CINXE.COM

Biological pump - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Biological pump - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f3634de9-3bbc-49c6-b49f-2520e7b18fb8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Biological_pump","wgTitle":"Biological pump","wgCurRevisionId":1255348951,"wgRevisionId":1255348951,"wgArticleId":240228,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location missing publisher","CS1 maint: multiple names: authors list","CS1 maint: numeric names: authors list","CS1 errors: missing periodical","CS1 errors: periodical ignored","Articles with short description","Short description is different from Wikidata","Use British English from August 2021","Use dmy dates from August 2021","All articles lacking reliable references","Articles lacking reliable references from May 2021","Aquatic ecology","Biological oceanography", "Carbon cycle","Chemical oceanography"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Biological_pump","wgRelevantArticleId":240228,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q3180251","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site", "mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/e/e9/Oceanic_Food_Web.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1016"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Oceanic_Food_Web.jpg/800px-Oceanic_Food_Web.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="677"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Oceanic_Food_Web.jpg/640px-Oceanic_Food_Web.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="542"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Biological pump - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Biological_pump"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Biological_pump&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Biological_pump"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Biological_pump rootpage-Biological_pump skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Biological+pump" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Biological+pump" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Biological+pump" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Biological+pump" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Overview</span> </div> </a> <ul id="toc-Overview-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Primary_production" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Primary_production"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Primary production</span> </div> </a> <ul id="toc-Primary_production-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Forms_of_carbon" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Forms_of_carbon"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Forms of carbon</span> </div> </a> <button aria-controls="toc-Forms_of_carbon-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Forms of carbon subsection</span> </button> <ul id="toc-Forms_of_carbon-sublist" class="vector-toc-list"> <li id="toc-Dissolved_and_particulate_carbon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dissolved_and_particulate_carbon"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Dissolved and particulate carbon</span> </div> </a> <ul id="toc-Dissolved_and_particulate_carbon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ocean_carbon_pools" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ocean_carbon_pools"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Ocean carbon pools</span> </div> </a> <ul id="toc-Ocean_carbon_pools-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calcium_carbonate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calcium_carbonate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Calcium carbonate</span> </div> </a> <ul id="toc-Calcium_carbonate-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Oceanic_carbon_cycle" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Oceanic_carbon_cycle"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Oceanic carbon cycle</span> </div> </a> <button aria-controls="toc-Oceanic_carbon_cycle-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Oceanic carbon cycle subsection</span> </button> <ul id="toc-Oceanic_carbon_cycle-sublist" class="vector-toc-list"> <li id="toc-Solubility_pump" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Solubility_pump"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Solubility pump</span> </div> </a> <ul id="toc-Solubility_pump-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Carbonate_pump" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Carbonate_pump"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Carbonate pump</span> </div> </a> <ul id="toc-Carbonate_pump-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Continental_shelf_pump" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Continental_shelf_pump"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Continental shelf pump</span> </div> </a> <ul id="toc-Continental_shelf_pump-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Processes_in_the_biological_pump" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Processes_in_the_biological_pump"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Processes in the biological pump</span> </div> </a> <button aria-controls="toc-Processes_in_the_biological_pump-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Processes in the biological pump subsection</span> </button> <ul id="toc-Processes_in_the_biological_pump-sublist" class="vector-toc-list"> <li id="toc-Marine_snow" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Marine_snow"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Marine snow</span> </div> </a> <ul id="toc-Marine_snow-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biomineralization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biomineralization"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Biomineralization</span> </div> </a> <ul id="toc-Biomineralization-sublist" class="vector-toc-list"> <li id="toc-Ballast_minerals" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Ballast_minerals"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span>Ballast minerals</span> </div> </a> <ul id="toc-Ballast_minerals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Remineralisation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Remineralisation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2</span> <span>Remineralisation</span> </div> </a> <ul id="toc-Remineralisation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Key_role_of_phytoplankton" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Key_role_of_phytoplankton"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Key role of phytoplankton</span> </div> </a> <ul id="toc-Key_role_of_phytoplankton-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zooplankton_grazing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Zooplankton_grazing"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Zooplankton grazing</span> </div> </a> <ul id="toc-Zooplankton_grazing-sublist" class="vector-toc-list"> <li id="toc-Sloppy_feeding" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Sloppy_feeding"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.1</span> <span>Sloppy feeding</span> </div> </a> <ul id="toc-Sloppy_feeding-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fecal_pellets" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Fecal_pellets"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.2</span> <span>Fecal pellets</span> </div> </a> <ul id="toc-Fecal_pellets-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Microbial_loop" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Microbial_loop"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Microbial loop</span> </div> </a> <ul id="toc-Microbial_loop-sublist" class="vector-toc-list"> <li id="toc-Bacterial_lysis" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Bacterial_lysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5.1</span> <span>Bacterial lysis</span> </div> </a> <ul id="toc-Bacterial_lysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Viral_shunt" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Viral_shunt"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5.2</span> <span>Viral shunt</span> </div> </a> <ul id="toc-Viral_shunt-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Macroorganisms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Macroorganisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Macroorganisms</span> </div> </a> <ul id="toc-Macroorganisms-sublist" class="vector-toc-list"> <li id="toc-Jelly_fall" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Jelly_fall"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6.1</span> <span>Jelly fall</span> </div> </a> <ul id="toc-Jelly_fall-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Whale_pump" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Whale_pump"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6.2</span> <span>Whale pump</span> </div> </a> <ul id="toc-Whale_pump-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Vertical_migrations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vertical_migrations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>Vertical migrations</span> </div> </a> <ul id="toc-Vertical_migrations-sublist" class="vector-toc-list"> <li id="toc-Lipid_pump" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Lipid_pump"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7.1</span> <span>Lipid pump</span> </div> </a> <ul id="toc-Lipid_pump-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Bioluminescent_shunt" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bioluminescent_shunt"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.8</span> <span>Bioluminescent shunt</span> </div> </a> <ul id="toc-Bioluminescent_shunt-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Quantification" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Quantification"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Quantification</span> </div> </a> <ul id="toc-Quantification-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Effects_of_climate_change" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Effects_of_climate_change"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Effects of climate change</span> </div> </a> <ul id="toc-Effects_of_climate_change-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Monitoring" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Monitoring"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Monitoring</span> </div> </a> <ul id="toc-Monitoring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Needed_research" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Needed_research"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Needed research</span> </div> </a> <ul id="toc-Needed_research-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Biological pump</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 12 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-12" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">12 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B6%D8%AE%D8%A9_%D8%A8%D9%8A%D9%88%D9%84%D9%88%D8%AC%D9%8A%D8%A9" title="مضخة بيولوجية – Arabic" lang="ar" hreflang="ar" data-title="مضخة بيولوجية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Bomba_biol%C3%B2gica" title="Bomba biològica – Catalan" lang="ca" hreflang="ca" data-title="Bomba biològica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Bomba_biol%C3%B3gica" title="Bomba biológica – Spanish" lang="es" hreflang="es" data-title="Bomba biológica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%BE%D9%85%D9%BE_%D8%B2%DB%8C%D8%B3%D8%AA%DB%8C" title="پمپ زیستی – Persian" lang="fa" hreflang="fa" data-title="پمپ زیستی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Pompe_biologique" title="Pompe biologique – French" lang="fr" hreflang="fr" data-title="Pompe biologique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%83%9D%EB%AC%BC%ED%95%99%EC%A0%81_%ED%8E%8C%ED%94%84" title="생물학적 펌프 – Korean" lang="ko" hreflang="ko" data-title="생물학적 펌프" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Pompa_biologis" title="Pompa biologis – Indonesian" lang="id" hreflang="id" data-title="Pompa biologis" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E3%83%9D%E3%83%B3%E3%83%97" title="生物ポンプ – Japanese" lang="ja" hreflang="ja" data-title="生物ポンプ" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Karbonpumpe" title="Karbonpumpe – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Karbonpumpe" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pompa_biologiczna" title="Pompa biologiczna – Polish" lang="pl" hreflang="pl" data-title="Pompa biologiczna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Bomba_biol%C3%B3gica" title="Bomba biológica – Portuguese" lang="pt" hreflang="pt" data-title="Bomba biológica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E6%B3%B5" title="生物泵 – Chinese" lang="zh" hreflang="zh" data-title="生物泵" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3180251#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Biological_pump" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Biological_pump" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Biological_pump"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Biological_pump&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Biological_pump&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Biological_pump"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Biological_pump&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Biological_pump&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Biological_pump" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Biological_pump" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Biological_pump&amp;oldid=1255348951" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Biological_pump&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Biological_pump&amp;id=1255348951&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBiological_pump"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBiological_pump"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Biological_pump&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Biological_pump&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3180251" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Carbon capture process in oceans</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Oceanic_Food_Web.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Oceanic_Food_Web.jpg/300px-Oceanic_Food_Web.jpg" decoding="async" width="300" height="254" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Oceanic_Food_Web.jpg/450px-Oceanic_Food_Web.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Oceanic_Food_Web.jpg/600px-Oceanic_Food_Web.jpg 2x" data-file-width="1200" data-file-height="1016" /></a><figcaption><div class="center" style="width:auto; margin-left:auto; margin-right:auto;">The <a href="/wiki/Pelagic_food_web" class="mw-redirect" title="Pelagic food web">pelagic food web</a>, showing the central involvement of <a href="/wiki/Marine_microorganism" class="mw-redirect" title="Marine microorganism">marine microorganisms</a> in how the ocean imports carbon and then exports it back to the atmosphere and ocean floor</div></figcaption></figure> <p>The <b>biological pump</b> (or <b>ocean carbon biological pump</b> or <b>marine biological carbon pump</b>) is the ocean's biologically driven <a href="/wiki/Carbon_sequestration" title="Carbon sequestration">sequestration of carbon</a> from the atmosphere and land runoff to the ocean interior and <a href="/wiki/Seafloor_sediments" class="mw-redirect" title="Seafloor sediments">seafloor sediments</a>.<sup id="cite_ref-Sigman2006_1-0" class="reference"><a href="#cite_note-Sigman2006-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> In other words, it is a biologically mediated process which results in the sequestering of carbon in the deep ocean away from the atmosphere and the land. The biological pump is the biological component of the "marine carbon pump" which contains both a physical and biological component. It is the part of the broader <a href="/wiki/Oceanic_carbon_cycle" title="Oceanic carbon cycle">oceanic carbon cycle</a> responsible for the cycling of <a href="/wiki/Organic_matter" title="Organic matter">organic matter</a> formed mainly by <a href="/wiki/Phytoplankton" title="Phytoplankton">phytoplankton</a> during <a href="/wiki/Photosynthesis" title="Photosynthesis">photosynthesis</a> (soft-tissue pump), as well as the cycling of <a href="/wiki/Calcium_carbonate" title="Calcium carbonate">calcium carbonate</a> (CaCO<sub>3</sub>) formed into shells by certain organisms such as <a href="/wiki/Plankton" title="Plankton">plankton</a> and <a href="/wiki/Mollusks" class="mw-redirect" title="Mollusks">mollusks</a> (carbonate pump).<sup id="cite_ref-Hain2014_2-0" class="reference"><a href="#cite_note-Hain2014-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Budget calculations of the biological carbon pump are based on the ratio between <a href="/wiki/Marine_sediment" title="Marine sediment">sedimentation</a> (carbon export to the ocean floor) and <a href="/wiki/Remineralization" class="mw-redirect" title="Remineralization">remineralization</a> (release of carbon to the atmosphere). </p><p>The biological pump is not so much the result of a single process, but rather the sum of a number of processes each of which can influence biological pumping. Overall, the pump transfers about 10.2 <a href="/wiki/Gigatonne" class="mw-redirect" title="Gigatonne">gigatonnes</a> of carbon every year into the ocean's interior and a total of 1300 gigatonnes carbon over an average 127 years.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> This takes carbon out of contact with the atmosphere for several thousand years or longer. An ocean without a biological pump would result in atmospheric carbon dioxide levels about 400 <a href="/wiki/Parts_per_million" class="mw-redirect" title="Parts per million">ppm</a> higher than the present day. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Overview">Overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=1" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series of overviews on</td></tr><tr><th class="sidebar-title-with-pretitle" style="background:#82C3D8; padding:0.2em; font-size:160%; font-weight:bold;"><a href="/wiki/Marine_life" title="Marine life"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Marine life</span></a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Dolphin.svg/90px-Dolphin.svg.png" decoding="async" width="90" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Dolphin.svg/135px-Dolphin.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Dolphin.svg/180px-Dolphin.svg.png 2x" data-file-width="160" data-file-height="160" /></span></span></td></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Marine_habitat" title="Marine habitat">Habitats</a></li> <li><a href="/wiki/Marine_microorganisms" title="Marine microorganisms">Microorganisms</a></li> <li><a href="/wiki/Marine_microbiome" title="Marine microbiome">Microbiomes</a></li> <li><a href="/wiki/Marine_viruses" title="Marine viruses">Viruses</a></li> <li><a href="/wiki/Marine_prokaryotes" title="Marine prokaryotes">Prokaryotes</a></li> <li><a href="/wiki/Marine_protists" title="Marine protists">Protists</a></li> <li><a href="/wiki/Marine_fungi" title="Marine fungi">Fungi</a></li> <li><a href="/wiki/Marine_invertebrates" title="Marine invertebrates">Invertebrates</a></li> <li><a href="/wiki/Marine_vertebrates" class="mw-redirect" title="Marine vertebrates">Vertebrates</a></li> <li><a href="/wiki/Marine_primary_production" title="Marine primary production">Primary production</a></li> <li><a href="/wiki/Marine_food_web" title="Marine food web">Food web</a></li> <li><a class="mw-selflink selflink">Carbon pump</a></li> <li><a href="/wiki/Marine_biogeochemical_cycles" title="Marine biogeochemical cycles">Biogeochemical cycles</a></li> <li><a href="/wiki/Human_impact_on_marine_life" title="Human impact on marine life">Human impact</a></li> <li><a href="/wiki/Marine_conservation" title="Marine conservation">Conservation</a></li></ul></td> </tr><tr><td class="sidebar-below hlist" style="background-color: #82C3D8; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Yellow.tang.arp.jpg/16px-Yellow.tang.arp.jpg" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Yellow.tang.arp.jpg/24px-Yellow.tang.arp.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Yellow.tang.arp.jpg/32px-Yellow.tang.arp.jpg 2x" data-file-width="1315" data-file-height="1039" /></span></span> </span><a href="/wiki/Portal:Marine_life" title="Portal:Marine life">Marine life&#32;portal</a></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Marine_life_sidebar" title="Template:Marine life sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Marine_life_sidebar" title="Template talk:Marine life sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Marine_life_sidebar" title="Special:EditPage/Template:Marine life sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>The element <a href="/wiki/Carbon" title="Carbon">carbon</a> plays a central role in climate and life on Earth. It is capable of moving among and between the <a href="/wiki/Geosphere" title="Geosphere">geosphere</a>, <a href="/wiki/Cryosphere" title="Cryosphere">cryosphere</a>, <a href="/wiki/Atmosphere" title="Atmosphere">atmosphere</a>, <a href="/wiki/Biosphere" title="Biosphere">biosphere</a> and <a href="/wiki/Hydrosphere" title="Hydrosphere">hydrosphere</a>. This flow of carbon is referred to as the Earth's <a href="/wiki/Carbon_cycle" title="Carbon cycle">carbon cycle</a>. It is also intimately linked to the cycling of other elements and compounds. The ocean plays a fundamental role in Earth's carbon cycle, helping to regulate atmospheric CO<sub>2</sub> concentration. The biological pump is a set of processes that transfer <a href="/wiki/Organic_carbon" class="mw-redirect" title="Organic carbon">organic carbon</a> from the surface to the deep ocean, and is at the heart of the <a href="/wiki/Ocean_carbon_cycle" class="mw-redirect" title="Ocean carbon cycle">ocean carbon cycle</a>.<sup id="cite_ref-Brewin2021_4-0" class="reference"><a href="#cite_note-Brewin2021-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The biological pump depends on the fraction of primary produced <a href="/wiki/Organic_matter" title="Organic matter">organic matter</a> that survives degradation in the <a href="/wiki/Euphotic_zone" class="mw-redirect" title="Euphotic zone">euphotic zone</a> and that is exported from surface water to the ocean interior, where it is <a href="/wiki/Biomineralization" title="Biomineralization">mineralized</a> to <a href="/wiki/Inorganic_carbon" class="mw-redirect" title="Inorganic carbon">inorganic carbon</a>, with the result that carbon is transported against the gradient of <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a> (DIC) from the surface to the deep ocean. This transfer occurs through physical mixing and transport of dissolved and <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a> (POC), <a href="/wiki/Diel_vertical_migration" title="Diel vertical migration">vertical migrations</a> of organisms (<a href="/wiki/Zooplankton" title="Zooplankton">zooplankton</a>, <a href="/wiki/Fish" title="Fish">fish</a>) and through gravitational settling of particulate organic carbon.<sup id="cite_ref-Volk1885_5-0" class="reference"><a href="#cite_note-Volk1885-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Sarmiento2013_6-0" class="reference"><a href="#cite_note-Sarmiento2013-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 526">&#58;&#8202;526&#8202;</span></sup><sup id="cite_ref-Middelburg2019_7-0" class="reference"><a href="#cite_note-Middelburg2019-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>The biological pump can be divided into three distinct phases, the first of which is the production of fixed carbon by planktonic <a href="/wiki/Phototrophs" class="mw-redirect" title="Phototrophs">phototrophs</a> in the <a href="/wiki/Euphotic" class="mw-redirect" title="Euphotic">euphotic</a> (sunlit) surface region of the ocean. In these surface waters, <a href="/wiki/Phytoplankton" title="Phytoplankton">phytoplankton</a> use <a href="/wiki/Carbon_dioxide" title="Carbon dioxide">carbon dioxide</a> (CO<sub>2</sub>), <a href="/wiki/Nitrogen" title="Nitrogen">nitrogen</a> (N), <a href="/wiki/Phosphorus" title="Phosphorus">phosphorus</a> (P), and other trace elements (<a href="/wiki/Barium" title="Barium">barium</a>, <a href="/wiki/Iron" title="Iron">iron</a>, <a href="/wiki/Zinc" title="Zinc">zinc</a>, etc.) during photosynthesis to make <a href="/wiki/Carbohydrates" class="mw-redirect" title="Carbohydrates">carbohydrates</a>, <a href="/wiki/Lipids" class="mw-redirect" title="Lipids">lipids</a>, and <a href="/wiki/Proteins" class="mw-redirect" title="Proteins">proteins</a>. Some plankton, (e.g. <a href="/wiki/Coccolithophores" class="mw-redirect" title="Coccolithophores">coccolithophores</a> and <a href="/wiki/Foraminifera" title="Foraminifera">foraminifera</a>) combine calcium (Ca) and dissolved carbonates (<a href="/wiki/Carbonic_acid" title="Carbonic acid">carbonic acid</a> and <a href="/wiki/Bicarbonate" title="Bicarbonate">bicarbonate</a>) to form a calcium carbonate (CaCO<sub>3</sub>) protective coating.<sup id="cite_ref-DeLaRocha2014_8-0" class="reference"><a href="#cite_note-DeLaRocha2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Components_of_the_biological_pump_2018.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Components_of_the_biological_pump_2018.jpg/260px-Components_of_the_biological_pump_2018.jpg" decoding="async" width="260" height="339" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Components_of_the_biological_pump_2018.jpg/390px-Components_of_the_biological_pump_2018.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Components_of_the_biological_pump_2018.jpg/520px-Components_of_the_biological_pump_2018.jpg 2x" data-file-width="2372" data-file-height="3089" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Pump processes vary with depth</b></div>Photic zone: 0–100 m; Mesopelagic: 100–1000 m; Bathypelagic: 1000 to abyssal depths. Below 1000 m depth carbon is considered removed from the atmosphere for at least 100 years. Scavenging: DOC incorporation within sinking particles.<sup id="cite_ref-Boscolo-Galazzo2018_9-0" class="reference"><a href="#cite_note-Boscolo-Galazzo2018-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Components_of_the_biological_pump.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Components_of_the_biological_pump.png/480px-Components_of_the_biological_pump.png" decoding="async" width="480" height="359" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Components_of_the_biological_pump.png/720px-Components_of_the_biological_pump.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Components_of_the_biological_pump.png/960px-Components_of_the_biological_pump.png 2x" data-file-width="1182" data-file-height="883" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Components of the biological pump</b></div></figcaption></figure> <div style="clear:left;" class=""></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on the</td></tr><tr><th class="sidebar-title-with-pretitle" style="background:#82C3D8; padding:0.2em; font-size:160%; font-weight:bold;"><a href="/wiki/Carbon_cycle" title="Carbon cycle"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Carbon cycle</span></a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Carbon_cycle-cute_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Carbon_cycle-cute_diagram.svg/160px-Carbon_cycle-cute_diagram.svg.png" decoding="async" width="160" height="123" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Carbon_cycle-cute_diagram.svg/240px-Carbon_cycle-cute_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/82/Carbon_cycle-cute_diagram.svg/320px-Carbon_cycle-cute_diagram.svg.png 2x" data-file-width="600" data-file-height="460" /></a></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)">By regions</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Terrestrial_biological_carbon_cycle" title="Terrestrial biological carbon cycle">Terrestrial</a></li> <li><a href="/wiki/Oceanic_carbon_cycle" title="Oceanic carbon cycle">Marine</a></li> <li><a href="/wiki/Atmospheric_carbon_cycle" title="Atmospheric carbon cycle">Atmospheric</a></li> <li><a href="/wiki/Deep_carbon_cycle" title="Deep carbon cycle">Deep carbon</a></li> <li><a href="/wiki/Soil_carbon" title="Soil carbon">Soil</a></li> <li><a href="/wiki/Permafrost_carbon_cycle" title="Permafrost carbon cycle">Permafrost</a></li> <li><a href="/wiki/Fire_and_carbon_cycling_in_boreal_forests" title="Fire and carbon cycling in boreal forests">Boreal forest</a></li> <li><a href="/wiki/Geochemistry_of_carbon" title="Geochemistry of carbon">Geochemistry</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Carbon_dioxide" title="Carbon dioxide">Carbon dioxide</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Carbon_dioxide_in_Earth%27s_atmosphere" title="Carbon dioxide in Earth&#39;s atmosphere">In the atmosphere</a></li> <li><a href="/wiki/Ocean_acidification" title="Ocean acidification">Ocean acidification</a></li> <li><a href="/wiki/Carbon_dioxide_removal" title="Carbon dioxide removal">Removal</a></li> <li><a href="/wiki/Space-based_measurements_of_carbon_dioxide" title="Space-based measurements of carbon dioxide">Satellite measurements</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Forms_of_carbon" class="mw-redirect" title="Forms of carbon">Forms of carbon</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Total_carbon" title="Total carbon">Total carbon</a> (TC)</li> <li><a href="/wiki/Total_organic_carbon" title="Total organic carbon">Total organic carbon</a> (TOC)</li> <li><a href="/wiki/Total_inorganic_carbon" title="Total inorganic carbon">Total inorganic carbon</a> (TIC)</li> <li><a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">Dissolved organic carbon</a> (DOC)</li> <li><a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">Dissolved inorganic carbon</a> (DIC)</li> <li><a href="/wiki/Particulate_organic_matter" title="Particulate organic matter">Particulate organic carbon</a> (POC)</li> <li><a href="/wiki/Particulate_inorganic_carbon" title="Particulate inorganic carbon">Particulate inorganic carbon</a> (PIC)</li></ul> </div> <div class="hlist"> <ul><li><a href="/wiki/Primary_production" title="Primary production">Primary production</a> <ul><li><a href="/wiki/Marine_primary_production" title="Marine primary production">marine</a></li></ul></li></ul> </div> <div class="hlist"> <ul><li><a href="/wiki/Black_carbon" title="Black carbon">Black carbon</a></li> <li><a href="/wiki/Blue_carbon" title="Blue carbon">Blue carbon</a></li> <li><a href="/wiki/Kerogen" title="Kerogen">Kerogen</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Metabolic_pathway" title="Metabolic pathway">Metabolic pathways</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Photosynthesis" title="Photosynthesis">Photosynthesis</a></li> <li><a href="/wiki/Chemosynthesis" title="Chemosynthesis">Chemosynthesis</a></li></ul> </div> <div class="hlist"> <ul><li><a href="/wiki/Calvin_cycle" title="Calvin cycle">Calvin cycle</a></li> <li><a href="/wiki/Reverse_Krebs_cycle" title="Reverse Krebs cycle">Reverse Krebs cycle</a></li> <li><a href="/wiki/Carbon_fixation" class="mw-redirect" title="Carbon fixation">Carbon fixation</a> <ul><li><a href="/wiki/C3_carbon_fixation" title="C3 carbon fixation">C3</a></li> <li><a href="/wiki/C4_carbon_fixation" title="C4 carbon fixation">C4</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Carbon_respiration" title="Carbon respiration">Carbon respiration</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Ecosystem_respiration" title="Ecosystem respiration">Ecosystem respiration</a></li> <li><a href="/wiki/Net_ecosystem_production" title="Net ecosystem production">Net ecosystem production</a></li> <li><a href="/wiki/Photorespiration" title="Photorespiration">Photorespiration</a></li> <li><a href="/wiki/Soil_respiration" title="Soil respiration">Soil respiration</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Carbon_pump" class="mw-redirect" title="Carbon pump">Carbon pumps</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a class="mw-selflink selflink">Biological pump</a> <ul><li><a href="/wiki/Martin_curve" title="Martin curve">Martin curve</a></li></ul></li> <li><a href="/wiki/Solubility_pump" title="Solubility pump">Solubility pump</a></li> <li><a href="/wiki/Lipid_pump" title="Lipid pump">Lipid pump</a></li> <li><a href="/wiki/Marine_snow" title="Marine snow">Marine snow</a></li> <li><a href="/wiki/Microbial_loop" title="Microbial loop">Microbial loop</a></li> <li><a href="/wiki/Viral_shunt" title="Viral shunt">Viral shunt</a></li> <li><a href="/wiki/Jelly-falls" title="Jelly-falls">Jelly pump</a></li> <li><a href="/wiki/Whale_feces" title="Whale feces">Whale pump</a></li> <li><a href="/wiki/Continental_shelf_pump" title="Continental shelf pump">Continental shelf pump</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Carbon_sequestration" title="Carbon sequestration">Carbon sequestration</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Carbon_sink" title="Carbon sink">Carbon sink</a></li> <li><a href="/wiki/Mycorrhizal_fungi_and_soil_carbon_storage" title="Mycorrhizal fungi and soil carbon storage">Soil carbon storage</a></li> <li><a href="/wiki/Marine_sediment" title="Marine sediment">Marine sediment</a> <ul><li><a href="/wiki/Pelagic_sediment" title="Pelagic sediment">pelagic sediment</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Methane" title="Methane">Methane</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Atmospheric_methane" title="Atmospheric methane">Atmospheric methane</a></li> <li><a href="/wiki/Methanogenesis" title="Methanogenesis">Methanogenesis</a></li> <li><a href="/wiki/Methane_emissions" title="Methane emissions">Methane emissions</a> <ul><li><a href="/wiki/Arctic_methane_emissions" title="Arctic methane emissions">Arctic</a></li> <li><a href="/wiki/Greenhouse_gas_emissions_from_wetlands" title="Greenhouse gas emissions from wetlands">Wetland</a></li></ul></li> <li><a href="/wiki/Aerobic_methane_production" title="Aerobic methane production">Aerobic production</a></li> <li><a href="/wiki/Clathrate_gun_hypothesis" title="Clathrate gun hypothesis">Clathrate gun hypothesis</a></li> <li><a href="/wiki/Carbon_dioxide_clathrate" title="Carbon dioxide clathrate">Carbon dioxide clathrate</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Biogeochemical_cycle" title="Biogeochemical cycle">Biogeochemical</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Marine_biogeochemical_cycles" title="Marine biogeochemical cycles">Marine cycles</a></li> <li><a href="/wiki/Nutrient_cycle" title="Nutrient cycle">Nutrient cycle</a></li> <li><a href="/wiki/Carbonate%E2%80%93silicate_cycle" title="Carbonate–silicate cycle">Carbonate–silicate cycle</a></li> <li><a href="/wiki/Carbonate_compensation_depth" title="Carbonate compensation depth">Carbonate compensation depth</a></li> <li><a href="/wiki/Great_Calcite_Belt" title="Great Calcite Belt">Great Calcite Belt</a></li> <li><a href="/wiki/Redfield_ratio" title="Redfield ratio">Redfield ratio</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)">Other</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Proxy_(climate)" title="Proxy (climate)">Climate reconstruction proxies</a></li> <li><a href="/wiki/Carbon-to-nitrogen_ratio" title="Carbon-to-nitrogen ratio">Carbon-to-nitrogen ratio</a></li> <li><a href="/wiki/Deep_biosphere" title="Deep biosphere">Deep biosphere</a></li> <li><a href="/wiki/Deep_Carbon_Observatory" title="Deep Carbon Observatory">Deep Carbon Observatory</a></li> <li><a href="/wiki/Global_Carbon_Project" title="Global Carbon Project">Global Carbon Project</a></li> <li><a href="/wiki/Carbon_capture_and_storage" title="Carbon capture and storage">Carbon capture and storage</a></li> <li><a href="/wiki/Carbon_cycle_re-balancing" class="mw-redirect" title="Carbon cycle re-balancing">Carbon cycle re-balancing</a></li> <li><a href="/wiki/Territorialisation_of_carbon_governance" title="Territorialisation of carbon governance">Territorialisation of carbon governance</a></li> <li><a href="/wiki/Total_Carbon_Column_Observing_Network" title="Total Carbon Column Observing Network">Total Carbon Column Observing Network</a></li> <li><a href="/wiki/C4MIP" title="C4MIP">C4MIP</a></li> <li><a href="/wiki/CO2SYS" title="CO2SYS">CO2SYS</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: #82C3D8; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/wiki/Category:Carbon_cycle" title="Category:Carbon cycle">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Carbon_cycle" title="Template:Carbon cycle"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:Carbon_cycle&amp;action=edit&amp;redlink=1" class="new" title="Template talk:Carbon cycle (page does not exist)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Carbon_cycle" title="Special:EditPage/Template:Carbon cycle"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>Once this carbon is fixed into soft or hard tissue, the organisms either stay in the euphotic zone to be recycled as part of the regenerative <a href="/wiki/Nutrient_cycle" title="Nutrient cycle">nutrient cycle</a> or once they die, continue to the second phase of the biological pump and begin to sink to the ocean floor. The sinking particles will often form aggregates as they sink, which greatly increases the sinking rate. It is this aggregation that gives particles a better chance of escaping predation and decomposition in the water column and eventually making it to the sea floor.<sup id="cite_ref-DeLaRocha2014_8-1" class="reference"><a href="#cite_note-DeLaRocha2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>The fixed carbon that is decomposed by bacteria either on the way down or once on the sea floor then enters the final phase of the pump and is remineralized to be used again in <a href="/wiki/Primary_production" title="Primary production">primary production</a>. The particles that escape these processes entirely are sequestered in the sediment and may remain there for millions of years. It is this <a href="/wiki/Carbon_sequestration" title="Carbon sequestration">sequestered carbon</a> that is responsible for ultimately lowering atmospheric CO<sub>2</sub>.<sup id="cite_ref-DeLaRocha2014_8-2" class="reference"><a href="#cite_note-DeLaRocha2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>Biology, physics and gravity interact to pump organic carbon into the deep sea. The processes of fixation of inorganic carbon in organic matter during photosynthesis, its transformation by food web processes (trophodynamics), physical mixing, transport and gravitational settling are referred to collectively as the biological pump.<sup id="cite_ref-Ducklow2001_10-0" class="reference"><a href="#cite_note-Ducklow2001-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>The biological pump is responsible for transforming <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a> (DIC) into organic biomass and pumping it in <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate</a> or dissolved form into the deep ocean. Inorganic nutrients and carbon dioxide are fixed during photosynthesis by phytoplankton, which both release <a href="/wiki/Dissolved_organic_matter" class="mw-redirect" title="Dissolved organic matter">dissolved organic matter</a> (DOM) and are consumed by herbivorous zooplankton. Larger zooplankton - such as <a href="/wiki/Copepod" title="Copepod">copepods</a> - <a href="/wiki/Egest" class="mw-redirect" title="Egest">egest</a> <a href="/wiki/Fecal_pellet" class="mw-redirect" title="Fecal pellet">fecal pellets</a> which can be reingested and sink or collect with other organic detritus into larger, more-rapidly-sinking aggregates. DOM is partially consumed by bacteria (black dots) and respired; the remaining <a href="/wiki/Refractory_DOM" class="mw-redirect" title="Refractory DOM">refractory DOM</a> is <a href="/wiki/Advected" class="mw-redirect" title="Advected">advected</a> and mixed into the deep sea. DOM and aggregates exported into the deep water are consumed and respired, thus returning organic carbon into the enormous deep ocean reservoir of DIC. About 1% of the particles leaving the surface ocean reach the seabed and are consumed, respired, or buried in the sediments. There, carbon is stored for millions of years. The net effect of these processes is to remove carbon in organic form from the surface and return it to DIC at greater depths, maintaining the surface-to-deep ocean gradient of DIC. <a href="/wiki/Thermohaline_circulation" title="Thermohaline circulation">Thermohaline circulation</a> returns deep-ocean DIC to the atmosphere on millennial timescales.<sup id="cite_ref-Ducklow2001_10-1" class="reference"><a href="#cite_note-Ducklow2001-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Primary_production">Primary production</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=2" title="Edit section: Primary production"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Size_and_classification_of_marine_particles.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Size_and_classification_of_marine_particles.png/440px-Size_and_classification_of_marine_particles.png" decoding="async" width="440" height="219" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Size_and_classification_of_marine_particles.png/660px-Size_and_classification_of_marine_particles.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Size_and_classification_of_marine_particles.png/880px-Size_and_classification_of_marine_particles.png 2x" data-file-width="1415" data-file-height="703" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Size and classification of marine particles<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></b><br /><small>Adapted from Simon et al., 2002.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></small></div></figcaption></figure> <p>The first step in the biological pump is the synthesis of both organic and inorganic carbon compounds by phytoplankton in the uppermost, sunlit layers of the ocean.<sup id="cite_ref-Sigman&amp;Hain2012_13-0" class="reference"><a href="#cite_note-Sigman&amp;Hain2012-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Organic compounds in the form of sugars, carbohydrates, lipids, and proteins are synthesized during the process of <a href="/wiki/Photosynthesis" title="Photosynthesis">photosynthesis</a>: </p><p>CO<sub>2</sub> + H<sub>2</sub>O + light → CH<sub>2</sub>O + O<sub>2</sub> </p><p>In addition to carbon, organic matter found in phytoplankton is composed of nitrogen, phosphorus and various <a href="/wiki/Trace_metals" class="mw-redirect" title="Trace metals">trace metals</a>. The ratio of carbon to nitrogen and phosphorus varies from place to place,<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> but has an average ratio near 106C:16N:1P, known as the <a href="/wiki/Redfield_ratio" title="Redfield ratio">Redfield ratio</a>. Trace metals such as magnesium, cadmium, iron, calcium, barium and copper are orders of magnitude less prevalent in phytoplankton organic material, but necessary for certain metabolic processes and therefore can be limiting nutrients in photosynthesis due to their lower abundance in the water column.<sup id="cite_ref-DeLaRocha2014_8-3" class="reference"><a href="#cite_note-DeLaRocha2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>Oceanic primary production accounts for about half of the carbon fixation carried out on Earth. Approximately 50–60 <a href="/wiki/Petagram" class="mw-redirect" title="Petagram">Pg</a> of carbon are fixed by marine phytoplankton each year despite the fact that they account for less than 1% of the total photosynthetic biomass on Earth. The majority of this carbon fixation (~80%) is carried out in the open ocean while the remaining amount occurs in the very productive <a href="/wiki/Upwelling" title="Upwelling">upwelling</a> regions of the ocean. Despite these productive regions producing 2 to 3 times as much fixed carbon per area, the open ocean accounts for greater than 90% of the ocean area and therefore is the larger contributor.<sup id="cite_ref-DeLaRocha2014_8-4" class="reference"><a href="#cite_note-DeLaRocha2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Forms_of_carbon">Forms of carbon</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=3" title="Edit section: Forms of carbon"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Marine_connections_between_the_living_and_the_nonliving.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Marine_connections_between_the_living_and_the_nonliving.png/440px-Marine_connections_between_the_living_and_the_nonliving.png" decoding="async" width="440" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Marine_connections_between_the_living_and_the_nonliving.png/660px-Marine_connections_between_the_living_and_the_nonliving.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Marine_connections_between_the_living_and_the_nonliving.png/880px-Marine_connections_between_the_living_and_the_nonliving.png 2x" data-file-width="1400" data-file-height="700" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;">DOM and POM </div> Connections between the different compartments of the living (bacteria/viruses and phyto−/zooplankton) and the nonliving (DOM/POM and inorganic matter) environment&#8202;<sup id="cite_ref-Heinrichs2020_15-0" class="reference"><a href="#cite_note-Heinrichs2020-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Dissolved_and_particulate_carbon">Dissolved and particulate carbon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=4" title="Edit section: Dissolved and particulate carbon"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Phytoplankton supports all life in the ocean as it converts inorganic compounds into organic constituents. This autotrophically produced biomass presents the foundation of the marine food web.<sup id="cite_ref-Heinrichs2020_15-1" class="reference"><a href="#cite_note-Heinrichs2020-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> In the diagram immediately below, the arrows indicate the various production (arrowhead pointing toward DOM pool) and removal processes of DOM (arrowhead pointing away), while the dashed arrows represent dominant biological processes involved in the transfer of DOM. Due to these processes, the fraction of <a href="/wiki/Labile_DOM" class="mw-redirect" title="Labile DOM">labile DOM</a> decreases rapidly with depth, whereas the refractory character of the DOM pool considerably increases during its export to the deep ocean. DOM, dissolved organic matter.<sup id="cite_ref-Heinrichs2020_15-2" class="reference"><a href="#cite_note-Heinrichs2020-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Carlson2002_16-0" class="reference"><a href="#cite_note-Carlson2002-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Fate_of_DOM_in_the_ocean.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Fate_of_DOM_in_the_ocean.png/440px-Fate_of_DOM_in_the_ocean.png" decoding="async" width="440" height="327" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Fate_of_DOM_in_the_ocean.png/660px-Fate_of_DOM_in_the_ocean.png 1.5x, //upload.wikimedia.org/wikipedia/commons/b/ba/Fate_of_DOM_in_the_ocean.png 2x" data-file-width="785" data-file-height="584" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>The fate of DOM in the ocean</b></div></figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Particulate_inorganic_carbon_budget_for_Hudson_Bay.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Particulate_inorganic_carbon_budget_for_Hudson_Bay.jpg/440px-Particulate_inorganic_carbon_budget_for_Hudson_Bay.jpg" decoding="async" width="440" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Particulate_inorganic_carbon_budget_for_Hudson_Bay.jpg/660px-Particulate_inorganic_carbon_budget_for_Hudson_Bay.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Particulate_inorganic_carbon_budget_for_Hudson_Bay.jpg/880px-Particulate_inorganic_carbon_budget_for_Hudson_Bay.jpg 2x" data-file-width="2880" data-file-height="1537" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Particulate inorganic carbon budget for Hudson Bay</div> Black arrows represent DIC produced by PIC dissolution. Grey lines represent terrestrial PIC.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> <span class="nowrap">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;</span> <small>Units are Tg C y<sup>−1</sup></small></figcaption></figure> <div style="clear:left;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Ocean_carbon_pools">Ocean carbon pools</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=5" title="Edit section: Ocean carbon pools"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The marine biological pump depends on a number of key pools, components and processes that influence its functioning. There are four main pools of carbon in the ocean.<sup id="cite_ref-Brewin2021_4-1" class="reference"><a href="#cite_note-Brewin2021-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">Dissolved inorganic carbon</a> (DIC) is the largest pool. It constitutes around 38,000 <a href="/wiki/Petagram" class="mw-redirect" title="Petagram">Pg</a> C&#8202;<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> and includes dissolved carbon dioxide (CO<sub>2</sub>), <a href="/wiki/Bicarbonate" title="Bicarbonate">bicarbonate</a> (<span class="chemf nowrap">HCO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></span>), <a href="/wiki/Carbonate" title="Carbonate">carbonate</a> (<span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></span>), and <a href="/wiki/Carbonic_acid" title="Carbonic acid">carbonic acid</a> (<style data-mw-deduplicate="TemplateStyles:r1123817410">.