><a class="mw-selflink selflink">μιγαδικοί</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>)</li> <li><a href="/wiki/%CE%A4%CE%B5%CF%84%CF%81%CE%B1%CE%B4%CF%8C%CE%BD%CE%B9%CE%BF" title="Τετραδόνιο">τετραδόνια</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e050965453c42bcc6bd544546703c836bdafeac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {H} }"></span>)</li> <li><a href="/wiki/%CE%9F%CE%BA%CF%84%CF%8C%CE%BD%CE%B9%CE%BF" title="Οκτόνιο">οκτόνια</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {O} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">O</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {O} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1ed2664a4fe515e6fbed25a7193ce663b82920c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {O} }"></span>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">υποσύνολα φυσικών</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%CE%A0%CE%B5%CF%81%CE%B9%CF%84%CF%84%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="mw-redirect" title="Περιττός αριθμός">περιττοί</a></li> <li><a href="/wiki/%CE%86%CF%81%CF%84%CE%B9%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" class="mw-redirect" title="Άρτιος αριθμός">άρτιοι</a></li> <li><a href="/wiki/%CE%A0%CF%81%CF%8E%CF%84%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πρώτος αριθμός">πρώτοι</a></li> <li><a href="/wiki/%CE%A3%CF%8D%CE%BD%CE%B8%CE%B5%CF%84%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Σύνθετος αριθμός">σύνθετοι</a></li> <li><a href="/wiki/%CE%A3%CF%87%CE%B5%CF%84%CE%B9%CE%BA%CE%AC_%CF%80%CF%81%CF%8E%CF%84%CE%BF%CE%B9" title="Σχετικά πρώτοι">πρώτοι προς αλλήλους</a></li> <li><a href="/wiki/%CE%94%CE%AF%CE%B4%CF%85%CE%BC%CE%BF%CE%B9_%CF%80%CF%81%CF%8E%CF%84%CE%BF%CE%B9_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF" title="Δίδυμοι πρώτοι αριθμοί">δίδυμοι πρώτοι</a></li> <li><a href="/wiki/%CE%A0%CF%81%CF%8E%CF%84%CE%BF%CF%82_%CE%9C%CE%B5%CF%81%CF%83%CE%AD%CE%BD" class="mw-redirect" title="Πρώτος Μερσέν">πρώτοι κατά Μερσέν</a></li> <li><a href="/wiki/%CE%A4%CE%AD%CE%BB%CE%B5%CE%B9%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Τέλειος αριθμός">τέλειοι</a></li> <li><a href="/wiki/%CE%A4%CE%B5%CF%84%CF%81%CE%B1%CE%BA%CF%84%CF%8D%CF%82" title="Τετρακτύς">τριγωνικοί</a></li> <li><a href="/wiki/%CE%A0%CF%85%CE%B8%CE%B1%CE%B3%CF%8C%CF%81%CE%B5%CE%B9%CE%B1_%CF%84%CF%81%CE%B9%CE%AC%CE%B4%CE%B1" title="Πυθαγόρεια τριάδα">πυθαγόρειες τριάδες</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">υποσύνολα πραγματικών</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%CE%91%CF%81%CE%BD%CE%B7%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Αρνητικός αριθμός">αρνητικοί</a></li> <li><a href="/wiki/%CE%98%CE%B5%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Θετικός αριθμός">θετικοί</a></li> <li><a href="/wiki/%CE%A0%CE%B5%CF%81%CE%B9%CE%BF%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Περιοδικός αριθμός">περιοδικοί</a></li> <li><a href="/wiki/%CE%A0%CE%B5%CF%81%CE%B9%CE%BF%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Περιοδικός αριθμός">κυκλικοί</a></li> <li><a href="/wiki/%CE%86%CF%81%CF%81%CE%B7%CF%84%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Άρρητος αριθμός">άρρητοι</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q'} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="double-struck">Q</mi> <mo>&#x2032;</mo> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q'} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4549fc7c30cd0d1ba25433f54c3741ca573bf1a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.493ex; height:2.843ex;" alt="{\displaystyle \mathbb {Q&#039;} }"></span>)</li> <li><a href="/wiki/%CE%86%CF%81%CF%81%CE%B7%CF%84%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Άρρητος αριθμός">ασύμμετροι</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">υποσύνολα μιγαδικών</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%CE%A6%CE%B1%CE%BD%CF%84%CE%B1%CF%83%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Φανταστικός αριθμός">φανταστικοί</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {I} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">I</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {I} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8205f06e0d279689ed04a1ac04a3d9c249c637df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.905ex; height:2.176ex;" alt="{\displaystyle \mathbb {I} }"></span>)</li> <li><a href="/w/index.php?title=%CE%94%CE%B9%CF%80%CE%BB%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;redlink=1" class="new" title="Διπλός αριθμός (δεν έχει γραφτεί ακόμα)">διπλοί</a></li> <li><a href="/wiki/%CE%91%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Αλγεβρικός αριθμός">αλγεβρικοί</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fb423c16a5f403edbaf66438b75e7a36e725af6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {A} }"></span>)</li> <li><a href="/wiki/%CE%A5%CF%80%CE%B5%CF%81%CE%B2%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Υπερβατικός αριθμός">υπερβατικοί</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">υπερσύνολα μιγαδικών<br />split<br />σύνθετοι</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%CE%A4%CE%B5%CF%84%CF%81%CE%B1%CE%B4%CF%8C%CE%BD%CE%B9%CE%BF" title="Τετραδόνιο">τετραδόνια</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e050965453c42bcc6bd544546703c836bdafeac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {H} }"></span>)</li> <li><a href="/w/index.php?title=%CE%A5%CF%80%CE%B5%CF%81%CE%B2%CE%BF%CE%BB%CE%B9%CE%BA%CF%8C_%CF%84%CE%B5%CF%84%CF%81%CE%B1%CE%B4%CF%8C%CE%BD%CE%B9%CE%BF&amp;action=edit&amp;redlink=1" class="new" title="Υπερβολικό τετραδόνιο (δεν έχει γραφτεί ακόμα)">υπερβολικά τετραδόνια</a></li> <li><a href="/w/index.php?title=%CE%94%CE%B9%CF%80%CE%BB%CF%8C_%CF%84%CE%B5%CF%84%CF%81%CE%B1%CE%B4%CF%8C%CE%BD%CE%B9%CE%BF&amp;action=edit&amp;redlink=1" class="new" title="Διπλό τετραδόνιο (δεν έχει γραφτεί ακόμα)">διπλά τετραδόνια</a></li> <li><a href="/wiki/%CE%9F%CE%BA%CF%84%CF%8C%CE%BD%CE%B9%CE%BF" title="Οκτόνιο">οκτόνια</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {O} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">O</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {O} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1ed2664a4fe515e6fbed25a7193ce663b82920c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {O} }"></span>)</li> <li><a href="/w/index.php?title=Sedenion&amp;action=edit&amp;redlink=1" class="new" title="Sedenion (δεν έχει γραφτεί ακόμα)">σεντένια</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f9d5874c5d7f68eba1cec9da9ccbe53903303bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \mathbb {S} }"></span>)</li> <li><a href="/w/index.php?title=Split-biquaternion&amp;action=edit&amp;redlink=1" class="new" title="Split-biquaternion (δεν έχει γραφτεί ακόμα)">συν-αμφι-τετραδόνια</a><br /> &gt; στους πραγματικούς: <a href="/w/index.php?title=Split-complex&amp;action=edit&amp;redlink=1" class="new" title="Split-complex (δεν έχει γραφτεί ακόμα)">συν-μιγαδικοί</a></li> <li><a href="/w/index.php?title=Split-quaternion&amp;action=edit&amp;redlink=1" class="new" title="Split-quaternion (δεν έχει γραφτεί ακόμα)">συν-τετραδόνια</a></li> <li><a