CINXE.COM
Publications < Yale Center for RNA Science and Medicine
<!DOCTYPE html> <html lang="en"> <head itemscope itemtype="http://schema.org/SpeakableSpecification"> <!-- Google Tag Manager --> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('consent', 'default', { 'ad_storage': 'denied', 'analytics_storage': 'denied' }); gtag('set', 'ads_data_redaction', true); </script> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T29B2V8');</script> <!-- End Google Tag Manager --> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1.0"/> <meta http-equiv="X-UA-Compatible" content="IE=EDGE"/> <title>Publications < Yale Center for RNA Science and Medicine</title> <link rel="preconnect" href="https://p.typekit.net"> <link rel="dns-prefetch" href="https://p.typekit.net"> <link rel="preconnect" href="https://use.typekit.net"> <link rel="dns-prefetch" href="https://use.typekit.net"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="dns-prefetch" href="https://www.gstatic.com"> <meta name="title" property="og:title" content="Publications" /> <meta itemprop="xpath" content="/html/head/meta[@property='og:title']/@content" /> <meta property="publish-date" content="9/17/2024" /> <meta property="og:url" content="https://medicine.yale.edu/rnacenter/publications/" /> <meta name="site-name" property="og:site_name" content="Yale Center for RNA Science and Medicine" /> <meta property="og:type" content="website" /> <meta property="og:title" content="Publications" /> <meta name="twitter:card" content="summary" /> <meta property="fb:app_id" content="604142276782606" /> <link rel="canonical" href="https://medicine.yale.edu/rnacenter/publications/"> <link rel="apple-touch-icon" sizes="180x180" href="https://cdn1.medicine.yale.edu/icons/ysm/apple-touch-icon.png"> <link rel="icon" type="image/png" href="https://cdn1.medicine.yale.edu/icons/ysm/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="https://cdn1.medicine.yale.edu/icons/ysm/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="https://cdn1.medicine.yale.edu/web-manifests/ysm/site.webmanifest"> <link rel="shortcut icon" type="image/x-icon" href="https://cdn1.medicine.yale.edu/icons/ysm/favicon.ico"/> <meta name="msapplication-TileColor" content="#1271e3"> <meta name="msapplication-config" content="https://cdn1.medicine.yale.edu/browser-configs/ysm/browserconfig.xml"> <meta name="theme-color" content="#ffffff"> <link rel="preload" href="https://cdn1.medicine.yale.edu/build/yalenew-italic-webfront.woff2" as="font" crossorigin> <link rel="preload" href="https://cdn1.medicine.yale.edu/build/yalenew-roman-webfont.woff2" as="font" crossorigin> <link rel="preload" href="https://use.typekit.net/eqf4dwf.css" as="style" crossorigin> <link data-chunk="main" rel="stylesheet" href="https://cdn1.medicine.yale.edu/build/main.199e688ab4bb46f63b3c.css" crossorigin="anonymous" /> <link data-chunk="modules-organization-components-OrganizationPublicationListContainer" rel="stylesheet" href="https://cdn1.medicine.yale.edu/build/430.e674218a66acf527816b.css" crossorigin="anonymous" /> <link data-chunk="modules-footer-components-Footer" rel="stylesheet" href="https://cdn1.medicine.yale.edu/build/3053.8859d2009fbf093fa62f.css" crossorigin="anonymous" /> <link data-chunk="modules-footer-components-Footer" rel="preload" as="style" href="https://cdn1.medicine.yale.edu/build/3053.8859d2009fbf093fa62f.css" crossorigin="anonymous" /> <link data-chunk="modules-organization-components-OrganizationPublicationListContainer" rel="preload" as="style" href="https://cdn1.medicine.yale.edu/build/430.e674218a66acf527816b.css" crossorigin="anonymous" /> <link data-chunk="main" rel="preload" as="style" href="https://cdn1.medicine.yale.edu/build/main.199e688ab4bb46f63b3c.css" crossorigin="anonymous" /> <link data-chunk="main" rel="preload" as="script" href="https://cdn1.medicine.yale.edu/build/main.es2015.e71226adbc7ac9e6afaf.js" crossorigin="anonymous" /> <link data-chunk="modules-organization-components-OrganizationPublicationListContainer" rel="preload" as="script" href="https://cdn1.medicine.yale.edu/build/2243.es2015.9e66211ab4f469996a21.js" crossorigin="anonymous" /> <link data-chunk="modules-organization-components-OrganizationPublicationListContainer" rel="preload" as="script" href="https://cdn1.medicine.yale.edu/build/430.es2015.21413efed5ab6086179d.js" crossorigin="anonymous" /> <link data-chunk="modules-footer-components-Footer" rel="preload" as="script" href="https://cdn1.medicine.yale.edu/build/3053.es2015.404cba0e717f410cb74c.js" crossorigin="anonymous" /> <script type="text/javascript"> (function (c, a) { if (!a.