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}</style><span class="chemf nowrap"><a href="/wiki/Hydrogen" title="Hydrogen">H</a><sub class="template-chem2-sub">2</sub><a href="/wiki/Carbon" title="Carbon">C</a><a href="/wiki/Oxygen" title="Oxygen">O</a><sub class="template-chem2-sub">3</sub></span>). The equilibrium between carbonic acid and carbonate determines the <a href="/wiki/PH" title="PH">pH</a> of the seawater. Carbon dioxide dissolves easily in water and its solubility is inversely related to temperature. Dissolved CO<sub>2</sub> is taken up in the process of photosynthesis, and can reduce the partial pressure of CO<sub>2</sub> in the seawater, favouring drawdown from the atmosphere. The reverse process respiration, releases CO<sub>2</sub> back into the water, can increase partial pressure of CO<sub>2</sub> in the seawater, favouring release back to the atmosphere. The formation of <a href="/wiki/Calcium_carbonate" title="Calcium carbonate">calcium carbonate</a> by organisms such as <a href="/wiki/Coccolithophore" title="Coccolithophore">coccolithophores</a> has the effect of releasing CO<sub>2</sub> into the water.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brewin2021_4-2" class="reference"><a href="#cite_note-Brewin2021-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></li></ul> <ul><li><a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">Dissolved organic carbon</a> (DOC) is the next largest pool at around 662 Pg C.<sup id="cite_ref-Hansell2013a_22-0" class="reference"><a href="#cite_note-Hansell2013a-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> DOC can be classified according to its reactivity as refractory, semi-labile or labile. The labile pool constitutes around 0.2 Pg C, is bioavailable, and has a high production rate (~ 15−25 Pg C y<sup>−1</sup>).<sup id="cite_ref-Hansell2013b_23-0" class="reference"><a href="#cite_note-Hansell2013b-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> The refractory component is the biggest pool (~642 Pg C ± 32;<sup id="cite_ref-Hansell2013a_22-1" class="reference"><a href="#cite_note-Hansell2013a-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> but has a very low turnover rate (0.043 Pg C y<sup>−1</sup>).<sup id="cite_ref-Hansell2013b_23-1" class="reference"><a href="#cite_note-Hansell2013b-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> The turnover time for <a href="/wiki/Refractory_DOC" class="mw-redirect" title="Refractory DOC">refractory DOC</a> is thought to be greater than 1000 years.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brewin2021_4-3" class="reference"><a href="#cite_note-Brewin2021-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></li></ul> <ul><li><a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">Particulate organic carbon</a> (POC) constitutes around 2.3 Pg C,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> and is relatively small compared with DIC and DOC. Though small in size, this pool is highly dynamic, having the highest turnover rate of any organic carbon pool on the planet.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Driven by <a href="/wiki/Ocean_primary_production" class="mw-redirect" title="Ocean primary production">primary production</a>, it produces around 50 Pg C y<sup>−1</sup> globally.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> It can be separated into living (e.g. <a href="/wiki/Phytoplankton" title="Phytoplankton">phytoplankton</a>, <a href="/wiki/Zooplankton" title="Zooplankton">zooplankton</a>, <a href="/wiki/Bacteria" title="Bacteria">bacteria</a>) and non-living (e.g. <a href="/wiki/Detritus" title="Detritus">detritus</a>) material. Of these, the phytoplankton carbon is particularly important, because of its role in <a href="/wiki/Marine_primary_production" title="Marine primary production">marine primary production</a>, and also because it serves as the food resource for all the larger organisms in the <a href="/wiki/Pelagic_zone" title="Pelagic zone">pelagic ecosystem</a>.<sup id="cite_ref-Brewin2021_4-4" class="reference"><a href="#cite_note-Brewin2021-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></li></ul> <ul><li><a href="/wiki/Particulate_inorganic_carbon" title="Particulate inorganic carbon">Particulate inorganic carbon</a> (PIC) is the smallest of the pools at around 0.03 Pg C.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> It is present in the form of calcium carbonate (CaCO<sub>3</sub>) in particulate form, and impacts the carbonate system and pH of the seawater. Estimates for PIC production are in the region of 0.8–1.4 Pg C y<sup>−1</sup>, with at least 65% of it being dissolved in the upper <a href="/wiki/Water_column" title="Water column">water column</a>, the rest contributing to deep sediments.<sup id="cite_ref-Feely2004_33-0" class="reference"><a href="#cite_note-Feely2004-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> Coccolithophores and <a href="/wiki/Foraminifera" title="Foraminifera">foraminifera</a> are estimated to be the dominant sources of PIC in the <a href="/wiki/Open_ocean" class="mw-redirect" title="Open ocean">open ocean</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Feely2004_33-1" class="reference"><a href="#cite_note-Feely2004-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> The PIC pool is of particular importance due to its role in the ocean carbonate system, and in facilitating the export of carbon to the deep ocean through the <a href="/wiki/Carbonate_pump" class="mw-redirect" title="Carbonate pump">carbonate pump</a>, whereby PIC is exported out of the <a href="/wiki/Photic_zone" title="Photic zone">photic zone</a> and deposited in the <a href="/wiki/Marine_sediment" title="Marine sediment">bottom sediments</a>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brewin2021_4-5" class="reference"><a href="#cite_note-Brewin2021-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Calcium_carbonate">Calcium carbonate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=6" title="Edit section: Calcium carbonate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:White_cliffs_of_dover_09_2004.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/White_cliffs_of_dover_09_2004.jpg/440px-White_cliffs_of_dover_09_2004.jpg" decoding="async" width="440" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/7e/White_cliffs_of_dover_09_2004.jpg 1.5x" data-file-width="660" data-file-height="261" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;">The <a href="/wiki/White_Cliffs_of_Dover" title="White Cliffs of Dover">White Cliffs of Dover</a> are made almost entirely<br />of the plates of buried coccolithophores <a href="#Key_role_of_phytoplankton">( see below ↓ )</a></div></figcaption></figure> <p><a href="/wiki/Particulate_inorganic_carbon" title="Particulate inorganic carbon">Particulate inorganic carbon</a> (PIC) usually takes the form of <a href="/wiki/Calcium_carbonate" title="Calcium carbonate">calcium carbonate</a> (CaCO<sub>3</sub>), and plays a key part in the ocean carbon cycle.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> This biologically fixed carbon is used as a protective coating for many planktonic species (coccolithophores, foraminifera) as well as larger marine organisms (mollusk shells). Calcium carbonate is also excreted at high rates during <a href="/wiki/Osmoregulation" title="Osmoregulation">osmoregulation</a> by fish, and can form in <a href="/wiki/Whiting_event" title="Whiting event">whiting events</a>.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> While this form of carbon is not directly taken from the atmospheric budget, it is formed from dissolved forms of carbonate which are in equilibrium with CO<sub>2</sub> and then responsible for removing this carbon via sequestration.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p><p>CO<sub>2</sub> + H<sub>2</sub>O → H<sub>2</sub>CO<sub>3</sub> → H<sup>+</sup> + HCO<sub>3</sub><sup>−</sup> </p><p>Ca<sup>2+</sup> + 2HCO<sub>3</sub><sup>−</sup> → CaCO<sub>3</sub> + CO<sub>2</sub> + H<sub>2</sub>O </p><p>While this process does manage to fix a large amount of carbon, two units of <a href="/wiki/Alkalinity" title="Alkalinity">alkalinity</a> are sequestered for every unit of sequestered carbon.<sup id="cite_ref-Hain2014_2-1" class="reference"><a href="#cite_note-Hain2014-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hain_et_al_2010_39-0" class="reference"><a href="#cite_note-Hain_et_al_2010-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> The formation and sinking of CaCO<sub>3</sub> therefore drives a surface to deep <a href="/wiki/Alkalinity" title="Alkalinity">alkalinity</a> gradient which serves to raise the pH of surface waters, shifting the speciation of dissolved carbon to raise the <a href="/wiki/Partial_pressure" title="Partial pressure">partial pressure</a> of dissolved CO<sub>2</sub> in surface waters, which actually raises atmospheric levels. In addition, the burial of CaCO<sub>3</sub> in sediments serves to lower overall oceanic <a href="/wiki/Alkalinity" title="Alkalinity">alkalinity</a>, tending to raise pH and thereby atmospheric CO<sub>2</sub> levels if not counterbalanced by the new input of alkalinity from weathering.<sup id="cite_ref-Sigman2006_1-1" class="reference"><a href="#cite_note-Sigman2006-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The portion of carbon that is permanently buried at the sea floor becomes part of the geologic record. Calcium carbonate often forms remarkable deposits that can then be raised onto land through tectonic motion as in the case with the <a href="/wiki/White_Cliffs_of_Dover" title="White Cliffs of Dover">White Cliffs of Dover</a> in Southern England. These cliffs are made almost entirely of the plates of buried <a href="/wiki/Coccolithophore" title="Coccolithophore">coccolithophores</a>.<sup id="cite_ref-Webb2019_40-0" class="reference"><a href="#cite_note-Webb2019-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Oceanic_carbon_cycle">Oceanic carbon cycle</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=7" title="Edit section: Oceanic carbon cycle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Oceanic_carbon_cycle" title="Oceanic carbon cycle">Oceanic carbon cycle</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:OceanCarbonCycle.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/OceanCarbonCycle.jpg/330px-OceanCarbonCycle.jpg" decoding="async" width="330" height="311" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/OceanCarbonCycle.jpg/495px-OceanCarbonCycle.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/0/03/OceanCarbonCycle.jpg 2x" data-file-width="500" data-file-height="471" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Oceanic Carbon Cycle — IPCC</div></figcaption></figure> <p>Three main processes (or pumps) that make up the marine carbon cycle bring atmospheric <a href="/wiki/Carbon_dioxide" title="Carbon dioxide">carbon dioxide</a> (CO<sub>2</sub>) into the ocean interior and distribute it through the oceans. These three pumps are: (1) the solubility pump, (2) the carbonate pump, and (3) the biological pump. The total active pool of carbon at the Earth's surface for durations of less than 10,000 years is roughly 40,000 gigatons C (Gt C, a <a href="/wiki/Gigaton" title="Gigaton">gigaton</a> is one billion tons, or the weight of approximately 6 million <a href="/wiki/Blue_whale" title="Blue whale">blue whales</a>), and about 95% (~38,000 Gt C) is stored in the ocean, mostly as <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a>.<sup id="cite_ref-:0_41-0" class="reference"><a href="#cite_note-:0-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> The speciation of dissolved inorganic carbon in the marine carbon cycle is a primary controller of <a href="/wiki/Acid-base_reaction" class="mw-redirect" title="Acid-base reaction">acid-base chemistry</a> in the oceans. </p> <div class="mw-heading mw-heading3"><h3 id="Solubility_pump">Solubility pump</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=8" title="Edit section: Solubility pump"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Solubility_pump" title="Solubility pump">Solubility pump</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:CO2_pump_hg.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/CO2_pump_hg.svg/330px-CO2_pump_hg.svg.png" decoding="async" width="330" height="231" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/CO2_pump_hg.svg/495px-CO2_pump_hg.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/CO2_pump_hg.svg/660px-CO2_pump_hg.svg.png 2x" data-file-width="720" data-file-height="505" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Solubility pump: Air-sea exchange of CO<sub>2</sub></div></figcaption></figure> <div style="clear:left;" class=""></div> <p>The biological pump is accompanied by a physico-chemical counterpart known as the <a href="/wiki/Solubility_pump" title="Solubility pump">solubility pump</a>. This pump transports significant amounts of carbon in the form of <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a> (DIC) from the ocean's surface to its interior. It involves physical and chemical processes only, and does not involve biological processes.<sup id="cite_ref-raven99_43-0" class="reference"><a href="#cite_note-raven99-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>The solubility pump is driven by the coincidence of two processes in the ocean: </p> <ul><li>The <a href="/wiki/Solubility" title="Solubility">solubility</a> of <a href="/wiki/Carbon_dioxide" title="Carbon dioxide">carbon dioxide</a> is a strong inverse function of <a href="/wiki/Sea_surface_temperature" title="Sea surface temperature">seawater temperature</a> (i.e. solubility is greater in cooler water)</li> <li>The <a href="/wiki/Thermohaline_circulation" title="Thermohaline circulation">thermohaline circulation</a> is driven by the formation of deep water at high latitudes where seawater is usually cooler and denser</li></ul> <p>Since deep water (that is, seawater in the ocean's interior) is formed under the same surface conditions that promote carbon dioxide solubility, it contains a higher concentration of dissolved inorganic carbon than might be expected from average surface concentrations. Consequently, these two processes act together to pump carbon from the atmosphere into the ocean's interior. One consequence of this is that when deep water upwells in warmer, equatorial latitudes, it strongly outgasses carbon dioxide to the atmosphere because of the reduced solubility of the gas.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Carbonate_pump">Carbonate pump</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=9" title="Edit section: Carbonate pump"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The carbonate pump is sometimes referred to as the "hard tissue" component of the biological pump.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> Some surface marine organisms, like <a href="/wiki/Coccolithophore" title="Coccolithophore">coccolithophores</a>, produce hard structures out of calcium carbonate, a form of particulate inorganic carbon, by fixing bicarbonate.<sup id="cite_ref-Rost2014_46-0" class="reference"><a href="#cite_note-Rost2014-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> This fixation of DIC is an important part of the oceanic carbon cycle. </p><p>Ca<sup>2+</sup> + 2 HCO<sub>3</sub><sup>−</sup> → CaCO<sub>3</sub> + CO<sub>2</sub> + H<sub>2</sub>O </p><p>While the biological carbon pump fixes inorganic carbon (CO<sub>2</sub>) into <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a> in the form of sugar (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>), the carbonate pump fixes inorganic bicarbonate and causes a net release of CO<sub>2</sub>.<sup id="cite_ref-Rost2014_46-1" class="reference"><a href="#cite_note-Rost2014-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> In this way, the carbonate pump could be termed the carbonate counter pump. It works counter to the biological pump by counteracting the CO<sub>2</sub> flux into the biological pump.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Continental_shelf_pump">Continental shelf pump</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=10" title="Edit section: Continental shelf pump"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Continental_shelf_pump" title="Continental shelf pump">Continental shelf pump</a></div> <p>The <a href="/wiki/Continental_shelf_pump" title="Continental shelf pump">continental shelf pump</a> is proposed as operating in the shallow waters of the <a href="/wiki/Continental_shelf" title="Continental shelf">continental shelves</a> as a mechanism transporting carbon (dissolved or particulate) from the continental waters to the interior of the adjacent deep ocean.<sup id="cite_ref-tsun99_48-0" class="reference"><a href="#cite_note-tsun99-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> As originally formulated, the pump is thought to occur where the <a href="/wiki/Solubility_pump" title="Solubility pump">solubility pump</a> interacts with cooler, and therefore denser water from the shelf floor which feeds down the <a href="/wiki/Continental_slope" class="mw-redirect" title="Continental slope">continental slope</a> into the neighbouring deep ocean.<sup id="cite_ref-tsun99_48-1" class="reference"><a href="#cite_note-tsun99-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> The shallowness of the continental shelf restricts the <a href="/wiki/Convection" title="Convection">convection</a> of cooling water, so the cooling can be greater for continental shelf waters than for neighbouring open ocean waters. These cooler waters promote the <a href="/wiki/Solubility_pump" title="Solubility pump">solubility pump</a> and lead to an increased storage of <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a>. This extra carbon storage is further augmented by the increased biological production characteristic of shelves.<sup id="cite_ref-woll98_49-0" class="reference"><a href="#cite_note-woll98-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> The dense, carbon-rich shelf waters then sink to the shelf floor and enter the sub-surface layer of the open ocean via <a href="/wiki/Isopycnal" title="Isopycnal">isopycnal</a> mixing.<sup id="cite_ref-tsun99_48-2" class="reference"><a href="#cite_note-tsun99-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> As the sea level rises in response to global warming, the surface area of the shelf seas will grow and in consequence the strength of the shelf sea pump should increase.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Processes_in_the_biological_pump">Processes in the biological pump</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=11" title="Edit section: Processes in the biological pump"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Processes_in_the_biological_pump.webp" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Processes_in_the_biological_pump.webp/480px-Processes_in_the_biological_pump.webp.png" decoding="async" width="480" height="365" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Processes_in_the_biological_pump.webp/720px-Processes_in_the_biological_pump.webp.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/Processes_in_the_biological_pump.webp/960px-Processes_in_the_biological_pump.webp.png 2x" data-file-width="2001" data-file-height="1522" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Processes in the biological pump</b> <sup id="cite_ref-Cavan2019_51-0" class="reference"><a href="#cite_note-Cavan2019-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup></div><span class="nowrap">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;</span><small>Carbon fluxes in white boxes are in Gt C yr<sup>−1</sup> and carbon masses in dark boxes are in Gt C</small></figcaption></figure> <p>In the diagram on the right, phytoplankton convert CO<sub>2</sub>, which has dissolved from the atmosphere into the surface oceans (90 Gt yr<sup>−1</sup>), into <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a> (POC) during <a href="/wiki/Marine_primary_production" title="Marine primary production">primary production</a> (~ 50 Gt C yr<sup>−1</sup>). Phytoplankton are then consumed by <a href="/wiki/Copepod" title="Copepod">copepods</a>, <a href="/wiki/Krill" title="Krill">krill</a> and other small zooplankton grazers, which in turn are preyed upon by higher <a href="/wiki/Trophic_level" title="Trophic level">trophic levels</a>. Any unconsumed phytoplankton form aggregates, and along with zooplankton faecal pellets, sink rapidly and are exported out of the <a href="/wiki/Mixed_layer" title="Mixed layer">mixed layer</a> (&lt; 12 Gt C yr<sup>−1</sup> 14). Krill, copepods, zooplankton and microbes intercept phytoplankton in the surface ocean and sinking detrital particles at depth, consuming and respiring this POC to CO<sub>2</sub> (<a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a>, DIC), such that only a small proportion of surface-produced carbon sinks to the deep ocean (i.e., depths &gt; 1000 m). As krill and smaller zooplankton feed, they also physically fragment particles into small, slower- or non-sinking pieces (via sloppy feeding, <a href="/w/index.php?title=Coprorhexy&amp;action=edit&amp;redlink=1" class="new" title="Coprorhexy (page does not exist)">coprorhexy</a> if fragmenting faeces),<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> retarding POC export. This releases <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">dissolved organic carbon</a> (DOC) either directly from cells or indirectly via bacterial solubilisation (yellow circle around DOC). Bacteria can then <a href="/wiki/Remineralise" class="mw-redirect" title="Remineralise">remineralise</a> the DOC to DIC (CO<sub>2</sub>, microbial gardening).<sup id="cite_ref-Cavan2019_51-1" class="reference"><a href="#cite_note-Cavan2019-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p><p>The biological carbon pump is one of the chief determinants of the vertical distribution of carbon in the oceans and therefore of the surface partial pressure of CO<sub>2</sub> governing air-sea CO<sub>2</sub> exchange.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> It comprises phytoplankton cells, their consumers and the bacteria that assimilate their waste and plays a central role in the global carbon cycle by delivering carbon from the atmosphere to the deep sea, where it is concentrated and sequestered for centuries.<sup id="cite_ref-Chisholm1995_54-0" class="reference"><a href="#cite_note-Chisholm1995-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> Photosynthesis by phytoplankton lowers the partial pressure of CO<sub>2</sub> in the upper ocean, thereby facilitating the absorption of CO<sub>2</sub> from the atmosphere by generating a steeper CO<sub>2</sub> gradient.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> It also results in the formation of <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a> (POC) in the euphotic layer of the <a href="/wiki/Epipelagic_zone" class="mw-redirect" title="Epipelagic zone">epipelagic zone</a> (0–200 m depth). The POC is processed by microbes, zooplankton and their consumers into fecal pellets, organic aggregates ("marine snow") and other forms, which are thereafter exported to the <a href="/wiki/Mesopelagic" class="mw-redirect" title="Mesopelagic">mesopelagic</a> (200–1000 m depth) and <a href="/wiki/Bathypelagic_zone" title="Bathypelagic zone">bathypelagic zones</a> by sinking and vertical migration by zooplankton and fish.<sup id="cite_ref-Turner2015_56-0" class="reference"><a href="#cite_note-Turner2015-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> Although primary production includes both <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">dissolved</a> and <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a> (DOC and POC respectively), only POC leads to efficient carbon export to the ocean interior, whereas the DOC fraction in surface waters is mostly recycled by bacteria.<sup id="cite_ref-Kim2011_57-0" class="reference"><a href="#cite_note-Kim2011-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> However, a more biologically resistant DOC fraction produced in the euphotic zone (accounting for 15–20% of net community productivity), is not immediately mineralized by microbes and accumulates in the ocean surface as biologically <a href="/wiki/Semi-labile_DOC" class="mw-redirect" title="Semi-labile DOC">semi-labile DOC</a>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> This semi-labile DOC undergoes net export to the deep ocean, thus constituting a dynamic part of the biological carbon pump.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> The efficiency of DOC production and export varies across oceanographic regions, being more prominent in the <a href="/wiki/Oligotrophic" class="mw-redirect" title="Oligotrophic">oligotrophic</a> subtropical oceans.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> The overall efficiency of the biological carbon pump is mostly controlled by the export of POC.<sup id="cite_ref-Kim2011_57-1" class="reference"><a href="#cite_note-Kim2011-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Basu2018_61-0" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Marine_snow">Marine snow</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=12" title="Edit section: Marine snow"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Phytoplankton_and_the_biological_carbon_pump.webp" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Phytoplankton_and_the_biological_carbon_pump.webp/480px-Phytoplankton_and_the_biological_carbon_pump.webp.png" decoding="async" width="480" height="346" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Phytoplankton_and_the_biological_carbon_pump.webp/720px-Phytoplankton_and_the_biological_carbon_pump.webp.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Phytoplankton_and_the_biological_carbon_pump.webp/960px-Phytoplankton_and_the_biological_carbon_pump.webp.png 2x" data-file-width="2006" data-file-height="1446" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Marine snow, phytoplankton and the biological pump&#8202;<sup id="cite_ref-Basu2018_61-1" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup></b></div> Budget calculations of the biological carbon pump are based on the ratio between <a href="/wiki/Marine_sediment" title="Marine sediment">sedimentation</a> (carbon export) and <a href="/wiki/Remineralization" class="mw-redirect" title="Remineralization">remineralization</a> (release to the atmosphere).<sup id="cite_ref-Ionescu2015_62-0" class="reference"><a href="#cite_note-Ionescu2015-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Marine_snow" title="Marine snow">Marine snow</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Martin_curve" title="Martin curve">Martin curve</a></div> <p>Most carbon incorporated in organic and inorganic biological matter is formed at the sea surface where it can then start sinking to the ocean floor. The deep ocean gets most of its nutrients from the higher water column when they sink down in the form of marine snow. This is made up of dead or dying animals and microbes, fecal matter, sand and other inorganic material.<sup id="cite_ref-Steinberg2002_63-0" class="reference"><a href="#cite_note-Steinberg2002-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> A single phytoplankton cell has a sinking rate around one metre per day. Given that the average depth of the ocean is about four kilometres, it can take over ten years for these cells to reach the ocean floor. However, through processes such as coagulation and expulsion in predator fecal pellets, these cells form aggregates. These aggregates, known as <a href="/wiki/Marine_snow" title="Marine snow">marine snow</a>, have sinking rates orders of magnitude greater than individual cells and complete their journey to the deep in a matter of days.<sup id="cite_ref-DeLaRocha2014_8-5" class="reference"><a href="#cite_note-DeLaRocha2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the diagram on the right, <a href="/wiki/Phytoplankton" title="Phytoplankton">phytoplankton</a> fix CO<sub>2</sub> in the <a href="/wiki/Euphotic" class="mw-redirect" title="Euphotic">euphotic</a> zone using solar energy and produce <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a> (POC). POC formed in the euphotic zone is processed by microbes, zooplankton and their consumers into organic aggregates (marine snow), which is thereafter exported to the <a href="/wiki/Mesopelagic" class="mw-redirect" title="Mesopelagic">mesopelagic</a> (200–1000 m depth) and <a href="/wiki/Bathypelagic_zone" title="Bathypelagic zone">bathypelagic zones</a> by sinking and <a href="/wiki/Diel_vertical_migration" title="Diel vertical migration">vertical migration</a> by zooplankton and fish. Export flux is defined as the <a href="/wiki/Marine_sediment" title="Marine sediment">sedimentation</a> out of the surface layer (at approximately 100 m depth) and sequestration flux is the sedimentation out of the mesopelagic zone (at approximately 1000 m depth). A portion of the POC is respired back to CO<sub>2</sub> in the oceanic <a href="/wiki/Water_column" title="Water column">water column</a> at depth, mostly by <a href="/wiki/Heterotrophic" class="mw-redirect" title="Heterotrophic">heterotrophic</a> microbes and zooplankton, thus maintaining a vertical gradient in concentration of <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a> (DIC). This deep-ocean DIC returns to the atmosphere on millennial timescales through <a href="/wiki/Thermohaline_circulation" title="Thermohaline circulation">thermohaline circulation</a>. Between 1% and 40% of the primary production is exported out of the euphotic zone, which attenuates exponentially towards the base of the mesopelagic zone and only about 1% of the surface production reaches the sea floor.<sup id="cite_ref-Basu2018_61-2" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Passow2012_64-0" class="reference"><a href="#cite_note-Passow2012-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Turner2015_56-1" class="reference"><a href="#cite_note-Turner2015-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p><p>Of the 50–60 Pg of carbon fixed annually, roughly 10% leaves the surface mixed layer of the oceans, while less than 0.5% of eventually reaches the sea floor.<sup id="cite_ref-DeLaRocha2014_8-6" class="reference"><a href="#cite_note-DeLaRocha2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Most is retained in regenerated production in the euphotic zone and a significant portion is remineralized in midwater processes during particle sinking. The portion of carbon that leaves the surface mixed layer of the ocean is sometimes considered "sequestered", and essentially removed from contact with the atmosphere for many centuries.<sup id="cite_ref-Passow2012_64-1" class="reference"><a href="#cite_note-Passow2012-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> However, work also finds that, in regions such as the <a href="/wiki/Southern_Ocean" title="Southern Ocean">Southern Ocean</a>, much of this carbon can quickly (within decades) come back into contact with the atmosphere.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p><p>Budget calculations of the biological carbon pump are based on the ratio between <a href="/wiki/Marine_sediment" title="Marine sediment">sedimentation</a> (carbon export) and <a href="/wiki/Remineralization" class="mw-redirect" title="Remineralization">remineralization</a> (release to the atmosphere).<sup id="cite_ref-Ionescu2015_62-1" class="reference"><a href="#cite_note-Ionescu2015-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> It has been estimated that sinking particles export up to 25% of the carbon captured by phytoplankton in the surface ocean to deeper water layers.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> About 20% of this export (5% of surface values) is buried in the ocean sediments&#8202;<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> mainly due to their mineral ballast.<sup id="cite_ref-Iversen2010_68-0" class="reference"><a href="#cite_note-Iversen2010-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> During the sinking process, these organic particles are hotspots of microbial activity and represent important loci for organic matter mineralization and nutrient redistribution in the water column.<sup id="cite_ref-Simon12002_69-0" class="reference"><a href="#cite_note-Simon12002-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ionescu2015_62-2" class="reference"><a href="#cite_note-Ionescu2015-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Biomineralization">Biomineralization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=13" title="Edit section: Biomineralization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Ballast_minerals">Ballast minerals</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=14" title="Edit section: Ballast minerals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series related to</td></tr><tr><th class="sidebar-title-with-pretitle" style="background:#82C3D8; padding:0.2em; font-size:160%; font-weight:bold;"><a href="/wiki/Biomineralization" title="Biomineralization"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Biomineralization</span></a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Coccolithus_pelagicus.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Coccolithus_pelagicus.png/125px-Coccolithus_pelagicus.png" decoding="async" width="125" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Coccolithus_pelagicus.png/188px-Coccolithus_pelagicus.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Coccolithus_pelagicus.png/250px-Coccolithus_pelagicus.png 2x" data-file-width="400" data-file-height="400" /></a></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)">General</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Mineralized_tissues" title="Mineralized tissues">Mineralized tissues</a></li> <li><a href="/wiki/Remineralisation" title="Remineralisation">Remineralisation</a></li> <li><a href="/wiki/Biocrystallization" title="Biocrystallization">Biocrystallization</a></li> <li><a href="/wiki/Biointerface" title="Biointerface">Biointerface</a></li> <li><a href="/wiki/Biofilm" title="Biofilm">Biofilm</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Exoskeleton" title="Exoskeleton">Exoskeletons</a> (shells)</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li>Arthropod <ul><li><a href="/wiki/Arthropod_exoskeleton" title="Arthropod exoskeleton">exoskeleton</a></li> <li><a href="/wiki/Arthropod_cuticle" class="mw-redirect" title="Arthropod cuticle">cuticle</a></li></ul></li> <li><a href="/wiki/Brachiopod#Shells_and_their_mechanisms" title="Brachiopod">Brachiopod shell</a></li> <li><a href="/wiki/Cephalopod#Shell" title="Cephalopod">Cephalopod shell</a> <ul><li><a href="/wiki/Cirrate_shell" title="Cirrate shell">cirrate shell</a></li> <li><a href="/wiki/Cuttlebone" title="Cuttlebone">cuttlebone</a></li> <li><a href="/wiki/Gladius_(cephalopod)" title="Gladius (cephalopod)">gladius</a></li></ul></li> <li><a href="/wiki/Lorica_(biology)" title="Lorica (biology)">Lorica</a> <ul><li><a href="/wiki/Choanoflagellate#Silicon_biomineralization" title="Choanoflagellate">Choanoflagellate lorica</a></li></ul></li> <li><a href="/wiki/Protist_shell" title="Protist shell">Protist shell</a> <ul><li><a href="/wiki/Coccosphere" class="mw-redirect" title="Coccosphere">coccosphere</a></li> <li><a href="/wiki/Coccolith" title="Coccolith">coccolith</a></li> <li><a href="/wiki/Frustule" title="Frustule">diatom frustule</a></li> <li><a href="/wiki/Foraminifera_test" title="Foraminifera test">foraminifera test</a></li> <li><a href="/wiki/Testate_amoebae" title="Testate amoebae">testate amoebae</a></li></ul></li> <li><a href="/wiki/Seashell" title="Seashell">Seashell</a> <ul><li><a href="/wiki/Stereom" title="Stereom">echinoderm stereom</a></li> <li><a href="/wiki/Mollusc_shell" title="Mollusc shell">mollusc shell</a> <ul><li><a href="/wiki/Nacre" title="Nacre">nacre</a></li> <li><a href="/wiki/Chiton#Shell" title="Chiton">chiton shell</a></li> <li><a href="/wiki/Gastropod_shell" title="Gastropod shell">gastropod shell</a></li></ul></li> <li><a href="/wiki/Small_shelly_fauna" title="Small shelly fauna">small shelly fauna</a></li> <li><a href="/wiki/Scaly-foot_gastropod#Shell" title="Scaly-foot gastropod">scaly-foot snail shell</a></li> <li><a href="/wiki/Shell_growth_in_estuaries" title="Shell growth in estuaries">estuary shells</a></li></ul></li> <li><a href="/wiki/Sponge_spicule" title="Sponge spicule">Sponge spicule</a></li> <li><a href="/wiki/Test_(biology)" title="Test (biology)">Test</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Endoskeleton" title="Endoskeleton">Endoskeletons</a> (<a href="/wiki/Bone" title="Bone">bones</a>)</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Skeleton#Vertebrates" title="Skeleton">Vertebrate skeleton</a></li> <li><a href="/wiki/Bone_mineral" title="Bone mineral">Bone mineral</a></li> <li><a href="/wiki/Ossification" title="Ossification">Ossification</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)">Teeth, scales, tusks etc</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Limpet#Biomineralization" title="Limpet">Limpet teeth</a></li> <li><a href="/wiki/Otolith" title="Otolith">Otolith</a> <ul><li><a href="/wiki/Otolithic_membrane" title="Otolithic membrane">otolithic membrane</a></li></ul></li> <li><a href="/wiki/Scale_microfossils" title="Scale microfossils">Scale microfossils</a></li> <li><a href="/wiki/Tusk" title="Tusk">Tusk</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Calcification" title="Calcification">Calcification</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Amorphous_calcium_carbonate" title="Amorphous calcium carbonate">amorphous calcium carbonate</a></li> <li><a href="/wiki/Marine_biogenic_calcification" title="Marine biogenic calcification">marine biogenic calcification</a></li> <li><a href="/wiki/Calcareous_nannofossils" title="Calcareous nannofossils">calcareous nannofossils</a></li></ul> </div> <div class="hlist"> <ul><li><a href="/wiki/Aragonite" title="Aragonite">Aragonite</a> <ul><li><a href="/wiki/Oolitic_aragonite_sand" title="Oolitic aragonite sand">oolitic aragonite sand</a></li> <li><a href="/wiki/Aragonite_sea" title="Aragonite sea">aragonite sea</a></li></ul></li></ul> </div> <div class="hlist"> <ul><li><a href="/wiki/Calcite" title="Calcite">Calcite</a> <ul><li><a href="/wiki/Microbiologically_induced_calcite_precipitation" title="Microbiologically induced calcite precipitation">microbial calcite precipitation</a><br /></li> <li><a href="/wiki/Calcite_sea" title="Calcite sea">calcite sea</a></li> <li><a href="/wiki/Great_Calcite_Belt" title="Great Calcite Belt">Great Calcite Belt</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Silicification" title="Silicification">Silicification</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Biogenic_silica" title="Biogenic silica">biogenic silica</a></li> <li><a href="/wiki/Siliceous_ooze" title="Siliceous ooze">siliceous ooze</a></li> <li><a href="/wiki/Diatomaceous_earth" title="Diatomaceous earth">diatomaceous earth</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)">Other forms</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Bone_bed" title="Bone bed">Bone bed</a></li> <li><a href="/wiki/Kerogen" title="Kerogen">Kerogen</a> <ul><li><a href="/wiki/Alginite" title="Alginite">alginite</a></li> <li><a href="/wiki/Oil_shale" title="Oil shale">oil shale</a></li></ul></li> <li><a href="/wiki/Phosphate" title="Phosphate">Phosphate</a> <ul><li><a href="/wiki/Phosphorite" title="Phosphorite">phosphorite</a></li></ul></li> <li><a href="/wiki/Pyrena" title="Pyrena">Pyrena</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)">Related</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Mineral_evolution" title="Mineral evolution">Mineral evolution</a></li> <li>In soil <ul><li><a href="/wiki/Mineralization_(soil_science)" title="Mineralization (soil science)">mineralization</a></li> <li><a href="/wiki/Immobilization_(soil_science)" title="Immobilization (soil science)">immobilization</a></li></ul></li> <li><a href="/wiki/Ballast_minerals" class="mw-redirect" title="Ballast minerals">Ballast minerals</a></li> <li><a href="/wiki/Magnetofossil" title="Magnetofossil">Magnetofossil</a></li> <li><a href="/wiki/Magnetosome" title="Magnetosome">Magnetosome</a></li> <li><a href="/wiki/Magnetotactic_bacteria" title="Magnetotactic bacteria">Magnetotactic bacteria</a></li> <li><a href="/wiki/Magnetoreception" title="Magnetoreception">Magnetoreception</a></li> <li><a href="/wiki/Microfossil" title="Microfossil">Microfossils</a></li> <li><a href="/wiki/Engrailed_(gene)" title="Engrailed (gene)"><i>engrailed</i> gene</a></li> <li><a href="/wiki/Druse_(botany)" title="Druse (botany)">Druse</a></li> <li><i><a href="/wiki/Cupriavidus_metallidurans" title="Cupriavidus metallidurans">Cupriavidus metallidurans</a></i></li> <li><a href="/wiki/Biomineralising_polychaete" title="Biomineralising polychaete">Biomineralising polychaetes</a></li> <li><a href="/wiki/Mineral_(nutrient)" title="Mineral (nutrient)">Mineral nutrients</a></li> <li><a href="/wiki/Microbial_mat" title="Microbial mat">Microbial mat</a></li> <li><a href="/wiki/Fossil#Fossilization_processes" title="Fossil">Fossilization</a> <ul><li><a href="/wiki/Permineralization" title="Permineralization">permineralization</a></li> <li><a href="/wiki/Petrifaction" title="Petrifaction">petrifaction</a></li></ul></li> <li><a href="/wiki/Burgess_Shale-type_preservation#Preservational_regime" title="Burgess Shale-type preservation">Burgess Shale preservation</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: #82C3D8; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/wiki/Category:Biomineralization" title="Category:Biomineralization">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Biomineralization_sidebar" title="Template:Biomineralization sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Biomineralization_sidebar" title="Template talk:Biomineralization sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Biomineralization_sidebar" title="Special:EditPage/Template:Biomineralization sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>Observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material) and organic carbon fluxes are closely correlated in the <a href="/wiki/Bathypelagic_zone" title="Bathypelagic zone">bathypelagic zones</a> of the ocean.<sup id="cite_ref-Iversen2010_68-1" class="reference"><a href="#cite_note-Iversen2010-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> A large fraction of particulate organic matter occurs in the form of marine snow aggregates (&gt;0.5&#160;mm) composed of phytoplankton, detritus, inorganic mineral grains, and fecal pellets in the ocean.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> Formation and sinking of these aggregates drive the biological carbon pump via export and sedimentation of organic matter from the surface mixed layer to the deep ocean and sediments. The fraction of organic matter that leaves the upper mixed layer of the ocean is, among other factors, determined by the sinking velocity and microbial <a href="/wiki/Remineralisation" title="Remineralisation">remineralisation</a> rate of these aggregates. Recent observations have shown that the fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material) and the organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. This has led to the hypothesis that organic carbon export is determined by the presence of ballast minerals within settling aggregates.<sup id="cite_ref-Armstrong2002_72-0" class="reference"><a href="#cite_note-Armstrong2002-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Francois2002_73-0" class="reference"><a href="#cite_note-Francois2002-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Klaas2002_74-0" class="reference"><a href="#cite_note-Klaas2002-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Iversen2010_68-2" class="reference"><a href="#cite_note-Iversen2010-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mineral ballasting is associated with about 60% of the flux of particulate organic carbon (POC) in the high-latitude North Atlantic, and with about 40% of the flux in the Southern Ocean.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> Strong correlations exist also in the deep ocean between the presence of ballast minerals and the flux of POC. This suggests ballast minerals enhance POC flux by increasing the sink rate of ballasted aggregates. Ballast minerals could additionally provide aggregated organic matter some protection from degradation.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p>It has been proposed that organic carbon is better preserved in sinking particles due to increased aggregate density and sinking velocity when ballast minerals are present and/or via protection of the organic matter due to quantitative association to ballast minerals.<sup id="cite_ref-Armstrong2002_72-1" class="reference"><a href="#cite_note-Armstrong2002-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Francois2002_73-1" class="reference"><a href="#cite_note-Francois2002-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Klaas2002_74-1" class="reference"><a href="#cite_note-Klaas2002-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> In 2002, Klaas and Archer observed that about 83% of the global particulate organic carbon (POC) fluxes were associated with <a href="/wiki/Carbonate" title="Carbonate">carbonate</a>, and suggested carbonate was a more efficient ballast mineral as compared to opal and terrigenous material. They hypothesized that the higher density of calcium carbonate compared to that of opal and the higher abundance of calcium carbonate relative to terrigenous material might be the reason for the efficient ballasting by calcium carbonate. However, the direct effects of ballast minerals on sinking velocity and degradation rates in sinking aggregates are still unclear.<sup id="cite_ref-Klaas2002_74-2" class="reference"><a href="#cite_note-Klaas2002-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Iversen2010_68-3" class="reference"><a href="#cite_note-Iversen2010-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p><p>A 2008 study demonstrated copepod fecal pellets produced on a diet of diatoms or coccolithophorids show higher sinking velocities as compared to pellets produced on a nanoflagellate diet.<sup id="cite_ref-Ploug2008_77-0" class="reference"><a href="#cite_note-Ploug2008-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> Carbon-specific respiration rates in pellets, however, were similar and independent of mineral content. These results suggest differences in mineral composition do not lead to differential protection of POC against microbial degradation, but the enhanced sinking velocities may result in up to 10-fold higher carbon preservation in pellets containing <a href="/wiki/Biogenic_mineral" class="mw-redirect" title="Biogenic mineral">biogenic minerals</a> as compared to that of pellets without biogenic minerals<sup id="cite_ref-Ploug2008_77-1" class="reference"><a href="#cite_note-Ploug2008-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Iversen2010_68-4" class="reference"><a href="#cite_note-Iversen2010-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p><p>Minerals seem to enhance the <a href="/wiki/Flocculation" title="Flocculation">flocculation</a> of phytoplankton aggregates&#8202;<sup id="cite_ref-Engel2009a_78-0" class="reference"><a href="#cite_note-Engel2009a-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Engel2009b_79-0" class="reference"><a href="#cite_note-Engel2009b-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> and may even act as a catalyst in aggregate formation.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> However, it has also been shown that incorporation of minerals can cause aggregates to fragment into smaller and denser aggregates.<sup id="cite_ref-Passow2006_81-0" class="reference"><a href="#cite_note-Passow2006-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> This can potentially lower the sinking velocity of the aggregated organic material due to the reduced aggregate sizes, and, thus, lower the total export of organic matter. Conversely, if the incorporation of minerals increases the aggregate density, its size-specific sinking velocity may also increase, which could potentially increase the carbon export. Therefore, there is still a need for better quantitative investigations of how the interactions between minerals and organic aggregates affect the degradation and sinking velocity of the aggregates and, hence, carbon sequestration in the ocean.<sup id="cite_ref-Passow2006_81-1" class="reference"><a href="#cite_note-Passow2006-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Iversen2010_68-5" class="reference"><a href="#cite_note-Iversen2010-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Remineralisation">Remineralisation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=15" title="Edit section: Remineralisation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Remineralisation" title="Remineralisation">Remineralisation</a> refers to the breakdown or transformation of <a href="/wiki/Organic_matter" title="Organic matter">organic matter</a> (those molecules derived from a biological source) into its simplest <a href="/wiki/Inorganic_compound" title="Inorganic compound">inorganic</a> forms. These transformations form a crucial link within <a href="/wiki/Ecosystem" title="Ecosystem">ecosystems</a> as they are responsible for liberating the energy stored in <a href="/wiki/Organic_compound" title="Organic compound">organic molecules</a> and recycling matter within the system to be reused as <a href="/wiki/Nutrient" title="Nutrient">nutrients</a> by other <a href="/wiki/Organism" title="Organism">organisms</a>.