href="/w/index.php?title=Split-biquaternion&amp;action=edit&amp;redlink=1" class="new" title="Split-biquaternion (δεν έχει γραφτεί ακόμα)">συν-αμφι-μιγαδικοί</a></li> <li><a href="/w/index.php?title=Split-octonion&amp;action=edit&amp;redlink=1" class="new" title="Split-octonion (δεν έχει γραφτεί ακόμα)">συν-οκτονικοί</a><br /> &gt; στους μιγαδικούς: <a href="/w/index.php?title=%CE%91%CE%BC%CF%86%CE%B9-%CE%BC%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;redlink=1" class="new" title="Αμφι-μιγαδικός αριθμός (δεν έχει γραφτεί ακόμα)">αμφι-μιγαδικοί</a></li> <li><a href="/w/index.php?title=%CE%91%CE%BC%CF%86%CE%B9-%CF%84%CE%B5%CF%84%CF%81%CE%B1%CE%B4%CF%8C%CE%BD%CE%B9%CE%BF&amp;action=edit&amp;redlink=1" class="new" title="Αμφι-τετραδόνιο (δεν έχει γραφτεί ακόμα)">αμφι-τετραδόνια</a></li> <li><a href="/w/index.php?title=%CE%91%CE%BC%CF%86%CE%B9-%CE%BF%CE%BA%CF%84%CF%8C%CE%BD%CE%B9%CE%BF&amp;action=edit&amp;redlink=1" class="new" title="Αμφι-οκτόνιο (δεν έχει γραφτεί ακόμα)">αμφι-οκτόνια</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">θεωρία συνόλων</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%CE%A0%CE%BB%CE%B7%CE%B8%CE%AC%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CF%82" class="mw-redirect" title="Πληθάριθμος">πληθάριθμοι</a></li> <li><a href="/w/index.php?title=%CE%A5%CF%80%CE%B5%CF%81%CF%80%CE%B5%CF%80%CE%B5%CF%81%CE%B1%CF%83%CE%BC%CE%AD%CE%BD%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;action=edit&amp;redlink=1" class="new" title="Υπερπεπερασμένος αριθμός (δεν έχει γραφτεί ακόμα)">υπερπεπερασμένοι αριθμοί</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">κατά βάση αρίθμησης</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%CE%94%CF%85%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" class="mw-redirect" title="Δυαδικό σύστημα αρίθμησης">δυαδικοί</a></li> <li><a href="/wiki/%CE%A4%CF%81%CE%B9%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" title="Τριαδικό σύστημα αρίθμησης">τριαδικοί</a></li> <li><a href="/wiki/%CE%95%CF%80%CF%84%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" title="Επταδικό σύστημα αρίθμησης">επταδικοί</a></li> <li><a href="/wiki/%CE%9F%CE%BA%CF%84%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" title="Οκταδικό σύστημα αρίθμησης">οκταδικοί</a></li> <li><b><a href="/wiki/%CE%94%CE%B5%CE%BA%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" class="mw-redirect" title="Δεκαδικό σύστημα αρίθμησης">δεκαδικοί</a></b></li> <li><a href="/wiki/%CE%94%CE%B5%CE%BA%CE%B1%CE%B5%CE%BE%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" title="Δεκαεξαδικό σύστημα αρίθμησης">δεκαεξαδικοί</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">κατά σύστημα αρίθμησης</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><b><a href="/wiki/%CE%91%CF%81%CE%B1%CE%B2%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" title="Αραβικό σύστημα αρίθμησης">αραβικοί</a></b></li> <li><a href="/wiki/%CE%99%CE%BD%CE%B4%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" title="Ινδικό σύστημα αρίθμησης">ινδικοί</a></li> <li><a href="/wiki/%CE%A1%CF%89%CE%BC%CE%B1%CF%8A%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" class="mw-redirect" title="Ρωμαϊκό σύστημα αρίθμησης">ρωμαϊκοί</a></li> <li><a href="/wiki/%CE%95%CE%BB%CE%BB%CE%B7%CE%BD%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" title="Ελληνικό σύστημα αρίθμησης">ελληνικοί</a></li> <li><a href="/wiki/%CE%91%CF%81%CE%BC%CE%B5%CE%BD%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CF%81%CE%AF%CE%B8%CE%BC%CE%B7%CF%83%CE%B7%CF%82" title="Αρμενικό σύστημα αρίθμησης">αρμενικοί</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">μαθηματικές