<sup id="cite_ref-Sarmiento2013_6-1" class="reference"><a href="#cite_note-Sarmiento2013-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> What fraction does escape remineralisation varies depending on the location. For example, in the North Sea, values of carbon deposition are ~1% of primary production<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> while that value is &lt;0.5% in the open oceans on average.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Therefore, most of nutrients remain in the water column, recycled by the <a href="/wiki/Biota_(ecology)" class="mw-redirect" title="Biota (ecology)">biota</a>. <a href="/wiki/Heterotroph" title="Heterotroph">Heterotrophic</a> organisms will utilize the materials produced by the <a href="/wiki/Autotroph" title="Autotroph">autotrophic</a> (and <a href="/wiki/Chemotroph" title="Chemotroph">chemotrophic</a>) organisms and via respiration will remineralise the compounds from the organic form back to inorganic, making them available for primary producers again. </p><p>For most areas of the ocean, the highest rates of carbon remineralisation occur at depths between 100–1,200&#160;m (330–3,940&#160;ft) in the water column, decreasing down to about 1,200&#160;m (3,900&#160;ft) where remineralisation rates remain pretty constant at 0.1 μmol kg<sup>−1</sup> yr<sup>−1</sup>.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> This provides the most nutrients available for primary producers within the photic zone, though it leaves the upper surface waters starved of inorganic nutrients.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> Most remineralisation is done with <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">dissolved organic carbon</a> (DOC). Studies have shown that it is larger sinking particles that transport matter down to the sea floor<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> while suspended particles and dissolved organics are mostly consumed by remineralisation.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> This happens in part due to the fact that organisms must typically ingest nutrients smaller than they are, often by orders of magnitude.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> With the microbial community making up 90% of marine biomass,<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> it is particles smaller than the microbes (on the order of 10<sup><span class="nowrap"><span data-sort-value="2999400000000000000♠"></span>−6</span></sup>) that will be taken up for remineralisation.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Key_role_of_phytoplankton">Key role of phytoplankton</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=16" title="Edit section: Key role of phytoplankton"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:408px;max-width:408px"><div class="trow"><div class="theader" style="text-align:">Phytoplankton</div></div><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Triceratium_morlandii_var._morlandii.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Triceratium_morlandii_var._morlandii.jpg/200px-Triceratium_morlandii_var._morlandii.jpg" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Triceratium_morlandii_var._morlandii.jpg/300px-Triceratium_morlandii_var._morlandii.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Triceratium_morlandii_var._morlandii.jpg/400px-Triceratium_morlandii_var._morlandii.jpg 2x" data-file-width="2480" data-file-height="2480" /></a></span></div><div class="thumbcaption"><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"> Glass shell (<a href="/wiki/Frustule" title="Frustule">frustule</a>) of a <a href="/wiki/Diatom" title="Diatom">diatom</a></div></div></div><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Coccolithus_pelagicus.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Coccolithus_pelagicus.jpg/200px-Coccolithus_pelagicus.jpg" decoding="async" width="200" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Coccolithus_pelagicus.jpg/300px-Coccolithus_pelagicus.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/33/Coccolithus_pelagicus.jpg/400px-Coccolithus_pelagicus.jpg 2x" data-file-width="450" data-file-height="360" /></a></span></div><div class="thumbcaption"><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"> <a href="/wiki/Coccolithophores" class="mw-redirect" title="Coccolithophores">Coccolithophores</a> help power the carbonate pump by producing hard structures out of calcium carbonate which eventually sink to the ocean floor</div></div></div></div></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle" style="background:#82C3D8; padding:0.2em; font-size:160%; font-weight:bold;"><a href="/wiki/Biogeochemical_cycle" title="Biogeochemical cycle">Biogeochemical cycles</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Rock_cycle_nps_2.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Rock_cycle_nps_2.png/190px-Rock_cycle_nps_2.png" decoding="async" width="190" height="127" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Rock_cycle_nps_2.png/285px-Rock_cycle_nps_2.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Rock_cycle_nps_2.png/380px-Rock_cycle_nps_2.png 2x" data-file-width="798" data-file-height="535" /></a></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Water_cycle" title="Water cycle">Water cycle</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Water_cycle" title="Water cycle">Water cycle</a> <ul><li><a href="/wiki/Deep_water_cycle" title="Deep water cycle">deep water cycle</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Carbon_cycle" title="Carbon cycle">Carbon cycle</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Carbon_cycle" title="Carbon cycle">Global</a> <ul><li><a href="/wiki/Atmospheric_carbon_cycle" title="Atmospheric carbon cycle">atmospheric</a></li> <li><a href="/wiki/Terrestrial_biological_carbon_cycle" title="Terrestrial biological carbon cycle">terrestrial</a></li> <li><a href="/wiki/Oceanic_carbon_cycle" title="Oceanic carbon cycle">oceanic</a></li></ul></li> <li><a href="/wiki/Carbon_sequestration" title="Carbon sequestration">Sequestration</a> <ul><li><a href="/wiki/Carbon_sink" title="Carbon sink">carbon sink</a></li> <li><a href="/wiki/Deep_carbon_cycle" title="Deep carbon cycle">deep carbon cycle</a></li> <li><a href="/wiki/Soil_carbon" title="Soil carbon">soil carbon</a></li> <li><a href="/wiki/Mycorrhizal_fungi_and_soil_carbon_storage" title="Mycorrhizal fungi and soil carbon storage">mycorrhizal fungi</a></li></ul></li> <li><a href="/wiki/Fire_and_carbon_cycling_in_boreal_forests" title="Fire and carbon cycling in boreal forests">Boreal forests</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Nutrient_cycle" title="Nutrient cycle">Nutrient cycle</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Hydrogen_cycle" title="Hydrogen cycle">Hydrogen cycle</a></li> <li><a href="/wiki/Nitrogen_cycle" title="Nitrogen cycle">Nitrogen cycle</a> <ul><li><a href="/wiki/Human_impact_on_the_nitrogen_cycle" title="Human impact on the nitrogen cycle">human impact</a></li> <li><a href="/wiki/Nitrification" title="Nitrification">nitrification</a></li> <li><a href="/wiki/Lichens_and_nitrogen_cycling" title="Lichens and nitrogen cycling">nitrogen and lichens</a></li> <li><a href="/wiki/Nitrogen_fixation" title="Nitrogen fixation">fixation</a></li> <li><a href="/wiki/Nitrogen_assimilation" title="Nitrogen assimilation">assimilation</a></li></ul></li> <li><a href="/wiki/Oxygen_cycle" title="Oxygen cycle">Oxygen cycle</a></li> <li><a href="/wiki/Phosphorus_cycle" title="Phosphorus cycle">Phosphorus cycle</a> <ul><li><a href="/wiki/Phosphate_solubilizing_bacteria" title="Phosphate solubilizing bacteria">assimilation</a></li></ul></li> <li><a href="/wiki/Sulfur_cycle" title="Sulfur cycle">Sulfur cycle</a> <ul><li><a href="/wiki/Sulfur_assimilation" title="Sulfur assimilation">assimilation</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Rock_cycle" title="Rock cycle">Rock cycle</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Calcium_cycle" title="Calcium cycle">Calcium cycle</a></li> <li><a href="/wiki/Silica_cycle" title="Silica cycle">Silica cycle</a></li> <li><a href="/wiki/Carbonate%E2%80%93silicate_cycle" title="Carbonate–silicate cycle">Carbonate–silicate cycle</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Marine_biogeochemical_cycles" title="Marine biogeochemical cycles">Marine cycle</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Marine_biogeochemical_cycles" title="Marine biogeochemical cycles">Marine biogeochemical cycles</a></li></ul> </div> <div class="hlist"> <ul><li><a class="mw-selflink selflink">Biological pump</a> <ul><li><a href="/wiki/Microbial_loop" title="Microbial loop">microbial loop</a></li> <li><a href="/wiki/Viral_shunt" title="Viral shunt">viral shunt</a></li></ul></li> <li><a href="/wiki/Calcareous_ooze" class="mw-redirect" title="Calcareous ooze">Calcareous ooze</a></li> <li><a href="/wiki/Siliceous_ooze" title="Siliceous ooze">Siliceous ooze</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Methane_cycle" class="mw-redirect" title="Methane cycle">Methane cycle</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Atmospheric_methane" title="Atmospheric methane">Atmospheric methane</a></li> <li><a href="/wiki/Methane_clathrate" title="Methane clathrate">Methane clathrate</a> <ul><li><a href="/wiki/Clathrate_gun_hypothesis" title="Clathrate gun hypothesis">clathrate gun hypothesis</a></li> <li><a href="/wiki/Arctic_methane_emissions" title="Arctic methane emissions">Arctic methane emissions</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)"><a href="/wiki/Biogeochemical_cycle" title="Biogeochemical cycle">Other cycles</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Aluminum_cycle" title="Aluminum cycle">aluminum</a></li> <li><a href="/wiki/Arsenic_cycle" title="Arsenic cycle">arsenic</a></li> <li><a href="/wiki/Boron_cycle" title="Boron cycle">boron</a></li> <li><a href="/wiki/Bromine_cycle" title="Bromine cycle">bromine</a></li> <li><a href="/wiki/Cadmium_cycle" title="Cadmium cycle">cadmium</a></li> <li><a href="/wiki/Chlorine_cycle" title="Chlorine cycle">chlorine</a></li> <li><a href="/wiki/Chromium_cycle" title="Chromium cycle">chromium</a></li> <li><a href="/wiki/Copper_cycle" title="Copper cycle">copper</a></li> <li><a href="/wiki/Fluorine_cycle" title="Fluorine cycle">fluorine</a></li> <li><a href="/wiki/Gold_cycle" title="Gold cycle">gold</a></li> <li><a href="/wiki/Iodine_cycle" title="Iodine cycle">iodine</a></li> <li><a href="/wiki/Iron_cycle" title="Iron cycle">iron</a></li> <li><a href="/wiki/Lead_cycle" title="Lead cycle">lead</a></li> <li><a href="/wiki/Lithium_cycle" title="Lithium cycle">lithium</a></li> <li><a href="/wiki/Manganese_cycle" title="Manganese cycle">manganese</a></li> <li><a href="/wiki/Mercury_cycle" title="Mercury cycle">mercury</a></li> <li><a href="/wiki/Ozone%E2%80%93oxygen_cycle" title="Ozone–oxygen cycle">ozone–oxygen</a></li> <li><a href="/wiki/Selenium_cycle" title="Selenium cycle">selenium</a></li> <li><a href="/wiki/The_Vanadium_Cycle" class="mw-redirect" title="The Vanadium Cycle">vanadium</a></li> <li><a href="/wiki/Zinc_cycle" title="Zinc cycle">zinc</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)">Related topics</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Biogeochemistry" title="Biogeochemistry">Biogeochemistry</a> <ul><li><a href="/wiki/Geochemical_cycle" title="Geochemical cycle">geochemical cycle</a></li> <li><a href="/wiki/Chemical_cycling" title="Chemical cycling">chemical cycling</a></li> <li><a href="/wiki/Environmental_chemistry" title="Environmental chemistry">environmental chemistry</a></li></ul></li> <li><a href="/wiki/Biosequestration" class="mw-redirect" title="Biosequestration">Biosequestration</a></li> <li><a href="/wiki/Deep_biosphere" title="Deep biosphere">Deep biosphere</a></li></ul> </div> <div class="hlist"> <ul><li><a href="/wiki/Ocean_acidification" title="Ocean acidification">Ocean acidification</a> <ul><li><a href="/wiki/Acid_rain" title="Acid rain">acid rain</a></li></ul></li> <li><a href="/wiki/Planetary_boundaries#Biogeochemical" title="Planetary boundaries">Biogeochemical planetary boundaries</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;font-size:100%;font-weight:bold;;color: var(--color-base)">Research groups</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Oak_Ridge_National_Laboratory_DAAC" class="mw-redirect" title="Oak Ridge National Laboratory DAAC">DAAC</a></li> <li><a href="/wiki/Geotraces" title="Geotraces">GEOTRACES</a></li></ul> </div> <div class="hlist"> <ul><li><a href="/wiki/IMBER" title="IMBER">IMBER</a></li> <li><a href="/wiki/NOBM" title="NOBM">NOBM</a></li> <li><a href="/wiki/Surface_Ocean_Lower_Atmosphere_Study" title="Surface Ocean Lower Atmosphere Study">SOLAS</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: #82C3D8; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/wiki/Category:Biogeochemical_cycle" title="Category:Biogeochemical cycle">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Biogeochemical_cycle_sidebar" title="Template:Biogeochemical cycle sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:Biogeochemical_cycle_sidebar&amp;action=edit&amp;redlink=1" class="new" title="Template talk:Biogeochemical cycle sidebar (page does not exist)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Biogeochemical_cycle_sidebar" title="Special:EditPage/Template:Biogeochemical cycle sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>Marine phytoplankton perform half of all photosynthesis on Earth&#8202;<sup id="cite_ref-The_role_of_temperature,_cellular_q_91-0" class="reference"><a href="#cite_note-The_role_of_temperature,_cellular_q-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> and directly influence global biogeochemical cycles and the climate, yet how they will respond to future global change is unknown. Carbon dioxide is one of the principal drivers of global change and has been identified as one of the major challenges in the 21st century.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> Carbon dioxide (CO<sub>2</sub>) generated during anthropogenic activities such as deforestation and burning of fossil fuels for energy generation rapidly dissolves in the surface ocean and lowers seawater pH, while CO<sub>2</sub> remaining in the atmosphere increases global temperatures and leads to increased <a href="/wiki/Ocean_stratification" title="Ocean stratification">ocean thermal stratification</a>. While CO<sub>2</sub> concentration in the atmosphere is estimated to be about 270 <a href="/wiki/Parts_per_million" class="mw-redirect" title="Parts per million">ppm</a> before the industrial revolution, it has currently increased to about 400 ppm&#8202;<sup id="cite_ref-Häder2014_93-0" class="reference"><a href="#cite_note-Häder2014-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> and is expected to reach 800–1000 ppm by the end of this century according to the "business as usual" CO<sub>2</sub> emission scenario.<sup id="cite_ref-Li2012_94-0" class="reference"><a href="#cite_note-Li2012-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Basu2018_61-3" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p><p>Marine ecosystems are a major sink for atmospheric CO<sub>2</sub> and take up similar amount of CO<sub>2</sub> as terrestrial ecosystems, currently accounting for the removal of nearly one third of anthropogenic CO<sub>2</sub> emissions from the atmosphere.<sup id="cite_ref-Häder2014_93-1" class="reference"><a href="#cite_note-Häder2014-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Li2012_94-1" class="reference"><a href="#cite_note-Li2012-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> The net transfer of CO<sub>2</sub> from the atmosphere to the oceans and then <a href="/wiki/Marine_sediment" title="Marine sediment">sediments</a>, is mainly a direct consequence of the combined effect of the solubility and the biological pump.<sup id="cite_ref-Hülse2017_95-0" class="reference"><a href="#cite_note-Hülse2017-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> While the <a href="/wiki/Solubility_pump" title="Solubility pump">solubility pump</a> serves to concentrate <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a> (CO<sub>2</sub> plus bicarbonate and carbonate ions) in the deep oceans, the biological carbon pump (a key natural process and a major component of the global carbon cycle that regulates atmospheric CO<sub>2</sub> levels) transfers both organic and inorganic carbon fixed by <a href="/wiki/Marine_primary_production" title="Marine primary production">primary producers</a> (phytoplankton) in the <a href="/wiki/Euphotic_zone" class="mw-redirect" title="Euphotic zone">euphotic zone</a> to the ocean interior and subsequently to the underlying sediments.<sup id="cite_ref-Hülse2017_95-1" class="reference"><a href="#cite_note-Hülse2017-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Chisholm1995_54-1" class="reference"><a href="#cite_note-Chisholm1995-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> Thus, the biological pump takes carbon out of contact with the atmosphere for several thousand years or longer and maintains atmospheric CO<sub>2</sub> at significantly lower levels than would be the case if it did not exist.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> An ocean without a biological pump, which transfers roughly 11 <a href="/wiki/Gigatonne" class="mw-redirect" title="Gigatonne">Gt</a> C yr<sup>−1</sup> into the ocean's interior, would result in atmospheric CO<sub>2</sub> levels ~400 ppm higher than present day.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Basu2018_61-4" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p><p>Passow and Carlson defined sedimentation out of the surface layer (at approximately 100 m depth) as the "export flux" and that out of the <a href="/wiki/Mesopelagic_zone" title="Mesopelagic zone">mesopelagic zone</a> (at approximately 1000 m depth) as the "sequestration flux".<sup id="cite_ref-Passow2012_64-2" class="reference"><a href="#cite_note-Passow2012-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> Once carbon is transported below the mesopelagic zone, it remains in the deep sea for 100 years or longer, hence the term "sequestration" flux. According to the modelling results of Buesseler and Boyd between 1% and 40% of the primary production is exported out of the euphotic zone,<sup id="cite_ref-Buesseler2009_99-0" class="reference"><a href="#cite_note-Buesseler2009-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> which attenuates exponentially towards the base of the mesopelagic zone and only about 1% of the surface production reaches the sea floor.<sup id="cite_ref-Herndl2013_100-0" class="reference"><a href="#cite_note-Herndl2013-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> The export efficiency of <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a> (POC) shows regional variability. For instance, in the North Atlantic, over 40% of net primary production is exported out of the euphotic zone as compared to only 10% in the South Pacific,<sup id="cite_ref-Buesseler2009_99-1" class="reference"><a href="#cite_note-Buesseler2009-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> and this is driven in part by the composition of the phytoplankton community including cell size and composition (see below). Exported organic carbon is remineralized, that is, respired back to CO<sub>2</sub> in the oceanic water column at depth, mainly by heterotrophic microbes and zooplankton. Thus, the biological carbon pump maintains a vertical gradient in the concentration of <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a> (DIC), with higher values at increased ocean depth.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> This deep-ocean DIC returns to the atmosphere on millennial timescales through <a href="/wiki/Thermohaline_circulation" title="Thermohaline circulation">thermohaline circulation</a>.<sup id="cite_ref-Ducklow2001_10-2" class="reference"><a href="#cite_note-Ducklow2001-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Basu2018_61-5" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2001, Hugh et al. expressed the efficiency of the biological pump as the amount of carbon exported from the surface layer (export production) divided by the total amount produced by photosynthesis (overall production).<sup id="cite_ref-Ducklow2001_10-3" class="reference"><a href="#cite_note-Ducklow2001-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Modelling studies by Buesseler and Boyd revealed that the overall transfer efficiency of the biological pump is determined by a combination of factors: seasonality;<sup id="cite_ref-Buesseler2009_99-2" class="reference"><a href="#cite_note-Buesseler2009-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> the composition of phytoplankton species; the fragmentation of particles by zooplankton; and the solubilization of particles by microbes. In addition, the efficiency of the biological pump is also dependent on the aggregation and disaggregation of organic-rich aggregates and interaction between POC aggregates and suspended "ballast" minerals.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> Ballast minerals (silicate and carbonate biominerals and dust) are the major constituents of particles that leave the ocean surface via sinking. They are typically denser than seawater and most organic matter, thus, providing a large part of the density differential needed for sinking of the particles.<sup id="cite_ref-Armstrong2002_72-2" class="reference"><a href="#cite_note-Armstrong2002-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> Aggregation of particles increases vertical flux by transforming small suspended particles into larger, rapidly-sinking ones. It plays an important role in the sedimentation of phytodetritus from surface layer phytoplankton blooms.<sup id="cite_ref-Turner2015_56-2" class="reference"><a href="#cite_note-Turner2015-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> As illustrated by Turner in 2015, the vertical flux of sinking particles is mainly due to a combination of fecal pellets, marine snow and direct sedimentation of phytoplankton blooms, which are typically composed of diatoms, coccolithophorids, dinoflagellates and other plankton.<sup id="cite_ref-Turner2015_56-3" class="reference"><a href="#cite_note-Turner2015-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> Marine snow comprises macroscopic organic aggregates &gt;500&#160;μm in size and originates from clumps of aggregated phytoplankton (phytodetritus), discarded appendicularian houses, fecal matter and other miscellaneous detrital particles,<sup id="cite_ref-Turner2015_56-4" class="reference"><a href="#cite_note-Turner2015-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> Appendicularians secrete mucous feeding structures or "houses" to collect food particles and discard and renew them up to 40 times a day .<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> Discarded appendicularian houses are highly abundant (thousands per m3 in surface waters) and are microbial hotspots with high concentrations of bacteria, ciliates, flagellates and phytoplankton. These discarded houses are therefore among the most important sources of aggregates directly produced by zooplankton in terms of carbon cycling potential.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Basu2018_61-6" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Cyanothece_sp._ATCC_51142_cell.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Cyanothece_sp._ATCC_51142_cell.jpg/220px-Cyanothece_sp._ATCC_51142_cell.jpg" decoding="async" width="220" height="219" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Cyanothece_sp._ATCC_51142_cell.jpg/330px-Cyanothece_sp._ATCC_51142_cell.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Cyanothece_sp._ATCC_51142_cell.jpg/440px-Cyanothece_sp._ATCC_51142_cell.jpg 2x" data-file-width="1202" data-file-height="1197" /></a><figcaption> The nitrogen fixing cyanobacteria <i><a href="/wiki/Cyanothece" title="Cyanothece">Cyanothece</a></i> sp. ATCC 51142</figcaption></figure> <p>The composition of the phytoplankton community in the euphotic zone largely determines the quantity and quality of organic matter that sinks to depth.<sup id="cite_ref-Herndl2013_100-1" class="reference"><a href="#cite_note-Herndl2013-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> The main functional groups of marine phytoplankton that contribute to export production include <a href="/wiki/Nitrogen_fixation" title="Nitrogen fixation">nitrogen fixers</a> (<a href="/wiki/Diazotrophic" class="mw-redirect" title="Diazotrophic">diazotrophic</a> <a href="/wiki/Cyanobacteria" title="Cyanobacteria">cyanobacteria</a>), <a href="/wiki/Silicifier" class="mw-redirect" title="Silicifier">silicifiers</a> (diatoms) and <a href="/wiki/Calcifier" class="mw-redirect" title="Calcifier">calcifiers</a> (coccolithophores). Each of these phytoplankton groups differ in the size and composition of their cell walls and coverings, which influence their sinking velocities.<sup id="cite_ref-Collins2013_105-0" class="reference"><a href="#cite_note-Collins2013-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> For example, autotrophic picoplankton (0.2–2&#160;μm in diameter)—which include taxa such as cyanobacteria (e.g., <i><a href="/wiki/Prochlorococcus" title="Prochlorococcus">Prochlorococcus</a></i> spp. and <i><a href="/wiki/Synechococcus" title="Synechococcus">Synechococcus</a></i> spp.) and <a href="/wiki/Prasinophyte" title="Prasinophyte">prasinophytes</a> (various genera of eukaryotes &lt;2&#160;μm)—are believed to contribute much less to carbon export from surface layers due to their small size, slow sinking velocities (&lt;0.5 m/day) and rapid turnover in the microbial loop.<sup id="cite_ref-Collins2013_105-1" class="reference"><a href="#cite_note-Collins2013-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Richardson2007_106-0" class="reference"><a href="#cite_note-Richardson2007-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> In contrast, larger phytoplankton cells such as diatoms (2–500&#160;μm in diameter) are very efficient in transporting carbon to depth by forming rapidly sinking aggregates.<sup id="cite_ref-Passow2012_64-3" class="reference"><a href="#cite_note-Passow2012-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> They are unique among phytoplankton, because they require Si in the form of silicic acid (Si(OH)4) for growth and production of their frustules, which are made of biogenic silica (bSiO2) and act as ballast.<sup id="cite_ref-Collins2013_105-2" class="reference"><a href="#cite_note-Collins2013-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ragueneau2006_107-0" class="reference"><a href="#cite_note-Ragueneau2006-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> According to the reports of Miklasz and Denny,<sup id="cite_ref-Miklasz2010_108-0" class="reference"><a href="#cite_note-Miklasz2010-108"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> the sinking velocities of diatoms can range from 0.4 to 35 m/day.<sup id="cite_ref-Collins2013_105-3" class="reference"><a href="#cite_note-Collins2013-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ragueneau2006_107-1" class="reference"><a href="#cite_note-Ragueneau2006-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Miklasz2010_108-1" class="reference"><a href="#cite_note-Miklasz2010-108"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> Analogously, coccolithophores are covered with calcium carbonate plates called 'coccoliths', which are central to aggregation and ballasting, producing sinking velocities of nearly 5 m/day.<sup id="cite_ref-Passow2012_64-4" class="reference"><a href="#cite_note-Passow2012-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Collins2013_105-4" class="reference"><a href="#cite_note-Collins2013-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> Although it has been assumed that <a href="/wiki/Picophytoplankton" class="mw-redirect" title="Picophytoplankton">picophytoplankton</a>, characterizing vast <a href="/wiki/Oligotrophic" class="mw-redirect" title="Oligotrophic">oligotrophic</a> areas of the ocean,<sup id="cite_ref-Herndl2013_100-2" class="reference"><a href="#cite_note-Herndl2013-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> do not contribute substantially to the particulate organic carbon (POC) flux, in 2007 Richardson and Jackson suggested that all phytoplankton, including picoplankton cells, contribute equally to POC export.<sup id="cite_ref-Richardson2007_106-1" class="reference"><a href="#cite_note-Richardson2007-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> They proposed alternative pathways for picoplankton carbon cycling, which rely on aggregation as a mechanism for both direct sinking (the export of picoplankton as POC) and mesozooplankton- or large filter feeder-mediated sinking of picoplankton-based production.<sup id="cite_ref-Basu2018_61-7" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Zooplankton_grazing">Zooplankton grazing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=17" title="Edit section: Zooplankton grazing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Zooplankton#Role_in_biogeochemistry" title="Zooplankton">Zooplankton §&#160;Role in biogeochemistry</a></div> <div class="mw-heading mw-heading4"><h4 id="Sloppy_feeding">Sloppy feeding</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=18" title="Edit section: Sloppy feeding"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:463px;max-width:463px"><div class="trow"><div class="tsingle" style="width:200px;max-width:200px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Sloppy_feeding_by_zooplankton.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Sloppy_feeding_by_zooplankton.jpg/198px-Sloppy_feeding_by_zooplankton.jpg" decoding="async" width="198" height="257" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Sloppy_feeding_by_zooplankton.jpg/297px-Sloppy_feeding_by_zooplankton.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Sloppy_feeding_by_zooplankton.jpg/396px-Sloppy_feeding_by_zooplankton.jpg 2x" data-file-width="600" data-file-height="780" /></a></span></div><div class="thumbcaption"><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Sloppy feeding by zooplankton</b><br />DOC = <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">dissolved organic carbon</a><br />POC = <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a>.<br /><small>Adapted from Møller et al. (2005),<sup id="cite_ref-Møller2003_109-0" class="reference"><a href="#cite_note-Møller2003-109"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> Saba et al. (2009)<sup id="cite_ref-Saba2009_110-0" class="reference"><a href="#cite_note-Saba2009-110"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> and Steinberg et al. (2017).<sup id="cite_ref-Steinberg12017_111-0" class="reference"><a href="#cite_note-Steinberg12017-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup></small></div></div></div><div class="tsingle" style="width:259px;max-width:259px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Copepod_faecal_pellet_production_in_the_deep_ocean.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Copepod_faecal_pellet_production_in_the_deep_ocean.png/257px-Copepod_faecal_pellet_production_in_the_deep_ocean.png" decoding="async" width="257" height="258" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Copepod_faecal_pellet_production_in_the_deep_ocean.png/386px-Copepod_faecal_pellet_production_in_the_deep_ocean.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Copepod_faecal_pellet_production_in_the_deep_ocean.png/514px-Copepod_faecal_pellet_production_in_the_deep_ocean.png 2x" data-file-width="801" data-file-height="804" /></a></span></div><div class="thumbcaption"><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Mesopelagic fecal pellet production</b></div> On the left above, intact fecal pellets reach the deep ocean via vertical migration of zooplankton, whereas on the right fecal pellets at depth result from in situ repackaging of sinking detritus by deep-dwelling zooplankton. Actual mechanisms are likely to include both scenarios.<sup id="cite_ref-Belcher2017_112-0" class="reference"><a href="#cite_note-Belcher2017-112"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup></div></div></div></div></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Morphology_of_copepod_faecal_pellets.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Morphology_of_copepod_faecal_pellets.png/460px-Morphology_of_copepod_faecal_pellets.png" decoding="async" width="460" height="324" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Morphology_of_copepod_faecal_pellets.png/690px-Morphology_of_copepod_faecal_pellets.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Morphology_of_copepod_faecal_pellets.png/920px-Morphology_of_copepod_faecal_pellets.png 2x" data-file-width="1279" data-file-height="900" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Morphology of zooplankton fecal pellets&#8202;<sup id="cite_ref-Belcher2017_112-1" class="reference"><a href="#cite_note-Belcher2017-112"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup></b><br />Collected from <a href="/wiki/Marine_snow" title="Marine snow">marine snow</a> catchers (a–c) and <a href="/wiki/Sediment_trap" title="Sediment trap">sediment traps</a> (d–f).<br />Morphological classes: (a, d) round, (b, e) cylindrical, and (c, f) ovoid.<br /><small>Scale bar = 0.5 mm</small></div></figcaption></figure> <p>In addition to linking primary producers to higher trophic levels in marine food webs, zooplankton also play an important role as "recyclers" of carbon and other nutrients that significantly impact marine biogeochemical cycles, including the biological pump. This is particularly the case with <a href="/wiki/Copepod" title="Copepod">copepods</a> and <a href="/wiki/Krill" title="Krill">krill</a>, and is especially important in oligotrophic waters of the open ocean. Through sloppy feeding, excretion, egestion, and leaching of fecal pellets, zooplankton release dissolved organic matter (DOM) which controls DOM cycling and supports the microbial loop. Absorption efficiency, respiration, and prey size all further complicate how zooplankton are able to transform and deliver carbon to the deep ocean.<sup id="cite_ref-Steinberg12017_111-1" class="reference"><a href="#cite_note-Steinberg12017-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> </p><p>Excretion and sloppy feeding (the physical breakdown of food source) make up 80% and 20% of crustacean zooplankton-mediated DOM release respectively.<sup id="cite_ref-Saba2011_113-0" class="reference"><a href="#cite_note-Saba2011-113"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> In the same study, fecal pellet leaching was found to be an insignificant contributor. For protozoan grazers, DOM is released primarily through excretion and egestion and gelatinous zooplankton can also release DOM through the production of mucus. Leaching of fecal pellets can extend from hours to days after initial egestion and its effects can vary depending on food concentration and quality.<sup id="cite_ref-Thor2003_114-0" class="reference"><a href="#cite_note-Thor2003-114"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Carlso2014_115-0" class="reference"><a href="#cite_note-Carlso2014-115"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> Various factors can affect how much DOM is released from zooplankton individuals or populations. </p> <div class="mw-heading mw-heading4"><h4 id="Fecal_pellets">Fecal pellets</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=19" title="Edit section: Fecal pellets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The fecal pellets of zooplankton can be important vehicles for the transfer of particulate organic carbon (POC) to the deep ocean, often making large contributions to the carbon sequestration. The size distribution of the copepod community indicates high numbers of small fecal pellets are produced in the <a href="/wiki/Epipelagic" class="mw-redirect" title="Epipelagic">epipelagic</a>. However, small fecal pellets are rare in the deeper layers, suggesting they are not transferred efficiently to depth. This means small fecal pellets make only minor contributions to fecal pellet fluxes in the meso- and bathypelagic, particularly in terms of carbon. In a study is focussed on the <a href="/wiki/Scotia_Sea" title="Scotia Sea">Scotia Sea</a>, which contains some of the most productive regions in the Southern Ocean, the dominant fecal pellets in the upper <a href="/wiki/Mesopelagic" class="mw-redirect" title="Mesopelagic">mesopelagic</a> were cylindrical and elliptical, while <a href="/wiki/Ovoid" class="mw-redirect" title="Ovoid">ovoid</a> fecal pellets were dominant in the <a href="/wiki/Bathypelagic" class="mw-redirect" title="Bathypelagic">bathypelagic</a>. The change in fecal pellet morphology, as well as size distribution, points to the repacking of surface fecal pellets in the mesopelagic and in situ production in the lower meso- and bathypelagic, which may be augmented by inputs of fecal pellets via zooplankton <a href="/wiki/Diel_vertical_migration" title="Diel vertical migration">vertical migrations</a>. This suggests the flux of carbon to the deeper layers within the Southern Ocean is strongly modulated by meso- and bathypelagic zooplankton, meaning that the community structure in these zones has a major impact on the efficiency of the fecal pellet transfer to ocean depths.<sup id="cite_ref-Belcher2017_112-2" class="reference"><a href="#cite_note-Belcher2017-112"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Absorption_efficiency" class="mw-redirect" title="Absorption efficiency">Absorption efficiency</a> (AE) is the proportion of food absorbed by plankton that determines how available the consumed organic materials are in meeting the required physiological demands.<sup id="cite_ref-Steinberg12017_111-2" class="reference"><a href="#cite_note-Steinberg12017-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> Depending on the feeding rate and prey composition, variations in AE may lead to variations in fecal pellet production, and thus regulates how much organic material is recycled back to the marine environment. Low feeding rates typically lead to high AE and small, dense pellets, while high feeding rates typically lead to low AE and larger pellets with more organic content. Another contributing factor to DOM release is respiration rate. Physical factors such as oxygen availability, pH, and light conditions may affect overall oxygen consumption and how much carbon is loss from zooplankton in the form of respired CO<sub>2</sub>. The relative sizes of zooplankton and prey also mediate how much carbon is released via sloppy feeding. Smaller prey are ingested whole, whereas larger prey may be fed on more "sloppily", that is more biomatter is released through inefficient consumption.<sup id="cite_ref-Møller2005_116-0" class="reference"><a href="#cite_note-Møller2005-116"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Møller2007_117-0" class="reference"><a href="#cite_note-Møller2007-117"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup> There is also evidence that diet composition can impact nutrient release, with carnivorous diets releasing more <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">dissolved organic carbon</a> (DOC) and ammonium than omnivorous diets.<sup id="cite_ref-Thor2003_114-1" class="reference"><a href="#cite_note-Thor2003-114"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Microbial_loop">Microbial loop</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=20" title="Edit section: Microbial loop"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Microbial_Loop.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Microbial_Loop.jpg/260px-Microbial_Loop.jpg" decoding="async" width="260" height="347" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Microbial_Loop.jpg/390px-Microbial_Loop.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Microbial_Loop.jpg/520px-Microbial_Loop.jpg 2x" data-file-width="1008" data-file-height="1344" /></a><figcaption>The microbial loop is a marine trophic pathway which incorporates <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">dissolved organic carbon</a> (DOC) into the food chain</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Microbial_loop" title="Microbial loop">Microbial loop</a></div> <div class="mw-heading mw-heading4"><h4 id="Bacterial_lysis">Bacterial lysis</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=21" title="Edit section: Bacterial lysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Microbial_loop" title="Microbial loop">microbial loop</a> describes a trophic pathway in the marine <a href="/wiki/Microbial_food_web" title="Microbial food web">microbial food web</a> where <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">dissolved organic carbon</a> (DOC) is returned to higher trophic levels via its incorporation into bacterial biomass, and then coupled with the classic food chain formed by <a href="/wiki/Phytoplankton" title="Phytoplankton">phytoplankton</a>-<a href="/wiki/Zooplankton" title="Zooplankton">zooplankton</a>-<a href="/wiki/Nekton" title="Nekton">nekton</a>. The term microbial loop was coined by <a href="/wiki/Farooq_Azam" title="Farooq Azam">Farooq Azam</a>, <a href="/wiki/Tom_Fenchel" title="Tom Fenchel">Tom Fenchel</a> et al.<sup id="cite_ref-AzamFenchel1983_118-0" class="reference"><a href="#cite_note-AzamFenchel1983-118"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> in 1983 to include the role played by bacteria in the carbon and nutrient cycles of the marine environment. In general, dissolved organic carbon is introduced into the ocean environment from <a href="/w/index.php?title=Bacterial_lysis&amp;action=edit&amp;redlink=1" class="new" title="Bacterial lysis (page does not exist)">bacterial lysis</a>, the leakage or exudation of fixed carbon from phytoplankton (e.g., mucilaginous exopolymer from <a href="/wiki/Diatom" title="Diatom">diatoms</a>), sudden cell senescence, sloppy feeding by zooplankton, the excretion of waste products by aquatic animals, or the breakdown or dissolution of organic particles from terrestrial plants and soils.<sup id="cite_ref-Van_den_Meersche_Middelburg_Soetaert_van_Rijswijk_2004_119-0" class="reference"><a href="#cite_note-Van_den_Meersche_Middelburg_Soetaert_van_Rijswijk_2004-119"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup> Bacteria in the microbial loop decompose this particulate detritus to utilize this energy-rich matter for growth. Since more than 95% of organic matter in marine ecosystems consists of polymeric, high <a href="/wiki/Molecular_weight" class="mw-redirect" title="Molecular weight">molecular weight</a> (HMW) compounds (e.g., protein, polysaccharides, lipids), only a small portion of total <a href="/wiki/Dissolved_organic_matter" class="mw-redirect" title="Dissolved organic matter">dissolved organic matter</a> (DOM) is readily utilizable to most marine organisms at higher trophic levels. This means that dissolved organic carbon is not available directly to most marine organisms; <a href="/wiki/Marine_bacteria" class="mw-redirect" title="Marine bacteria">marine bacteria</a> introduce this organic carbon into the food web, resulting in additional energy becoming available to higher trophic levels.<sup id="cite_ref-Mentges2019_120-0" class="reference"><a href="#cite_note-Mentges2019-120"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading4"><h4 id="Viral_shunt">Viral shunt</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=22" title="Edit section: Viral shunt"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:443px;max-width:443px"><div class="trow"><div class="theader" style="text-align:">Viral shunt</div></div><div class="trow"><div class="tsingle" style="width:237px;max-width:237px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Viral_shunt.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Viral_shunt.jpg/235px-Viral_shunt.jpg" decoding="async" width="235" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Viral_shunt.jpg/353px-Viral_shunt.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Viral_shunt.jpg/470px-Viral_shunt.jpg 2x" data-file-width="2100" data-file-height="1400" /></a></span></div><div class="thumbcaption"><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"> The viral shunt recycles DOM throughout the <a href="/wiki/Marine_food_web" title="Marine food web">marine food web</a></div></div></div><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Structure_of_a_Myoviridae_bacteriophage_2.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/Structure_of_a_Myoviridae_bacteriophage_2.jpg/200px-Structure_of_a_Myoviridae_bacteriophage_2.jpg" decoding="async" width="200" height="155" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/Structure_of_a_Myoviridae_bacteriophage_2.jpg/300px-Structure_of_a_Myoviridae_bacteriophage_2.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/39/Structure_of_a_Myoviridae_bacteriophage_2.jpg/400px-Structure_of_a_Myoviridae_bacteriophage_2.jpg 2x" data-file-width="432" data-file-height="334" /></a></span></div><div class="thumbcaption"><div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Typical <a href="/wiki/Marine_virus" class="mw-redirect" title="Marine virus">marine virus</a></div></div></div></div></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Viral_shunt" title="Viral shunt">Viral shunt</a></div> <p>As much as 25% of the primary production from phytoplankton in the global oceans may be recycled within the microbial loop through <a href="/wiki/Viral_shunt" title="Viral shunt">viral shunting</a>.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup> The viral shunt is a mechanism whereby <a href="/wiki/Marine_viruses" title="Marine viruses">marine viruses</a> prevent microbial <a href="/wiki/Particulate_organic_matter" title="Particulate organic matter">particulate organic matter</a> (POM) from migrating up <a href="/wiki/Trophic_level" title="Trophic level">trophic levels</a> by recycling them into <a href="/wiki/Dissolved_organic_matter" class="mw-redirect" title="Dissolved organic matter">dissolved organic matter</a> (DOM), which can be readily taken up by microorganisms. The DOM recycled by the viral shunt pathway is comparable to the amount generated by the other main sources of marine DOM.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> Viruses can easily infect microorganisms in the microbial loop due to their relative abundance compared to microbes.<sup id="cite_ref-:9_123-0" class="reference"><a href="#cite_note-:9-123"><span class="cite-bracket">&#91;</span>123<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>124<span class="cite-bracket">&#93;</span></a></sup> Prokaryotic and eukaryotic mortality contribute to carbon nutrient recycling through <a href="/wiki/Cell_lysis" class="mw-redirect" title="Cell lysis">cell lysis</a>. There is evidence as well of nitrogen (specifically ammonium) regeneration. This nutrient recycling helps stimulates microbial growth.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">&#91;</span>125<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Macroorganisms">Macroorganisms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=23" title="Edit section: Macroorganisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Jelly_fall">Jelly fall</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=24" title="Edit section: Jelly fall"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Gelatinous_zooplankton_biological_pump.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Gelatinous_zooplankton_biological_pump.png/440px-Gelatinous_zooplankton_biological_pump.png" decoding="async" width="440" height="495" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Gelatinous_zooplankton_biological_pump.png/660px-Gelatinous_zooplankton_biological_pump.png 1.5x, //upload.wikimedia.org/wikipedia/commons/1/19/Gelatinous_zooplankton_biological_pump.png 2x" data-file-width="800" data-file-height="900" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Gelatinous zooplankton biological pump</b></div> How <a href="/wiki/Jelly_carbon" class="mw-redirect" title="Jelly carbon">jelly carbon</a> fits in the biological pump. A schematic representation of the biological pump and the biogeochemical processes that remove elements from the surface ocean by sinking biogenic particles including jelly carbon.<sup id="cite_ref-Lebrato2019_126-0" class="reference"><a href="#cite_note-Lebrato2019-126"><span class="cite-bracket">&#91;</span>126<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Jelly_falls" class="mw-redirect" title="Jelly falls">Jelly falls</a></div> <p><a href="/wiki/Jelly-falls" title="Jelly-falls">Jelly-falls</a> are marine <a href="/wiki/Carbon_cycle" title="Carbon cycle">carbon cycling</a> events whereby <a href="/wiki/Gelatinous_zooplankton" title="Gelatinous zooplankton">gelatinous zooplankton</a>, primarily <a href="/wiki/Cnidaria" title="Cnidaria">cnidarians</a>, sink to the seafloor and enhance carbon and nitrogen fluxes via rapidly sinking <a href="/wiki/Particulate_organic_matter" title="Particulate organic matter">particulate organic matter</a>.