σταθερές</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CF%80" class="mw-redirect" title="Αριθμός π">π</a></li> <li><a href="/wiki/%CE%A7%CF%81%CF%85%CF%83%CE%AE_%CF%84%CE%BF%CE%BC%CE%AE" title="Χρυσή τομή">φ</a></li> <li><a href="/wiki/%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_e_(%CE%BC%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC)" class="mw-redirect" title="Αριθμός e (μαθηματικά)">e</a></li> <li><a href="/wiki/Googol" class="mw-redirect" title="Googol">Googol</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r10387572"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r10730911"></div><div role="navigation" class="navbox" aria-labelledby="Καθιερωμένοι_όροι" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Καθιερωμένοι_όροι" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%CE%9A%CE%B1%CF%84%CE%AC%CE%BB%CE%BF%CE%B3%CE%BF%CF%82_%CE%BA%CE%B1%CE%B8%CE%B9%CE%B5%CF%81%CF%89%CE%BC%CE%AD%CE%BD%CF%89%CE%BD_%CF%8C%CF%81%CF%89%CE%BD" title="Κατάλογος καθιερωμένων όρων">Καθιερωμένοι όροι</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><strong><a href="/wiki/Library_of_Congress_Control_Number" class="mw-redirect" title="Library of Congress Control Number">LCCN</a></strong>: <span class="uid"><a rel="nofollow" class="external text" href="http://id.loc.gov/authorities/subjects/sh85093211">sh85093211</a></span></li> <li><strong><a href="/wiki/Integrated_Authority_File" class="mw-redirect" title="Integrated Authority File">GND</a></strong>: <span class="uid"><a rel="nofollow" class="external text" href="http://d-nb.info/gnd/4128698-4">4128698-4</a></span></li> <li><strong><a href="/wiki/Biblioth%C3%A8que_nationale_de_France" class="mw-redirect" title="Bibliothèque nationale de France">BNF</a></strong>: <span class="uid"><a rel="nofollow" class="external text" href="http://catalogue.bnf.fr/ark:/12148/cb11981946j">cb11981946j</a> <a rel="nofollow" class="external text" href="http://data.bnf.fr/ark:/12148/cb11981946j">(data)</a></span></li> <li><strong><a href="/wiki/National_Diet_Library" class="mw-redirect" title="National Diet Library">NDL</a></strong>: <span class="uid"><a rel="nofollow" class="external text" href="http://id.ndl.go.jp/auth/ndlna/00563643">00563643</a></span></li> <li><strong><a href="/wiki/National_Library_of_the_Czech_Republic" class="mw-redirect" title="National Library of the Czech Republic">NKC</a></strong>: <span class="uid"><a rel="nofollow" class="external text" href="http://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph121761&amp;CON_LNG=ENG">ph121761</a></span></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r10730911"></div><div role="navigation" class="navbox" aria-label="Navbox" style="padding:3px"><table class="nowraplinks noprint navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li style="display:inline;white-space:nowrap"><span style="margin:auto 0.5em"><span typeof="mw:File"><a href="/wiki/%CE%A0%CF%8D%CE%BB%CE%B7:%CE%9C%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC" title="Πύλη:Μαθηματικά"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="32" height="32" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/48px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/64px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span style="font-weight:bold"><a href="/wiki/%CE%A0%CF%8D%CE%BB%CE%B7:%CE%9C%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC" title="Πύλη:Μαθηματικά">Πύλη:Μαθηματικά</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐864bbfd546‐nsvz9 Cached time: 20241129152231 