<sup id="cite_ref-Lebrato_et_al._2012_127-0" class="reference"><a href="#cite_note-Lebrato_et_al._2012-127"><span class="cite-bracket">&#91;</span>127<span class="cite-bracket">&#93;</span></a></sup> These events provide nutrition to <a href="/wiki/Benthic_zone" title="Benthic zone">benthic</a> <a href="/wiki/Megafauna" title="Megafauna">megafauna</a> and <a href="/wiki/Bacteria" title="Bacteria">bacteria</a>.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">&#91;</span>128<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Sweetman_and_Chapman_2011_129-0" class="reference"><a href="#cite_note-Sweetman_and_Chapman_2011-129"><span class="cite-bracket">&#91;</span>129<span class="cite-bracket">&#93;</span></a></sup> Jelly-falls have been implicated as a major "gelatinous pathway" for the <a href="/wiki/Carbon_sequestration" title="Carbon sequestration">sequestration</a> of <a href="/wiki/Lability" title="Lability">labile</a> biogenic carbon through the biological pump.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">&#91;</span>130<span class="cite-bracket">&#93;</span></a></sup> These events are common in protected areas with high levels of primary production and water quality suitable to support cnidarian species. These areas include <a href="/wiki/Estuary" title="Estuary">estuaries</a> and several studies have been conducted in <a href="/wiki/List_of_Norwegian_fjords" title="List of Norwegian fjords">fjords of Norway</a>.<sup id="cite_ref-Sweetman_and_Chapman_2011_129-1" class="reference"><a href="#cite_note-Sweetman_and_Chapman_2011-129"><span class="cite-bracket">&#91;</span>129<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Jellyfish_swarm.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Jellyfish_swarm.jpg/290px-Jellyfish_swarm.jpg" decoding="async" width="290" height="218" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Jellyfish_swarm.jpg/435px-Jellyfish_swarm.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Jellyfish_swarm.jpg/580px-Jellyfish_swarm.jpg 2x" data-file-width="3909" data-file-height="2933" /></a><figcaption> Jellyfish are easy to capture and digest and may be more important as carbon sinks than was previously thought.<sup id="cite_ref-Hays2018_131-0" class="reference"><a href="#cite_note-Hays2018-131"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading4"><h4 id="Whale_pump">Whale pump</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=25" title="Edit section: Whale pump"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Whale_feces" title="Whale feces">whale feces</a> and <a href="/wiki/Whale_fall" title="Whale fall">whale fall</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:WhalePump.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/WhalePump.jpg/440px-WhalePump.jpg" decoding="async" width="440" height="350" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/WhalePump.jpg/660px-WhalePump.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bb/WhalePump.jpg/880px-WhalePump.jpg 2x" data-file-width="1589" data-file-height="1264" /></a><figcaption> The <a href="/wiki/Whale_pump" class="mw-redirect" title="Whale pump">whale pump</a> is the role played by whales and other marine mammals recycling nutrients in the ocean</figcaption></figure> <p><a href="/wiki/Whale" title="Whale">Whales</a> and other <a href="/wiki/Marine_mammal" title="Marine mammal">marine mammals</a> also enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of <a href="/wiki/Flocculent" class="mw-redirect" title="Flocculent">flocculent</a> <a href="/wiki/Fecal" class="mw-redirect" title="Fecal">fecal</a> plumes.<sup id="cite_ref-Roman2013_132-0" class="reference"><a href="#cite_note-Roman2013-132"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ScienceDaily_133-0" class="reference"><a href="#cite_note-ScienceDaily-133"><span class="cite-bracket">&#91;</span>133<span class="cite-bracket">&#93;</span></a></sup> For example, whales and seals may be responsible for replenishing more nitrogen in the <a href="/wiki/Gulf_of_Maine" title="Gulf of Maine">Gulf of Maine</a>'s euphotic zone than the input of all rivers combined. This upward whale pump played a much larger role before industrial fishing devastated marine mammal stocks, when recycling of nitrogen was likely more than three times the atmospheric nitrogen input.<sup id="cite_ref-Roman2013_132-1" class="reference"><a href="#cite_note-Roman2013-132"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup> </p><p>The biological pump mediates the removal of carbon and nitrogen from the euphotic zone through the downward flux of aggregates, feces, and vertical migration of invertebrates and fish.<sup id="cite_ref-134" class="reference"><a href="#cite_note-134"><span class="cite-bracket">&#91;</span>134<span class="cite-bracket">&#93;</span></a></sup> Copepods and other zooplankton produce sinking fecal pellets and contribute to downward transport of dissolved and particulate organic matter by respiring and excreting at depth during migration cycles, thus playing an important role in the export of nutrients (N, P, and Fe) from surface waters.<sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">&#91;</span>135<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">&#91;</span>136<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Roman2013_132-2" class="reference"><a href="#cite_note-Roman2013-132"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup> </p><p>Zooplankton feed in the euphotic zone and export nutrients via sinking fecal pellets, and vertical migration. Fish typically release nutrients at the same depth at which they feed. Excretion for marine mammals, tethered to the surface for respiration, is expected to be shallower in the water column than where they feed.<sup id="cite_ref-Roman2013_132-3" class="reference"><a href="#cite_note-Roman2013-132"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup> </p><p>Marine mammals provide important ecosystem services. On a global scale, they can influence climate, through fertilization events and the export of carbon from surface waters to the deep sea through sinking whale carcasses.<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">&#91;</span>137<span class="cite-bracket">&#93;</span></a></sup> In coastal areas, whales retain nutrients locally, increasing ecosystem productivity and perhaps raising the carrying capacity for other marine consumers, including commercial fish species.<sup id="cite_ref-Roman2013_132-4" class="reference"><a href="#cite_note-Roman2013-132"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup> It has been estimated that, in terms of carbon sequestration, one whale is equivalent to thousands of trees.<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">&#91;</span>138<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Vertical_migrations">Vertical migrations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=26" title="Edit section: Vertical migrations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Diel_vertical_migration" title="Diel vertical migration">Diel vertically migrating</a> krill, salps, smaller zooplankton and fish can actively transport carbon to depth by consuming POC in the surface layer at night, and metabolising it at their daytime, mesopelagic residence depths. Depending on species life history, active transport may occur on a seasonal basis as well.<sup id="cite_ref-Cavan2019_51-2" class="reference"><a href="#cite_note-Cavan2019-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p><p>Without vertical migration the biological pump wouldn't be nearly as efficient. Organisms migrate up to feed at night so when they migrate back to depth during the day they defecate large sinking fecal pellets. Whilst some larger fecal pellets can sink quite fast, the speed that organisms move back to depth is still faster. At night organisms are in the top 100 metres of the water column, but during the day they move down to between 800 and 1000 metres. If organisms were to defecate at the surface it would take the fecal pellets days to reach the depth that they reach in a matter of hours. Therefore, by releasing fecal pellets at depth they have almost 1000 metres less to travel to get to the deep ocean. This is something known as <a href="/wiki/Active_transport" title="Active transport">active transport</a>. The organisms are playing a more active role in moving organic matter down to depths. Because a large majority of the deep sea, especially marine microbes, depends on nutrients falling down, the quicker they can reach the ocean floor the better.<sup id="cite_ref-Steinberg2002_63-1" class="reference"><a href="#cite_note-Steinberg2002-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Zooplankton" title="Zooplankton">Zooplankton</a> and <a href="/wiki/Salps" class="mw-redirect" title="Salps">salps</a> play a large role in the active transport of fecal pellets. 15–50% of zooplankton biomass is estimated to migrate, accounting for the transport of 5–45% of particulate organic nitrogen to depth.<sup id="cite_ref-Steinberg2002_63-2" class="reference"><a href="#cite_note-Steinberg2002-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> Salps are large gelatinous plankton that can vertically migrate 800 metres and eat large amounts of food at the surface. They have a very long gut retention time, so fecal pellets usually are released at maximum depth. Salps are also known for having some of the largest fecal pellets. Because of this they have a very fast sinking rate, small <a href="/wiki/Detritus" title="Detritus">detritus</a> particles are known to aggregate on them. This makes them sink that much faster. So while currently there is still much research being done on why organisms vertically migrate, it is clear that vertical migration plays a large role in the active transport of dissolved organic matter to depth.<sup id="cite_ref-Wiebe,_P.H_139-0" class="reference"><a href="#cite_note-Wiebe,_P.H-139"><span class="cite-bracket">&#91;</span>139<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Lipid_pump">Lipid pump</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=27" title="Edit section: Lipid pump"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lipid_pump" title="Lipid pump">Lipid pump</a></div> <p>The lipid pump sequesters <a href="/wiki/Carbon" title="Carbon">carbon</a> from the ocean's surface to deeper waters via <a href="/wiki/Lipid" title="Lipid">lipids</a> associated with <a href="/wiki/Overwintering" title="Overwintering">overwintering</a> vertically migratory <a href="/wiki/Zooplankton" title="Zooplankton">zooplankton</a>. Lipids are a class of <a href="/wiki/Hydrocarbon" title="Hydrocarbon">hydrocarbon</a> rich, <a href="/wiki/Nitrogen" title="Nitrogen">nitrogen</a> and <a href="/wiki/Phosphorus" title="Phosphorus">phosphorus</a> deficient compounds essential for cellular structures. The lipid associated carbon enters the <a href="/wiki/Deep_sea" title="Deep sea">deep ocean</a> as carbon dioxide produced by <a href="/wiki/Respiration_(physiology)" title="Respiration (physiology)">respiration</a> of lipid reserves and as organic matter from the mortality of zooplankton. Compared to the more general biological pump, the lipid pump also results in a lipid shunt, where other <a href="/wiki/Nutrient" title="Nutrient">nutrients</a> like nitrogen and phosphorus that are consumed in excess must be <a href="/wiki/Excretion" title="Excretion">excreted</a> back to the surface environment, and thus are not removed from the surface mixed layer of the ocean.<sup id="cite_ref-:1_140-0" class="reference"><a href="#cite_note-:1-140"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup> This means that the carbon transported by the lipid pump does not limit the availability of essential nutrients in the ocean surface. <a href="/wiki/Carbon_sequestration" title="Carbon sequestration">Carbon sequestration</a> via the lipid pump is therefore decoupled from nutrient removal, allowing carbon uptake by oceanic primary production to continue. In the Biological Pump, nutrient removal is always coupled to carbon sequestration; primary production is limited as carbon and nutrients are transported to depth together in the form of organic matter.<sup id="cite_ref-:1_140-1" class="reference"><a href="#cite_note-:1-140"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup> The contribution of the lipid pump to the sequestering of carbon in the deeper waters of the ocean can be substantial: the carbon transported below 1,000 metres (3,300&#160;ft) by <a href="/wiki/Copepod" title="Copepod">copepods</a> of the genus <i><a href="/wiki/Calanus" title="Calanus">Calanus</a></i> in the <a href="/wiki/Arctic_Ocean" title="Arctic Ocean">Arctic Ocean</a> almost equals that transported below the same depth annually by <a href="/wiki/Particulate_organic_matter" title="Particulate organic matter">particulate organic carbon</a> (POC) in this region.<sup id="cite_ref-:2_141-0" class="reference"><a href="#cite_note-:2-141"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup> A significant fraction of this transported carbon would not return to the surface due to respiration and mortality. Research is ongoing to more precisely estimate the amount that remains at depth.<sup id="cite_ref-:1_140-2" class="reference"><a href="#cite_note-:1-140"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_141-1" class="reference"><a href="#cite_note-:2-141"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:3_142-0" class="reference"><a href="#cite_note-:3-142"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup> The export rate of the lipid pump may vary from 1–9.3 g C m<sup>−2</sup> y<sup>−1</sup> across temperate and subpolar regions containing seasonally-migrating zooplankton.<sup id="cite_ref-:3_142-1" class="reference"><a href="#cite_note-:3-142"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup> The role of zooplankton, and particularly copepods, in the <a href="/wiki/Food_web" title="Food web">food web</a> is crucial to the survival of higher <a href="/wiki/Trophic_level" title="Trophic level">trophic level</a> organisms whose primary source of <a href="/wiki/Nutrition" title="Nutrition">nutrition</a> is copepods. With warming oceans and increasing melting of <a href="/wiki/Ice_cap" title="Ice cap">ice caps</a> due to <a href="/wiki/Climate_change" title="Climate change">climate change</a>, the organisms associated with the lipid pump may be affected, thus influencing the survival of many commercially important <a href="/wiki/Fish" title="Fish">fish</a> and <a href="/wiki/Endangered_species" title="Endangered species">endangered</a> <a href="/wiki/Marine_mammal" title="Marine mammal">marine mammals</a>.<sup id="cite_ref-143" class="reference"><a href="#cite_note-143"><span class="cite-bracket">&#91;</span>143<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">&#91;</span>144<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">&#91;</span>145<span class="cite-bracket">&#93;</span></a></sup> As a new and previously unquantified component of oceanic carbon sequestration, further research on the lipid pump can improve the accuracy and overall understanding of carbon fluxes in <a href="/wiki/Ocean" title="Ocean">global oceanic systems</a>.<sup id="cite_ref-:1_140-3" class="reference"><a href="#cite_note-:1-140"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_141-2" class="reference"><a href="#cite_note-:2-141"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:3_142-2" class="reference"><a href="#cite_note-:3-142"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bioluminescent_shunt">Bioluminescent shunt</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=28" title="Edit section: Bioluminescent shunt"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Bioluminescent_bacteria" title="Bioluminescent bacteria">Bioluminescent bacteria</a> and <a href="/wiki/Particulate_organic_matter#Bioluminescent_shunt_hypothesis" title="Particulate organic matter">Particulate organic matter §&#160;Bioluminescent shunt hypothesis</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Bioluminescence_shunt_in_the_marine_carbon_pump.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Bioluminescence_shunt_in_the_marine_carbon_pump.png/440px-Bioluminescence_shunt_in_the_marine_carbon_pump.png" decoding="async" width="440" height="242" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Bioluminescence_shunt_in_the_marine_carbon_pump.png/660px-Bioluminescence_shunt_in_the_marine_carbon_pump.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/Bioluminescence_shunt_in_the_marine_carbon_pump.png/880px-Bioluminescence_shunt_in_the_marine_carbon_pump.png 2x" data-file-width="2067" data-file-height="1136" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Bioluminescence shunt in the biological carbon pump in the ocean&#8202;<sup id="cite_ref-Tanet2020_146-0" class="reference"><a href="#cite_note-Tanet2020-146"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup></div></figcaption></figure> <p><a href="/wiki/Luminous_bacteria" class="mw-redirect" title="Luminous bacteria">Luminous bacteria</a> in light organ symbioses are successively acquired by host (squid, fish) from the seawater while they are juveniles, then regularly released into the ocean.<sup id="cite_ref-Tanet2020_146-1" class="reference"><a href="#cite_note-Tanet2020-146"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the diagram on the right, depending on the light organ position, luminous bacteria are released from their guts into <a href="/wiki/Fecal_pellet" class="mw-redirect" title="Fecal pellet">fecal pellets</a> or directly into the seawater (step 1). Motile luminous bacteria colonize organic matter sinking along the <a href="/wiki/Water_column" title="Water column">water column</a>. Bioluminescent bacteria colonising fecal pellets and particles influence zooplankton consumption rates. Such visual markers increase detection ("bait hypothesis"), attraction and finally predation by upper <a href="/wiki/Trophic_level" title="Trophic level">trophic levels</a> (step 2). In the <a href="/wiki/Mesopelagic" class="mw-redirect" title="Mesopelagic">mesopelagic</a>, zooplankton and their predators feed on sinking luminous particles and fecal pellets, which form either aggregates (repackaging) of faster sinking rates or fragment organic matter (due to sloppy feeding) with slower sinking rates (step 3).<sup id="cite_ref-Tanet2020_146-2" class="reference"><a href="#cite_note-Tanet2020-146"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Filter_feeder" title="Filter feeder">Filter feeders</a> also aggregate sinking organic matter without particular visual detection and selection of luminous matter. <a href="/wiki/Diel_vertical_migration" title="Diel vertical migration">Diel (and seasonal) vertical migrators</a> feeding on luminous food metabolize and release glowing fecal pellets from the surface to the mesopelagic zone (step 4). This implies bioluminescent bacteria dispersion at large spatial scales, for zooplankton or even some fish actively swimming long distances. Luminous bacteria attached to particles sink down to the seafloor, and sediment can be resuspended by oceanographic physical conditions (step 5) and consumed by epi-benthic organisms. Instruments are (a) plankton net, (b) fish net, (c) <a href="/wiki/Niskin_bottle" class="mw-redirect" title="Niskin bottle">Niskin water sampler</a>, (d) bathyphotometer, (e) <a href="/wiki/Sediment_trap" title="Sediment trap">sediment traps</a>, (f) <a href="/wiki/Autonomous_underwater_vehicle" title="Autonomous underwater vehicle">autonomous underwater vehicles</a>, (g) <a href="/wiki/Photomultiplier" title="Photomultiplier">photomultiplier</a> module, (h) astrophysics optical modules <a href="/wiki/ANTARES_(telescope)" title="ANTARES (telescope)">ANTARES</a> and (i–j) <a href="/wiki/Remotely_operated_vehicle" class="mw-redirect" title="Remotely operated vehicle">remotely operated vehicles</a>.<sup id="cite_ref-Tanet2020_146-3" class="reference"><a href="#cite_note-Tanet2020-146"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Quantification">Quantification</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=29" title="Edit section: Quantification"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Global_carbon_stocks.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Global_carbon_stocks.png/440px-Global_carbon_stocks.png" decoding="async" width="440" height="182" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Global_carbon_stocks.png/660px-Global_carbon_stocks.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Global_carbon_stocks.png/880px-Global_carbon_stocks.png 2x" data-file-width="2550" data-file-height="1053" /></a><figcaption>Diagram showing relative sizes (in gigatonnes) of the main storage pools of carbon on Earth. Cumulative changes (thru year 2014) from land use and emissions of fossil carbon are included for comparison.<sup id="cite_ref-janow_147-0" class="reference"><a href="#cite_note-janow-147"><span class="cite-bracket">&#91;</span>147<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>The geologic component of the carbon cycle operates slowly in comparison to the other parts of the global carbon cycle. It is one of the most important determinants of the amount of carbon in the atmosphere, and thus of global temperatures.<sup id="cite_ref-NASA_148-0" class="reference"><a href="#cite_note-NASA-148"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup> </p><p>As the biological pump plays an important role in the Earth's carbon cycle, significant effort is spent quantifying its strength. However, because they occur as a result of poorly constrained ecological interactions usually at depth, the processes that form the biological pump are difficult to measure. A common method is to estimate primary production fuelled by <a href="/wiki/Nitrate" title="Nitrate">nitrate</a> and <a href="/wiki/Ammonium" title="Ammonium">ammonium</a> as these nutrients have different sources that are related to the remineralisation of sinking material. From these it is possible to derive the so-called <a href="/wiki/F-ratio_(oceanography)" title="F-ratio (oceanography)">f-ratio</a>, a proxy for the local strength of the biological pump. Applying the results of local studies to the global scale is complicated by the role the ocean's circulation plays in different ocean regions.<sup id="cite_ref-marinov06_149-0" class="reference"><a href="#cite_note-marinov06-149"><span class="cite-bracket">&#91;</span>149<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Effects_of_climate_change">Effects of climate change</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=30" title="Edit section: Effects of climate change"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Temperature_dependence_of_the_biological_pump.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Temperature_dependence_of_the_biological_pump.jpg/440px-Temperature_dependence_of_the_biological_pump.jpg" decoding="async" width="440" height="338" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Temperature_dependence_of_the_biological_pump.jpg/660px-Temperature_dependence_of_the_biological_pump.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Temperature_dependence_of_the_biological_pump.jpg/880px-Temperature_dependence_of_the_biological_pump.jpg 2x" data-file-width="2764" data-file-height="2121" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Effect of temperature on the biological pump</b></div> Effects of different water temperatures on organic carbon export and remineralization: more carbon is sequestered when temperature is colder compared to when is warmer.<sup id="cite_ref-Boscolo-Galazzo2018_9-1" class="reference"><a href="#cite_note-Boscolo-Galazzo2018-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Effects_of_climate_change_on_oceans" title="Effects of climate change on oceans">Effects of climate change on oceans</a></div> <p>Changes in land use, the <a href="/wiki/Combustion" title="Combustion">combustion</a> of <a href="/wiki/Fossil_fuel" title="Fossil fuel">fossil fuels</a>, and the production of <a href="/wiki/Cement" title="Cement">cement</a> have led to an increase in CO<sub>2</sub> concentration in the atmosphere. At present, about one third (approximately 2 Pg C y<sup>−1</sup> = 2 × 10<sup>15</sup> grams of carbon per year)<sup id="cite_ref-tak02_150-0" class="reference"><a href="#cite_note-tak02-150"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-orr97_151-0" class="reference"><a href="#cite_note-orr97-151"><span class="cite-bracket">&#91;</span>151<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Reliable_sources" title="Wikipedia:Reliable sources"><span title="The material near this tag may rely on an unreliable source. rather old sources (May 2021)">unreliable source?</span></a></i>&#93;</sup> of anthropogenic emissions of CO<sub>2</sub> may be entering the ocean, but this is quite uncertain.<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">&#91;</span>152<span class="cite-bracket">&#93;</span></a></sup> Some research suggests that a link between elevated CO<sub>2</sub> and marine primary production exists.<sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Arctic_carbon_fluxes_influenced_by_sea_ice_decline_and_permafrost_thaw.webp" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Arctic_carbon_fluxes_influenced_by_sea_ice_decline_and_permafrost_thaw.webp/440px-Arctic_carbon_fluxes_influenced_by_sea_ice_decline_and_permafrost_thaw.webp.png" decoding="async" width="440" height="226" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Arctic_carbon_fluxes_influenced_by_sea_ice_decline_and_permafrost_thaw.webp/660px-Arctic_carbon_fluxes_influenced_by_sea_ice_decline_and_permafrost_thaw.webp.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Arctic_carbon_fluxes_influenced_by_sea_ice_decline_and_permafrost_thaw.webp/813px-Arctic_carbon_fluxes_influenced_by_sea_ice_decline_and_permafrost_thaw.webp.png 2x" data-file-width="813" data-file-height="418" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Arctic carbon fluxes influenced by sea ice decline<br />and permafrost thaw&#8202;<sup id="cite_ref-Parmentier2017_154-0" class="reference"><a href="#cite_note-Parmentier2017-154"><span class="cite-bracket">&#91;</span>154<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Parmentier2013_155-0" class="reference"><a href="#cite_note-Parmentier2013-155"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup></div></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Vertically_integrated_anthropogenic_dissolved_inorganic_carbon_1990s_(GLODAP).png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Vertically_integrated_anthropogenic_dissolved_inorganic_carbon_1990s_%28GLODAP%29.png/440px-Vertically_integrated_anthropogenic_dissolved_inorganic_carbon_1990s_%28GLODAP%29.png" decoding="async" width="440" height="305" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Vertically_integrated_anthropogenic_dissolved_inorganic_carbon_1990s_%28GLODAP%29.png/660px-Vertically_integrated_anthropogenic_dissolved_inorganic_carbon_1990s_%28GLODAP%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/46/Vertically_integrated_anthropogenic_dissolved_inorganic_carbon_1990s_%28GLODAP%29.png/880px-Vertically_integrated_anthropogenic_dissolved_inorganic_carbon_1990s_%28GLODAP%29.png 2x" data-file-width="1637" data-file-height="1133" /></a><figcaption> Global estimate of the vertically integrated anthropogenic <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">dissolved inorganic carbon</a> (DIC) in the ocean in recent times (1990s)</figcaption></figure> <p><a href="/wiki/Climate_change" title="Climate change">Climate change</a> may affect the biological pump in the future by warming and <a href="/wiki/Ocean_stratification" title="Ocean stratification">stratifying</a> the surface ocean. It is believed that this could decrease the supply of nutrients to the euphotic zone, reducing primary production there. Also, changes in the ecological success of <a href="/wiki/Marine_biogenic_calcification" title="Marine biogenic calcification">calcifying organisms</a> caused by <a href="/wiki/Ocean_acidification" title="Ocean acidification">ocean acidification</a> may affect the biological pump by altering the strength of the hard tissues pump.<sup id="cite_ref-orr05_156-0" class="reference"><a href="#cite_note-orr05-156"><span class="cite-bracket">&#91;</span>156<span class="cite-bracket">&#93;</span></a></sup> This may then have a "knock-on" effect on the soft tissues pump because calcium carbonate acts to ballast sinking organic material.<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">&#91;</span>157<span class="cite-bracket">&#93;</span></a></sup> </p><p>The second diagram on the right shows some possible effects of sea ice decline and permafrost thaw on Arctic carbon fluxes. On land, plants take up carbon while microorganisms in the soil produce methane and respire CO<sub>2</sub>. Lakes are net emitters of methane, and organic and inorganic carbon (dissolved and particulate) flow into the ocean through freshwater systems. In the ocean, methane can be released from thawing subsea permafrost, and CO<sub>2</sub> is absorbed due to an undersaturation of CO<sub>2</sub> in the water compared with the atmosphere. In addition, multiple fluxes are closely associated to sea ice. Current best estimates of atmospheric fluxes are given in Tg C year<sup>−1</sup>, where available. Note that the emission estimate for lakes is for the area North of ~50º N rather than the narrower definition of arctic tundra for the other terrestrial fluxes. When available, uncertainty ranges are shown in brackets. The arrows do not represent the size of each flux.<sup id="cite_ref-Parmentier2013_155-1" class="reference"><a href="#cite_note-Parmentier2013-155"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Parmentier2017_154-1" class="reference"><a href="#cite_note-Parmentier2017-154"><span class="cite-bracket">&#91;</span>154<span class="cite-bracket">&#93;</span></a></sup> </p><p>The biological pump is thought to have played significant roles in atmospheric CO<sub>2</sub> fluctuations during past glacial-interglacial periods. However, it is not yet clear how the biological pump will respond to future climate change.<sup id="cite_ref-Turner2015_56-5" class="reference"><a href="#cite_note-Turner2015-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> For such predictions to be reasonable, it is important to first decipher the response of phytoplankton, one of the key components of the biological pump to future changes in atmospheric CO<sub>2</sub>. Due to their phylogenetic diversity, different phytoplankton taxa will likely respond to climate change in different ways.<sup id="cite_ref-Collins2013_105-5" class="reference"><a href="#cite_note-Collins2013-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> For instance, a decrease in the abundance of diatom is expected due to increased stratification in the future ocean.<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> Diatoms are highly efficient in transporting carbon to depths by forming large, rapidly sinking aggregates and their reduced numbers could in turn lead to decreased carbon export.<sup id="cite_ref-Passow2012_64-5" class="reference"><a href="#cite_note-Passow2012-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </p><p>Further, decreased ocean pH due to ocean acidification may thwart the ability of coccolithophores to generate calcareous plates, potentially affecting the biological pump;<sup id="cite_ref-Collins2013_105-6" class="reference"><a href="#cite_note-Collins2013-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> however, it appears that some species are more sensitive than others.<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">&#91;</span>159<span class="cite-bracket">&#93;</span></a></sup> Thus, future changes in the relative abundance of these or other phytoplankton taxa could have a marked impact on total ocean productivity, subsequently affecting ocean biogeochemistry and carbon storage. </p><p>A 2015 study determined that <a href="/wiki/Coccolithophore" title="Coccolithophore">coccolithophore</a> concentrations in the North Atlantic have increased by an order of magnitude since the 1960s and an increase in absorbed CO<sub>2</sub>, as well as temperature, were modeled to be the most likely cause of this increase.<sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">&#91;</span>160<span class="cite-bracket">&#93;</span></a></sup> </p><p>In a 2017 study, scientists used <a href="/wiki/Species_distribution_modelling" title="Species distribution modelling">species distribution modelling</a> (SDM) to predict the future global distribution of two phytoplankton species important to the biological pump: the diatom <i><a href="/wiki/Chaetoceros_diadema" title="Chaetoceros diadema">Chaetoceros diadema</a></i> and the coccolithophore <i><a href="/wiki/Emiliania_huxleyi" class="mw-redirect" title="Emiliania huxleyi">Emiliania huxleyi</a></i>.<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">&#91;</span>161<span class="cite-bracket">&#93;</span></a></sup> They employed environmental data described in the <a href="/wiki/IPCC" class="mw-redirect" title="IPCC">IPCC</a> <a href="/wiki/Representative_Concentration_Pathways#RCP_8.5" class="mw-redirect" title="Representative Concentration Pathways">Representative Concentration Pathways scenario 8.5</a>, which predicts <a href="/wiki/Radiative_forcing" title="Radiative forcing">radiative forcing</a> in the year 2100 relative to pre-industrial values. Their modelling results predicted that the total ocean area covered by <i>C. diadema</i> and <i>E. huxleyi</i> would decline by 8% and 16%, respectively, under the examined climate scenario. They predicted changes in the range and distribution of these two phytoplankton species under these future ocean conditions, if realized, might result in reduced contribution to carbon sequestration via the biological pump.<sup id="cite_ref-Basu2018_61-8" class="reference"><a href="#cite_note-Basu2018-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> In 2019, a study indicated that at current rates of seawater acidification, we could see Antarctic phytoplanktons smaller and less effective at storing carbon before the end of the century.<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">&#91;</span>162<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Monitoring">Monitoring</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=31" title="Edit section: Monitoring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Monitoring_the_ocean_biological_carbon_pump.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Monitoring_the_ocean_biological_carbon_pump.jpg/440px-Monitoring_the_ocean_biological_carbon_pump.jpg" decoding="async" width="440" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Monitoring_the_ocean_biological_carbon_pump.jpg/660px-Monitoring_the_ocean_biological_carbon_pump.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Monitoring_the_ocean_biological_carbon_pump.jpg/880px-Monitoring_the_ocean_biological_carbon_pump.jpg 2x" data-file-width="3160" data-file-height="1750" /></a><figcaption><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><b>Monitoring the ocean biological carbon pump</b>&#8202;<sup id="cite_ref-Brewin2021_4-6" class="reference"><a href="#cite_note-Brewin2021-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Pools, fluxes and processes that form the ocean biological carbon pump, and current methods used to monitor them. Bold black text and thick black arrows represent the key export pathways and interactions with other domains (land and atmosphere). Global stocks of the different carbon pools in the ocean are given in the box on the left; the four major kinds of pools – <a href="/wiki/Dissolved_inorganic_carbon" title="Dissolved inorganic carbon">DIC</a>, <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">DOC</a>, <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">POC</a> and <a href="/wiki/Particulate_inorganic_carbon" title="Particulate inorganic carbon">PIC</a> – are given in different colours.</div> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><small>This figure has been inspired by, and builds on, two earlier figures, one from the <a href="/wiki/CEOS" class="mw-redirect" title="CEOS">CEOS</a> carbon from space report&#8202;<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">&#91;</span>163<span class="cite-bracket">&#93;</span></a></sup> and the other from the NASA EXPORTS plan.<sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">&#91;</span>164<span class="cite-bracket">&#93;</span></a></sup></small></div></figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Remote_sensing_(oceanography)" title="Remote sensing (oceanography)">Remote sensing (oceanography)</a></div> <p>Monitoring the biological pump is critical to understanding how the Earth's carbon cycle is changing. A variety of techniques are used to monitor the biological pump, which can be deployed from various platforms such as ships, autonomous vehicles, and satellites. At present, satellite remote sensing is the only tool available for viewing the entire surface ocean at high temporal and spatial scales.<sup id="cite_ref-Brewin2021_4-7" class="reference"><a href="#cite_note-Brewin2021-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Needed_research">Needed research</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=32" title="Edit section: Needed research"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Multidisciplinary_observations_in_the_water_column_needed_to_understand_the_biological_pump.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/15/Multidisciplinary_observations_in_the_water_column_needed_to_understand_the_biological_pump.jpg/440px-Multidisciplinary_observations_in_the_water_column_needed_to_understand_the_biological_pump.jpg" decoding="async" width="440" height="352" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/15/Multidisciplinary_observations_in_the_water_column_needed_to_understand_the_biological_pump.jpg/660px-Multidisciplinary_observations_in_the_water_column_needed_to_understand_the_biological_pump.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/15/Multidisciplinary_observations_in_the_water_column_needed_to_understand_the_biological_pump.jpg/880px-Multidisciplinary_observations_in_the_water_column_needed_to_understand_the_biological_pump.jpg 2x" data-file-width="2132" data-file-height="1707" /></a><figcaption> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Multidisciplinary observations still needed in the deep water column<br />to properly understand the biological pump&#8202;<sup id="cite_ref-Levin2019_165-0" class="reference"><a href="#cite_note-Levin2019-165"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup></div> <div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><small>EOVs = Essential Ocean Variables</small></div></figcaption></figure> <p>Multidisciplinary observations are still needed in the deep <a href="/wiki/Water_column" title="Water column">water column</a> to properly understand the biological pump:<sup id="cite_ref-Levin2019_165-1" class="reference"><a href="#cite_note-Levin2019-165"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Physics: stratification affects particle sinking; understanding the origin of the particles and the residence time of the DIC from particle remineralization in the deep ocean requires measurement of advection and mixing.<sup id="cite_ref-Levin2019_165-2" class="reference"><a href="#cite_note-Levin2019-165"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup></li> <li>Biogeochemistry: export/mixing down of particulate and dissolved organic matter from the surface layer determines labile organic matter arriving at the seafloor, which is either respired by seafloor biota or stored for longer times in the sediment.<sup id="cite_ref-Levin2019_165-3" class="reference"><a href="#cite_note-Levin2019-165"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup></li> <li>Biology and ecosystems: zooplankton and microorganisms break down and remineralize sinking particles in the water column. Exported organic matter feeds all water column and benthic biota (zooplankton, benthic invertebrates, microbes) sustaining their biomass, density, and biodiversity.<sup id="cite_ref-Levin2019_165-4" class="reference"><a href="#cite_note-Levin2019-165"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=33" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/F-ratio_(oceanography)" title="F-ratio (oceanography)">f-ratio (oceanography)</a></li> <li><a href="/wiki/Lysocline" title="Lysocline">Lysocline</a></li> <li><a href="/wiki/Mooring_(oceanography)" title="Mooring (oceanography)">Mooring (oceanography)</a></li> <li><a href="/wiki/Apparent_oxygen_utilisation" title="Apparent oxygen utilisation">Apparent oxygen utilisation</a></li></ul> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Biological_pump&amp;action=edit&amp;section=34" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Sigman2006-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sigman2006_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sigman2006_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Sigman DM &amp; GH Haug. 2006. The biological pump in the past. In: Treatise on Geochemistry; vol. 6, (ed.). <a href="/wiki/Pergamon_Press" title="Pergamon Press">Pergamon Press</a>, pp. 491-528</span> </li> <li id="cite_note-Hain2014-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hain2014_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hain2014_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHainSigmanHaug2014" class="citation book cs1">Hain, M.P.; Sigman, D.M.; Haug, G.H. (2014). "The Biological Pump in the Past". <a rel="nofollow" class="external text" href="https://earth-system-biogeochemistry.net/wp-content/uploads/2021/05/Hain_et_al_2014_ToG.pdf"><i>Treatise on Geochemistry</i></a> <span class="cs1-format">(PDF)</span>. Vol.&#160;8 (2&#160;ed.). pp.&#160;485–517. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB978-0-08-095975-7.00618-5">10.1016/B978-0-08-095975-7.00618-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780080983004" title="Special:BookSources/9780080983004"><bdi>9780080983004</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">1 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Biological+Pump+in+the+Past&amp;rft.btitle=Treatise+on+Geochemistry&amp;rft.pages=485-517&amp;rft.edition=2&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1016%2FB978-0-08-095975-7.00618-5&amp;rft.isbn=9780080983004&amp;rft.aulast=Hain&amp;rft.aufirst=M.P.&amp;rft.au=Sigman%2C+D.M.&amp;rft.au=Haug%2C+G.H.&amp;rft_id=https%3A%2F%2Fearth-system-biogeochemistry.net%2Fwp-content%2Fuploads%2F2021%2F05%2FHain_et_al_2014_ToG.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNowickiDeVriesSiegel2022" class="citation journal cs1">Nowicki, Michael; DeVries, Tim; Siegel, David A. (March 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2021GB007083">"Quantifying the Carbon Export and Sequestration Pathways of the Ocean's Biological Carbon Pump"</a>. <i>Global Biogeochemical Cycles</i>. <b>36</b> (3). <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022GBioC..3607083N">2022GBioC..3607083N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2021GB007083">10.1029/2021GB007083</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:246458736">246458736</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Quantifying+the+Carbon+Export+and+Sequestration+Pathways+of+the+Ocean%27s+Biological+Carbon+Pump&amp;rft.volume=36&amp;rft.issue=3&amp;rft.date=2022-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A246458736%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1029%2F2021GB007083&amp;rft_id=info%3Abibcode%2F2022GBioC..3607083N&amp;rft.aulast=Nowicki&amp;rft.aufirst=Michael&amp;rft.au=DeVries%2C+Tim&amp;rft.au=Siegel%2C+David+A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2021GB007083&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Brewin2021-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Brewin2021_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Brewin2021_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Brewin2021_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Brewin2021_4-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Brewin2021_4-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Brewin2021_4-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Brewin2021_4-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Brewin2021_4-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrewinSathyendranathPlattBouman2021" class="citation journal cs1">Brewin, Robert J.W.; <a href="/wiki/Shubha_Sathyendranath" title="Shubha Sathyendranath">Sathyendranath, Shubha</a>; Platt, Trevor; Bouman, Heather; et&#160;al. (2021). "Sensing the ocean biological carbon pump from space: A review of capabilities, concepts, research gaps and future developments". <i>Earth-Science Reviews</i>. <b>217</b>. Elsevier BV: 103604. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021ESRv..21703604B">2021ESRv..21703604B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.earscirev.2021.103604">10.1016/j.earscirev.2021.103604</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10871%2F125469">10871/125469</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0012-8252">0012-8252</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:233682755">233682755</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Earth-Science+Reviews&amp;rft.atitle=Sensing+the+ocean+biological+carbon+pump+from+space%3A+A+review+of+capabilities%2C+concepts%2C+research+gaps+and+future+developments&amp;rft.volume=217&amp;rft.pages=103604&amp;rft.date=2021&amp;rft_id=info%3Ahdl%2F10871%2F125469&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A233682755%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2021ESRv..21703604B&amp;rft.issn=0012-8252&amp;rft_id=info%3Adoi%2F10.1016%2Fj.earscirev.2021.103604&amp;rft.aulast=Brewin&amp;rft.aufirst=Robert+J.W.&amp;rft.au=Sathyendranath%2C+Shubha&amp;rft.au=Platt%2C+Trevor&amp;rft.au=Bouman%2C+Heather&amp;rft.au=Ciavatta%2C+Stefano&amp;rft.au=Dall%27Olmo%2C+Giorgio&amp;rft.au=Dingle%2C+James&amp;rft.au=Groom%2C+Steve&amp;rft.au=J%C3%B6nsson%2C+Bror&amp;rft.au=Kostadinov%2C+Tihomir+S.&amp;rft.au=Kulk%2C+Gemma&amp;rft.au=Laine%2C+Marko&amp;rft.au=Mart%C3%ADnez-Vicente%2C+Victor&amp;rft.au=Psarra%2C+Stella&amp;rft.au=Raitsos%2C+Dionysios+E.&amp;rft.au=Richardson%2C+Katherine&amp;rft.au=Rio%2C+Marie-H%C3%A9l%C3%A8ne&amp;rft.au=Rousseaux%2C+C%C3%A9cile+S.&amp;rft.au=Salisbury%2C+Joe&amp;rft.au=Shutler%2C+Jamie+D.&amp;rft.au=Walker%2C+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified material was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-Volk1885-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Volk1885_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVolkHoffert2013" class="citation book cs1">Volk, Tyler; Hoffert, Martin I. (2013). "Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes". <i>The Carbon Cycle and Atmospheric CO2&#160;: Natural Variations Archean to Present</i>. Geophysical Monograph Series. pp.&#160;99–110. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2FGM032p0099">10.1029/GM032p0099</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781118664322" title="Special:BookSources/9781118664322"><bdi>9781118664322</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Ocean+Carbon+Pumps%3A+Analysis+of+Relative+Strengths+and+Efficiencies+in+Ocean-Driven+Atmospheric+CO2+Changes&amp;rft.btitle=The+Carbon+Cycle+and+Atmospheric+CO2+%3A+Natural+Variations+Archean+to+Present&amp;rft.series=Geophysical+Monograph+Series&amp;rft.pages=99-110&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1029%2FGM032p0099&amp;rft.isbn=9781118664322&amp;rft.aulast=Volk&amp;rft.aufirst=Tyler&amp;rft.au=Hoffert%2C+Martin+I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Sarmiento2013-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sarmiento2013_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sarmiento2013_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSarmiento2013" class="citation book cs1">Sarmiento, Jorge L. (17 July 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QWUeAAAAQBAJ&amp;q=%22Ocean+Biogeochemical+Dynamics%22"><i>Ocean Biogeochemical Dynamics</i></a>. Princeton University Press. p.&#160;526. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781400849079" title="Special:BookSources/9781400849079"><bdi>9781400849079</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ocean+Biogeochemical+Dynamics&amp;rft.pages=526&amp;rft.pub=Princeton+University+Press&amp;rft.date=2013-07-17&amp;rft.isbn=9781400849079&amp;rft.aulast=Sarmiento&amp;rft.aufirst=Jorge+L.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQWUeAAAAQBAJ%26q%3D%2522Ocean%2BBiogeochemical%2BDynamics%2522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Middelburg2019-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Middelburg2019_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiddelburg2019" class="citation book cs1">Middelburg, Jack J. (2019). "The Return from Organic to Inorganic Carbon". <i>Marine Carbon Biogeochemistry</i>. SpringerBriefs in Earth System Sciences. pp.&#160;37–56. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-10822-9_3">10.1007/978-3-030-10822-9_3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-10821-2" title="Special:BookSources/978-3-030-10821-2"><bdi>978-3-030-10821-2</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:104330175">104330175</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Return+from+Organic+to+Inorganic+Carbon&amp;rft.btitle=Marine+Carbon+Biogeochemistry&amp;rft.series=SpringerBriefs+in+Earth+System+Sciences&amp;rft.pages=37-56&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A104330175%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-10822-9_3&amp;rft.isbn=978-3-030-10821-2&amp;rft.aulast=Middelburg&amp;rft.aufirst=Jack+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-DeLaRocha2014-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-DeLaRocha2014_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-DeLaRocha2014_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-DeLaRocha2014_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-DeLaRocha2014_8-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-DeLaRocha2014_8-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-DeLaRocha2014_8-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-DeLaRocha2014_8-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_la_RochaPassow2014" class="citation book cs1">de la Rocha, C.L.; Passow, U. (2014). "The Biological Pump". <i>Treatise on Geochemistry</i>. pp.&#160;93–122. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB978-0-08-095975-7.00604-5">10.1016/B978-0-08-095975-7.00604-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780080983004" title="Special:BookSources/9780080983004"><bdi>9780080983004</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Biological+Pump&amp;rft.btitle=Treatise+on+Geochemistry&amp;rft.pages=93-122&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1016%2FB978-0-08-095975-7.00604-5&amp;rft.isbn=9780080983004&amp;rft.aulast=de+la+Rocha&amp;rft.aufirst=C.L.&amp;rft.au=Passow%2C+U.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Boscolo-Galazzo2018-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boscolo-Galazzo2018_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boscolo-Galazzo2018_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoscolo-GalazzoCrichtonBarkerPearson2018" class="citation journal cs1">Boscolo-Galazzo, F.; Crichton, K.A.; Barker, S.; Pearson, P.N. (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.gloplacha.2018.08.017">"Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?"</a>. <i>Global and Planetary Change</i>. <b>170</b>: 201–212. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018GPC...170..201B">2018GPC...170..201B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.gloplacha.2018.08.017">10.1016/j.gloplacha.2018.08.017</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+and+Planetary+Change&amp;rft.atitle=Temperature+dependency+of+metabolic+rates+in+the+upper+ocean%3A+A+positive+feedback+to+global+climate+change%3F&amp;rft.volume=170&amp;rft.pages=201-212&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1016%2Fj.gloplacha.2018.08.017&amp;rft_id=info%3Abibcode%2F2018GPC...170..201B&amp;rft.aulast=Boscolo-Galazzo&amp;rft.aufirst=F.&amp;rft.au=Crichton%2C+K.A.&amp;rft.au=Barker%2C+S.&amp;rft.au=Pearson%2C+P.N.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.gloplacha.2018.08.017&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-Ducklow2001-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ducklow2001_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ducklow2001_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ducklow2001_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Ducklow2001_10-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDucklowSteinbergBuesseler2001" class="citation journal cs1">Ducklow, Hugh; Steinberg, Deborah; Buesseler, Ken (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.5670%2Foceanog.2001.06">"Upper Ocean Carbon Export and the Biological Pump"</a>. <i>Oceanography</i>. <b>14</b> (4): 50–58. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5670%2Foceanog.2001.06">10.5670/oceanog.2001.06</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Oceanography&amp;rft.atitle=Upper+Ocean+Carbon+Export+and+the+Biological+Pump&amp;rft.volume=14&amp;rft.issue=4&amp;rft.pages=50-58&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.5670%2Foceanog.2001.06&amp;rft.aulast=Ducklow&amp;rft.aufirst=Hugh&amp;rft.au=Steinberg%2C+Deborah&amp;rft.au=Buesseler%2C+Ken&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.5670%252Foceanog.2001.06&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Monroy, P., Hernández-García, E., Rossi, V. and López, C. (2017) "Modeling the dynamical sinking of biogenic particles in oceanic flow". <i>Nonlinear Processes in Geophysics</i>, <b>24</b>(2): 293–305. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5194%2Fnpg-24-293-2017">10.5194/npg-24-293-2017</a>. <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/3.0/">Creative Commons Attribution 3.0 International License</a>.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Simon, M., Grossart, H., Schweitzer, B. and <a href="/wiki/Helle_Ploug" title="Helle Ploug">Ploug, H.</a> (2002) "Microbial ecology of organic aggregates in aquatic ecosystems". <i>Aquatic microbial ecology</i>, <b>28</b>: 175–211. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fame028175">10.3354/ame028175</a>.</span> </li> <li id="cite_note-Sigman&amp;Hain2012-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sigman&amp;Hain2012_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSigmanHain2012" class="citation journal cs1">Sigman, D.M.; Hain, M.P. (2012). <a rel="nofollow" class="external text" href="https://earth-system-biogeochemistry.net/wp-content/uploads/2021/05/Sigman_and_Hain_2012_NatureEdu.pdf">"The Biological Productivity of the Ocean"</a> <span class="cs1-format">(PDF)</span>. <i>Nature Education Knowledge</i>. <b>3</b> (6): 1–16<span class="reference-accessdate">. Retrieved <span class="nowrap">1 June</span> 2015</span>. <q>The value of NEP [Net Ecosystem Production] depends on the boundaries defined for the ecosystem. If one considers the sunlit surface ocean down to the 1% light level (the "euphotic zone") over the course of an entire year, then NEP is equivalent to the <a href="/wiki/Particulate_organic_carbon" class="mw-redirect" title="Particulate organic carbon">particulate organic carbon</a> sinking into the dark ocean interior plus the <a href="/wiki/Dissolved_organic_carbon" title="Dissolved organic carbon">dissolved organic carbon</a> being circulated out of the euphotic zone. In this case, NEP is also often referred to as "export production" (or "new production" (Dugdale &amp; Goering 1967), as discussed below).</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Education+Knowledge&amp;rft.atitle=The+Biological+Productivity+of+the+Ocean&amp;rft.volume=3&amp;rft.issue=6&amp;rft.pages=1-16&amp;rft.date=2012&amp;rft.aulast=Sigman&amp;rft.aufirst=D.M.&amp;rft.au=Hain%2C+M.P.&amp;rft_id=https%3A%2F%2Fearth-system-biogeochemistry.net%2Fwp-content%2Fuploads%2F2021%2F05%2FSigman_and_Hain_2012_NatureEdu.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartinyPhamPrimeauVrugt2013" class="citation journal cs1">Martiny, Adam C.; Pham, Chau T. A.; Primeau, Francois W.; Vrugt, Jasper A.; Moore, J. Keith; Levin, Simon A.; Lomas, Michael W. (April 2013). <a rel="nofollow" class="external text" href="http://www.escholarship.org/uc/item/68n582hp">"Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter"</a>. <i>Nature Geoscience</i>. <b>6</b> (4): 279–283. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatGe...6..279M">2013NatGe...6..279M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2FNGEO1757">10.1038/NGEO1757</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5677709">5677709</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Geoscience&amp;rft.atitle=Strong+latitudinal+patterns+in+the+elemental+ratios+of+marine+plankton+and+organic+matter&amp;rft.volume=6&amp;rft.issue=4&amp;rft.pages=279-283&amp;rft.date=2013-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5677709%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2FNGEO1757&amp;rft_id=info%3Abibcode%2F2013NatGe...6..279M&amp;rft.aulast=Martiny&amp;rft.aufirst=Adam+C.&amp;rft.au=Pham%2C+Chau+T.+A.&amp;rft.au=Primeau%2C+Francois+W.&amp;rft.au=Vrugt%2C+Jasper+A.&amp;rft.au=Moore%2C+J.+Keith&amp;rft.au=Levin%2C+Simon+A.&amp;rft.au=Lomas%2C+Michael+W.&amp;rft_id=http%3A%2F%2Fwww.escholarship.org%2Fuc%2Fitem%2F68n582hp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Heinrichs2020-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Heinrichs2020_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Heinrichs2020_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Heinrichs2020_15-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeinrichsMoriDlugosch2020" class="citation book cs1">Heinrichs, Mara E.; Mori, Corinna; Dlugosch, Leon (2020). "Complex Interactions Between Aquatic Organisms and Their Chemical Environment Elucidated from Different Perspectives". <i>YOUMARES 9 - the Oceans: Our Research, Our Future</i>. pp.&#160;279–297. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-20389-4_15">10.1007/978-3-030-20389-4_15</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-20388-7" title="Special:BookSources/978-3-030-20388-7"><bdi>978-3-030-20388-7</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:210308256">210308256</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Complex+Interactions+Between+Aquatic+Organisms+and+Their+Chemical+Environment+Elucidated+from+Different+Perspectives&amp;rft.btitle=YOUMARES+9+-+the+Oceans%3A+Our+Research%2C+Our+Future&amp;rft.pages=279-297&amp;rft.date=2020&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A210308256%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-20389-4_15&amp;rft.isbn=978-3-030-20388-7&amp;rft.aulast=Heinrichs&amp;rft.aufirst=Mara+E.&amp;rft.au=Mori%2C+Corinna&amp;rft.au=Dlugosch%2C+Leon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-Carlson2002-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Carlson2002_16-0">^</a></b></span> <span class="reference-text">Carlson CA (2002) [books.google.com/books?id=D6TMKZOgldAC&amp;q=%22Production+and+removal+processes%22&amp;pg=PA91 "Production and removal processes"]. In: Hansell DA, Carlson CA (eds) <i>Biogeochemistry of marine dissolved organic matter</i>. Academic Press, San Diego, pages 91–151. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780123238412" title="Special:BookSources/9780123238412">9780123238412</a>.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCapelleKuzykPapakyriakouGuéguen2020" class="citation journal cs1">Capelle, David W.; Kuzyk, Zou Zou A.; Papakyriakou, Tim; Guéguen, Céline; Miller, Lisa A.; MacDonald, Robie W. (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pocean.2020.102319">"Effect of terrestrial organic matter on ocean acidification and CO2 flux in an Arctic shelf sea"</a>. <i>Progress in Oceanography</i>. <b>185</b>: 102319. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PrOce.18502319C">2020PrOce.18502319C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pocean.2020.102319">10.1016/j.pocean.2020.102319</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1993%2F34767">1993/34767</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Oceanography&amp;rft.atitle=Effect+of+terrestrial+organic+matter+on+ocean+acidification+and+CO2+flux+in+an+Arctic+shelf+sea&amp;rft.volume=185&amp;rft.pages=102319&amp;rft.date=2020&amp;rft_id=info%3Ahdl%2F1993%2F34767&amp;rft_id=info%3Adoi%2F10.1016%2Fj.pocean.2020.102319&amp;rft_id=info%3Abibcode%2F2020PrOce.18502319C&amp;rft.aulast=Capelle&amp;rft.aufirst=David+W.&amp;rft.au=Kuzyk%2C+Zou+Zou+A.&amp;rft.au=Papakyriakou%2C+Tim&amp;rft.au=Gu%C3%A9guen%2C+C%C3%A9line&amp;rft.au=Miller%2C+Lisa+A.&amp;rft.au=MacDonald%2C+Robie+W.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.pocean.2020.102319&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHedges1992" class="citation journal cs1">Hedges, John I. (1992). "Global biogeochemical cycles: progress and problems". <i>Marine Chemistry</i>. <b>39</b> (1–3). Elsevier BV: 67–93. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992MarCh..39...67H">1992MarCh..39...67H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-4203%2892%2990096-s">10.1016/0304-4203(92)90096-s</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0304-4203">0304-4203</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Chemistry&amp;rft.atitle=Global+biogeochemical+cycles%3A+progress+and+problems&amp;rft.volume=39&amp;rft.issue=1%E2%80%933&amp;rft.pages=67-93&amp;rft.date=1992&amp;rft.issn=0304-4203&amp;rft_id=info%3Adoi%2F10.1016%2F0304-4203%2892%2990096-s&amp;rft_id=info%3Abibcode%2F1992MarCh..39...67H&amp;rft.aulast=Hedges&amp;rft.aufirst=John+I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeebeWolf-Gladrow2001" class="citation book cs1">Zeebe, Richard E.; Wolf-Gladrow, Dieter A. (2001). <i>CO2 in seawater&#160;: equilibrium, kinetics, isotopes</i>. Amsterdam. p.&#160;65. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-052922-6" title="Special:BookSources/978-0-08-052922-6"><bdi>978-0-08-052922-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/246683387">246683387</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=CO2+in+seawater+%3A+equilibrium%2C+kinetics%2C+isotopes&amp;rft.place=Amsterdam&amp;rft.pages=65&amp;rft.date=2001&amp;rft_id=info%3Aoclcnum%2F246683387&amp;rft.isbn=978-0-08-052922-6&amp;rft.aulast=Zeebe&amp;rft.aufirst=Richard+E.&amp;rft.au=Wolf-Gladrow%2C+Dieter+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRostRiebesell2004" class="citation book cs1">Rost, Björn; Riebesell, Ulf (2004). "Coccolithophores and the biological pump: Responses to environmental changes". <i>Coccolithophores</i>. Berlin, Heidelberg: Springer Berlin Heidelberg. pp.&#160;99–125. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-662-06278-4_5">10.1007/978-3-662-06278-4_5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-06016-8" title="Special:BookSources/978-3-642-06016-8"><bdi>978-3-642-06016-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Coccolithophores+and+the+biological+pump%3A+Responses+to+environmental+changes&amp;rft.btitle=Coccolithophores&amp;rft.place=Berlin%2C+Heidelberg&amp;rft.pages=99-125&amp;rft.pub=Springer+Berlin+Heidelberg&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-662-06278-4_5&amp;rft.isbn=978-3-642-06016-8&amp;rft.aulast=Rost&amp;rft.aufirst=Bj%C3%B6rn&amp;rft.au=Riebesell%2C+Ulf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeebe2012" class="citation journal cs1">Zeebe, Richard E. (30 May 2012). "History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification". <i>Annual Review of Earth and Planetary Sciences</i>. <b>40</b> (1). Annual Reviews: 141–165. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012AREPS..40..141Z">2012AREPS..40..141Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-earth-042711-105521">10.1146/annurev-earth-042711-105521</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0084-6597">0084-6597</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Earth+and+Planetary+Sciences&amp;rft.atitle=History+of+Seawater+Carbonate+Chemistry%2C+Atmospheric+CO2%2C+and+Ocean+Acidification&amp;rft.volume=40&amp;rft.issue=1&amp;rft.pages=141-165&amp;rft.date=2012-05-30&amp;rft.issn=0084-6597&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev-earth-042711-105521&amp;rft_id=info%3Abibcode%2F2012AREPS..40..141Z&amp;rft.aulast=Zeebe&amp;rft.aufirst=Richard+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Hansell2013a-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hansell2013a_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hansell2013a_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHansellCarlson2013" class="citation journal cs1">Hansell, Dennis A.; Carlson, Craig A. (12 August 2013). "Localized refractory dissolved organic carbon sinks in the deep ocean". <i>Global Biogeochemical Cycles</i>. <b>27</b> (3). American Geophysical Union (AGU): 705–710. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fgbc.20067">10.1002/gbc.20067</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0886-6236">0886-6236</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17175370">17175370</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Localized+refractory+dissolved+organic+carbon+sinks+in+the+deep+ocean&amp;rft.volume=27&amp;rft.issue=3&amp;rft.pages=705-710&amp;rft.date=2013-08-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17175370%23id-name%3DS2CID&amp;rft.issn=0886-6236&amp;rft_id=info%3Adoi%2F10.1002%2Fgbc.20067&amp;rft.aulast=Hansell&amp;rft.aufirst=Dennis+A.&amp;rft.au=Carlson%2C+Craig+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Hansell2013b-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hansell2013b_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hansell2013b_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHansell2013" class="citation journal cs1">Hansell, Dennis A. (3 January 2013). "Recalcitrant Dissolved Organic Carbon Fractions". <i>Annual Review of Marine Science</i>. <b>5</b> (1). Annual Reviews: 421–445. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-marine-120710-100757">10.1146/annurev-marine-120710-100757</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1941-1405">1941-1405</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22881353">22881353</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Marine+Science&amp;rft.atitle=Recalcitrant+Dissolved+Organic+Carbon+Fractions&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=421-445&amp;rft.date=2013-01-03&amp;rft.issn=1941-1405&amp;rft_id=info%3Apmid%2F22881353&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev-marine-120710-100757&amp;rft.aulast=Hansell&amp;rft.aufirst=Dennis+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliamsDruffel1987" class="citation journal cs1">Williams, Peter M.; Druffel, Ellen R. M. (1987). <a rel="nofollow" class="external text" href="https://escholarship.org/uc/item/8d1379dw">"Radiocarbon in dissolved organic matter in the central North Pacific Ocean"</a>. <i>Nature</i>. <b>330</b> (6145). Springer Science and Business Media LLC: 246–248. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1987Natur.330..246W">1987Natur.330..246W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F330246a0">10.1038/330246a0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4329024">4329024</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Radiocarbon+in+dissolved+organic+matter+in+the+central+North+Pacific+Ocean&amp;rft.volume=330&amp;rft.issue=6145&amp;rft.pages=246-248&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1038%2F330246a0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4329024%23id-name%3DS2CID&amp;rft.issn=0028-0836&amp;rft_id=info%3Abibcode%2F1987Natur.330..246W&amp;rft.aulast=Williams&amp;rft.aufirst=Peter+M.&amp;rft.au=Druffel%2C+Ellen+R.+M.&amp;rft_id=https%3A%2F%2Fescholarship.org%2Fuc%2Fitem%2F8d1379dw&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDruffelGriffinCoppolaWalker2016" class="citation journal cs1">Druffel, E. R. M.; Griffin, S.; Coppola, A. I.; Walker, B. D. (28 May 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F2016gl068746">"Radiocarbon in dissolved organic carbon of the Atlantic Ocean"</a>. <i>Geophysical Research Letters</i>. <b>43</b> (10). American Geophysical Union (AGU): 5279–5286. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016GeoRL..43.5279D">2016GeoRL..43.5279D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F2016gl068746">10.1002/2016gl068746</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0094-8276">0094-8276</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56069589">56069589</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geophysical+Research+Letters&amp;rft.atitle=Radiocarbon+in+dissolved+organic+carbon+of+the+Atlantic+Ocean&amp;rft.volume=43&amp;rft.issue=10&amp;rft.pages=5279-5286&amp;rft.date=2016-05-28&amp;rft_id=info%3Adoi%2F10.1002%2F2016gl068746&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56069589%23id-name%3DS2CID&amp;rft.issn=0094-8276&amp;rft_id=info%3Abibcode%2F2016GeoRL..43.5279D&amp;rft.aulast=Druffel&amp;rft.aufirst=E.+R.+M.&amp;rft.au=Griffin%2C+S.&amp;rft.au=Coppola%2C+A.+I.&amp;rft.au=Walker%2C+B.+D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252F2016gl068746&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStramskaCieszyńska2015" class="citation journal cs1">Stramska, Malgorzata; Cieszyńska, Agata (18 July 2015). "Ocean colour estimates of particulate organic carbon reservoirs in the global ocean – revisited". <i>International Journal of Remote Sensing</i>. <b>36</b> (14). Informa UK Limited: 3675–3700. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015IJRS...36.3675S">2015IJRS...36.3675S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01431161.2015.1049380">10.1080/01431161.2015.1049380</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0143-1161">0143-1161</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128524215">128524215</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Remote+Sensing&amp;rft.atitle=Ocean+colour+estimates+of+particulate+organic+carbon+reservoirs+in+the+global+ocean+%E2%80%93+revisited&amp;rft.volume=36&amp;rft.issue=14&amp;rft.pages=3675-3700&amp;rft.date=2015-07-18&amp;rft_id=info%3Adoi%2F10.1080%2F01431161.2015.1049380&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128524215%23id-name%3DS2CID&amp;rft.issn=0143-1161&amp;rft_id=info%3Abibcode%2F2015IJRS...36.3675S&amp;rft.aulast=Stramska&amp;rft.aufirst=Malgorzata&amp;rft.au=Cieszy%C5%84ska%2C+Agata&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">Wickland, D.E., Plummer, S. and Nakajima, M. (October 2013). "CEOS strategy for carbon observations from space". In: <i>International Conference Towards a Global Carbon Observing System: Progresses and Challenges</i>, <b>1</b>:. 2.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSarmiento2006" class="citation book cs1">Sarmiento, Jorge L. (1 January 2006). <i>Ocean Biogeochemical Dynamics</i>. Princeton University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2F9781400849079">10.1515/9781400849079</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4008-4907-9" title="Special:BookSources/978-1-4008-4907-9"><bdi>978-1-4008-4907-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ocean+Biogeochemical+Dynamics&amp;rft.pub=Princeton+University+Press&amp;rft.date=2006-01-01&amp;rft_id=info%3Adoi%2F10.1515%2F9781400849079&amp;rft.isbn=978-1-4008-4907-9&amp;rft.aulast=Sarmiento&amp;rft.aufirst=Jorge+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLonghurstSathyendranathPlattCaverhill1995" class="citation journal cs1">Longhurst, Alan; Sathyendranath, Shubha; Platt, Trevor; Caverhill, Carla (1995). "An estimate of global primary production in the ocean from satellite radiometer data". <i>Journal of Plankton Research</i>. <b>17</b> (6). Oxford University Press (OUP): 1245–1271. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fplankt%2F17.6.1245">10.1093/plankt/17.6.1245</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0142-7873">0142-7873</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Plankton+Research&amp;rft.atitle=An+estimate+of+global+primary+production+in+the+ocean+from+satellite+radiometer+data&amp;rft.volume=17&amp;rft.issue=6&amp;rft.pages=1245-1271&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1093%2Fplankt%2F17.6.1245&amp;rft.issn=0142-7873&amp;rft.aulast=Longhurst&amp;rft.aufirst=Alan&amp;rft.au=Sathyendranath%2C+Shubha&amp;rft.au=Platt%2C+Trevor&amp;rft.au=Caverhill%2C+Carla&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSathyendranathPlattBrewinJackson2019" class="citation book cs1">Sathyendranath, S.; Platt, T.; Brewin, Robert J.W.; Jackson, Thomas (2019). "Primary Production Distribution". <i>Encyclopedia of Ocean Sciences</i>. Elsevier. pp.&#160;635–640. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fb978-0-12-409548-9.04304-9">10.1016/b978-0-12-409548-9.04304-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780128130827" title="Special:BookSources/9780128130827"><bdi>9780128130827</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Primary+Production+Distribution&amp;rft.btitle=Encyclopedia+of+Ocean+Sciences&amp;rft.pages=635-640&amp;rft.pub=Elsevier&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1016%2Fb978-0-12-409548-9.04304-9&amp;rft.isbn=9780128130827&amp;rft.aulast=Sathyendranath&amp;rft.aufirst=S.&amp;rft.au=Platt%2C+T.&amp;rft.au=Brewin%2C+Robert+J.W.&amp;rft.au=Jackson%2C+Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKulkPlattDingleJackson2020" class="citation journal cs1">Kulk, Gemma; Platt, Trevor; Dingle, James; Jackson, Thomas; et&#160;al. (3 March 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Frs12050826">"Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades"</a>. <i>Remote Sensing</i>. <b>12</b> (5). MDPI AG: 826. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020RemS...12..826K">2020RemS...12..826K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Frs12050826">10.3390/rs12050826</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11336%2F128979">11336/128979</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2072-4292">2072-4292</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Remote+Sensing&amp;rft.atitle=Primary+Production%2C+an+Index+of+Climate+Change+in+the+Ocean%3A+Satellite-Based+Estimates+over+Two+Decades&amp;rft.volume=12&amp;rft.issue=5&amp;rft.pages=826&amp;rft.date=2020-03-03&amp;rft_id=info%3Ahdl%2F11336%2F128979&amp;rft.issn=2072-4292&amp;rft_id=info%3Adoi%2F10.3390%2Frs12050826&amp;rft_id=info%3Abibcode%2F2020RemS...12..826K&amp;rft.aulast=Kulk&amp;rft.aufirst=Gemma&amp;rft.au=Platt%2C+Trevor&amp;rft.au=Dingle%2C+James&amp;rft.au=Jackson%2C+Thomas&amp;rft.au=J%C3%B6nsson%2C+Bror&amp;rft.au=Bouman%2C+Heather&amp;rft.au=Babin%2C+Marcel&amp;rft.au=Brewin%2C+Robert&amp;rft.au=Doblin%2C+Martina&amp;rft.au=Estrada%2C+Marta&amp;rft.au=Figueiras%2C+Francisco&amp;rft.au=Furuya%2C+Ken&amp;rft.au=Gonz%C3%A1lez-Ben%C3%ADtez%2C+Natalia&amp;rft.au=Gudfinnsson%2C+Hafsteinn&amp;rft.au=Gudmundsson%2C+Kristinn&amp;rft.au=Huang%2C+Bangqin&amp;rft.au=Isada%2C+Tomonori&amp;rft.au=Kova%C4%8D%2C+%C5%BDarko&amp;rft.au=Lutz%2C+Vivian&amp;rft.au=Mara%C3%B1%C3%B3n%2C+Emilio&amp;rft.au=Raman%2C+Mini&amp;rft.au=Richardson%2C+Katherine&amp;rft.au=Rozema%2C+Patrick&amp;rft.au=Poll%2C+Willem&amp;rft.au=Segura%2C+Valeria&amp;rft.au=Tilstone%2C+Gavin&amp;rft.au=Uitz%2C+Julia&amp;rft.au=Dongen-Vogels%2C+Virginie&amp;rft.au=Yoshikawa%2C+Takashi&amp;rft.au=Sathyendranath%2C+Shubha&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Frs12050826&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHopkinsHensonPoultonBalch2019" class="citation journal cs1">Hopkins, Jason; Henson, Stephanie A.; Poulton, Alex J.; Balch, William M. (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2019gb006300">"Regional Characteristics of the Temporal Variability in the Global Particulate Inorganic Carbon Inventory"</a>. <i>Global Biogeochemical Cycles</i>. <b>33</b> (11). American Geophysical Union (AGU): 1328–1338. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019GBioC..33.1328H">2019GBioC..33.1328H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2019gb006300">10.1029/2019gb006300</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0886-6236">0886-6236</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:210342576">210342576</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Regional+Characteristics+of+the+Temporal+Variability+in+the+Global+Particulate+Inorganic+Carbon+Inventory&amp;rft.volume=33&amp;rft.issue=11&amp;rft.pages=1328-1338&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1029%2F2019gb006300&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A210342576%23id-name%3DS2CID&amp;rft.issn=0886-6236&amp;rft_id=info%3Abibcode%2F2019GBioC..33.1328H&amp;rft.aulast=Hopkins&amp;rft.aufirst=Jason&amp;rft.au=Henson%2C+Stephanie+A.&amp;rft.au=Poulton%2C+Alex+J.&amp;rft.au=Balch%2C+William+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2019gb006300&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Feely2004-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-Feely2004_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Feely2004_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeelySabineLeeBerelson2004" class="citation journal cs1">Feely, Richard A.; Sabine, Christopher L.; Lee, Kitack; Berelson, Will; Kleypas, Joanie; Fabry, Victoria J.; Millero, Frank J. (16 July 2004). "Impact of Anthropogenic CO 2 on the CaCO 3 System in the Oceans". <i>Science</i>. <b>305</b> (5682). American Association for the Advancement of Science (AAAS): 362–366. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004Sci...305..362F">2004Sci...305..362F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1097329">10.1126/science.1097329</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15256664">15256664</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31054160">31054160</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Impact+of+Anthropogenic+CO+2+on+the+CaCO+3+System+in+the+Oceans&amp;rft.volume=305&amp;rft.issue=5682&amp;rft.pages=362-366&amp;rft.date=2004-07-16&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31054160%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2004Sci...305..362F&amp;rft.issn=0036-8075&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1097329&amp;rft_id=info%3Apmid%2F15256664&amp;rft.aulast=Feely&amp;rft.aufirst=Richard+A.&amp;rft.au=Sabine%2C+Christopher+L.&amp;rft.au=Lee%2C+Kitack&amp;rft.au=Berelson%2C+Will&amp;rft.au=Kleypas%2C+Joanie&amp;rft.au=Fabry%2C+Victoria+J.&amp;rft.au=Millero%2C+Frank+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchiebel2002" class="citation journal cs1">Schiebel, Ralf (24 October 2002). "Planktic foraminiferal sedimentation and the marine calcite budget". <i>Global Biogeochemical Cycles</i>. <b>16</b> (4). American Geophysical Union (AGU): 3–1–3–21. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002GBioC..16.1065S">2002GBioC..16.1065S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2001gb001459">10.1029/2001gb001459</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0886-6236">0886-6236</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128737252">128737252</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Planktic+foraminiferal+sedimentation+and+the+marine+calcite+budget&amp;rft.volume=16&amp;rft.issue=4&amp;rft.pages=3-1-3-21&amp;rft.date=2002-10-24&amp;rft_id=info%3Adoi%2F10.1029%2F2001gb001459&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128737252%23id-name%3DS2CID&amp;rft.issn=0886-6236&amp;rft_id=info%3Abibcode%2F2002GBioC..16.1065S&amp;rft.aulast=Schiebel&amp;rft.aufirst=Ralf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiebesellZondervanRostTortell2000" class="citation journal cs1">Riebesell, Ulf; Zondervan, Ingrid; Rost, Björn; Tortell, Philippe D.; Zeebe, Richard E.; Morel, François M. M. (2000). <a rel="nofollow" class="external text" href="https://epic.awi.de/id/eprint/3784/1/Rie2000a.pdf">"Reduced calcification of marine plankton in response to increased atmospheric CO2"</a> <span class="cs1-format">(PDF)</span>. <i>Nature</i>. <b>407</b> (6802). Springer Science and Business Media LLC: 364–367. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000Natur.407..364R">2000Natur.407..364R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F35030078">10.1038/35030078</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11014189">11014189</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4426501">4426501</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Reduced+calcification+of+marine+plankton+in+response+to+increased+atmospheric+CO2&amp;rft.volume=407&amp;rft.issue=6802&amp;rft.pages=364-367&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4426501%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2000Natur.407..364R&amp;rft.issn=0028-0836&amp;rft_id=info%3Adoi%2F10.1038%2F35030078&amp;rft_id=info%3Apmid%2F11014189&amp;rft.aulast=Riebesell&amp;rft.aufirst=Ulf&amp;rft.au=Zondervan%2C+Ingrid&amp;rft.au=Rost%2C+Bj%C3%B6rn&amp;rft.au=Tortell%2C+Philippe+D.&amp;rft.au=Zeebe%2C+Richard+E.&amp;rft.au=Morel%2C+Fran%C3%A7ois+M.+M.&amp;rft_id=https%3A%2F%2Fepic.awi.de%2Fid%2Feprint%2F3784%2F1%2FRie2000a.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMitchellHuBowlerDrapeau2017" class="citation journal cs1">Mitchell, C.; Hu, C.; Bowler, B.; Drapeau, D.; Balch, W. M. (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F2017JC013146">"Estimating Particulate Inorganic Carbon Concentrations of the Global Ocean from Ocean Color Measurements Using a Reflectance Difference Approach"</a>. <i>Journal of Geophysical Research: Oceans</i>. <b>122</b> (11): 8707–8720. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017JGRC..122.8707M">2017JGRC..122.8707M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F2017JC013146">10.1002/2017JC013146</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Geophysical+Research%3A+Oceans&amp;rft.atitle=Estimating+Particulate+Inorganic+Carbon+Concentrations+of+the+Global+Ocean+from+Ocean+Color+Measurements+Using+a+Reflectance+Difference+Approach&amp;rft.volume=122&amp;rft.issue=11&amp;rft.pages=8707-8720&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1002%2F2017JC013146&amp;rft_id=info%3Abibcode%2F2017JGRC..122.8707M&amp;rft.aulast=Mitchell&amp;rft.aufirst=C.&amp;rft.au=Hu%2C+C.&amp;rft.au=Bowler%2C+B.&amp;rft.au=Drapeau%2C+D.&amp;rft.au=Balch%2C+W.+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252F2017JC013146&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilsonMilleroTaylorWalsh2009" class="citation journal cs1">Wilson, R. W.; Millero, F. J.; Taylor, J. R.; Walsh, P. J.; Christensen, V.; Jennings, S.; Grosell, M. (16 January 2009). "Contribution of Fish to the Marine Inorganic Carbon Cycle". <i>Science</i>. <b>323</b> (5912): 359–362. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009Sci...323..359W">2009Sci...323..359W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1157972">10.1126/science.1157972</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19150840">19150840</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:36321414">36321414</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Contribution+of+Fish+to+the+Marine+Inorganic+Carbon+Cycle&amp;rft.volume=323&amp;rft.issue=5912&amp;rft.pages=359-362&amp;rft.date=2009-01-16&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1157972&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A36321414%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F19150840&amp;rft_id=info%3Abibcode%2F2009Sci...323..359W&amp;rft.aulast=Wilson&amp;rft.aufirst=R.+W.&amp;rft.au=Millero%2C+F.+J.&amp;rft.au=Taylor%2C+J.+R.&amp;rft.au=Walsh%2C+P.+J.&amp;rft.au=Christensen%2C+V.&amp;rft.au=Jennings%2C+S.&amp;rft.au=Grosell%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">Pilson MEQ. 2012. An Introduction to the Chemistry of the Sea. Cambridge University Press, pp.</span> </li> <li id="cite_note-Hain_et_al_2010-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hain_et_al_2010_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHainSigmanHaug2010" class="citation journal cs1">Hain, M.P.; Sigman, D.M.; Haug, G.H. (2010). "Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: Diagnosis and synthesis in a geochemical box model". <i>Global Biogeochemical Cycles</i>. <b>24</b> (4): 1–19. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010GBioC..24.4023H">2010GBioC..24.4023H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2010GB003790">10.1029/2010GB003790</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Carbon+dioxide+effects+of+Antarctic+stratification%2C+North+Atlantic+Intermediate+Water+formation%2C+and+subantarctic+nutrient+drawdown+during+the+last+ice+age%3A+Diagnosis+and+synthesis+in+a+geochemical+box+model&amp;rft.volume=24&amp;rft.issue=4&amp;rft.pages=1-19&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1029%2F2010GB003790&amp;rft_id=info%3Abibcode%2F2010GBioC..24.4023H&amp;rft.aulast=Hain&amp;rft.aufirst=M.P.&amp;rft.au=Sigman%2C+D.M.&amp;rft.au=Haug%2C+G.H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Webb2019-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Webb2019_40-0">^</a></b></span> <span class="reference-text">Webb, Paul (2019) <i>Introduction to Oceanography</i>, <a rel="nofollow" class="external text" href="https://rwu.pressbooks.pub/webboceanography/chapter/chapter-12-ocean-sediments/">Chapter 12: Ocean Sediments</a>, page 273–297, Rebus Community. Updated 2020.</span> </li> <li id="cite_note-:0-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFH.2013" class="citation book cs1">H., Schlesinger, William (2013). <i>Biogeochemistry&#160;: an analysis of global change</i>. Bernhardt, Emily S. (3rd&#160;ed.). Waltham, Mass.: Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780123858740" title="Special:BookSources/9780123858740"><bdi>9780123858740</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/827935936">827935936</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Biogeochemistry+%3A+an+analysis+of+global+change&amp;rft.place=Waltham%2C+Mass.&amp;rft.edition=3rd&amp;rft.pub=Academic+Press&amp;rft.date=2013&amp;rft_id=info%3Aoclcnum%2F827935936&amp;rft.isbn=9780123858740&amp;rft.aulast=H.&amp;rft.aufirst=Schlesinger%2C+William&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFalkowskiScholesBoyleCanadell2000" class="citation journal cs1">Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P. (13 October 2000). "The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System". <i>Science</i>. <b>290</b> (5490): 291–296. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000Sci...290..291F">2000Sci...290..291F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.290.5490.291">10.1126/science.290.5490.291</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11030643">11030643</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=The+Global+Carbon+Cycle%3A+A+Test+of+Our+Knowledge+of+Earth+as+a+System&amp;rft.volume=290&amp;rft.issue=5490&amp;rft.pages=291-296&amp;rft.date=2000-10-13&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.290.5490.291&amp;rft.issn=0036-8075&amp;rft_id=info%3Apmid%2F11030643&amp;rft_id=info%3Abibcode%2F2000Sci...290..291F&amp;rft.aulast=Falkowski&amp;rft.aufirst=P.&amp;rft.au=Scholes%2C+R.+J.&amp;rft.au=Boyle%2C+E.&amp;rft.au=Canadell%2C+J.&amp;rft.au=Canfield%2C+D.&amp;rft.au=Elser%2C+J.&amp;rft.au=Gruber%2C+N.&amp;rft.au=Hibbard%2C+K.&amp;rft.au=H%C3%B6gberg%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-raven99-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-raven99_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRavenP._G._Falkowski1999" class="citation journal cs1">Raven, J. A.; P. G. Falkowski (1999). <a rel="nofollow" class="external text" href="https://doi.org/10.1046%2Fj.1365-3040.1999.00419.x">"Oceanic sinks for atmospheric CO<sub>2</sub>"</a>. <i>Plant, Cell and Environment</i>. <b>22</b> (6): 741–755. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1046%2Fj.1365-3040.1999.00419.x">10.1046/j.1365-3040.1999.00419.x</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Plant%2C+Cell+and+Environment&amp;rft.atitle=Oceanic+sinks+for+atmospheric+CO%3Csub%3E2%3C%2Fsub%3E&amp;rft.volume=22&amp;rft.issue=6&amp;rft.pages=741-755&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1046%2Fj.1365-3040.1999.00419.x&amp;rft.aulast=Raven&amp;rft.aufirst=J.+A.&amp;rft.au=P.+G.+Falkowski&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1046%252Fj.1365-3040.1999.00419.x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRavenFalkowski1999" class="citation journal cs1">Raven, J. A.; Falkowski, P. G. (1999). <a rel="nofollow" class="external text" href="https://doi.org/10.1046%2Fj.1365-3040.1999.00419.x">"Oceanic sinks for atmospheric CO2"</a>. <i>Plant, Cell and Environment</i>. <b>22</b> (6): 741–755. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1046%2Fj.1365-3040.1999.00419.x">10.1046/j.1365-3040.1999.00419.x</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Plant%2C+Cell+and+Environment&amp;rft.atitle=Oceanic+sinks+for+atmospheric+CO2&amp;rft.volume=22&amp;rft.issue=6&amp;rft.pages=741-755&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1046%2Fj.1365-3040.1999.00419.x&amp;rft.aulast=Raven&amp;rft.aufirst=J.+A.&amp;rft.au=Falkowski%2C+P.+G.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1046%252Fj.1365-3040.1999.00419.x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHainSigmanHaug2014" class="citation journal cs1">Hain, M.P.; Sigman, D.M.; Haug, G.H (2014). "The Biological Pump in the Past". <i>Treatise on Geochemistry</i>. <b>8</b>: 485–517. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB978-0-08-095975-7.00618-5">10.1016/B978-0-08-095975-7.00618-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780080983004" title="Special:BookSources/9780080983004"><bdi>9780080983004</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Treatise+on+Geochemistry&amp;rft.atitle=The+Biological+Pump+in+the+Past&amp;rft.volume=8&amp;rft.pages=485-517&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1016%2FB978-0-08-095975-7.00618-5&amp;rft.isbn=9780080983004&amp;rft.aulast=Hain&amp;rft.aufirst=M.P.&amp;rft.au=Sigman%2C+D.M.&amp;rft.au=Haug%2C+G.H&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Rost2014-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rost2014_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rost2014_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRostReibessel2004" class="citation book cs1">Rost, Bjorn; Reibessel, Ulf (2004). <i>Coccolithophores and the biological pump: responses to environmental changes</i>. Berlin, Heidelberg: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-06016-8" title="Special:BookSources/978-3-642-06016-8"><bdi>978-3-642-06016-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Coccolithophores+and+the+biological+pump%3A+responses+to+environmental+changes&amp;rft.place=Berlin%2C+Heidelberg&amp;rft.pub=Springer&amp;rft.date=2004&amp;rft.isbn=978-3-642-06016-8&amp;rft.aulast=Rost&amp;rft.aufirst=Bjorn&amp;rft.au=Reibessel%2C+Ulf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">Zeebe, R.E., 2016. <a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016AGUOS.B23A..08Z/abstract">"The calcium carbonate counter pump: Fundamentals, evolution through time, and future feedbacks"</a>. <i>American Geophysical Union</i>, pp.B23A-08.</span> </li> <li id="cite_note-tsun99-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-tsun99_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-tsun99_48-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-tsun99_48-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTsunogaiWatanabeSato1999" class="citation journal cs1">Tsunogai, S.; Watanabe, S.; Sato, T. (1999). "Is there a "continental shelf pump" for the absorption of atmospheric CO<sub>2</sub>". <i>Tellus B</i>. <b>51</b> (3): 701–712. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999TellB..51..701T">1999TellB..51..701T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1034%2Fj.1600-0889.1999.t01-2-00010.x">10.1034/j.1600-0889.1999.t01-2-00010.x</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Tellus+B&amp;rft.atitle=Is+there+a+%22continental+shelf+pump%22+for+the+absorption+of+atmospheric+CO%3Csub%3E2%3C%2Fsub%3E&amp;rft.volume=51&amp;rft.issue=3&amp;rft.pages=701-712&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1034%2Fj.1600-0889.1999.t01-2-00010.x&amp;rft_id=info%3Abibcode%2F1999TellB..51..701T&amp;rft.aulast=Tsunogai&amp;rft.aufirst=S.&amp;rft.au=Watanabe%2C+S.&amp;rft.au=Sato%2C+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-woll98-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-woll98_49-0">^</a></b></span> <span class="reference-text">Wollast, R. (1998). Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean, p. 213-252. In K. H. Brink and A. R. Robinson (eds.), <i>The Global Coastal Ocean</i>. John Wiley &amp; Sons.</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRippethScourseUeharaMcKeown2008" class="citation journal cs1">Rippeth, T. P.; Scourse, J. D.; Uehara, K.; McKeown, S. (2008). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2008GL035880">"Impact of sea-level rise over the last deglacial transition on the strength of the continental shelf CO2 pump"</a>. <i>Geophys. Res. Lett</i>. <b>35</b> (24): L24604. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008GeoRL..3524604R">2008GeoRL..3524604R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2008GL035880">10.1029/2008GL035880</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1049049">1049049</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geophys.+Res.+Lett.&amp;rft.atitle=Impact+of+sea-level+rise+over+the+last+deglacial+transition+on+the+strength+of+the+continental+shelf+CO2+pump&amp;rft.volume=35&amp;rft.issue=24&amp;rft.pages=L24604&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1049049%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1029%2F2008GL035880&amp;rft_id=info%3Abibcode%2F2008GeoRL..3524604R&amp;rft.aulast=Rippeth&amp;rft.aufirst=T.+P.&amp;rft.au=Scourse%2C+J.+D.&amp;rft.au=Uehara%2C+K.&amp;rft.au=McKeown%2C+S.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2008GL035880&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Cavan2019-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cavan2019_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cavan2019_51-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Cavan2019_51-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Cavan, E.L., Belcher, A., Atkinson, A., Hill, S.L., Kawaguchi, S., McCormack, S., Meyer, B., Nicol, S., Ratnarajah, L., Schmidt, K. and Steinberg, D.K. (2019) "The importance of Antarctic krill in biogeochemical cycles". <i>Nature communications</i>, <b>10</b>(1): 1–13. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-019-12668-7">10.1038/s41467-019-12668-7</a>. <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLampittNojivon_Bodungen1990" class="citation journal cs1">Lampitt, R. S.; Noji, T.; von Bodungen, B. (1990). "What happens to zooplankton faecal pellets? Implications for material flux". <i>Marine Biology</i>. <b>104</b> (1): 15–23. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990MarBi.104...15L">1990MarBi.104...15L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01313152">10.1007/BF01313152</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:86523326">86523326</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Biology&amp;rft.atitle=What+happens+to+zooplankton+faecal+pellets%3F+Implications+for+material+flux&amp;rft.volume=104&amp;rft.issue=1&amp;rft.pages=15-23&amp;rft.date=1990&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A86523326%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01313152&amp;rft_id=info%3Abibcode%2F1990MarBi.104...15L&amp;rft.aulast=Lampitt&amp;rft.aufirst=R.+S.&amp;rft.au=Noji%2C+T.&amp;rft.au=von+Bodungen%2C+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBishop2009" class="citation journal cs1">Bishop, James (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.5670%2Foceanog.2009.48">"Autonomous Observations of the Ocean Biological Carbon Pump"</a>. <i>Oceanography</i>. <b>22</b> (2): 182–193. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5670%2Foceanog.2009.48">10.5670/oceanog.2009.48</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Oceanography&amp;rft.atitle=Autonomous+Observations+of+the+Ocean+Biological+Carbon+Pump&amp;rft.volume=22&amp;rft.issue=2&amp;rft.pages=182-193&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.5670%2Foceanog.2009.48&amp;rft.aulast=Bishop&amp;rft.aufirst=James&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.5670%252Foceanog.2009.48&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Chisholm1995-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-Chisholm1995_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Chisholm1995_54-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChisholm1995" class="citation journal cs1">Chisholm, Sallie W. (1995). "The iron hypothesis: Basic research meets environmental policy". <i>Reviews of Geophysics</i>. <b>33</b> (S2): 1277–1286. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995RvGeo..33S1277C">1995RvGeo..33S1277C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F95RG00743">10.1029/95RG00743</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reviews+of+Geophysics&amp;rft.atitle=The+iron+hypothesis%3A+Basic+research+meets+environmental+policy&amp;rft.volume=33&amp;rft.issue=S2&amp;rft.pages=1277-1286&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1029%2F95RG00743&amp;rft_id=info%3Abibcode%2F1995RvGeo..33S1277C&amp;rft.aulast=Chisholm&amp;rft.aufirst=Sallie+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFalkowskiScholesBoyleCanadell2000" class="citation journal cs1">Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; MacKenzie, F. T.; Moore b, 3rd; Pedersen, T.; Rosenthal, Y.; Seitzinger, S.; Smetacek, V.; Steffen, W. (2000). "The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System". <i>Science</i>. <b>290</b> (5490): 291–296. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000Sci...290..291F">2000Sci...290..291F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.290.5490.291">10.1126/science.290.5490.291</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11030643">11030643</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=The+Global+Carbon+Cycle%3A+A+Test+of+Our+Knowledge+of+Earth+as+a+System&amp;rft.volume=290&amp;rft.issue=5490&amp;rft.pages=291-296&amp;rft.date=2000&amp;rft_id=info%3Apmid%2F11030643&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.290.5490.291&amp;rft_id=info%3Abibcode%2F2000Sci...290..291F&amp;rft.aulast=Falkowski&amp;rft.aufirst=P.&amp;rft.au=Scholes%2C+R.+J.&amp;rft.au=Boyle%2C+E.&amp;rft.au=Canadell%2C+J.&amp;rft.au=Canfield%2C+D.&amp;rft.au=Elser%2C+J.&amp;rft.au=Gruber%2C+N.&amp;rft.au=Hibbard%2C+K.&amp;rft.au=H%C3%B6gberg%2C+P.&amp;rft.au=Linder%2C+S.&amp;rft.au=MacKenzie%2C+F.+T.&amp;rft.au=Moore+b%2C+3rd&amp;rft.au=Pedersen%2C+T.&amp;rft.au=Rosenthal%2C+Y.&amp;rft.au=Seitzinger%2C+S.&amp;rft.au=Smetacek%2C+V.&amp;rft.au=Steffen%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: numeric names: authors list (<a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">link</a>)</span></span> </li> <li id="cite_note-Turner2015-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-Turner2015_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Turner2015_56-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Turner2015_56-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Turner2015_56-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Turner2015_56-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Turner2015_56-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTurner2015" class="citation journal cs1">Turner, Jefferson T. (2015). "Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump". <i>Progress in Oceanography</i>. <b>130</b>: 205–248. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PrOce.130..205T">2015PrOce.130..205T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pocean.2014.08.005">10.1016/j.pocean.2014.08.005</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Oceanography&amp;rft.atitle=Zooplankton+fecal+pellets%2C+marine+snow%2C+phytodetritus+and+the+ocean%27s+biological+pump&amp;rft.volume=130&amp;rft.pages=205-248&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1016%2Fj.pocean.2014.08.005&amp;rft_id=info%3Abibcode%2F2015PrOce.130..205T&amp;rft.aulast=Turner&amp;rft.aufirst=Jefferson+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Kim2011-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kim2011_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kim2011_57-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimLeeShinYang2011" class="citation journal cs1">Kim, Ja-Myung; Lee, Kitack; Shin, Kyungsoon; Yang, Eun Jin; Engel, Anja; Karl, David M.; Kim, Hyun-Cheol (2011). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2011GL047346">"Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions"</a>. <i>Geophysical Research Letters</i>. <b>38</b> (8): n/a. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011GeoRL..38.8612K">2011GeoRL..38.8612K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2011GL047346">10.1029/2011GL047346</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geophysical+Research+Letters&amp;rft.atitle=Shifts+in+biogenic+carbon+flow+from+particulate+to+dissolved+forms+under+high+carbon+dioxide+and+warm+ocean+conditions&amp;rft.volume=38&amp;rft.issue=8&amp;rft.pages=n%2Fa&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1029%2F2011GL047346&amp;rft_id=info%3Abibcode%2F2011GeoRL..38.8612K&amp;rft.aulast=Kim&amp;rft.aufirst=Ja-Myung&amp;rft.au=Lee%2C+Kitack&amp;rft.au=Shin%2C+Kyungsoon&amp;rft.au=Yang%2C+Eun+Jin&amp;rft.au=Engel%2C+Anja&amp;rft.au=Karl%2C+David+M.&amp;rft.au=Kim%2C+Hyun-Cheol&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2011GL047346&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHansellCarlsonRepetaSchlitzer2009" class="citation journal cs1">Hansell, Dennis; Carlson, Craig; Repeta, Daniel; Schlitzer, Reiner (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.5670%2Foceanog.2009.109">"Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights"</a>. <i>Oceanography</i>. <b>22</b> (4): 202–211. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5670%2Foceanog.2009.109">10.5670/oceanog.2009.109</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1912%2F3183">1912/3183</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Oceanography&amp;rft.atitle=Dissolved+Organic+Matter+in+the+Ocean%3A+A+Controversy+Stimulates+New+Insights&amp;rft.volume=22&amp;rft.issue=4&amp;rft.pages=202-211&amp;rft.date=2009&amp;rft_id=info%3Ahdl%2F1912%2F3183&amp;rft_id=info%3Adoi%2F10.5670%2Foceanog.2009.109&amp;rft.aulast=Hansell&amp;rft.aufirst=Dennis&amp;rft.au=Carlson%2C+Craig&amp;rft.au=Repeta%2C+Daniel&amp;rft.au=Schlitzer%2C+Reiner&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.5670%252Foceanog.2009.109&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarlsonDucklowMichaels1994" class="citation journal cs1">Carlson, Craig A.; Ducklow, Hugh W.; Michaels, Anthony F. (1994). "Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea". <i>Nature</i>. <b>371</b> (6496): 405–408. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994Natur.371..405C">1994Natur.371..405C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F371405a0">10.1038/371405a0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4279712">4279712</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Annual+flux+of+dissolved+organic+carbon+from+the+euphotic+zone+in+the+northwestern+Sargasso+Sea&amp;rft.volume=371&amp;rft.issue=6496&amp;rft.pages=405-408&amp;rft.date=1994&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4279712%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2F371405a0&amp;rft_id=info%3Abibcode%2F1994Natur.371..405C&amp;rft.aulast=Carlson&amp;rft.aufirst=Craig+A.&amp;rft.au=Ducklow%2C+Hugh+W.&amp;rft.au=Michaels%2C+Anthony+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoshanDevries2017" class="citation journal cs1">Roshan, Saeed; Devries, Timothy (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725454">"Efficient dissolved organic carbon production and export in the oligotrophic ocean"</a>. <i>Nature Communications</i>. <b>8</b> (1): 2036. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017NatCo...8.2036R">2017NatCo...8.2036R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-017-02227-3">10.1038/s41467-017-02227-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725454">5725454</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29230041">29230041</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=Efficient+dissolved+organic+carbon+production+and+export+in+the+oligotrophic+ocean&amp;rft.volume=8&amp;rft.issue=1&amp;rft.pages=2036&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5725454%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F29230041&amp;rft_id=info%3Adoi%2F10.1038%2Fs41467-017-02227-3&amp;rft_id=info%3Abibcode%2F2017NatCo...8.2036R&amp;rft.aulast=Roshan&amp;rft.aufirst=Saeed&amp;rft.au=Devries%2C+Timothy&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5725454&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Basu2018-61"><span class="mw-cite-backlink">^ <a href="#cite_ref-Basu2018_61-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Basu2018_61-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Basu2018_61-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Basu2018_61-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Basu2018_61-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Basu2018_61-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Basu2018_61-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Basu2018_61-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Basu2018_61-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBasuMacKey2018" class="citation journal cs1">Basu, Samarpita; MacKey, Katherine (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fsu10030869">"Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate"</a>. <i>Sustainability</i>. <b>10</b> (3): 869. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fsu10030869">10.3390/su10030869</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sustainability&amp;rft.atitle=Phytoplankton+as+Key+Mediators+of+the+Biological+Carbon+Pump%3A+Their+Responses+to+a+Changing+Climate&amp;rft.volume=10&amp;rft.issue=3&amp;rft.pages=869&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.3390%2Fsu10030869&amp;rft.aulast=Basu&amp;rft.aufirst=Samarpita&amp;rft.au=MacKey%2C+Katherine&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fsu10030869&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-Ionescu2015-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ionescu2015_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ionescu2015_62-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ionescu2015_62-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonescuBizic-IonescuKhaliliMalekmohammadi2015" class="citation journal cs1">Ionescu, Danny; Bizic-Ionescu, Mina; Khalili, Arzhang; Malekmohammadi, Reza; Morad, Mohammad Reza; De Beer, Dirk; Grossart, Hans-Peter (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592964">"A new tool for long-term studies of POM-bacteria interactions: Overcoming the century-old Bottle Effect"</a>. <i>Scientific Reports</i>. <b>5</b>: 14706. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatSR...514706I">2015NatSR...514706I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep14706">10.1038/srep14706</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592964">4592964</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26435525">26435525</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=A+new+tool+for+long-term+studies+of+POM-bacteria+interactions%3A+Overcoming+the+century-old+Bottle+Effect&amp;rft.volume=5&amp;rft.pages=14706&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4592964%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F26435525&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep14706&amp;rft_id=info%3Abibcode%2F2015NatSR...514706I&amp;rft.aulast=Ionescu&amp;rft.aufirst=Danny&amp;rft.au=Bizic-Ionescu%2C+Mina&amp;rft.au=Khalili%2C+Arzhang&amp;rft.au=Malekmohammadi%2C+Reza&amp;rft.au=Morad%2C+Mohammad+Reza&amp;rft.au=De+Beer%2C+Dirk&amp;rft.au=Grossart%2C+Hans-Peter&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4592964&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-Steinberg2002-63"><span class="mw-cite-backlink">^ <a href="#cite_ref-Steinberg2002_63-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Steinberg2002_63-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Steinberg2002_63-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinbergSarah_GoldthwaitDennis_Hansell2002" class="citation journal cs1">Steinberg, Deborah; Sarah Goldthwait; Dennis Hansell (2002). "Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea". <i>Deep-Sea Research Part I</i>. <b>49</b> (8): 1445–1461. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002DSRI...49.1445S">2002DSRI...49.1445S</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.391.7622">10.1.1.391.7622</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0967-0637%2802%2900037-7">10.1016/S0967-0637(02)00037-7</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0967-0637">0967-0637</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep-Sea+Research+Part+I&amp;rft.atitle=Zooplankton+vertical+migration+and+the+active+transport+of+dissolved+organic+and+inorganic+nitrogen+in+the+Sargasso+Sea&amp;rft.volume=49&amp;rft.issue=8&amp;rft.pages=1445-1461&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.391.7622%23id-name%3DCiteSeerX&amp;rft.issn=0967-0637&amp;rft_id=info%3Adoi%2F10.1016%2FS0967-0637%2802%2900037-7&amp;rft_id=info%3Abibcode%2F2002DSRI...49.1445S&amp;rft.aulast=Steinberg&amp;rft.aufirst=Deborah&amp;rft.au=Sarah+Goldthwait&amp;rft.au=Dennis+Hansell&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Passow2012-64"><span class="mw-cite-backlink">^ <a href="#cite_ref-Passow2012_64-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Passow2012_64-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Passow2012_64-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Passow2012_64-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Passow2012_64-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Passow2012_64-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPassowCarlson2012" class="citation journal cs1">Passow, U.; Carlson, CA (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps09985">"The biological pump in a high CO2 world"</a>. <i>Marine Ecology Progress Series</i>. <b>470</b>: 249–271. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012MEPS..470..249P">2012MEPS..470..249P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps09985">10.3354/meps09985</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Ecology+Progress+Series&amp;rft.atitle=The+biological+pump+in+a+high+CO2+world&amp;rft.volume=470&amp;rft.pages=249-271&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.3354%2Fmeps09985&amp;rft_id=info%3Abibcode%2F2012MEPS..470..249P&amp;rft.aulast=Passow&amp;rft.aufirst=U.&amp;rft.au=Carlson%2C+CA&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3354%252Fmeps09985&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinsonPopovaYoolSrokosz2014" class="citation journal cs1">Robinson, J.; Popova, E.E.; Yool, A.; Srokosz, M.A.; Lampitt, R.S.; Blundell, J.R. (2014). <a rel="nofollow" class="external text" href="http://nora.nerc.ac.uk/id/eprint/507032/1/grl51570_Robinson.pdf">"How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean"</a> <span class="cs1-format">(PDF)</span>. <i>Geophys. Res. Lett</i>. <b>41</b> (7): 2489–2495. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014GeoRL..41.2489R">2014GeoRL..41.2489R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F2013GL058799">10.1002/2013GL058799</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geophys.+Res.+Lett.&amp;rft.atitle=How+deep+is+deep+enough%3F+Ocean+iron+fertilization+and+carbon+sequestration+in+the+Southern+Ocean&amp;rft.volume=41&amp;rft.issue=7&amp;rft.pages=2489-2495&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1002%2F2013GL058799&amp;rft_id=info%3Abibcode%2F2014GeoRL..41.2489R&amp;rft.aulast=Robinson&amp;rft.aufirst=J.&amp;rft.au=Popova%2C+E.E.&amp;rft.au=Yool%2C+A.&amp;rft.au=Srokosz%2C+M.A.&amp;rft.au=Lampitt%2C+R.S.&amp;rft.au=Blundell%2C+J.R.&amp;rft_id=http%3A%2F%2Fnora.nerc.ac.uk%2Fid%2Feprint%2F507032%2F1%2Fgrl51570_Robinson.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFalkowskiBarberSmetacek_v1998" class="citation journal cs1">Falkowski, P. G.; Barber, R. T.; Smetacek v, V. (1998). "Biogeochemical Controls and Feedbacks on Ocean Primary Production". <i>Science</i>. <b>281</b> (5374): 200–206. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.281.5374.200">10.1126/science.281.5374.200</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9660741">9660741</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Biogeochemical+Controls+and+Feedbacks+on+Ocean+Primary+Production&amp;rft.volume=281&amp;rft.issue=5374&amp;rft.pages=200-206&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.281.5374.200&amp;rft_id=info%3Apmid%2F9660741&amp;rft.aulast=Falkowski&amp;rft.aufirst=P.+G.&amp;rft.au=Barber%2C+R.+T.&amp;rft.au=Smetacek+v%2C+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoolMartinFernándezClark2007" class="citation journal cs1">Yool, Andrew; Martin, Adrian P.; Fernández, Camila; Clark, Darren R. (2007). "The significance of nitrification for oceanic new production". <i>Nature</i>. <b>447</b> (7147): 999–1002. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.447..999Y">2007Natur.447..999Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature05885">10.1038/nature05885</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17581584">17581584</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4416535">4416535</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+significance+of+nitrification+for+oceanic+new+production&amp;rft.volume=447&amp;rft.issue=7147&amp;rft.pages=999-1002&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1038%2Fnature05885&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4416535%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17581584&amp;rft_id=info%3Abibcode%2F2007Natur.447..999Y&amp;rft.aulast=Yool&amp;rft.aufirst=Andrew&amp;rft.au=Martin%2C+Adrian+P.&amp;rft.au=Fern%C3%A1ndez%2C+Camila&amp;rft.au=Clark%2C+Darren+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Iversen2010-68"><span class="mw-cite-backlink">^ <a href="#cite_ref-Iversen2010_68-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Iversen2010_68-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Iversen2010_68-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Iversen2010_68-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Iversen2010_68-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Iversen2010_68-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIversenPloug" class="citation journal cs1">Iversen, M. H.; Ploug, H. <a rel="nofollow" class="external text" href="https://doi.org/10.5194%2Fbgd-7-3335-2010">"Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocities of macroscopic organic aggregates (Marine snow)"</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5194%2Fbgd-7-3335-2010">10.5194/bgd-7-3335-2010</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Ballast+minerals+and+the+sinking+carbon+flux+in+the+ocean%3A+Carbon-specific+respiration+rates+and+sinking+velocities+of+macroscopic+organic+aggregates+%28Marine+snow%29&amp;rft_id=info%3Adoi%2F10.5194%2Fbgd-7-3335-2010&amp;rft.aulast=Iversen&amp;rft.aufirst=M.+H.&amp;rft.au=Ploug%2C+H.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.5194%252Fbgd-7-3335-2010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: </span><span class="cs1-visible-error citation-comment">Cite journal requires <code class="cs1-code">&#124;journal=</code> (<a href="/wiki/Help:CS1_errors#missing_periodical" title="Help:CS1 errors">help</a>)</span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/3.0/">Creative Commons Attribution 3.0 International License</a>.</span> </li> <li id="cite_note-Simon12002-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-Simon12002_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonGrossartSchweitzerPloug2002" class="citation journal cs1">Simon, M.; Grossart, HP; Schweitzer, B.; Ploug, H. (2002). <a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fame028175">"Microbial ecology of organic aggregates in aquatic ecosystems"</a>. <i>Aquatic Microbial Ecology</i>. <b>28</b>: 175–211. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fame028175">10.3354/ame028175</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aquatic+Microbial+Ecology&amp;rft.atitle=Microbial+ecology+of+organic+aggregates+in+aquatic+ecosystems&amp;rft.volume=28&amp;rft.pages=175-211&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.3354%2Fame028175&amp;rft.aulast=Simon&amp;rft.aufirst=M.&amp;rft.au=Grossart%2C+HP&amp;rft.au=Schweitzer%2C+B.&amp;rft.au=Ploug%2C+H.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3354%252Fame028175&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAzamFenchelFieldGray1983" class="citation journal cs1">Azam, F.; Fenchel, T.; Field, JG; Gray, JS; Meyer-Reil, LA; Thingstad, F. (1983). <a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps010257">"The Ecological Role of Water-Column Microbes in the Sea"</a>. <i>Marine Ecology Progress Series</i>. <b>10</b>: 257–263. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983MEPS...10..257A">1983MEPS...10..257A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps010257">10.3354/meps010257</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Ecology+Progress+Series&amp;rft.atitle=The+Ecological+Role+of+Water-Column+Microbes+in+the+Sea&amp;rft.volume=10&amp;rft.pages=257-263&amp;rft.date=1983&amp;rft_id=info%3Adoi%2F10.3354%2Fmeps010257&amp;rft_id=info%3Abibcode%2F1983MEPS...10..257A&amp;rft.aulast=Azam&amp;rft.aufirst=F.&amp;rft.au=Fenchel%2C+T.&amp;rft.au=Field%2C+JG&amp;rft.au=Gray%2C+JS&amp;rft.au=Meyer-Reil%2C+LA&amp;rft.au=Thingstad%2C+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3354%252Fmeps010257&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlldredgeSilver1988" class="citation journal cs1">Alldredge, Alice L.; Silver, Mary W. (1988). "Characteristics, dynamics and significance of marine snow". <i>Progress in Oceanography</i>. <b>20</b> (1): 41–82. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1988PrOce..20...41A">1988PrOce..20...41A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0079-6611%2888%2990053-5">10.1016/0079-6611(88)90053-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Oceanography&amp;rft.atitle=Characteristics%2C+dynamics+and+significance+of+marine+snow&amp;rft.volume=20&amp;rft.issue=1&amp;rft.pages=41-82&amp;rft.date=1988&amp;rft_id=info%3Adoi%2F10.1016%2F0079-6611%2888%2990053-5&amp;rft_id=info%3Abibcode%2F1988PrOce..20...41A&amp;rft.aulast=Alldredge&amp;rft.aufirst=Alice+L.&amp;rft.au=Silver%2C+Mary+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Armstrong2002-72"><span class="mw-cite-backlink">^ <a href="#cite_ref-Armstrong2002_72-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Armstrong2002_72-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Armstrong2002_72-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArmstrongLeeHedgesHonjo2001" class="citation journal cs1">Armstrong, Robert A.; Lee, Cindy; Hedges, John I.; Honjo, Susumu; Wakeham, Stuart G. (2001). "A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals". <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>. <b>49</b> (1–3): 219–236. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001DSRII..49..219A">2001DSRII..49..219A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0967-0645%2801%2900101-1">10.1016/S0967-0645(01)00101-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+II%3A+Topical+Studies+in+Oceanography&amp;rft.atitle=A+new%2C+mechanistic+model+for+organic+carbon+fluxes+in+the+ocean+based+on+the+quantitative+association+of+POC+with+ballast+minerals&amp;rft.volume=49&amp;rft.issue=1%E2%80%933&amp;rft.pages=219-236&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1016%2FS0967-0645%2801%2900101-1&amp;rft_id=info%3Abibcode%2F2001DSRII..49..219A&amp;rft.aulast=Armstrong&amp;rft.aufirst=Robert+A.&amp;rft.au=Lee%2C+Cindy&amp;rft.au=Hedges%2C+John+I.&amp;rft.au=Honjo%2C+Susumu&amp;rft.au=Wakeham%2C+Stuart+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Francois2002-73"><span class="mw-cite-backlink">^ <a href="#cite_ref-Francois2002_73-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Francois2002_73-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrancoisHonjoKrishfieldManganini2002" class="citation journal cs1">Francois, Roger; Honjo, Susumu; Krishfield, Richard; Manganini, Steve (2002). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2001GB001722">"Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean"</a>. <i>Global Biogeochemical Cycles</i>. <b>16</b> (4): 34-1–34-20. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002GBioC..16.1087F">2002GBioC..16.1087F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2001GB001722">10.1029/2001GB001722</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128876389">128876389</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Factors+controlling+the+flux+of+organic+carbon+to+the+bathypelagic+zone+of+the+ocean&amp;rft.volume=16&amp;rft.issue=4&amp;rft.pages=34-1-34-20&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128876389%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1029%2F2001GB001722&amp;rft_id=info%3Abibcode%2F2002GBioC..16.1087F&amp;rft.aulast=Francois&amp;rft.aufirst=Roger&amp;rft.au=Honjo%2C+Susumu&amp;rft.au=Krishfield%2C+Richard&amp;rft.au=Manganini%2C+Steve&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2001GB001722&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Klaas2002-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-Klaas2002_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Klaas2002_74-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Klaas2002_74-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlaasArcher2002" class="citation journal cs1">Klaas, Christine; Archer, David E. (2002). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2001GB001765">"Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio"</a>. <i>Global Biogeochemical Cycles</i>. <b>16</b> (4): 63-1–63-14. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002GBioC..16.1116K">2002GBioC..16.1116K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2001GB001765">10.1029/2001GB001765</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Association+of+sinking+organic+matter+with+various+types+of+mineral+ballast+in+the+deep+sea%3A+Implications+for+the+rain+ratio&amp;rft.volume=16&amp;rft.issue=4&amp;rft.pages=63-1-63-14&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1029%2F2001GB001765&amp;rft_id=info%3Abibcode%2F2002GBioC..16.1116K&amp;rft.aulast=Klaas&amp;rft.aufirst=Christine&amp;rft.au=Archer%2C+David+E.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2001GB001765&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLe_MoignePabortsavaMarcinkoMartin2014" class="citation journal cs1">Le Moigne, Frédéric A. C.; Pabortsava, Katsiaryna; Marcinko, Charlotte L. J.; Martin, Patrick; Sanders, Richard J. (2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459180">"Where is mineral ballast important for surface export of particulate organic carbon in the ocean?"</a>. <i>Geophysical Research Letters</i>. <b>41</b> (23): 8460–8468. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014GeoRL..41.8460L">2014GeoRL..41.8460L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F2014GL061678">10.1002/2014GL061678</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459180">4459180</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26074644">26074644</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geophysical+Research+Letters&amp;rft.atitle=Where+is+mineral+ballast+important+for+surface+export+of+particulate+organic+carbon+in+the+ocean%3F&amp;rft.volume=41&amp;rft.issue=23&amp;rft.pages=8460-8468&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4459180%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F26074644&amp;rft_id=info%3Adoi%2F10.1002%2F2014GL061678&amp;rft_id=info%3Abibcode%2F2014GeoRL..41.8460L&amp;rft.aulast=Le+Moigne&amp;rft.aufirst=Fr%C3%A9d%C3%A9ric+A.+C.&amp;rft.au=Pabortsava%2C+Katsiaryna&amp;rft.au=Marcinko%2C+Charlotte+L.+J.&amp;rft.au=Martin%2C+Patrick&amp;rft.au=Sanders%2C+Richard+J.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4459180&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIversenRobert2015" class="citation journal cs1">Iversen, Morten H.; Robert, Maya L. (2015). "Ballasting effects of smectite on aggregate formation and export from a natural plankton community". <i>Marine Chemistry</i>. <b>175</b>: 18–27. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015MarCh.175...18I">2015MarCh.175...18I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.marchem.2015.04.009">10.1016/j.marchem.2015.04.009</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Chemistry&amp;rft.atitle=Ballasting+effects+of+smectite+on+aggregate+formation+and+export+from+a+natural+plankton+community&amp;rft.volume=175&amp;rft.pages=18-27&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1016%2Fj.marchem.2015.04.009&amp;rft_id=info%3Abibcode%2F2015MarCh.175...18I&amp;rft.aulast=Iversen&amp;rft.aufirst=Morten+H.&amp;rft.au=Robert%2C+Maya+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Ploug2008-77"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ploug2008_77-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ploug2008_77-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlougIversenKoskiBuitenhuis2008" class="citation journal cs1">Ploug, Helle; Iversen, Morten Hvitfeldt; Koski, Marja; Buitenhuis, Erik Theodoor (2008). <a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2008.53.2.0469">"Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite"</a>. <i>Limnology and Oceanography</i>. <b>53</b> (2): 469–476. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008LimOc..53..469P">2008LimOc..53..469P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2008.53.2.0469">10.4319/lo.2008.53.2.0469</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Production%2C+oxygen+respiration+rates%2C+and+sinking+velocity+of+copepod+fecal+pellets%3A+Direct+measurements+of+ballasting+by+opal+and+calcite&amp;rft.volume=53&amp;rft.issue=2&amp;rft.pages=469-476&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.4319%2Flo.2008.53.2.0469&amp;rft_id=info%3Abibcode%2F2008LimOc..53..469P&amp;rft.aulast=Ploug&amp;rft.aufirst=Helle&amp;rft.au=Iversen%2C+Morten+Hvitfeldt&amp;rft.au=Koski%2C+Marja&amp;rft.au=Buitenhuis%2C+Erik+Theodoor&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4319%252Flo.2008.53.2.0469&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Engel2009a-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-Engel2009a_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEngelAbramsonSzlosekLiu2009" class="citation journal cs1">Engel, Anja; Abramson, Lynn; Szlosek, Jennifer; Liu, Zhanfei; Stewart, Gillian; Hirschberg, David; Lee, Cindy (2009). "Investigating the effect of ballasting by CaCO3 in Emiliania huxleyi, II: Decomposition of particulate organic matter". <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>. <b>56</b> (18): 1408–1419. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009DSRII..56.1408E">2009DSRII..56.1408E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.dsr2.2008.11.028">10.1016/j.dsr2.2008.11.028</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+II%3A+Topical+Studies+in+Oceanography&amp;rft.atitle=Investigating+the+effect+of+ballasting+by+CaCO3+in+Emiliania+huxleyi%2C+II%3A+Decomposition+of+particulate+organic+matter&amp;rft.volume=56&amp;rft.issue=18&amp;rft.pages=1408-1419&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1016%2Fj.dsr2.2008.11.028&amp;rft_id=info%3Abibcode%2F2009DSRII..56.1408E&amp;rft.aulast=Engel&amp;rft.aufirst=Anja&amp;rft.au=Abramson%2C+Lynn&amp;rft.au=Szlosek%2C+Jennifer&amp;rft.au=Liu%2C+Zhanfei&amp;rft.au=Stewart%2C+Gillian&amp;rft.au=Hirschberg%2C+David&amp;rft.au=Lee%2C+Cindy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Engel2009b-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-Engel2009b_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEngelSzlosekAbramsonLiu2009" class="citation journal cs1">Engel, Anja; Szlosek, Jennifer; Abramson, Lynn; Liu, Zhanfei; Lee, Cindy (2009). "Investigating the effect of ballasting by CaCO3 in Emiliania huxleyi: I. Formation, settling velocities and physical properties of aggregates". <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>. <b>56</b> (18): 1396–1407. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009DSRII..56.1396E">2009DSRII..56.1396E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.dsr2.2008.11.027">10.1016/j.dsr2.2008.11.027</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+II%3A+Topical+Studies+in+Oceanography&amp;rft.atitle=Investigating+the+effect+of+ballasting+by+CaCO3+in+Emiliania+huxleyi%3A+I.+Formation%2C+settling+velocities+and+physical+properties+of+aggregates&amp;rft.volume=56&amp;rft.issue=18&amp;rft.pages=1396-1407&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1016%2Fj.dsr2.2008.11.027&amp;rft_id=info%3Abibcode%2F2009DSRII..56.1396E&amp;rft.aulast=Engel&amp;rft.aufirst=Anja&amp;rft.au=Szlosek%2C+Jennifer&amp;rft.au=Abramson%2C+Lynn&amp;rft.au=Liu%2C+Zhanfei&amp;rft.au=Lee%2C+Cindy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeePetersonWakehamArmstrong2009" class="citation journal cs1">Lee, Cindy; Peterson, Michael L.; Wakeham, Stuart G.; Armstrong, Robert A.; Cochran, J. Kirk; Miquel, Juan Carlos; Fowler, Scott W.; Hirschberg, David; Beck, Aaron; Xue, Jianhong (2009). "Particulate organic matter and ballast fluxes measured using time-series and settling velocity sediment traps in the northwestern Mediterranean Sea". <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>. <b>56</b> (18): 1420–1436. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009DSRII..56.1420L">2009DSRII..56.1420L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.dsr2.2008.11.029">10.1016/j.dsr2.2008.11.029</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+II%3A+Topical+Studies+in+Oceanography&amp;rft.atitle=Particulate+organic+matter+and+ballast+fluxes+measured+using+time-series+and+settling+velocity+sediment+traps+in+the+northwestern+Mediterranean+Sea&amp;rft.volume=56&amp;rft.issue=18&amp;rft.pages=1420-1436&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1016%2Fj.dsr2.2008.11.029&amp;rft_id=info%3Abibcode%2F2009DSRII..56.1420L&amp;rft.aulast=Lee&amp;rft.aufirst=Cindy&amp;rft.au=Peterson%2C+Michael+L.&amp;rft.au=Wakeham%2C+Stuart+G.&amp;rft.au=Armstrong%2C+Robert+A.&amp;rft.au=Cochran%2C+J.+Kirk&amp;rft.au=Miquel%2C+Juan+Carlos&amp;rft.au=Fowler%2C+Scott+W.&amp;rft.au=Hirschberg%2C+David&amp;rft.au=Beck%2C+Aaron&amp;rft.au=Xue%2C+Jianhong&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Passow2006-81"><span class="mw-cite-backlink">^ <a href="#cite_ref-Passow2006_81-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Passow2006_81-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPassowde_la_Rocha2006" class="citation journal cs1">Passow, Uta; de la Rocha, Christina L. (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2005GB002579">"Accumulation of mineral ballast on organic aggregates"</a>. <i>Global Biogeochemical Cycles</i>. <b>20</b> (1): n/a. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006GBioC..20.1013P">2006GBioC..20.1013P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2005GB002579">10.1029/2005GB002579</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Accumulation+of+mineral+ballast+on+organic+aggregates&amp;rft.volume=20&amp;rft.issue=1&amp;rft.pages=n%2Fa&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1029%2F2005GB002579&amp;rft_id=info%3Abibcode%2F2006GBioC..20.1013P&amp;rft.aulast=Passow&amp;rft.aufirst=Uta&amp;rft.au=de+la+Rocha%2C+Christina+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2005GB002579&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomasBozecElkalayBaar2004" class="citation journal cs1">Thomas, Helmuth; Bozec, Yann; Elkalay, Khalid; Baar, Hein J. W. de (14 May 2004). <a rel="nofollow" class="external text" href="https://pure.rug.nl/ws/files/9825939/2004ScienceThomas.pdf">"Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping"</a> <span class="cs1-format">(PDF)</span>. <i>Science</i>. <b>304</b> (5673): 1005–1008. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004Sci...304.1005T">2004Sci...304.1005T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1095491">10.1126/science.1095491</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11370%2Fe821600e-4560-49e8-aeec-18eeb17549e3">11370/e821600e-4560-49e8-aeec-18eeb17549e3</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15143279">15143279</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:129790522">129790522</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Enhanced+Open+Ocean+Storage+of+CO2+from+Shelf+Sea+Pumping&amp;rft.volume=304&amp;rft.issue=5673&amp;rft.pages=1005-1008&amp;rft.date=2004-05-14&amp;rft_id=info%3Ahdl%2F11370%2Fe821600e-4560-49e8-aeec-18eeb17549e3&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A129790522%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2004Sci...304.1005T&amp;rft.issn=0036-8075&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1095491&amp;rft_id=info%3Apmid%2F15143279&amp;rft.aulast=Thomas&amp;rft.aufirst=Helmuth&amp;rft.au=Bozec%2C+Yann&amp;rft.au=Elkalay%2C+Khalid&amp;rft.au=Baar%2C+Hein+J.+W.+de&amp;rft_id=https%3A%2F%2Fpure.rug.nl%2Fws%2Ffiles%2F9825939%2F2004ScienceThomas.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDe_La_Rocha2006" class="citation book cs1">De La Rocha, C. L. (2006). "The Biological Pump". In Holland, Heinrich D.; Turekian, Karl K. (eds.). <i>Treatise on Geochemistry</i>. Vol.&#160;6. Pergamon Press. p.&#160;625. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003TrGeo...6...83D">2003TrGeo...6...83D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB0-08-043751-6%2F06107-7">10.1016/B0-08-043751-6/06107-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-043751-4" title="Special:BookSources/978-0-08-043751-4"><bdi>978-0-08-043751-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Biological+Pump&amp;rft.btitle=Treatise+on+Geochemistry&amp;rft.pages=625&amp;rft.pub=Pergamon+Press&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1016%2FB0-08-043751-6%2F06107-7&amp;rft_id=info%3Abibcode%2F2003TrGeo...6...83D&amp;rft.isbn=978-0-08-043751-4&amp;rft.aulast=De+La+Rocha&amp;rft.aufirst=C.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeelySabineSchlitzerBullister2004" class="citation journal cs1">Feely, Richard A.; Sabine, Christopher L.; Schlitzer, Reiner; Bullister, John L.; Mecking, Sabine; Greeley, Dana (1 February 2004). "Oxygen Utilization and Organic Carbon Remineralisation in the Upper Water Column of the Pacific Ocean". <i>Journal of Oceanography</i>. <b>60</b> (1): 45–52. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JOce...60...45F">2004JOce...60...45F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FB%3AJOCE.0000038317.01279.aa">10.1023/B:JOCE.0000038317.01279.aa</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0916-8370">0916-8370</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:67846685">67846685</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Oceanography&amp;rft.atitle=Oxygen+Utilization+and+Organic+Carbon+Remineralisation+in+the+Upper+Water+Column+of+the+Pacific+Ocean&amp;rft.volume=60&amp;rft.issue=1&amp;rft.pages=45-52&amp;rft.date=2004-02-01&amp;rft_id=info%3Adoi%2F10.1023%2FB%3AJOCE.0000038317.01279.aa&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A67846685%23id-name%3DS2CID&amp;rft.issn=0916-8370&amp;rft_id=info%3Abibcode%2F2004JOce...60...45F&amp;rft.aulast=Feely&amp;rft.aufirst=Richard+A.&amp;rft.au=Sabine%2C+Christopher+L.&amp;rft.au=Schlitzer%2C+Reiner&amp;rft.au=Bullister%2C+John+L.&amp;rft.au=Mecking%2C+Sabine&amp;rft.au=Greeley%2C+Dana&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdministration" class="citation web cs1">Administration, US Department of Commerce, National Oceanic and Atmospheric. <a rel="nofollow" class="external text" href="http://oceanservice.noaa.gov/facts/light_travel.html">"How far does light travel in the ocean?"</a>. <i>oceanservice.noaa.gov</i><span class="reference-accessdate">. Retrieved <span class="nowrap">29 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=oceanservice.noaa.gov&amp;rft.atitle=How+far+does+light+travel+in+the+ocean%3F&amp;rft.aulast=Administration&amp;rft.aufirst=US+Department+of+Commerce%2C+National+Oceanic+and+Atmospheric&amp;rft_id=http%3A%2F%2Foceanservice.noaa.gov%2Ffacts%2Flight_travel.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarlKnauerMartin1988" class="citation journal cs1">Karl, David M.; Knauer, George A.; Martin, John H. (1 March 1988). "Downward flux of particulate organic matter in the ocean: a particle decomposition paradox". <i>Nature</i>. <b>332</b> (6163): 438–441. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1988Natur.332..438K">1988Natur.332..438K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F332438a0">10.1038/332438a0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4356597">4356597</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Downward+flux+of+particulate+organic+matter+in+the+ocean%3A+a+particle+decomposition+paradox&amp;rft.volume=332&amp;rft.issue=6163&amp;rft.pages=438-441&amp;rft.date=1988-03-01&amp;rft_id=info%3Adoi%2F10.1038%2F332438a0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4356597%23id-name%3DS2CID&amp;rft.issn=0028-0836&amp;rft_id=info%3Abibcode%2F1988Natur.332..438K&amp;rft.aulast=Karl&amp;rft.aufirst=David+M.&amp;rft.au=Knauer%2C+George+A.&amp;rft.au=Martin%2C+John+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLefévreDenisLambertMiquel1996" class="citation journal cs1">Lefévre, D.; Denis, M.; Lambert, C. E.; Miquel, J. -C. (1 February 1996). "Is DOC the main source of organic matter remineralization in the ocean water column?". <i>Journal of Marine Systems</i>. The Coastal Ocean in a Global Change Perspective. <b>7</b> (2–4): 281–291. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996JMS.....7..281L">1996JMS.....7..281L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0924-7963%2895%2900003-8">10.1016/0924-7963(95)00003-8</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Marine+Systems&amp;rft.atitle=Is+DOC+the+main+source+of+organic+matter+remineralization+in+the+ocean+water+column%3F&amp;rft.volume=7&amp;rft.issue=2%E2%80%934&amp;rft.pages=281-291&amp;rft.date=1996-02-01&amp;rft_id=info%3Adoi%2F10.1016%2F0924-7963%2895%2900003-8&amp;rft_id=info%3Abibcode%2F1996JMS.....7..281L&amp;rft.aulast=Lef%C3%A9vre&amp;rft.aufirst=D.&amp;rft.au=Denis%2C+M.&amp;rft.au=Lambert%2C+C.+E.&amp;rft.au=Miquel%2C+J.+-C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchulzeMooney2012" class="citation book cs1">Schulze, Ernst-Detlef; Mooney, Harold A. (6 December 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=T5trCQAAQBAJ"><i>Biodiversity and Ecosystem Function</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-58001-7" title="Special:BookSources/978-3-642-58001-7"><bdi>978-3-642-58001-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Biodiversity+and+Ecosystem+Function&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012-12-06&amp;rft.isbn=978-3-642-58001-7&amp;rft.aulast=Schulze&amp;rft.aufirst=Ernst-Detlef&amp;rft.au=Mooney%2C+Harold+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DT5trCQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160317223727/http://www.coml.org/projects/international-census-marine-microbes-icomm">"International Census of Marine Microbes (ICoMM)"</a>. <i>www.coml.org</i>. Census of Marine Life. Archived from <a rel="nofollow" class="external text" href="http://www.coml.org/projects/international-census-marine-microbes-icomm">the original</a> on 17 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">29 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.coml.org&amp;rft.atitle=International+Census+of+Marine+Microbes+%28ICoMM%29&amp;rft_id=http%3A%2F%2Fwww.coml.org%2Fprojects%2Finternational-census-marine-microbes-icomm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.boundless.com/microbiology/textbooks/boundless-microbiology-textbook/microscopy-3/looking-at-microbes-28/microbe-size-238-4283/">"Microbe Size - Boundless Open Textbook"</a>. <i>Boundless</i><span class="reference-accessdate">. Retrieved <span class="nowrap">29 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Boundless&amp;rft.atitle=Microbe+Size+-+Boundless+Open+Textbook&amp;rft_id=https%3A%2F%2Fwww.boundless.com%2Fmicrobiology%2Ftextbooks%2Fboundless-microbiology-textbook%2Fmicroscopy-3%2Flooking-at-microbes-28%2Fmicrobe-size-238-4283%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-The_role_of_temperature,_cellular_q-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-The_role_of_temperature,_cellular_q_91-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaumertPetzoldt2008" class="citation journal cs1">Baumert, Helmut Z.; Petzoldt, Thomas (2008). "The role of temperature, cellular quota and nutrient concentrations for photosynthesis, growth and light–dark acclimation in phytoplankton". <i>Limnologica</i>. <b>38</b> (3–4): 313–326. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Limng..38..313B">2008Limng..38..313B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.limno.2008.06.002">10.1016/j.limno.2008.06.002</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnologica&amp;rft.atitle=The+role+of+temperature%2C+cellular+quota+and+nutrient+concentrations+for+photosynthesis%2C+growth+and+light%E2%80%93dark+acclimation+in+phytoplankton&amp;rft.volume=38&amp;rft.issue=3%E2%80%934&amp;rft.pages=313-326&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1016%2Fj.limno.2008.06.002&amp;rft_id=info%3Abibcode%2F2008Limng..38..313B&amp;rft.aulast=Baumert&amp;rft.aufirst=Helmut+Z.&amp;rft.au=Petzoldt%2C+Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLamLeeMohamed2012" class="citation journal cs1">Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman (2012). "Current status and challenges on microalgae-based carbon capture". <i>International Journal of Greenhouse Gas Control</i>. <b>10</b>: 456–469. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012IJGGC..10..456L">2012IJGGC..10..456L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijggc.2012.07.010">10.1016/j.ijggc.2012.07.010</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Greenhouse+Gas+Control&amp;rft.atitle=Current+status+and+challenges+on+microalgae-based+carbon+capture&amp;rft.volume=10&amp;rft.pages=456-469&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ijggc.2012.07.010&amp;rft_id=info%3Abibcode%2F2012IJGGC..10..456L&amp;rft.aulast=Lam&amp;rft.aufirst=Man+Kee&amp;rft.au=Lee%2C+Keat+Teong&amp;rft.au=Mohamed%2C+Abdul+Rahman&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Häder2014-93"><span class="mw-cite-backlink">^ <a href="#cite_ref-Häder2014_93-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Häder2014_93-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHäderVillafañeHelbling2014" class="citation journal cs1">Häder, Donat-P.; Villafañe, Virginia E.; Helbling, E. Walter (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC3PP50418B">"Productivity of aquatic primary producers under global climate change"</a>. <i>Photochem. Photobiol. Sci</i>. <b>13</b> (10): 1370–1392. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC3PP50418B">10.1039/C3PP50418B</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11336%2F24725">11336/24725</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25191675">25191675</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:25740029">25740029</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Photochem.+Photobiol.+Sci.&amp;rft.atitle=Productivity+of+aquatic+primary+producers+under+global+climate+change&amp;rft.volume=13&amp;rft.issue=10&amp;rft.pages=1370-1392&amp;rft.date=2014&amp;rft_id=info%3Ahdl%2F11336%2F24725&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A25740029%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F25191675&amp;rft_id=info%3Adoi%2F10.1039%2FC3PP50418B&amp;rft.aulast=H%C3%A4der&amp;rft.aufirst=Donat-P.&amp;rft.au=Villafa%C3%B1e%2C+Virginia+E.&amp;rft.au=Helbling%2C+E.+Walter&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1039%252FC3PP50418B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Li2012-94"><span class="mw-cite-backlink">^ <a href="#cite_ref-Li2012_94-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Li2012_94-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiGaoBeardall2012" class="citation journal cs1">Li, Wei; Gao, Kunshan; Beardall, John (2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517544">"Interactive Effects of Ocean Acidification and Nitrogen-Limitation on the Diatom Phaeodactylum tricornutum"</a>. <i>PLOS ONE</i>. <b>7</b> (12): e51590. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PLoSO...751590L">2012PLoSO...751590L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0051590">10.1371/journal.pone.0051590</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517544">3517544</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23236517">23236517</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+ONE&amp;rft.atitle=Interactive+Effects+of+Ocean+Acidification+and+Nitrogen-Limitation+on+the+Diatom+Phaeodactylum+tricornutum&amp;rft.volume=7&amp;rft.issue=12&amp;rft.pages=e51590&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3517544%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F23236517&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0051590&amp;rft_id=info%3Abibcode%2F2012PLoSO...751590L&amp;rft.aulast=Li&amp;rft.aufirst=Wei&amp;rft.au=Gao%2C+Kunshan&amp;rft.au=Beardall%2C+John&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3517544&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Hülse2017-95"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hülse2017_95-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hülse2017_95-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHülseArndtWilsonMunhoven2017" class="citation journal cs1">Hülse, Dominik; Arndt, Sandra; Wilson, Jamie D.; Munhoven, Guy; Ridgwell, Andy (2017). <a rel="nofollow" class="external text" href="https://research-information.bris.ac.uk/ws/files/134880543/BioPumpInEMICS.pdf">"Understanding the causes and consequences of past marine carbon cycling variability through models"</a> <span class="cs1-format">(PDF)</span>. <i>Earth-Science Reviews</i>. <b>171</b>: 349–382. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017ESRv..171..349H">2017ESRv..171..349H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.earscirev.2017.06.004">10.1016/j.earscirev.2017.06.004</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/1983%2F7035f071-71c5-48a5-91f6-a8286e386d21">1983/7035f071-71c5-48a5-91f6-a8286e386d21</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Earth-Science+Reviews&amp;rft.atitle=Understanding+the+causes+and+consequences+of+past+marine+carbon+cycling+variability+through+models&amp;rft.volume=171&amp;rft.pages=349-382&amp;rft.date=2017&amp;rft_id=info%3Ahdl%2F1983%2F7035f071-71c5-48a5-91f6-a8286e386d21&amp;rft_id=info%3Adoi%2F10.1016%2Fj.earscirev.2017.06.004&amp;rft_id=info%3Abibcode%2F2017ESRv..171..349H&amp;rft.aulast=H%C3%BClse&amp;rft.aufirst=Dominik&amp;rft.au=Arndt%2C+Sandra&amp;rft.au=Wilson%2C+Jamie+D.&amp;rft.au=Munhoven%2C+Guy&amp;rft.au=Ridgwell%2C+Andy&amp;rft_id=https%3A%2F%2Fresearch-information.bris.ac.uk%2Fws%2Ffiles%2F134880543%2FBioPumpInEMICS.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHutchinsFu2017" class="citation journal cs1">Hutchins, David A.; Fu, Feixue (2017). "Microorganisms and ocean global change". <i>Nature Microbiology</i>. <b>2</b> (6): 17058. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmicrobiol.2017.58">10.1038/nmicrobiol.2017.58</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28540925">28540925</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:23357501">23357501</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Microbiology&amp;rft.atitle=Microorganisms+and+ocean+global+change&amp;rft.volume=2&amp;rft.issue=6&amp;rft.pages=17058&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A23357501%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F28540925&amp;rft_id=info%3Adoi%2F10.1038%2Fnmicrobiol.2017.58&amp;rft.aulast=Hutchins&amp;rft.aufirst=David+A.