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.547 seconds Real time usage: 0.756 seconds Preprocessor visited node count: 9985/1000000 Post‐expand include size: 140706/2097152 bytes Template argument size: 22423/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 0/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 54904/5000000 bytes Lua time usage: 0.196/10.000 seconds Lua memory usage: 2515624/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 450.094 1 -total 26.22% 118.010 15 Πρότυπο:Cite_book 21.64% 97.395 14 Πρότυπο:Citation/core 21.58% 97.120 1 Πρότυπο:Αριθμοί 20.53% 92.399 1 Πρότυπο:Πλαίσιο_πλοήγησης 17.87% 80.442 12 Πρότυπο:Cite_journal 7.32% 32.948 2 Πρότυπο:Springer 7.14% 32.159 1 Πρότυπο:Commonscat 5.98% 26.922 1 Πρότυπο:Commons 5.91% 26.604 2 Πρότυπο:Citation --> <!-- Saved in parser cache with key elwiki:pcache:idhash:20905-0!canonical and timestamp 20241129152231 and revision id 10698702. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Ανακτήθηκε από "<a dir="ltr" href="https://el.wikipedia.org/w/index.php?title=Μιγαδικός_αριθμός&amp;oldid=10698702">https://el.wikipedia.org/w/index.php?title=Μιγαδικός_αριθμός&amp;oldid=10698702</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CF%8C:%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B5%CF%82" title="Ειδικό:Κατηγορίες">Κατηγορίες</a>: <ul><li><a href="/wiki/%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CE%AF_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CE%AF" title="Κατηγορία:Μιγαδικοί αριθμοί">Μιγαδικοί αριθμοί</a></li><li><a href="/wiki/%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1:%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%AE_%CE%B1%CE%BD%CE%AC%CE%BB%CF%85%CF%83%CE%B7" title="Κατηγορία:Μιγαδική ανάλυση">Μιγαδική ανάλυση</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Κρυμμένες κατηγορίες: <ul><li><a href="/wiki/%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1:%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1_Commons_%CE%BC%CE%B5_%CF%84%CE%AF%CF%84%CE%BB%CE%BF_%CF%83%CE%B5%CE%BB%CE%AF%CE%B4%CE%B1%CF%82_%CE%B4%CE%B9%CE%B1%CF%86%CE%BF%CF%81%CE%B5%CF%84%CE%B9%CE%BA%CF%8C_%CE%B1%CF%80%CF%8C_%CF%84%CF%89%CE%BD_Wikidata" title="Κατηγορία:Κατηγορία Commons με τίτλο σελίδας διαφορετικό από των Wikidata">Κατηγορία Commons με τίτλο σελίδας διαφορετικό από των Wikidata</a></li><li><a href="/wiki/%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1:Commonscat_%CF%80%CE%BF%CF%85_%CF%84%CF%81%CE%B1%CE%B2%CE%AC%CE%B5%CE%B9_%CE%B4%CE%B5%CE%B4%CE%BF%CE%BC%CE%AD%CE%BD%CE%B1_%CE%B1%CF%80%CF%8C_Wikidata" title="Κατηγορία:Commonscat που τραβάει δεδομένα από Wikidata">Commonscat που τραβάει δεδομένα από Wikidata</a></li><li><a href="/wiki/%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1:%CE%9B%CE%AE%CE%BC%CE%BC%CE%B1%CF%84%CE%B1_%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1%CF%82_%CE%BC%CE%B5_%CE%B1%CE%BD%CE%B1%CE%B3%CE%BD%CF%89%CF%81%CE%B9%CF%83%CF%84%CE%B9%CE%BA%CE%AC_LCCN" title="Κατηγορία:Λήμματα Βικιπαίδειας με αναγνωριστικά LCCN">Λήμματα Βικιπαίδειας με αναγνωριστικά LCCN</a></li><li><a href="/wiki/%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1:%CE%9B%CE%AE%CE%BC%CE%BC%CE%B1%CF%84%CE%B1_%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1%CF%82_%CE%BC%CE%B5_%CE%B1%CE%BD%CE%B1%CE%B3%CE%BD%CF%89%CF%81%CE%B9%CF%83%CF%84%CE%B9%CE%BA%CE%AC_GND" title="Κατηγορία:Λήμματα Βικιπαίδειας με αναγνωριστικά GND">Λήμματα Βικιπαίδειας με αναγνωριστικά GND</a></li><li><a href="/wiki/%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1:%CE%9B%CE%AE%CE%BC%CE%BC%CE%B1%CF%84%CE%B1_%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1%CF%82_%CE%BC%CE%B5_%CE%B1%CE%BD%CE%B1%CE%B3%CE%BD%CF%89%CF%81%CE%B9%CF%83%CF%84%CE%B9%CE%BA%CE%AC_BNF" title="Κατηγορία:Λήμματα Βικιπαίδειας με αναγνωριστικά BNF">Λήμματα Βικιπαίδειας με αναγνωριστικά BNF</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Τελευταία τροποποίηση 07:15, 16 Αυγούστου 2024.