&amp;rft.au=Fu%2C+Feixue&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSandersHensonKoskide_la_Rocha2014" class="citation journal cs1">Sanders, Richard; Henson, Stephanie A.; Koski, Marja; de la Rocha, Christina L.; Painter, Stuart C.; Poulton, Alex J.; Riley, Jennifer; Salihoglu, Baris; Visser, Andre; Yool, Andrew; Bellerby, Richard; Martin, Adrian P. (2014). "The Biological Carbon Pump in the North Atlantic". <i>Progress in Oceanography</i>. <b>129</b>: 200–218. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014PrOce.129..200S">2014PrOce.129..200S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pocean.2014.05.005">10.1016/j.pocean.2014.05.005</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Oceanography&amp;rft.atitle=The+Biological+Carbon+Pump+in+the+North+Atlantic&amp;rft.volume=129&amp;rft.pages=200-218&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1016%2Fj.pocean.2014.05.005&amp;rft_id=info%3Abibcode%2F2014PrOce.129..200S&amp;rft.aulast=Sanders&amp;rft.aufirst=Richard&amp;rft.au=Henson%2C+Stephanie+A.&amp;rft.au=Koski%2C+Marja&amp;rft.au=de+la+Rocha%2C+Christina+L.&amp;rft.au=Painter%2C+Stuart+C.&amp;rft.au=Poulton%2C+Alex+J.&amp;rft.au=Riley%2C+Jennifer&amp;rft.au=Salihoglu%2C+Baris&amp;rft.au=Visser%2C+Andre&amp;rft.au=Yool%2C+Andrew&amp;rft.au=Bellerby%2C+Richard&amp;rft.au=Martin%2C+Adrian+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyd2015" class="citation journal cs1">Boyd, Philip W. (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffmars.2015.00077">"Toward quantifying the response of the oceans' biological pump to climate change"</a>. <i>Frontiers in Marine Science</i>. <b>2</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffmars.2015.00077">10.3389/fmars.2015.00077</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16787695">16787695</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Marine+Science&amp;rft.atitle=Toward+quantifying+the+response+of+the+oceans%27+biological+pump+to+climate+change&amp;rft.volume=2&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.3389%2Ffmars.2015.00077&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16787695%23id-name%3DS2CID&amp;rft.aulast=Boyd&amp;rft.aufirst=Philip+W.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3389%252Ffmars.2015.00077&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Buesseler2009-99"><span class="mw-cite-backlink">^ <a href="#cite_ref-Buesseler2009_99-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Buesseler2009_99-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Buesseler2009_99-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuesselerBoyd2009" class="citation journal cs1">Buesseler, Ken O.; Boyd, Philip W. (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2009.54.4.1210">"Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean"</a>. <i>Limnology and Oceanography</i>. <b>54</b> (4): 1210–1232. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009LimOc..54.1210B">2009LimOc..54.1210B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2009.54.4.1210">10.4319/lo.2009.54.4.1210</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Shedding+light+on+processes+that+control+particle+export+and+flux+attenuation+in+the+twilight+zone+of+the+open+ocean&amp;rft.volume=54&amp;rft.issue=4&amp;rft.pages=1210-1232&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.4319%2Flo.2009.54.4.1210&amp;rft_id=info%3Abibcode%2F2009LimOc..54.1210B&amp;rft.aulast=Buesseler&amp;rft.aufirst=Ken+O.&amp;rft.au=Boyd%2C+Philip+W.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4319%252Flo.2009.54.4.1210&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Herndl2013-100"><span class="mw-cite-backlink">^ <a href="#cite_ref-Herndl2013_100-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Herndl2013_100-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Herndl2013_100-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerndlReinthaler2013" class="citation journal cs1">Herndl, Gerhard J.; Reinthaler, Thomas (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972885">"Microbial control of the dark end of the biological pump"</a>. <i>Nature Geoscience</i>. <b>6</b> (9): 718–724. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatGe...6..718H">2013NatGe...6..718H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fngeo1921">10.1038/ngeo1921</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972885">3972885</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24707320">24707320</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Geoscience&amp;rft.atitle=Microbial+control+of+the+dark+end+of+the+biological+pump&amp;rft.volume=6&amp;rft.issue=9&amp;rft.pages=718-724&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3972885%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F24707320&amp;rft_id=info%3Adoi%2F10.1038%2Fngeo1921&amp;rft_id=info%3Abibcode%2F2013NatGe...6..718H&amp;rft.aulast=Herndl&amp;rft.aufirst=Gerhard+J.&amp;rft.au=Reinthaler%2C+Thomas&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3972885&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHofmannSchellnhuber2009" class="citation journal cs1">Hofmann, M.; Schellnhuber, H.-J. (2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642667">"Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>106</b> (9): 3017–3022. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PNAS..106.3017H">2009PNAS..106.3017H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0813384106">10.1073/pnas.0813384106</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642667">2642667</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19218455">19218455</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&amp;rft.atitle=Oceanic+acidification+affects+marine+carbon+pump+and+triggers+extended+marine+oxygen+holes&amp;rft.volume=106&amp;rft.issue=9&amp;rft.pages=3017-3022&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2642667%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19218455&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.0813384106&amp;rft_id=info%3Abibcode%2F2009PNAS..106.3017H&amp;rft.aulast=Hofmann&amp;rft.aufirst=M.&amp;rft.au=Schellnhuber%2C+H.-J.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2642667&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_la_RochaPassow2007" class="citation journal cs1">de la Rocha, Christina L.; Passow, Uta (2007). <a rel="nofollow" class="external text" href="https://epic.awi.de/id/eprint/14896/1/DeL2006a.pdf">"Factors influencing the sinking of POC and the efficiency of the biological carbon pump"</a> <span class="cs1-format">(PDF)</span>. <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>. <b>54</b> (5–7): 639–658. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007DSRII..54..639D">2007DSRII..54..639D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.dsr2.2007.01.004">10.1016/j.dsr2.2007.01.004</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+II%3A+Topical+Studies+in+Oceanography&amp;rft.atitle=Factors+influencing+the+sinking+of+POC+and+the+efficiency+of+the+biological+carbon+pump&amp;rft.volume=54&amp;rft.issue=5%E2%80%937&amp;rft.pages=639-658&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1016%2Fj.dsr2.2007.01.004&amp;rft_id=info%3Abibcode%2F2007DSRII..54..639D&amp;rft.aulast=de+la+Rocha&amp;rft.aufirst=Christina+L.&amp;rft.au=Passow%2C+Uta&amp;rft_id=https%3A%2F%2Fepic.awi.de%2Fid%2Feprint%2F14896%2F1%2FDeL2006a.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSatoTanakaIshimaru2003" class="citation journal cs1">Sato, R.; Tanaka, Y.; Ishimaru, T. (2003). <a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps259163">"Species-specific house productivity of appendicularians"</a>. <i>Marine Ecology Progress Series</i>. <b>259</b>: 163–172. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003MEPS..259..163S">2003MEPS..259..163S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps259163">10.3354/meps259163</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Ecology+Progress+Series&amp;rft.atitle=Species-specific+house+productivity+of+appendicularians&amp;rft.volume=259&amp;rft.pages=163-172&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.3354%2Fmeps259163&amp;rft_id=info%3Abibcode%2F2003MEPS..259..163S&amp;rft.aulast=Sato&amp;rft.aufirst=R.&amp;rft.au=Tanaka%2C+Y.&amp;rft.au=Ishimaru%2C+T.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3354%252Fmeps259163&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNishibeTakahashiIchikawaHidaka2015" class="citation journal cs1">Nishibe, Yuichiro; Takahashi, Kazutaka; Ichikawa, Tadafumi; Hidaka, Kiyotaka; Kurogi, Hiroaki; Segawa, Kyohei; Saito, Hiroaki (2015). "Degradation of discarded appendicularian houses by oncaeid copepods". <i>Limnology and Oceanography</i>. <b>60</b> (3): 967–976. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015LimOc..60..967N">2015LimOc..60..967N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Flno.10061">10.1002/lno.10061</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Degradation+of+discarded+appendicularian+houses+by+oncaeid+copepods&amp;rft.volume=60&amp;rft.issue=3&amp;rft.pages=967-976&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1002%2Flno.10061&amp;rft_id=info%3Abibcode%2F2015LimOc..60..967N&amp;rft.aulast=Nishibe&amp;rft.aufirst=Yuichiro&amp;rft.au=Takahashi%2C+Kazutaka&amp;rft.au=Ichikawa%2C+Tadafumi&amp;rft.au=Hidaka%2C+Kiyotaka&amp;rft.au=Kurogi%2C+Hiroaki&amp;rft.au=Segawa%2C+Kyohei&amp;rft.au=Saito%2C+Hiroaki&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Collins2013-105"><span class="mw-cite-backlink">^ <a href="#cite_ref-Collins2013_105-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Collins2013_105-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Collins2013_105-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Collins2013_105-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Collins2013_105-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Collins2013_105-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Collins2013_105-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCollinsRostRynearson2014" class="citation journal cs1">Collins, Sinéad; Rost, Björn; <a href="/wiki/Tatiana_Rynearson" title="Tatiana Rynearson">Rynearson, Tatiana A.</a> (2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894903">"Evolutionary potential of marine phytoplankton under ocean acidification"</a>. <i>Evolutionary Applications</i>. <b>7</b> (1): 140–155. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014EvApp...7..140C">2014EvApp...7..140C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Feva.12120">10.1111/eva.12120</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894903">3894903</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24454553">24454553</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Evolutionary+Applications&amp;rft.atitle=Evolutionary+potential+of+marine+phytoplankton+under+ocean+acidification&amp;rft.volume=7&amp;rft.issue=1&amp;rft.pages=140-155&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3894903%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F24454553&amp;rft_id=info%3Adoi%2F10.1111%2Feva.12120&amp;rft_id=info%3Abibcode%2F2014EvApp...7..140C&amp;rft.aulast=Collins&amp;rft.aufirst=Sin%C3%A9ad&amp;rft.au=Rost%2C+Bj%C3%B6rn&amp;rft.au=Rynearson%2C+Tatiana+A.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3894903&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Richardson2007-106"><span class="mw-cite-backlink">^ <a href="#cite_ref-Richardson2007_106-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Richardson2007_106-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichardsonJackson2007" class="citation journal cs1">Richardson, T. L.; Jackson, G. A. (2007). "Small Phytoplankton and Carbon Export from the Surface Ocean". <i>Science</i>. <b>315</b> (5813): 838–840. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Sci...315..838R">2007Sci...315..838R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1133471">10.1126/science.1133471</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17289995">17289995</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:45563491">45563491</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Small+Phytoplankton+and+Carbon+Export+from+the+Surface+Ocean&amp;rft.volume=315&amp;rft.issue=5813&amp;rft.pages=838-840&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1133471&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A45563491%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17289995&amp;rft_id=info%3Abibcode%2F2007Sci...315..838R&amp;rft.aulast=Richardson&amp;rft.aufirst=T.+L.&amp;rft.au=Jackson%2C+G.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Ragueneau2006-107"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ragueneau2006_107-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ragueneau2006_107-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRagueneauSchultesBidleClaquin2006" class="citation journal cs1">Ragueneau, Olivier; Schultes, Sabine; Bidle, Kay; Claquin, Pascal; Moriceau, Brivaëla (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2006GB002688">"Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump"</a>. <i>Global Biogeochemical Cycles</i>. <b>20</b> (4): n/a. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006GBioC..20.4S02R">2006GBioC..20.4S02R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2006GB002688">10.1029/2006GB002688</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Si+and+C+interactions+in+the+world+ocean%3A+Importance+of+ecological+processes+and+implications+for+the+role+of+diatoms+in+the+biological+pump&amp;rft.volume=20&amp;rft.issue=4&amp;rft.pages=n%2Fa&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1029%2F2006GB002688&amp;rft_id=info%3Abibcode%2F2006GBioC..20.4S02R&amp;rft.aulast=Ragueneau&amp;rft.aufirst=Olivier&amp;rft.au=Schultes%2C+Sabine&amp;rft.au=Bidle%2C+Kay&amp;rft.au=Claquin%2C+Pascal&amp;rft.au=Moriceau%2C+Briva%C3%ABla&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2006GB002688&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Miklasz2010-108"><span class="mw-cite-backlink">^ <a href="#cite_ref-Miklasz2010_108-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Miklasz2010_108-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiklaszDenny2010" class="citation journal cs1">Miklasz, Kevin A.; Denny, Mark W. (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2010.55.6.2513">"Diatom sinkings speeds: Improved predictions and insight from a modified Stokes' law"</a>. <i>Limnology and Oceanography</i>. <b>55</b> (6): 2513–2525. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010LimOc..55.2513M">2010LimOc..55.2513M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2010.55.6.2513">10.4319/lo.2010.55.6.2513</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Diatom+sinkings+speeds%3A+Improved+predictions+and+insight+from+a+modified+Stokes%27+law&amp;rft.volume=55&amp;rft.issue=6&amp;rft.pages=2513-2525&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.4319%2Flo.2010.55.6.2513&amp;rft_id=info%3Abibcode%2F2010LimOc..55.2513M&amp;rft.aulast=Miklasz&amp;rft.aufirst=Kevin+A.&amp;rft.au=Denny%2C+Mark+W.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4319%252Flo.2010.55.6.2513&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Møller2003-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-Møller2003_109-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMøllerThorNielsen2003" class="citation journal cs1">Møller, EF; Thor, P.; Nielsen, TG (2003). <a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps262185">"Production of DOC by <i>Calanus finmarchicus</i>, <i>C. Glacialis</i> and <i>C. Hyperboreus</i> through sloppy feeding and leakage from fecal pellets"</a>. <i>Marine Ecology Progress Series</i>. <b>262</b>: 185–191. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003MEPS..262..185M">2003MEPS..262..185M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps262185">10.3354/meps262185</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Ecology+Progress+Series&amp;rft.atitle=Production+of+DOC+by+Calanus+finmarchicus%2C+C.+Glacialis+and+C.+Hyperboreus+through+sloppy+feeding+and+leakage+from+fecal+pellets&amp;rft.volume=262&amp;rft.pages=185-191&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.3354%2Fmeps262185&amp;rft_id=info%3Abibcode%2F2003MEPS..262..185M&amp;rft.aulast=M%C3%B8ller&amp;rft.aufirst=EF&amp;rft.au=Thor%2C+P.&amp;rft.au=Nielsen%2C+TG&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3354%252Fmeps262185&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Saba2009-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-Saba2009_110-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSabaSteinbergBronk2009" class="citation journal cs1">Saba, GK; Steinberg, DK; Bronk, DA (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps08070">"Effects of diet on release of dissolved organic and inorganic nutrients by the copepod <i>Acartia tonsa</i>"</a>. <i>Marine Ecology Progress Series</i>. <b>386</b>: 147–161. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009MEPS..386..147S">2009MEPS..386..147S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps08070">10.3354/meps08070</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Ecology+Progress+Series&amp;rft.atitle=Effects+of+diet+on+release+of+dissolved+organic+and+inorganic+nutrients+by+the+copepod+Acartia+tonsa&amp;rft.volume=386&amp;rft.pages=147-161&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.3354%2Fmeps08070&amp;rft_id=info%3Abibcode%2F2009MEPS..386..147S&amp;rft.aulast=Saba&amp;rft.aufirst=GK&amp;rft.au=Steinberg%2C+DK&amp;rft.au=Bronk%2C+DA&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3354%252Fmeps08070&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Steinberg12017-111"><span class="mw-cite-backlink">^ <a href="#cite_ref-Steinberg12017_111-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Steinberg12017_111-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Steinberg12017_111-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinbergLandry2017" class="citation journal cs1">Steinberg, Deborah K.; Landry, Michael R. (2017). "Zooplankton and the Ocean Carbon Cycle". <i>Annual Review of Marine Science</i>. <b>9</b>: 413–444. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017ARMS....9..413S">2017ARMS....9..413S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-marine-010814-015924">10.1146/annurev-marine-010814-015924</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27814033">27814033</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Marine+Science&amp;rft.atitle=Zooplankton+and+the+Ocean+Carbon+Cycle&amp;rft.volume=9&amp;rft.pages=413-444&amp;rft.date=2017&amp;rft_id=info%3Apmid%2F27814033&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev-marine-010814-015924&amp;rft_id=info%3Abibcode%2F2017ARMS....9..413S&amp;rft.aulast=Steinberg&amp;rft.aufirst=Deborah+K.&amp;rft.au=Landry%2C+Michael+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Belcher2017-112"><span class="mw-cite-backlink">^ <a href="#cite_ref-Belcher2017_112-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Belcher2017_112-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Belcher2017_112-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBelcherMannoWardHenson2017" class="citation journal cs1">Belcher, Anna; Manno, Clara; Ward, Peter; Henson, Stephanie A.; Sanders, Richard; Tarling, Geraint A. (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.5194%2Fbg-14-1511-2017">"Copepod faecal pellet transfer through the meso- and bathypelagic layers in the Southern Ocean in spring"</a>. <i>Biogeosciences</i>. <b>14</b> (6): 1511–1525. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017BGeo...14.1511B">2017BGeo...14.1511B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5194%2Fbg-14-1511-2017">10.5194/bg-14-1511-2017</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biogeosciences&amp;rft.atitle=Copepod+faecal+pellet+transfer+through+the+meso-+and+bathypelagic+layers+in+the+Southern+Ocean+in+spring&amp;rft.volume=14&amp;rft.issue=6&amp;rft.pages=1511-1525&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.5194%2Fbg-14-1511-2017&amp;rft_id=info%3Abibcode%2F2017BGeo...14.1511B&amp;rft.aulast=Belcher&amp;rft.aufirst=Anna&amp;rft.au=Manno%2C+Clara&amp;rft.au=Ward%2C+Peter&amp;rft.au=Henson%2C+Stephanie+A.&amp;rft.au=Sanders%2C+Richard&amp;rft.au=Tarling%2C+Geraint+A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.5194%252Fbg-14-1511-2017&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/3.0/">Creative Commons Attribution 3.0 International License</a>.</span> </li> <li id="cite_note-Saba2011-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-Saba2011_113-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSabaSteinbergBronk2011" class="citation journal cs1">Saba, Grace K.; Steinberg, Deborah K.; Bronk, Deborah A. (2011). "The relative importance of sloppy feeding, excretion, and fecal pellet leaching in the release of dissolved carbon and nitrogen by Acartia tonsa copepods". <i>Journal of Experimental Marine Biology and Ecology</i>. <b>404</b> (1–2): 47–56. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JEMBE.404...47S">2011JEMBE.404...47S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jembe.2011.04.013">10.1016/j.jembe.2011.04.013</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Experimental+Marine+Biology+and+Ecology&amp;rft.atitle=The+relative+importance+of+sloppy+feeding%2C+excretion%2C+and+fecal+pellet+leaching+in+the+release+of+dissolved+carbon+and+nitrogen+by+Acartia+tonsa+copepods&amp;rft.volume=404&amp;rft.issue=1%E2%80%932&amp;rft.pages=47-56&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jembe.2011.04.013&amp;rft_id=info%3Abibcode%2F2011JEMBE.404...47S&amp;rft.aulast=Saba&amp;rft.aufirst=Grace+K.&amp;rft.au=Steinberg%2C+Deborah+K.&amp;rft.au=Bronk%2C+Deborah+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Thor2003-114"><span class="mw-cite-backlink">^ <a href="#cite_ref-Thor2003_114-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Thor2003_114-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThorDamRogers2003" class="citation journal cs1">Thor, P.; Dam, HG; Rogers, DR (2003). <a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fame033279">"Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity"</a>. <i>Aquatic Microbial Ecology</i>. <b>33</b>: 279–288. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fame033279">10.3354/ame033279</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aquatic+Microbial+Ecology&amp;rft.atitle=Fate+of+organic+carbon+released+from+decomposing+copepod+fecal+pellets+in+relation+to+bacterial+production+and+ectoenzymatic+activity&amp;rft.volume=33&amp;rft.pages=279-288&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.3354%2Fame033279&amp;rft.aulast=Thor&amp;rft.aufirst=P.&amp;rft.au=Dam%2C+HG&amp;rft.au=Rogers%2C+DR&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3354%252Fame033279&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Carlso2014-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-Carlso2014_115-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHansellCarlson2014" class="citation book cs1">Hansell, Dennis A.; Carlson, Craig A. (2 October 2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7iKOAwAAQBAJ&amp;q=%22Biogeochemistry+of+marine+dissolved+organic+matter%22"><i>Biogeochemistry of Marine Dissolved Organic Matter</i></a>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780124071537" title="Special:BookSources/9780124071537"><bdi>9780124071537</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Biogeochemistry+of+Marine+Dissolved+Organic+Matter&amp;rft.pub=Academic+Press&amp;rft.date=2014-10-02&amp;rft.isbn=9780124071537&amp;rft.aulast=Hansell&amp;rft.aufirst=Dennis+A.&amp;rft.au=Carlson%2C+Craig+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7iKOAwAAQBAJ%26q%3D%2522Biogeochemistry%2Bof%2Bmarine%2Bdissolved%2Borganic%2Bmatter%2522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Møller2005-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-Møller2005_116-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoller2004" class="citation journal cs1">Moller, E. F. (2004). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fplankt%2Ffbh147">"Sloppy feeding in marine copepods: Prey-size-dependent production of dissolved organic carbon"</a>. <i>Journal of Plankton Research</i>. <b>27</b>: 27–35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fplankt%2Ffbh147">10.1093/plankt/fbh147</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Plankton+Research&amp;rft.atitle=Sloppy+feeding+in+marine+copepods%3A+Prey-size-dependent+production+of+dissolved+organic+carbon&amp;rft.volume=27&amp;rft.pages=27-35&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1093%2Fplankt%2Ffbh147&amp;rft.aulast=Moller&amp;rft.aufirst=E.+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fplankt%252Ffbh147&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Møller2007-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-Møller2007_117-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMøller2007" class="citation journal cs1">Møller, Eva Friis (2007). <a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2007.52.1.0079">"Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis"</a>. <i>Limnology and Oceanography</i>. <b>52</b> (1): 79–84. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007LimOc..52...79M">2007LimOc..52...79M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2007.52.1.0079">10.4319/lo.2007.52.1.0079</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Production+of+dissolved+organic+carbon+by+sloppy+feeding+in+the+copepods+Acartia+tonsa%2C+Centropages+typicus%2C+and+Temora+longicornis&amp;rft.volume=52&amp;rft.issue=1&amp;rft.pages=79-84&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.4319%2Flo.2007.52.1.0079&amp;rft_id=info%3Abibcode%2F2007LimOc..52...79M&amp;rft.aulast=M%C3%B8ller&amp;rft.aufirst=Eva+Friis&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4319%252Flo.2007.52.1.0079&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-AzamFenchel1983-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-AzamFenchel1983_118-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAzamFenchelFieldGray1983" class="citation journal cs1"><a href="/wiki/Farooq_Azam" title="Farooq Azam">Azam, Farooq</a>; <a href="/wiki/Tom_Fenchel" title="Tom Fenchel">Fenchel, Tom</a>; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. (1983). <a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps010257">"The Ecological Role of Water-Column Microbes in the Sea"</a>. <i>Marine Ecology Progress Series</i>. <b>10</b>: 257–263. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983MEPS...10..257A">1983MEPS...10..257A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3354%2Fmeps010257">10.3354/meps010257</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Ecology+Progress+Series&amp;rft.atitle=The+Ecological+Role+of+Water-Column+Microbes+in+the+Sea&amp;rft.volume=10&amp;rft.pages=257-263&amp;rft.date=1983&amp;rft_id=info%3Adoi%2F10.3354%2Fmeps010257&amp;rft_id=info%3Abibcode%2F1983MEPS...10..257A&amp;rft.aulast=Azam&amp;rft.aufirst=Farooq&amp;rft.au=Fenchel%2C+Tom&amp;rft.au=Field%2C+J.G.&amp;rft.au=Gray%2C+J.S.&amp;rft.au=Meyer-Reil%2C+L.A.&amp;rft.au=Thingstad%2C+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3354%252Fmeps010257&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Van_den_Meersche_Middelburg_Soetaert_van_Rijswijk_2004-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-Van_den_Meersche_Middelburg_Soetaert_van_Rijswijk_2004_119-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_den_MeerscheMiddelburgSoetaertvan_Rijswijk2004" class="citation journal cs1">Van den Meersche, Karel; Middelburg, Jack J.; Soetaert, Karline; van Rijswijk, Pieter; Boschker, Henricus T. S.; Heip, Carlo H. R. (2004). <a rel="nofollow" class="external text" href="https://biblio.ugent.be/publication/434810">"Carbon-nitrogen coupling and algal-bacterial interactions during an experimental bloom: Modeling a13C tracer experiment"</a>. <i>Limnology and Oceanography</i>. <b>49</b> (3): 862–878. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004LimOc..49..862V">2004LimOc..49..862V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2004.49.3.0862">10.4319/lo.2004.49.3.0862</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1854%2FLU-434810">1854/LU-434810</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0024-3590">0024-3590</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53518458">53518458</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Carbon-nitrogen+coupling+and+algal-bacterial+interactions+during+an+experimental+bloom%3A+Modeling+a13C+tracer+experiment&amp;rft.volume=49&amp;rft.issue=3&amp;rft.pages=862-878&amp;rft.date=2004&amp;rft_id=info%3Ahdl%2F1854%2FLU-434810&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53518458%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2004LimOc..49..862V&amp;rft.issn=0024-3590&amp;rft_id=info%3Adoi%2F10.4319%2Flo.2004.49.3.0862&amp;rft.aulast=Van+den+Meersche&amp;rft.aufirst=Karel&amp;rft.au=Middelburg%2C+Jack+J.&amp;rft.au=Soetaert%2C+Karline&amp;rft.au=van+Rijswijk%2C+Pieter&amp;rft.au=Boschker%2C+Henricus+T.+S.&amp;rft.au=Heip%2C+Carlo+H.+R.&amp;rft_id=https%3A%2F%2Fbiblio.ugent.be%2Fpublication%2F434810&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Mentges2019-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mentges2019_120-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMentgesFeendersDeutschBlasius2019" class="citation journal cs1">Mentges, A.; Feenders, C.; Deutsch, C.; Blasius, B.; Dittmar, T. (2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883037">"Long-term stability of marine dissolved organic carbon emerges from a neutral network of compounds and microbes"</a>. <i>Scientific Reports</i>. <b>9</b> (1): 17780. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatSR...917780M">2019NatSR...917780M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41598-019-54290-z">10.1038/s41598-019-54290-z</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883037">6883037</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31780725">31780725</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Long-term+stability+of+marine+dissolved+organic+carbon+emerges+from+a+neutral+network+of+compounds+and+microbes&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=17780&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6883037%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F31780725&amp;rft_id=info%3Adoi%2F10.1038%2Fs41598-019-54290-z&amp;rft_id=info%3Abibcode%2F2019NatSR...917780M&amp;rft.aulast=Mentges&amp;rft.aufirst=A.&amp;rft.au=Feenders%2C+C.&amp;rft.au=Deutsch%2C+C.&amp;rft.au=Blasius%2C+B.&amp;rft.au=Dittmar%2C+T.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6883037&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilhelmSuttle1999" class="citation journal cs1">Wilhelm, Steven W.; Suttle, Curtis A. (1999). <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1313569">"Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs"</a>. <i>BioScience</i>. <b>49</b> (10): 781–788. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1313569">10.2307/1313569</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1313569">1313569</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BioScience&amp;rft.atitle=Viruses+and+nutrient+cycles+in+the+sea%3A+viruses+play+critical+roles+in+the+structure+and+function+of+aquatic+food+webs&amp;rft.volume=49&amp;rft.issue=10&amp;rft.pages=781-788&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.2307%2F1313569&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1313569%23id-name%3DJSTOR&amp;rft.aulast=Wilhelm&amp;rft.aufirst=Steven+W.&amp;rft.au=Suttle%2C+Curtis+A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2307%252F1313569&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text">Robinson, Carol, and Nagappa Ramaiah. "Microbial heterotrophic metabolic rates constrain the microbial carbon pump." The American Association for the Advancement of Science, 2011.</span> </li> <li id="cite_note-:9-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-:9_123-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFuhrman1999" class="citation journal cs1">Fuhrman, Jed A. (1999). "Marine viruses and their biogeochemical and ecological effects". <i>Nature</i>. <b>399</b> (6736): 541–548. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999Natur.399..541F">1999Natur.399..541F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F21119">10.1038/21119</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10376593">10376593</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1260399">1260399</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Marine+viruses+and+their+biogeochemical+and+ecological+effects&amp;rft.volume=399&amp;rft.issue=6736&amp;rft.pages=541-548&amp;rft.date=1999&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1260399%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F1999Natur.399..541F&amp;rft.issn=0028-0836&amp;rft_id=info%3Adoi%2F10.1038%2F21119&amp;rft_id=info%3Apmid%2F10376593&amp;rft.aulast=Fuhrman&amp;rft.aufirst=Jed+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWigingtonSondereggerBrussaardBuchan2016" class="citation journal cs1">Wigington, Charles H.; Sonderegger, Derek; Brussaard, Corina P. D.; Buchan, Alison; Finke, Jan F.; Fuhrman, Jed A.; Lennon, Jay T.; Middelboe, Mathias; Suttle, Curtis A.; Stock, Charles; Wilson, William H. (March 2016). <a rel="nofollow" class="external text" href="http://www.nature.com/articles/nmicrobiol201524">"Re-examination of the relationship between marine virus and microbial cell abundances"</a>. <i>Nature Microbiology</i>. <b>1</b> (3): 15024. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmicrobiol.2015.24">10.1038/nmicrobiol.2015.24</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2058-5276">2058-5276</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27572161">27572161</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52829633">52829633</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Microbiology&amp;rft.atitle=Re-examination+of+the+relationship+between+marine+virus+and+microbial+cell+abundances&amp;rft.volume=1&amp;rft.issue=3&amp;rft.pages=15024&amp;rft.date=2016-03&amp;rft.issn=2058-5276&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52829633%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F27572161&amp;rft_id=info%3Adoi%2F10.1038%2Fnmicrobiol.2015.24&amp;rft.aulast=Wigington&amp;rft.aufirst=Charles+H.&amp;rft.au=Sonderegger%2C+Derek&amp;rft.au=Brussaard%2C+Corina+P.+D.&amp;rft.au=Buchan%2C+Alison&amp;rft.au=Finke%2C+Jan+F.&amp;rft.au=Fuhrman%2C+Jed+A.&amp;rft.au=Lennon%2C+Jay+T.&amp;rft.au=Middelboe%2C+Mathias&amp;rft.au=Suttle%2C+Curtis+A.&amp;rft.au=Stock%2C+Charles&amp;rft.au=Wilson%2C+William+H.&amp;rft_id=http%3A%2F%2Fwww.nature.com%2Farticles%2Fnmicrobiol201524&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text">Tsai, An-Yi, Gwo-Ching Gong, and Yu-Wen Huang. "Importance of the Viral Shunt in Nitrogen Cycling in Synechococcus Spp. Growth in Subtropical Western Pacific Coastal Waters." <i>Terrestrial, Atmospheric &amp; Oceanic Sciences</i>25.6 (2014).</span> </li> <li id="cite_note-Lebrato2019-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lebrato2019_126-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLebratoPahlowFrostKüter2019" class="citation journal cs1">Lebrato, Mario; Pahlow, Markus; Frost, Jessica R.; Küter, Marie; Jesus Mendes, Pedro; Molinero, Juan-Carlos; Oschlies, Andreas (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2019GB006265">"Sinking of Gelatinous Zooplankton Biomass Increases Deep Carbon Transfer Efficiency Globally"</a>. <i>Global Biogeochemical Cycles</i>. <b>33</b> (12): 1764–1783. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019GBioC..33.1764L">2019GBioC..33.1764L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2019GB006265">10.1029/2019GB006265</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Biogeochemical+Cycles&amp;rft.atitle=Sinking+of+Gelatinous+Zooplankton+Biomass+Increases+Deep+Carbon+Transfer+Efficiency+Globally&amp;rft.volume=33&amp;rft.issue=12&amp;rft.pages=1764-1783&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1029%2F2019GB006265&amp;rft_id=info%3Abibcode%2F2019GBioC..33.1764L&amp;rft.aulast=Lebrato&amp;rft.aufirst=Mario&amp;rft.au=Pahlow%2C+Markus&amp;rft.au=Frost%2C+Jessica+R.&amp;rft.au=K%C3%BCter%2C+Marie&amp;rft.au=Jesus+Mendes%2C+Pedro&amp;rft.au=Molinero%2C+Juan-Carlos&amp;rft.au=Oschlies%2C+Andreas&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2019GB006265&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-Lebrato_et_al._2012-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lebrato_et_al._2012_127-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLebratoPittSweetmanJones2012" class="citation journal cs1">Lebrato, Mario; Pitt, Kylie A.; Sweetman, Andrew K.; Jones, Daniel O. B.; Cartes, Joan E.; Oschlies, Andreas; Condon, Robert H.; Molinero, Juan Carlos &amp; Adler, Laetitia (2012). <a rel="nofollow" class="external text" href="https://zenodo.org/record/3442888">"Jelly-falls historic and recent observations: a review to drive future research directions"</a>. <i>Hydrobiologia</i>. <b>690</b> (1): 227–245. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10750-012-1046-8">10.1007/s10750-012-1046-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15428213">15428213</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Hydrobiologia&amp;rft.atitle=Jelly-falls+historic+and+recent+observations%3A+a+review+to+drive+future+research+directions&amp;rft.volume=690&amp;rft.issue=1&amp;rft.pages=227-245&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1007%2Fs10750-012-1046-8&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15428213%23id-name%3DS2CID&amp;rft.aulast=Lebrato&amp;rft.aufirst=Mario&amp;rft.au=Pitt%2C+Kylie+A.&amp;rft.au=Sweetman%2C+Andrew+K.&amp;rft.au=Jones%2C+Daniel+O.+B.&amp;rft.au=Cartes%2C+Joan+E.&amp;rft.au=Oschlies%2C+Andreas&amp;rft.au=Condon%2C+Robert+H.&amp;rft.au=Molinero%2C+Juan+Carlos&amp;rft.au=Adler%2C+Laetitia&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F3442888&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLebratoJones2009" class="citation journal cs1">Lebrato, M. &amp; Jones, D. O. B. (2009). <a rel="nofollow" class="external text" href="http://oceanrep.geomar.de/3017/1/1197.pdf">"Mass deposition event of <i>Pyrosoma atlanticum</i> carcasses off Ivory Coast (West Africa)"</a> <span class="cs1-format">(PDF)</span>. <i>Limnology and Oceanography</i>. <b>54</b> (4): 1197–1209. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009LimOc..54.1197L">2009LimOc..54.1197L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.2009.54.4.1197">10.4319/lo.2009.54.4.1197</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Mass+deposition+event+of+Pyrosoma+atlanticum+carcasses+off+Ivory+Coast+%28West+Africa%29&amp;rft.volume=54&amp;rft.issue=4&amp;rft.pages=1197-1209&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.4319%2Flo.2009.54.4.1197&amp;rft_id=info%3Abibcode%2F2009LimOc..54.1197L&amp;rft.aulast=Lebrato&amp;rft.aufirst=M.&amp;rft.au=Jones%2C+D.+O.+B.&amp;rft_id=http%3A%2F%2Foceanrep.geomar.de%2F3017%2F1%2F1197.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Sweetman_and_Chapman_2011-129"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sweetman_and_Chapman_2011_129-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sweetman_and_Chapman_2011_129-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSweetmanChapman2011" class="citation journal cs1">Sweetman, Andrew K. &amp; Chapman, Annelise (2011). "First observations of jelly-falls at the seafloor in a deep-sea fjord". <i>Deep Sea Research Part I: Oceanographic Research Papers</i>. <b>58</b> (12): 1206–1211. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011DSRI...58.1206S">2011DSRI...58.1206S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.dsr.2011.08.006">10.1016/j.dsr.2011.08.006</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+I%3A+Oceanographic+Research+Papers&amp;rft.atitle=First+observations+of+jelly-falls+at+the+seafloor+in+a+deep-sea+fjord&amp;rft.volume=58&amp;rft.issue=12&amp;rft.pages=1206-1211&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1016%2Fj.dsr.2011.08.006&amp;rft_id=info%3Abibcode%2F2011DSRI...58.1206S&amp;rft.aulast=Sweetman&amp;rft.aufirst=Andrew+K.&amp;rft.au=Chapman%2C+Annelise&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurd" class="citation web cs1">Burd, Adrian. <a rel="nofollow" class="external text" href="http://www.us-ocb.org/publications/BioPump-Final.pdf">"Towards a transformative understanding of the ocean's biological pump: Priorities for future research-Report on the NSF Biology of the Biological Pump Workshop"</a> <span class="cs1-format">(PDF)</span>. <i>OCB: Ocean Carbon &amp; Biogeochemistry</i><span class="reference-accessdate">. Retrieved <span class="nowrap">30 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=OCB%3A+Ocean+Carbon+%26+Biogeochemistry&amp;rft.atitle=Towards+a+transformative+understanding+of+the+ocean%27s+biological+pump%3A+Priorities+for+future+research-Report+on+the+NSF+Biology+of+the+Biological+Pump+Workshop.&amp;rft.aulast=Burd&amp;rft.aufirst=Adrian&amp;rft_id=http%3A%2F%2Fwww.us-ocb.org%2Fpublications%2FBioPump-Final.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Hays2018-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hays2018_131-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaysDoyleHoughton2018" class="citation journal cs1"><a href="/wiki/Graeme_Hays" title="Graeme Hays">Hays, Graeme C.</a>; Doyle, Thomas K.; Houghton, Jonathan D.R. (2018). <a rel="nofollow" class="external text" href="https://pure.qub.ac.uk/en/publications/a-paradigm-shift-in-the-trophic-importance-of-jellyfish(6158fa15-32f8-4167-9574-dbc08266b588).html">"A Paradigm Shift in the Trophic Importance of Jellyfish?"</a>. <i>Trends in Ecology &amp; Evolution</i>. <b>33</b> (11): 874–884. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018TEcoE..33..874H">2018TEcoE..33..874H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tree.2018.09.001">10.1016/j.tree.2018.09.001</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30245075">30245075</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52336522">52336522</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trends+in+Ecology+%26+Evolution&amp;rft.atitle=A+Paradigm+Shift+in+the+Trophic+Importance+of+Jellyfish%3F&amp;rft.volume=33&amp;rft.issue=11&amp;rft.pages=874-884&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1016%2Fj.tree.2018.09.001&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52336522%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F30245075&amp;rft_id=info%3Abibcode%2F2018TEcoE..33..874H&amp;rft.aulast=Hays&amp;rft.aufirst=Graeme+C.&amp;rft.au=Doyle%2C+Thomas+K.&amp;rft.au=Houghton%2C+Jonathan+D.R.&amp;rft_id=https%3A%2F%2Fpure.qub.ac.uk%2Fen%2Fpublications%2Fa-paradigm-shift-in-the-trophic-importance-of-jellyfish%286158fa15-32f8-4167-9574-dbc08266b588%29.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Roman2013-132"><span class="mw-cite-backlink">^ <a href="#cite_ref-Roman2013_132-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Roman2013_132-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Roman2013_132-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Roman2013_132-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Roman2013_132-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRomanMcCarthy2010" class="citation journal cs1">Roman, Joe; McCarthy, James J. (2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952594">"The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin"</a>. <i>PLOS ONE</i>. <b>5</b> (10): e13255. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010PLoSO...513255R">2010PLoSO...513255R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0013255">10.1371/journal.pone.0013255</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952594">2952594</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20949007">20949007</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+ONE&amp;rft.atitle=The+Whale+Pump%3A+Marine+Mammals+Enhance+Primary+Productivity+in+a+Coastal+Basin&amp;rft.volume=5&amp;rft.issue=10&amp;rft.pages=e13255&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2952594%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F20949007&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0013255&amp;rft_id=info%3Abibcode%2F2010PLoSO...513255R&amp;rft.aulast=Roman&amp;rft.aufirst=Joe&amp;rft.au=McCarthy%2C+James+J.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2952594&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-ScienceDaily-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-ScienceDaily_133-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrown,_Joshua_E.2010" class="citation web cs1">Brown, Joshua E. (12 October 2010). <a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2010/10/101012101255.htm">"Whale poop pumps up ocean health"</a>. <i>Science Daily</i><span class="reference-accessdate">. Retrieved <span class="nowrap">18 August</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Science+Daily&amp;rft.atitle=Whale+poop+pumps+up+ocean+health&amp;rft.date=2010-10-12&amp;rft.au=Brown%2C+Joshua+E.&amp;rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2010%2F10%2F101012101255.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-134">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLonghurstGlen_Harrison1989" class="citation journal cs1">Longhurst, Alan R.; Glen Harrison, W. (1989). "The biological pump: Profiles of plankton production and consumption in the upper ocean". <i>Progress in Oceanography</i>. <b>22</b> (1): 47–123. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989PrOce..22...47L">1989PrOce..22...47L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0079-6611%2889%2990010-4">10.1016/0079-6611(89)90010-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Oceanography&amp;rft.atitle=The+biological+pump%3A+Profiles+of+plankton+production+and+consumption+in+the+upper+ocean&amp;rft.volume=22&amp;rft.issue=1&amp;rft.pages=47-123&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1016%2F0079-6611%2889%2990010-4&amp;rft_id=info%3Abibcode%2F1989PrOce..22...47L&amp;rft.aulast=Longhurst&amp;rft.aufirst=Alan+R.&amp;rft.au=Glen+Harrison%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHutchinsWangFisher1995" class="citation journal cs1">Hutchins, David A.; Wang, Wen-Xiong; Fisher, Nicholas S. (1995). <a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.1995.40.5.0989">"Copepod grazing and the biogeochemical fate of diatom iron"</a>. <i>Limnology and Oceanography</i>. <b>40</b> (5): 989–994. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995LimOc..40..989H">1995LimOc..40..989H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4319%2Flo.1995.40.5.0989">10.4319/lo.1995.40.5.0989</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Copepod+grazing+and+the+biogeochemical+fate+of+diatom+iron&amp;rft.volume=40&amp;rft.issue=5&amp;rft.pages=989-994&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.4319%2Flo.1995.40.5.0989&amp;rft_id=info%3Abibcode%2F1995LimOc..40..989H&amp;rft.aulast=Hutchins&amp;rft.aufirst=David+A.&amp;rft.au=Wang%2C+Wen-Xiong&amp;rft.au=Fisher%2C+Nicholas+S.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4319%252Flo.1995.40.5.0989&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinbergGoldthwaitHansell2002" class="citation journal cs1">Steinberg, Deborah K.; Goldthwait, Sarah A.; Hansell, Dennis A. (2002). "Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea". <i>Deep Sea Research Part I: Oceanographic Research Papers</i>. <b>49</b> (8): 1445–1461. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002DSRI...49.1445S">2002DSRI...49.1445S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0967-0637%2802%2900037-7">10.1016/S0967-0637(02)00037-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+I%3A+Oceanographic+Research+Papers&amp;rft.atitle=Zooplankton+vertical+migration+and+the+active+transport+of+dissolved+organic+and+inorganic+nitrogen+in+the+Sargasso+Sea&amp;rft.volume=49&amp;rft.issue=8&amp;rft.pages=1445-1461&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1016%2FS0967-0637%2802%2900037-7&amp;rft_id=info%3Abibcode%2F2002DSRI...49.1445S&amp;rft.aulast=Steinberg&amp;rft.aufirst=Deborah+K.&amp;rft.au=Goldthwait%2C+Sarah+A.&amp;rft.au=Hansell%2C+Dennis+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPershingChristensenRecordSherwood2010" class="citation journal cs1">Pershing, Andrew J.; Christensen, Line B.; Record, Nicholas R.; Sherwood, Graham D.; Stetson, Peter B. (2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928761">"The Impact of Whaling on the Ocean Carbon Cycle: Why Bigger Was Better"</a>. <i>PLOS ONE</i>. <b>5</b> (8): e12444. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010PLoSO...512444P">2010PLoSO...512444P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0012444">10.1371/journal.pone.0012444</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928761">2928761</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20865156">20865156</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+ONE&amp;rft.atitle=The+Impact+of+Whaling+on+the+Ocean+Carbon+Cycle%3A+Why+Bigger+Was+Better&amp;rft.volume=5&amp;rft.issue=8&amp;rft.pages=e12444&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2928761%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F20865156&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0012444&amp;rft_id=info%3Abibcode%2F2010PLoSO...512444P&amp;rft.aulast=Pershing&amp;rft.aufirst=Andrew+J.&amp;rft.au=Christensen%2C+Line+B.&amp;rft.au=Record%2C+Nicholas+R.&amp;rft.au=Sherwood%2C+Graham+D.&amp;rft.au=Stetson%2C+Peter+B.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2928761&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.imf.org/external/pubs/ft/fandd/2019/12/natures-solution-to-climate-change-chami.htm">"Nature's Solution to Climate Change – IMF F&amp;D"</a>. International Monetary Fund<span class="reference-accessdate">. Retrieved <span class="nowrap">2 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Nature%27s+Solution+to+Climate+Change+%E2%80%93+IMF+F%26D&amp;rft.pub=International+Monetary+Fund&amp;rft_id=https%3A%2F%2Fwww.imf.org%2Fexternal%2Fpubs%2Fft%2Ffandd%2F2019%2F12%2Fnatures-solution-to-climate-change-chami.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Wiebe,_P.H-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wiebe,_P.H_139-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiebeL.P._MadinL.R._HauryG.R._Harbison1979" class="citation journal cs1">Wiebe, P.H; L.P. Madin; L.R. Haury; G.R. Harbison; L.M. Philbin (1979). "Diel Vertical Migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea". <i>Marine Biology</i>. <b>53</b> (3): 249–255. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979MarBi..53..249W">1979MarBi..53..249W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00952433">10.1007/BF00952433</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:85127670">85127670</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Biology&amp;rft.atitle=Diel+Vertical+Migration+by+Salpa+aspera+and+its+potential+for+large-scale+particulate+organic+matter+transport+to+the+deep-sea&amp;rft.volume=53&amp;rft.issue=3&amp;rft.pages=249-255&amp;rft.date=1979&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A85127670%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF00952433&amp;rft_id=info%3Abibcode%2F1979MarBi..53..249W&amp;rft.aulast=Wiebe&amp;rft.aufirst=P.H&amp;rft.au=L.P.+Madin&amp;rft.au=L.R.+Haury&amp;rft.au=G.R.+Harbison&amp;rft.au=L.M.+Philbin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-:1-140"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_140-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_140-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_140-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:1_140-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJónasdóttirVisserRichardsonHeath2015" class="citation journal cs1">Jónasdóttir, Sigrún Huld; Visser, André W.; Richardson, Katherine; Heath, Michael R. (29 September 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593097">"Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>112</b> (39): 12122–12126. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1512110112">10.1073/pnas.1512110112</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0027-8424">0027-8424</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593097">4593097</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26338976">26338976</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&amp;rft.atitle=Seasonal+copepod+lipid+pump+promotes+carbon+sequestration+in+the+deep+North+Atlantic&amp;rft.volume=112&amp;rft.issue=39&amp;rft.pages=12122-12126&amp;rft.date=2015-09-29&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4593097%23id-name%3DPMC&amp;rft.issn=0027-8424&amp;rft_id=info%3Apmid%2F26338976&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.1512110112&amp;rft.aulast=J%C3%B3nasd%C3%B3ttir&amp;rft.aufirst=Sigr%C3%BAn+Huld&amp;rft.au=Visser%2C+Andr%C3%A9+W.&amp;rft.au=Richardson%2C+Katherine&amp;rft.au=Heath%2C+Michael+R.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4593097&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-:2-141"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_141-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_141-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_141-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVisser2017" class="citation journal cs1">Visser, Andre (2 March 2017). <a rel="nofollow" class="external text" href="https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lno.10492">"Calanus hyperboreus and the lipid pump"</a>. <i>Limnology and Oceanography</i>. <b>62</b> (3): 1155–1165. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017LimOc..62.1155V">2017LimOc..62.1155V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Flno.10492">10.1002/lno.10492</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:51989153">51989153</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Limnology+and+Oceanography&amp;rft.atitle=Calanus+hyperboreus+and+the+lipid+pump&amp;rft.volume=62&amp;rft.issue=3&amp;rft.pages=1155-1165&amp;rft.date=2017-03-02&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A51989153%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Flno.10492&amp;rft_id=info%3Abibcode%2F2017LimOc..62.1155V&amp;rft.aulast=Visser&amp;rft.aufirst=Andre&amp;rft_id=https%3A%2F%2Faslopubs.onlinelibrary.wiley.com%2Fdoi%2Ffull%2F10.1002%2Flno.10492&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-:3-142"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_142-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_142-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:3_142-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinbergLandry2017" class="citation journal cs1">Steinberg, Deborah K.; Landry, Michael R. (3 January 2017). <a rel="nofollow" class="external text" href="https://www.annualreviews.org/doi/10.1146/annurev-marine-010814-015924">"Zooplankton and the Ocean Carbon Cycle"</a>. <i>Annual Review of Marine Science</i>. <b>9</b> (1): 413–444. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017ARMS....9..413S">2017ARMS....9..413S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-marine-010814-015924">10.1146/annurev-marine-010814-015924</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1941-1405">1941-1405</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27814033">27814033</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Marine+Science&amp;rft.atitle=Zooplankton+and+the+Ocean+Carbon+Cycle&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=413-444&amp;rft.date=2017-01-03&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev-marine-010814-015924&amp;rft.issn=1941-1405&amp;rft_id=info%3Apmid%2F27814033&amp;rft_id=info%3Abibcode%2F2017ARMS....9..413S&amp;rft.aulast=Steinberg&amp;rft.aufirst=Deborah+K.&amp;rft.au=Landry%2C+Michael+R.&amp;rft_id=https%3A%2F%2Fwww.annualreviews.org%2Fdoi%2F10.1146%2Fannurev-marine-010814-015924&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-143">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParentPlourdeTurgeon2011" class="citation journal cs1">Parent, Genevieve J.; Plourde, Stephane; Turgeon, Julie (1 November 2011). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fplankt%2Ffbr072">"Overlapping size ranges of Calanus spp. off the Canadian Arctic and Atlantic Coasts: impact on species' abundances"</a>. <i>Journal of Plankton Research</i>. <b>33</b> (11): 1654–1665. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fplankt%2Ffbr072">10.1093/plankt/fbr072</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0142-7873">0142-7873</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Plankton+Research&amp;rft.atitle=Overlapping+size+ranges+of+Calanus+spp.+off+the+Canadian+Arctic+and+Atlantic+Coasts%3A+impact+on+species%27+abundances&amp;rft.volume=33&amp;rft.issue=11&amp;rft.pages=1654-1665&amp;rft.date=2011-11-01&amp;rft_id=info%3Adoi%2F10.1093%2Fplankt%2Ffbr072&amp;rft.issn=0142-7873&amp;rft.aulast=Parent&amp;rft.aufirst=Genevieve+J.&amp;rft.au=Plourde%2C+Stephane&amp;rft.au=Turgeon%2C+Julie&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fplankt%252Ffbr072&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKristiansenGaardHátúnJónasdóttir2016" class="citation journal cs1">Kristiansen, Inga; Gaard, Eilif; Hátún, Hjálmar; Jónasdóttir, Sigrún; Ferreira, A. Sofia A. (1 May 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Ficesjms%2Ffsv222">"Persistent shift of Calanus spp. in the southwestern Norwegian Sea since 2003, linked to ocean climate"</a>. <i>ICES Journal of Marine Science</i>. <b>73</b> (5): 1319–1329. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Ficesjms%2Ffsv222">10.1093/icesjms/fsv222</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1054-3139">1054-3139</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ICES+Journal+of+Marine+Science&amp;rft.atitle=Persistent+shift+of+Calanus+spp.+in+the+southwestern+Norwegian+Sea+since+2003%2C+linked+to+ocean+climate&amp;rft.volume=73&amp;rft.issue=5&amp;rft.pages=1319-1329&amp;rft.date=2016-05-01&amp;rft_id=info%3Adoi%2F10.1093%2Ficesjms%2Ffsv222&amp;rft.issn=1054-3139&amp;rft.aulast=Kristiansen&amp;rft.aufirst=Inga&amp;rft.au=Gaard%2C+Eilif&amp;rft.au=H%C3%A1t%C3%BAn%2C+Hj%C3%A1lmar&amp;rft.au=J%C3%B3nasd%C3%B3ttir%2C+Sigr%C3%BAn&amp;rft.au=Ferreira%2C+A.+Sofia+A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Ficesjms%252Ffsv222&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJensenNielsenDahllöf2008" class="citation journal cs1">Jensen, Maj Holst; Nielsen, Torkel Gissel; Dahllöf, Ingela (28 April 2008). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0166445X08000179">"Effects of pyrene on grazing and reproduction of Calanus finmarchicus and Calanus glacialis from Disko Bay, West Greenland"</a>. <i>Aquatic Toxicology</i>. <b>87</b> (2): 99–107. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008AqTox..87...99J">2008AqTox..87...99J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aquatox.2008.01.005">10.1016/j.aquatox.2008.01.005</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0166-445X">0166-445X</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18291539">18291539</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aquatic+Toxicology&amp;rft.atitle=Effects+of+pyrene+on+grazing+and+reproduction+of+Calanus+finmarchicus+and+Calanus+glacialis+from+Disko+Bay%2C+West+Greenland&amp;rft.volume=87&amp;rft.issue=2&amp;rft.pages=99-107&amp;rft.date=2008-04-28&amp;rft_id=info%3Adoi%2F10.1016%2Fj.aquatox.2008.01.005&amp;rft.issn=0166-445X&amp;rft_id=info%3Apmid%2F18291539&amp;rft_id=info%3Abibcode%2F2008AqTox..87...99J&amp;rft.aulast=Jensen&amp;rft.aufirst=Maj+Holst&amp;rft.au=Nielsen%2C+Torkel+Gissel&amp;rft.au=Dahll%C3%B6f%2C+Ingela&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0166445X08000179&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-Tanet2020-146"><span class="mw-cite-backlink">^ <a href="#cite_ref-Tanet2020_146-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Tanet2020_146-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Tanet2020_146-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Tanet2020_146-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanetMartiniCasalotTamburini2020" class="citation journal cs1">Tanet, Lisa; Martini, Séverine; Casalot, Laurie; Tamburini, Christian (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.5194%2Fbg-17-3757-2020">"Reviews and syntheses: Bacterial bioluminescence – ecology and impact in the biological carbon pump"</a>. <i>Biogeosciences</i>. <b>17</b> (14): 3757–3778. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020BGeo...17.3757T">2020BGeo...17.3757T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5194%2Fbg-17-3757-2020">10.5194/bg-17-3757-2020</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biogeosciences&amp;rft.atitle=Reviews+and+syntheses%3A+Bacterial+bioluminescence+%E2%80%93+ecology+and+impact+in+the+biological+carbon+pump&amp;rft.volume=17&amp;rft.issue=14&amp;rft.pages=3757-3778&amp;rft.date=2020&amp;rft_id=info%3Adoi%2F10.5194%2Fbg-17-3757-2020&amp;rft_id=info%3Abibcode%2F2020BGeo...17.3757T&amp;rft.aulast=Tanet&amp;rft.aufirst=Lisa&amp;rft.au=Martini%2C+S%C3%A9verine&amp;rft.au=Casalot%2C+Laurie&amp;rft.au=Tamburini%2C+Christian&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.5194%252Fbg-17-3757-2020&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-janow-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-janow_147-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKayler,_Z.,_Janowiak,_M.,_Swanston,_C.2017" class="citation book cs1">Kayler, Z., Janowiak, M., Swanston, C. (2017). "The Global Carbon Cycle". <a rel="nofollow" class="external text" href="https://www.fs.usda.gov/treesearch/pubs/54316"><i>Considering Forest and Grassland Carbon in Land Management</i></a>. Vol.&#160;95. United States Department of Agriculture, Forest Service. pp.&#160;3–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2737%2FWO-GTR-95">10.2737/WO-GTR-95</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Global+Carbon+Cycle&amp;rft.btitle=Considering+Forest+and+Grassland+Carbon+in+Land+Management&amp;rft.pages=3-9&amp;rft.pub=United+States+Department+of+Agriculture%2C+Forest+Service&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.2737%2FWO-GTR-95&amp;rft.au=Kayler%2C+Z.%2C+Janowiak%2C+M.%2C+Swanston%2C+C.&amp;rft_id=https%3A%2F%2Fwww.fs.usda.gov%2Ftreesearch%2Fpubs%2F54316&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;journal=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span><span class="cs1-maint citation-comment">CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-NASA-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-NASA_148-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNASA2011" class="citation web cs1">NASA (16 June 2011). <a rel="nofollow" class="external text" href="https://earthobservatory.nasa.gov/Features/CarbonCycle/page2.php">"The Slow Carbon Cycle"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120616151904/http://earthobservatory.nasa.gov/Features/CarbonCycle/page2.php">Archived</a> from the original on 16 June 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">24 June</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Slow+Carbon+Cycle&amp;rft.date=2011-06-16&amp;rft.au=NASA&amp;rft_id=http%3A%2F%2Fearthobservatory.nasa.gov%2FFeatures%2FCarbonCycle%2Fpage2.php&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-marinov06-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-marinov06_149-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarinovGnanadesikan,_A.Toggweiler,_J._R.Sarmiento,_J._L.2006" class="citation journal cs1">Marinov, I.; Gnanadesikan, A.; Toggweiler, J. R.; Sarmiento, J. L. (2006). "The Southern Ocean biogeochemical divide". <i>Nature</i>. <b>441</b> (7096): 964–967. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Natur.441..964M">2006Natur.441..964M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature04883">10.1038/nature04883</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16791191">16791191</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4428683">4428683</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+Southern+Ocean+biogeochemical+divide&amp;rft.volume=441&amp;rft.issue=7096&amp;rft.pages=964-967&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1038%2Fnature04883&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4428683%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16791191&amp;rft_id=info%3Abibcode%2F2006Natur.441..964M&amp;rft.aulast=Marinov&amp;rft.aufirst=I.&amp;rft.au=Gnanadesikan%2C+A.&amp;rft.au=Toggweiler%2C+J.+R.&amp;rft.au=Sarmiento%2C+J.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-tak02-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-tak02_150-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakahashiSutherlandSweeneyPoisson2002" class="citation journal cs1">Takahashi, Taro; Sutherland, Stewart C.; Sweeney, Colm; Poisson, Alain; Metzl, Nicolas; Tilbrook, Bronte; Bates, Nicolas; Wanninkhof, Rik; Feely, Richard A.; Sabine, Christopher; Olafsson, Jon; Nojiri, Yukihiro (2002). "Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects". <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>. <b>49</b> (9–10): 1601–1622. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002DSRII..49.1601T">2002DSRII..49.1601T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0967-0645%2802%2900003-6">10.1016/S0967-0645(02)00003-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+II%3A+Topical+Studies+in+Oceanography&amp;rft.atitle=Global+sea%E2%80%93air+CO2+flux+based+on+climatological+surface+ocean+pCO2%2C+and+seasonal+biological+and+temperature+effects&amp;rft.volume=49&amp;rft.issue=9%E2%80%9310&amp;rft.pages=1601-1622&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1016%2FS0967-0645%2802%2900003-6&amp;rft_id=info%3Abibcode%2F2002DSRII..49.1601T&amp;rft.aulast=Takahashi&amp;rft.aufirst=Taro&amp;rft.au=Sutherland%2C+Stewart+C.&amp;rft.au=Sweeney%2C+Colm&amp;rft.au=Poisson%2C+Alain&amp;rft.au=Metzl%2C+Nicolas&amp;rft.au=Tilbrook%2C+Bronte&amp;rft.au=Bates%2C+Nicolas&amp;rft.au=Wanninkhof%2C+Rik&amp;rft.au=Feely%2C+Richard+A.&amp;rft.au=Sabine%2C+Christopher&amp;rft.au=Olafsson%2C+Jon&amp;rft.au=Nojiri%2C+Yukihiro&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-orr97-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-orr97_151-0">^</a></b></span> <span class="reference-text">Orr, J. C., E. Maier-Reimer, U. Mikolajewicz, P. Monfray, J. L. Sarmiento, J. R. Toggweiler, N. K. Taylor, J. Palmer, N. Gruber, C. L. Sabine, C. Le Quéré, R. M. Key and J. Boutin (2001). Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. <i>Global Biogeochem. Cycles</i> <b>15</b>, 43–60.</span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://news.mit.edu/2021/how-much-carbon-ocean-absorbs-0405">"Study reveals uncertainty in how much carbon the ocean absorbs over time"</a>. <i>MIT News | Massachusetts Institute of Technology</i>. 5 April 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">7 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MIT+News+%7C+Massachusetts+Institute+of+Technology&amp;rft.atitle=Study+reveals+uncertainty+in+how+much+carbon+the+ocean+absorbs+over+time&amp;rft.date=2021-04-05&amp;rft_id=https%3A%2F%2Fnews.mit.edu%2F2021%2Fhow-much-carbon-ocean-absorbs-0405&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text">Riebesell, U., Schulz, K.G., Bellerby, R.G.J., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J. and Zöllner, E. (2007). <a rel="nofollow" class="external text" href="http://www.nature.com/nature/journal/v450/n7169/abs/nature06267.html">Enhanced biological carbon consumption in a high CO<sub>2</sub> ocean.</a> <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i> <b>450</b>, 545–548.</span> </li> <li id="cite_note-Parmentier2017-154"><span class="mw-cite-backlink">^ <a href="#cite_ref-Parmentier2017_154-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Parmentier2017_154-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParmentierChristensenRysgaardBendtsen2017" class="citation journal cs1">Parmentier, Frans-Jan W.; Christensen, Torben R.; Rysgaard, Søren; Bendtsen, Jørgen; Glud, Ronnie N.; Else, Brent; Van Huissteden, Jacobus; Sachs, Torsten; Vonk, Jorien E.; Sejr, Mikael K. (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258664">"A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere"</a>. <i>Ambio</i>. <b>46</b> (Suppl 1): 53–69. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Ambio..46S..53P">2017Ambio..46S..53P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs13280-016-0872-8">10.1007/s13280-016-0872-8</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258664">5258664</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28116680">28116680</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ambio&amp;rft.atitle=A+synthesis+of+the+arctic+terrestrial+and+marine+carbon+cycles+under+pressure+from+a+dwindling+cryosphere&amp;rft.volume=46&amp;rft.issue=Suppl+1&amp;rft.pages=53-69&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5258664%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F28116680&amp;rft_id=info%3Adoi%2F10.1007%2Fs13280-016-0872-8&amp;rft_id=info%3Abibcode%2F2017Ambio..46S..53P&amp;rft.aulast=Parmentier&amp;rft.aufirst=Frans-Jan+W.&amp;rft.au=Christensen%2C+Torben+R.&amp;rft.au=Rysgaard%2C+S%C3%B8ren&amp;rft.au=Bendtsen%2C+J%C3%B8rgen&amp;rft.au=Glud%2C+Ronnie+N.&amp;rft.au=Else%2C+Brent&amp;rft.au=Van+Huissteden%2C+Jacobus&amp;rft.au=Sachs%2C+Torsten&amp;rft.au=Vonk%2C+Jorien+E.&amp;rft.au=Sejr%2C+Mikael+K.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5258664&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> <li id="cite_note-Parmentier2013-155"><span class="mw-cite-backlink">^ <a href="#cite_ref-Parmentier2013_155-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Parmentier2013_155-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParmentierChristensenSørensenRysgaard2013" class="citation journal cs1">Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A. (2013). "The impact of lower sea-ice extent on Arctic greenhouse-gas exchange". <i>Nature Climate Change</i>. <b>3</b> (3): 195–202. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatCC...3..195P">2013NatCC...3..195P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnclimate1784">10.1038/nclimate1784</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Climate+Change&amp;rft.atitle=The+impact+of+lower+sea-ice+extent+on+Arctic+greenhouse-gas+exchange&amp;rft.volume=3&amp;rft.issue=3&amp;rft.pages=195-202&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1038%2Fnclimate1784&amp;rft_id=info%3Abibcode%2F2013NatCC...3..195P&amp;rft.aulast=Parmentier&amp;rft.aufirst=Frans-Jan+W.&amp;rft.au=Christensen%2C+Torben+R.&amp;rft.au=S%C3%B8rensen%2C+Lise+Lotte&amp;rft.au=Rysgaard%2C+S%C3%B8ren&amp;rft.au=McGuire%2C+A.+David&amp;rft.au=Miller%2C+Paul+A.&amp;rft.au=Walker%2C+Donald+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-orr05-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-orr05_156-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOrrFabryAumontBopp2005" class="citation journal cs1">Orr, James C.; Fabry, Victoria J.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Feely, Richard A.; Gnanadesikan, Anand; Gruber, Nicolas; Ishida, Akio; et&#160;al. (2005). <a rel="nofollow" class="external text" href="https://epic.awi.de/id/eprint/13479/1/Orr2005a.pdf">"Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms"</a> <span class="cs1-format">(PDF)</span>. <i>Nature</i>. <b>437</b> (7059): 681–686. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005Natur.437..681O">2005Natur.437..681O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature04095">10.1038/nature04095</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16193043">16193043</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4306199">4306199</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Anthropogenic+ocean+acidification+over+the+twenty-first+century+and+its+impact+on+calcifying+organisms&amp;rft.volume=437&amp;rft.issue=7059&amp;rft.pages=681-686&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1038%2Fnature04095&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4306199%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16193043&amp;rft_id=info%3Abibcode%2F2005Natur.437..681O&amp;rft.aulast=Orr&amp;rft.aufirst=James+C.&amp;rft.au=Fabry%2C+Victoria+J.&amp;rft.au=Aumont%2C+Olivier&amp;rft.au=Bopp%2C+Laurent&amp;rft.au=Doney%2C+Scott+C.&amp;rft.au=Feely%2C+Richard+A.&amp;rft.au=Gnanadesikan%2C+Anand&amp;rft.au=Gruber%2C+Nicolas&amp;rft.au=Ishida%2C+Akio&amp;rft_id=https%3A%2F%2Fepic.awi.de%2Fid%2Feprint%2F13479%2F1%2FOrr2005a.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArmstrongLeeHedgesHonjo2001" class="citation journal cs1">Armstrong, Robert A.; Lee, Cindy; Hedges, John I.; Honjo, Susumu &amp; Wakeham, Stuart G. (2001). "A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals". <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>. <b>49</b> (1–3): 219–236. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001DSRII..49..219A">2001DSRII..49..219A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0967-0645%2801%2900101-1">10.1016/s0967-0645(01)00101-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deep+Sea+Research+Part+II%3A+Topical+Studies+in+Oceanography&amp;rft.atitle=A+new%2C+mechanistic+model+for+organic+carbon+fluxes+in+the+ocean+based+on+the+quantitative+association+of+POC+with+ballast+minerals&amp;rft.volume=49&amp;rft.issue=1%E2%80%933&amp;rft.pages=219-236&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1016%2Fs0967-0645%2801%2900101-1&amp;rft_id=info%3Abibcode%2F2001DSRII..49..219A&amp;rft.aulast=Armstrong&amp;rft.aufirst=Robert+A.&amp;rft.au=Lee%2C+Cindy&amp;rft.au=Hedges%2C+John+I.&amp;rft.au=Honjo%2C+Susumu&amp;rft.au=Wakeham%2C+Stuart+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoppAumontCaduleAlvain2005" class="citation journal cs1">Bopp, L.; Aumont, O.; Cadule, P.; Alvain, S.; Gehlen, M. (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2005GL023653">"Response of diatoms distribution to global warming and potential implications: A global model study"</a>. <i>Geophysical Research Letters</i>. <b>32</b> (19): n/a. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005GeoRL..3219606B">2005GeoRL..3219606B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2005GL023653">10.1029/2005GL023653</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geophysical+Research+Letters&amp;rft.atitle=Response+of+diatoms+distribution+to+global+warming+and+potential+implications%3A+A+global+model+study&amp;rft.volume=32&amp;rft.issue=19&amp;rft.pages=n%2Fa&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1029%2F2005GL023653&amp;rft_id=info%3Abibcode%2F2005GeoRL..3219606B&amp;rft.aulast=Bopp&amp;rft.aufirst=L.&amp;rft.au=Aumont%2C+O.&amp;rft.au=Cadule%2C+P.&amp;rft.au=Alvain%2C+S.&amp;rft.au=Gehlen%2C+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2005GL023653&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIglesias-RodriguezHalloranRickabyHall2008" class="citation journal cs1">Iglesias-Rodriguez, M. D.; Halloran, P. R.; Rickaby, R. E. M.; Hall, I. R.; Colmenero-Hidalgo, E.; Gittins, J. R.; Green, D. R. H.; Tyrrell, T.; Gibbs, S. J.; von Dassow, P.; Rehm, E.; Armbrust, E. V.; Boessenkool, K. P. (2008). "Phytoplankton Calcification in a High-CO2 World". <i>Science</i>. <b>320</b> (5874): 336–340. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Sci...320..336I">2008Sci...320..336I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1154122">10.1126/science.1154122</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18420926">18420926</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206511068">206511068</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Phytoplankton+Calcification+in+a+High-CO2+World&amp;rft.volume=320&amp;rft.issue=5874&amp;rft.pages=336-340&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1154122&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206511068%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F18420926&amp;rft_id=info%3Abibcode%2F2008Sci...320..336I&amp;rft.aulast=Iglesias-Rodriguez&amp;rft.aufirst=M.+D.&amp;rft.au=Halloran%2C+P.+R.&amp;rft.au=Rickaby%2C+R.+E.+M.&amp;rft.au=Hall%2C+I.+R.&amp;rft.au=Colmenero-Hidalgo%2C+E.&amp;rft.au=Gittins%2C+J.+R.&amp;rft.au=Green%2C+D.+R.+H.&amp;rft.au=Tyrrell%2C+T.&amp;rft.au=Gibbs%2C+S.+J.&amp;rft.au=von+Dassow%2C+P.&amp;rft.au=Rehm%2C+E.&amp;rft.au=Armbrust%2C+E.+V.&amp;rft.au=Boessenkool%2C+K.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRivero-CalleGnanadesikanCastilloBalch2015" class="citation journal cs1">Rivero-Calle, Sara; Gnanadesikan, Anand; Castillo, Carlos E. Del; Balch, William M. &amp; Guikema, Seth D. (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aaa8026">"Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO<sub>2</sub>"</a>. <i>Science</i>. <b>350</b> (6267): 1533–1537. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015Sci...350.1533R">2015Sci...350.1533R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aaa8026">10.1126/science.aaa8026</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26612836">26612836</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Multidecadal+increase+in+North+Atlantic+coccolithophores+and+the+potential+role+of+rising+CO%3Csub%3E2%3C%2Fsub%3E&amp;rft.volume=350&amp;rft.issue=6267&amp;rft.pages=1533-1537&amp;rft.date=2015&amp;rft_id=info%3Apmid%2F26612836&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.aaa8026&amp;rft_id=info%3Abibcode%2F2015Sci...350.1533R&amp;rft.aulast=Rivero-Calle&amp;rft.aufirst=Sara&amp;rft.au=Gnanadesikan%2C+Anand&amp;rft.au=Castillo%2C+Carlos+E.+Del&amp;rft.au=Balch%2C+William+M.&amp;rft.au=Guikema%2C+Seth+D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1126%252Fscience.aaa8026&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJensenMousingRichardson2017" class="citation journal cs1">Jensen, Lasse Ørsted; Mousing, Erik Askov; Richardson, Katherine (2017). "Using species distribution modelling to predict future distributions of phytoplankton: Case study using species important for the biological pump". <i>Marine Ecology</i>. <b>38</b> (3): e12427. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017MarEc..38E2427J">2017MarEc..38E2427J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fmaec.12427">10.1111/maec.12427</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Ecology&amp;rft.atitle=Using+species+distribution+modelling+to+predict+future+distributions+of+phytoplankton%3A+Case+study+using+species+important+for+the+biological+pump&amp;rft.volume=38&amp;rft.issue=3&amp;rft.pages=e12427&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1111%2Fmaec.12427&amp;rft_id=info%3Abibcode%2F2017MarEc..38E2427J&amp;rft.aulast=Jensen&amp;rft.aufirst=Lasse+%C3%98rsted&amp;rft.au=Mousing%2C+Erik+Askov&amp;rft.au=Richardson%2C+Katherine&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetrouNielsen2019" class="citation web cs1">Petrou, Katherina; Nielsen, Daniel (27 August 2019). <a rel="nofollow" class="external text" href="https://phys.org/news/2019-08-acid-oceans-plankton-fueling-faster.html">"Acid oceans are shrinking plankton, fueling faster climate change"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=phys.org&amp;rft.atitle=Acid+oceans+are+shrinking+plankton%2C+fueling+faster+climate+change&amp;rft.date=2019-08-27&amp;rft.aulast=Petrou&amp;rft.aufirst=Katherina&amp;rft.au=Nielsen%2C+Daniel&amp;rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2019-08-acid-oceans-plankton-fueling-faster.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSiegelBuesselerBehrenfeldBenitez-Nelson2016" class="citation journal cs1">Siegel, David A.; Buesseler, Ken O.; Behrenfeld, Michael J.; Benitez-Nelson, Claudia R.; Boss, Emmanuel; Brzezinski, Mark A.; Burd, Adrian; Carlson, Craig A.; D'Asaro, Eric A.; Doney, Scott C.; Perry, Mary J.; Stanley, Rachel H. R.; Steinberg, Deborah K. (8 March 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffmars.2016.00022">"Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan"</a>. <i>Frontiers in Marine Science</i>. <b>3</b>. Frontiers Media SA. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffmars.2016.00022">10.3389/fmars.2016.00022</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2296-7745">2296-7745</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Marine+Science&amp;rft.atitle=Prediction+of+the+Export+and+Fate+of+Global+Ocean+Net+Primary+Production%3A+The+EXPORTS+Science+Plan&amp;rft.volume=3&amp;rft.date=2016-03-08&amp;rft_id=info%3Adoi%2F10.3389%2Ffmars.2016.00022&amp;rft.issn=2296-7745&amp;rft.aulast=Siegel&amp;rft.aufirst=David+A.&amp;rft.au=Buesseler%2C+Ken+O.&amp;rft.au=Behrenfeld%2C+Michael+J.&amp;rft.au=Benitez-Nelson%2C+Claudia+R.&amp;rft.au=Boss%2C+Emmanuel&amp;rft.au=Brzezinski%2C+Mark+A.&amp;rft.au=Burd%2C+Adrian&amp;rft.au=Carlson%2C+Craig+A.&amp;rft.au=D%27Asaro%2C+Eric+A.&amp;rft.au=Doney%2C+Scott+C.&amp;rft.au=Perry%2C+Mary+J.&amp;rft.au=Stanley%2C+Rachel+H.+R.&amp;rft.au=Steinberg%2C+Deborah+K.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3389%252Ffmars.2016.00022&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABiological+pump" class="Z3988"></span></span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"><a href="/wiki/Committee_on_Earth_Observation_Satellites" title="Committee on Earth Observation Satellites">Committee on Earth Observation Satellites</a> (2014) "CEOS strategy for carbon observations from space". Response to the <a href="/wiki/Group_on_Earth_Observations" title="Group on Earth Observations">Group on Earth Observations</a> (GEO) carbon strategy. Printed in Japan by JAXA and I&amp;A Corporation.</span> </li> <li id="cite_note-Levin2019-165"><span class="mw-cite-backlink">^ <a href="#cite_ref-Levin2019_165-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Levin2019_165-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Levin2019_165-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Levin2019_165-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Levin2019_165-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text">Levin, L.A., Bett, B.J., Gates, A.R., Heimbach, P., Howe, B.M., Janssen, F., McCurdy, A., Ruhl, H.A., Snelgrove, P., Stocks, K.I., Bailey, D. and 27 others (2019) "Global observing needs in the deep ocean". <i>Frontiers in Marine Science</i>, <b>6</b>: 241. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffmars.2019.00241">10.3389/fmars.2019.00241</a>. <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span> Modified text was copied from this source, which is available under a <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</span> </li> </ol></div></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Microorganisms" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Microorganisms" title="Template:Microorganisms"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Microorganisms" title="Template talk:Microorganisms"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Microorganisms" title="Special:EditPage/Template:Microorganisms"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Microorganisms" style="font-size:114%;margin:0 4em"><a href="/wiki/Microorganism" title="Microorganism">Microorganisms</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Microorganism" title="Microorganism">Groups</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Archaea" title="Archaea">Archaea</a></li> <li><a href="/wiki/Bacteria" title="Bacteria">Bacteria</a></li> <li><a href="/wiki/Cyanobacteria" title="Cyanobacteria">Cyanobacteria</a></li> <li><a href="/wiki/Fungus" title="Fungus">Fungi</a></li> <li><a href="/wiki/Nanobacterium" title="Nanobacterium">Nanobacterium</a></li> <li><a href="/wiki/Prokaryote" title="Prokaryote">Prokaryote</a></li> <li><a href="/wiki/Protist" title="Protist">Protist</a></li> <li><a href="/wiki/Protozoa" title="Protozoa">Protozoa</a></li> <li><a href="/wiki/Virus" title="Virus">Virus</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="9" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Streptococcus_pyogenes_01.jpg" class="mw-file-description" title="Streptococcus pyogenes"><img alt="Streptococcus pyogenes" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Streptococcus_pyogenes_01.jpg/140px-Streptococcus_pyogenes_01.jpg" decoding="async" width="140" height="137" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Streptococcus_pyogenes_01.jpg/210px-Streptococcus_pyogenes_01.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/61/Streptococcus_pyogenes_01.jpg/280px-Streptococcus_pyogenes_01.jpg 2x" data-file-width="2079" data-file-height="2040" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Microbiology" title="Microbiology">Microbiology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Microbial_biogeography" title="Microbial biogeography">Microbial biogeography</a></li> <li><a href="/wiki/Microbial_genetics" title="Microbial genetics">Microbial genetics</a></li> <li><a href="/wiki/Microbial_intelligence" title="Microbial intelligence">Microbial intelligence</a></li> <li><a href="/wiki/Microbial_metabolism" title="Microbial metabolism">Microbial metabolism</a></li> <li><a href="/wiki/Microbial_phylogenetics" title="Microbial phylogenetics">Microbial phylogenetics</a></li> <li><a href="/wiki/Microbial_population_biology" title="Microbial population biology">Microbial population biology</a></li> <li><a href="/wiki/Mycology" title="Mycology">Mycology</a></li> <li><a href="/wiki/Virology" title="Virology">Virology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Motion</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bacterial_motility" title="Bacterial motility">Bacterial motility</a> <ul><li><a href="/wiki/Run-and-tumble_motion" title="Run-and-tumble motion">run-and-tumble</a></li> <li><a href="/wiki/Twitching_motility" title="Twitching motility">twitching</a></li> <li><a href="/wiki/Gliding_motility" title="Gliding motility">gliding</a></li></ul></li> <li><a href="/wiki/Protist_locomotion" title="Protist locomotion">Protist locomotion</a> <ul><li><a href="/wiki/Amoeboid_movement" title="Amoeboid movement">amoeboids</a></li></ul></li> <li><a href="/wiki/Bacteria_collective_motion" title="Bacteria collective motion">Bacteria collective motion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Microbial_ecology" title="Microbial ecology">Ecology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biofilm" title="Biofilm">Biofilm</a></li> <li><a class="mw-selflink selflink">Biological pump</a></li> <li><a href="/wiki/Kill_the_Winner_hypothesis" title="Kill the Winner hypothesis">Kill the Winner hypothesis</a></li> <li><a href="/wiki/Microbial_consortium" title="Microbial consortium">Microbial consortium</a></li> <li><a href="/wiki/Microbial_cooperation" title="Microbial cooperation">Microbial cooperation</a></li> <li><a href="/wiki/Microbial_biodegradation" title="Microbial biodegradation">Microbial biodegradation</a></li> <li><a href="/wiki/Microbial_ecology" title="Microbial ecology">Microbial ecology</a></li> <li><a href="/wiki/Microbial_cyst" title="Microbial cyst">Microbial cyst</a></li> <li><a href="/wiki/Microbial_food_web" title="Microbial food web">Microbial food web</a> <ul><li><a href="/wiki/Microbial_loop" title="Microbial loop">microbial loop</a></li> <li><a href="/wiki/Viral_shunt" title="Viral shunt">viral shunt</a></li></ul></li> <li><a href="/wiki/Microbial_mat" title="Microbial mat">Microbial mat</a></li> <li><a href="/wiki/Microbial_synergy" title="Microbial synergy">Microbial synergy</a></li> <li><a href="/wiki/Microbiome" title="Microbiome">Microbiome</a> <ul><li><a href="/wiki/Microbiota" title="Microbiota">microbiota</a></li> <li><a href="/wiki/Holobiont" title="Holobiont">holobiont</a></li></ul></li> <li><a href="/wiki/Quorum_sensing" title="Quorum sensing">Quorum sensing</a></li> <li><a href="/wiki/Host_microbe_interactions_in_Caenorhabditis_elegans" title="Host microbe interactions in Caenorhabditis elegans">Host microbe interactions in <i>Caenorhabditis elegans</i></a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Plants</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Plant_microbiome" title="Plant microbiome">Plant microbiome</a></li> <li><a href="/wiki/Root_microbiome" title="Root microbiome">Root microbiome</a></li> <li><a href="/wiki/Seagrass_microbiome" class="mw-redirect" title="Seagrass microbiome">Seagrass microbiome</a></li> <li><a href="/wiki/Soil_microbiology" title="Soil microbiology">Soil microbiology</a></li> <li><a href="/wiki/Spermosphere" title="Spermosphere">Spermosphere</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Marine</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Marine_microorganisms" title="Marine microorganisms">Marine microorganisms</a></li> <li><a href="/wiki/Marine_viruses" title="Marine viruses">Marine viruses</a></li> <li><a href="/wiki/Marine_prokaryotes" title="Marine prokaryotes">Marine prokaryotes</a></li> <li><a href="/wiki/Marine_protists" title="Marine protists">Marine protists</a></li> <li><a href="/wiki/Microalgae" title="Microalgae">Microalgae</a></li> <li><a href="/wiki/Antarctic_microorganism" title="Antarctic microorganism">Antarctic microorganism</a></li> <li><a href="/wiki/Coral_microbiome" class="mw-redirect" title="Coral microbiome">Coral microbiome</a></li> <li><a href="/wiki/Hydrothermal_vent_microbial_communities" title="Hydrothermal vent microbial communities">Hydrothermal vent microbial communities</a></li> <li><a href="/wiki/Marine_microbial_symbiosis" title="Marine microbial symbiosis">Marine microbial symbiosis</a></li> <li><a href="/wiki/Microbial_oxidation_of_sulfur" title="Microbial oxidation of sulfur">Microbial oxidation of sulfur</a></li> <li><a href="/wiki/Phycosphere" title="Phycosphere">Phycosphere</a></li> <li><a href="/wiki/Picoeukaryote" title="Picoeukaryote">Picoeukaryote</a></li> <li><a href="/wiki/International_Census_of_Marine_Microbes" title="International Census of Marine Microbes">International Census of Marine Microbes</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Human related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Human_interactions_with_microbes" title="Human interactions with microbes">Microbes in human culture</a></li> <li><a href="/wiki/Microbiomes_of_the_built_environment" title="Microbiomes of the built environment">Microbiomes of the built environment</a></li> <li><a href="/wiki/Food_microbiology" title="Food microbiology">Food microbiology</a></li> <li><a href="/wiki/Microbial_oil" title="Microbial oil">Microbial oil</a></li> <li><a href="/wiki/Microbial_symbiosis_and_immunity" title="Microbial symbiosis and immunity">Microbial symbiosis and immunity</a></li> <li><a href="/wiki/Nylon-eating_bacteria" title="Nylon-eating bacteria">Nylon-eating</a></li> <li><a href="/wiki/Human_microbiome" title="Human microbiome">Human microbiome</a> <ul><li><a href="/wiki/Asthma-related_microbes" title="Asthma-related microbes">asthma</a></li> <li><a href="/wiki/Dysbiosis" title="Dysbiosis">dysbiosis</a></li> <li><a href="/wiki/Fecal_microbiota_transplant" title="Fecal microbiota transplant">fecal</a></li> <li><a href="/wiki/Gut_microbiota" title="Gut microbiota">gut</a></li> <li><a href="/wiki/Lung_microbiota" title="Lung microbiota">lung</a></li> <li><a href="/wiki/Oral_microbiology" title="Oral microbiology">mouth</a></li> <li><a href="/wiki/Skin_flora" title="Skin flora">skin</a></li> <li><a href="/wiki/Vaginal_flora" title="Vaginal flora">vagina</a> <ul><li><a href="/wiki/Vaginal_flora_in_pregnancy" title="Vaginal flora in pregnancy">in pregnancy</a></li></ul></li> <li><a href="/wiki/Placental_microbiome" title="Placental microbiome">placenta</a></li> <li><a href="/wiki/Uterine_microbiome" title="Uterine microbiome">uterus</a></li></ul></li> <li><a href="/wiki/Human_Microbiome_Project" title="Human Microbiome Project">Human Microbiome Project</a></li> <li><a href="/wiki/Protein_production" title="Protein production">Protein production</a></li> <li><a href="/wiki/Synthetic_microbial_consortia" title="Synthetic microbial consortia">Synthetic microbial consortia</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Techniques</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dark-field_microscopy" title="Dark-field microscopy">Dark-field microscopy</a></li> <li><a href="/wiki/DNA_sequencing" title="DNA sequencing">DNA sequencing</a></li> <li><a href="/wiki/Impedance_microbiology" title="Impedance microbiology">Impedance microbiology</a></li> <li><a href="/wiki/Microbial_cytology" title="Microbial cytology">Microbial cytology</a></li> <li><a href="/wiki/Microbial_DNA_barcoding" title="Microbial DNA barcoding">Microbial DNA barcoding</a></li> <li><a href="/wiki/Microbiological_culture" title="Microbiological culture">Microbiological culture</a></li> <li><a href="/wiki/Staining" title="Staining">Staining</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bioremediation" title="Bioremediation">Bioremediation</a></li> <li><a href="/wiki/Deep_biosphere" title="Deep biosphere">Deep biosphere</a></li> <li><a href="/wiki/Microbial_dark_matter" title="Microbial dark matter">Microbial dark matter</a></li> <li><a href="/wiki/Microswimmer" title="Microswimmer">Microswimmer</a> <ul><li><a href="/wiki/Biohybrid_microswimmer" title="Biohybrid microswimmer">biohybrid</a></li></ul></li> <li><a href="/wiki/Lines_on_the_Antiquity_of_Microbes" title="Lines on the Antiquity of Microbes">Lines on the Antiquity of Microbes</a></li> <li><a href="/wiki/Microbially_induced_sedimentary_structure" title="Microbially induced sedimentary structure">Microbially induced sedimentary structure</a></li> <li><a href="/wiki/Omics" title="Omics">Omics</a></li> <li><a href="/wiki/Physical_factors_affecting_microbial_life" title="Physical factors affecting microbial life">Physical factors affecting microbial life</a></li> <li><a href="/wiki/Siderophore" title="Siderophore">Siderophore</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Microorganisms" title="Category:Microorganisms">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐4fr2m Cached time: 20241122144842 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.250 seconds Real time usage: 3.150 seconds Preprocessor visited node count: 14143/1000000 Post‐expand include size: 512764/2097152 bytes Template argument size: 20007/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 21/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 880738/5000000 bytes Lua time usage: 1.337/10.000 seconds Lua memory usage: 11053359/52428800 bytes Lua Profile: ? 280 ms 20.0% dataWrapper <mw.lua:672> 260 ms 18.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 260 ms 18.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 100 ms 7.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::plain 80 ms 5.7% <mw.lua:694> 80 ms 5.7% type 60 ms 4.3% recursiveClone <mwInit.lua:45> 60 ms 4.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 40 ms 2.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 40 ms 2.9% [others] 140 ms 10.0% Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2643.230 1 -total 54.50% 1440.445 1 Template:Reflist 34.36% 908.266 124 Template:Cite_journal 8.90% 235.307 16 Template:Cite_book 5.36% 141.589 1 Template:Marine_life_sidebar 4.79% 126.542 1 Template:Sidebar 3.94% 104.041 1 Template:Carbon_cycle 3.93% 103.962 7 Template:Main 3.27% 86.536 1 Template:Unreliable_source? 3.19% 84.287 1 Template:Short_description --> <!-- Saved in parser cache with key enwiki:pcache:idhash:240228-0!canonical and timestamp 20241122144842 and revision id 1255348951. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Biological_pump&amp;oldid=1255348951">https://en.wikipedia.org/w/index.php?title=Biological_pump&amp;oldid=1255348951</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Aquatic_ecology" title="Category:Aquatic ecology">Aquatic ecology</a></li><li><a href="/wiki/Category:Biological_oceanography" title="Category:Biological oceanography">Biological oceanography</a></li><li><a href="/wiki/Category:Carbon_cycle" title="Category:Carbon cycle">Carbon cycle</a></li><li><a href="/wiki/Category:Chemical_oceanography" title="Category:Chemical oceanography">Chemical oceanography</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">CS1 maint: numeric names: authors list</a></li><li><a href="/wiki/Category:CS1_errors:_missing_periodical" title="Category:CS1 errors: missing periodical">CS1 errors: missing periodical</a></li><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_British_English_from_August_2021" title="Category:Use British English from August 2021">Use British English from August 2021</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_August_2021" title="Category:Use dmy dates from August 2021">Use dmy dates from August 2021</a></li><li><a href="/wiki/Category:All_articles_lacking_reliable_references" title="Category:All articles lacking reliable references">All articles lacking reliable references</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_May_2021" title="Category:Articles lacking reliable references from May 2021">Articles lacking reliable references from May 2021</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 4 November 2024, at 13:47<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Biological_pump&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-mdz77","wgBackendResponseTime":194,"wgPageParseReport":{"limitreport":{"cputime":"2.250","walltime":"3.150","ppvisitednodes":{"value":14143,"limit":1000000},"postexpandincludesize":{"value":512764,"limit":2097152},"templateargumentsize":{"value":20007,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":21,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":880738,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 2643.230 1 -total"," 54.50% 1440.445 1 Template:Reflist"," 34.36% 908.266 124 Template:Cite_journal"," 8.90% 235.307 16 Template:Cite_book"," 5.36% 141.589 1 Template:Marine_life_sidebar"," 4.79% 126.542 1 Template:Sidebar"," 3.94% 104.041 1 Template:Carbon_cycle"," 3.93% 103.962 7 Template:Main"," 3.27% 86.536 1 Template:Unreliable_source?"," 3.19% 84.287 1 Template:Short_description"]},"scribunto":{"limitreport-timeusage":{"value":"1.337","limit":"10.000"},"limitreport-memusage":{"value":11053359,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n","limitreport-profile":[["?","280","20.0"],["dataWrapper \u003Cmw.lua:672\u003E","260","18.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","260","18.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","100","7.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::plain","80","5.7"],["\u003Cmw.lua:694\u003E","80","5.7"],["type","60","4.3"],["recursiveClone \u003CmwInit.lua:45\u003E","60","4.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","40","2.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","40","2.9"],["[others]","140","10.0"]]},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-4fr2m","timestamp":"20241122144842","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Biological pump","url":"https:\/\/en.wikipedia.org\/wiki\/Biological_pump","sameAs":"http:\/\/www.wikidata.org\/entity\/Q3180251","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q3180251","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-06-04T22:42:36Z","dateModified":"2024-11-04T13:47:36Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/e9\/Oceanic_Food_Web.jpg","headline":"ocean's biologically driven sequestration of carbon from the atmosphere to the ocean interior and seafloor"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10