</li> <li id="footer-info-copyright">Όλα τα κείμενα είναι διαθέσιμα υπό την <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.el">Creative Commons Attribution-ShareAlike License</a>· μπορεί να ισχύουν και πρόσθετοι όροι. Χρησιμοποιώντας αυτό τον ιστότοπο, συμφωνείτε στους <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/el">Όρους Χρήσης</a> και την <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Πολιτική Ιδιωτικότητας</a>. Το Wikipedia® είναι καταχωρημένο σήμα του <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, ενός μη κερδοσκοπικού οργανισμού.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Πολιτική προσωπικών δεδομένων</a></li> <li id="footer-places-about"><a href="/wiki/%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1:%CE%A3%CF%87%CE%B5%CF%84%CE%B9%CE%BA%CE%AC">Για τη Βικιπαίδεια</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%CE%92%CE%B9%CE%BA%CE%B9%CF%80%CE%B1%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1:%CE%91%CF%80%CE%BF%CF%80%CE%BF%CE%AF%CE%B7%CF%83%CE%B7_%CE%B5%CF%85%CE%B8%CF%85%CE%BD%CF%8E%CE%BD">Αποποίηση ευθυνών</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Κώδικας συμπεριφοράς</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Προγραμματιστές</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/el.wikipedia.org">Στατιστικά</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Δήλωση cookie</a></li> <li id="footer-places-mobileview"><a href="//el.m.wikipedia.org/w/index.php?title=%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Προβολή κινητού</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-zsf8m","wgBackendResponseTime":133,"wgPageParseReport":{"limitreport":{"cputime":"0.547","walltime":"0.756","ppvisitednodes":{"value":9985,"limit":1000000},"postexpandincludesize":{"value":140706,"limit":2097152},"templateargumentsize":{"value":22423,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":54904,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 450.094 1 -total"," 26.22% 118.010 15 Πρότυπο:Cite_book"," 21.64% 97.395 14 Πρότυπο:Citation/core"," 21.58% 97.120 1 Πρότυπο:Αριθμοί"," 20.53% 92.399 1 Πρότυπο:Πλαίσιο_πλοήγησης"," 17.87% 80.442 12 Πρότυπο:Cite_journal"," 7.32% 32.948 2 Πρότυπο:Springer"," 7.14% 32.159 1 Πρότυπο:Commonscat"," 5.98% 26.922 1 Πρότυπο:Commons"," 5.91% 26.604 2 Πρότυπο:Citation"]},"scribunto":{"limitreport-timeusage":{"value":"0.196","limit":"10.000"},"limitreport-memusage":{"value":2515624,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-864bbfd546-nsvz9","timestamp":"20241129152231","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u039c\u03b9\u03b3\u03b1\u03b4\u03b9\u03ba\u03cc\u03c2 \u03b1\u03c1\u03b9\u03b8\u03bc\u03cc\u03c2","url":"https:\/\/el.wikipedia.org\/wiki\/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11567","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11567","author":{"@type":"Organization","name":"\u03a3\u03c5\u03bd\u03b5\u03b9\u03c3\u03c6\u03ad\u03c1\u03bf\u03bd\u03c4\u03b5\u03c2 \u03c3\u03c4\u03b1 \u03b5\u03b3\u03c7\u03b5\u03b9\u03c1\u03ae\u03bc\u03b1\u03c4\u03b1 Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-02-16T09:23:53Z","dateModified":"2024-08-16T07:15:28Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/46\/Complex_picture.svg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10