__SV) { var b = window; try { var d, m, j, k = b.location, f = k.hash; d = function (a, b) { return (m = a.match(RegExp(b + "=([^&]*)"))) ? m[1] : null }; f && d(f, "fpState") && (j = JSON.parse(decodeURIComponent(d(f, "fpState"))), "fpeditor" === j.action && (b.sessionStorage.setItem("_fpcehash", f), history.replaceState(j.desiredHash || "", c.title, k.pathname + k.search))) } catch (n) { } var l, h; window.freshpaint = a; a._i = []; a.init = function (b, d, g) { function c(b, i) { var a = i.split("."); 2 == a.length && (b = b[a[0]], i = a[1]); b[i] = function () { b.push([i].concat(Array.prototype.slice.call(arguments, 0))) } } var e = a; "undefined" !== typeof g ? e = a[g] = [] : g = "freshpaint"; e.people = e.people || []; e.toString = function (b) { var a = "freshpaint"; "freshpaint" !== g && (a += "." + g); b || (a += " (stub)"); return a }; e.people.toString = function () { return e.toString(1) + ".people (stub)" }; l = "disable time_event track track_pageview track_links track_forms track_with_groups add_group set_group remove_group register register_once alias unregister identify name_tag set_config reset opt_in_tracking opt_out_tracking has_opted_in_tracking has_opted_out_tracking clear_opt_in_out_tracking people.set people.set_once people.unset people.increment people.append people.union people.track_charge people.clear_charges people.delete_user people.remove people group page alias ready addEventProperties addInitialEventProperties removeEventProperty addPageviewProperties".split(" "); for (h = 0; h < l.length; h++)c(e, l[h]); var f = "set set_once union unset remove delete".split(" "); e.get_group = function () { function a(c) { b[c] = function () { call2_args = arguments; call2 = [c].concat(Array.prototype.slice.call(call2_args, 0)); e.push([d, call2]) } } for (var b = {}, d = ["get_group"].concat(Array.prototype.slice.call(arguments, 0)), c = 0; c < f.length; c++)a(f[c]); return b }; a._i.push([b, d, g]) }; a.__SV = 1.4; b = c.createElement("script"); b.type = "text/javascript"; b.async = !0; b.src = "undefined" !== typeof FRESHPAINT_CUSTOM_LIB_URL ? FRESHPAINT_CUSTOM_LIB_URL : "//perfalytics.com/static/js/freshpaint.js"; (d = c.getElementsByTagName("script")[0]) ? d.parentNode.insertBefore(b, d) : c.head.appendChild(b) } })(document, window.freshpaint || []); freshpaint.init("b6b4bb12-e8a3-48f7-a8ed-aa0be94fb272"); freshpaint.page(); </script> <script type="text/plain" data-cookiecategory="analytics"> (function (c, l, a, r, i, t, y) { c[a] = c[a] || function () { (c[a].q = c[a].q || []).push(arguments) }; t = l.createElement(r); t.async = 1; t.src = "https://www.clarity.ms/tag/" + i; y = l.getElementsByTagName(r)[0]; y.parentNode.insertBefore(t, y); })(window, document, "clarity", "script", "h8jhq78c9x"); </script> <script id="cms-page-metadata" type="text/template"> ********************************************** CMS Page ID: 15704 Last Published: 9/17/2024 7:55:14 AM ********************************************** </script> </head> <body tabindex="-1"> <!-- Google Tag Manager (noscript) --> <noscript aria-hidden="true"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T29B2V8" height="0" width="0" style="display: none; visibility: hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!--[if IE]> <div aria-hidden="true" class="outdated-browser-warning"> Your browser is antiquated and no longer supported on this website. Please update your browser or switch to Chrome, Firefox or Safari. <br/> You can update your IE here: <br/> <a class="outdated-browser-warning__link" href="https://support.microsoft.com/en-us/help/17621/internet-explorer-downloads">https://support.microsoft.com/en-us/help/17621/internet-explorer-downloads</a> </div> <![endif]--> <!--[if !IE]>--> <div id="app"><div class="page"><span role="navigation" aria-label="Skip to Main Content button"><a href="#page-container" class="skip-button skip-button--dark skip-to-main-content-button">Skip to Main Content</a></span><div class="base-page__header-container"><div class="base-header department-header"><div class="base-header__content"><div class="base-header__top-navigation-container"><div class="base-header__top-navigation"><nav class="base-header__top-navigation-links" aria-label="Information links"><a href="https://www.yale.edu" class="department-header__top-navigation-root-link"><svg xmlns="http://www.w3.org/2000/svg" aria-label="Yale" viewBox="0 0 58.3 28.2" focusable="false" class="site-wordmark__icon site-wordmark__icon--mode-yale department-header__logo-icon"><desc>Yale</desc><path d="m19.5 7.4-5.9 10v6.7c.7 1.6 2.4 1.8 4.1 1.9v1H6v-.9c1.7-.1 3.7-.3 4.2-1.4v-6.9l-6-10.2C3.1 5.8 2.1 5.2.1 5v-.9h10.1V5c-1.9.2-2.5.5-3 .9l5.6 9.7L18.3 6c-.6-.5-1.4-.8-3.3-1v-.9h8.6V5c-1.9.1-3.1.8-4.1 2.4m11.8 19.9c-1.9 0-2.9-1.3-3-2.3-1.2 1.3-2.8 2.3-4.3 2.3-1.9 0-3.6-1.2-3.6-3.2 0-1 .3-2.1.8-2.9l7.2-2.6v-2.7c0-1.6-.8-3.2-2.4-3.2-1 0-1.9 1.2-2 3l-3.2.5V16c1.1-3.2 4.6-4.5 6.4-4.5 3.3 0 4.5 1.7 4.4 4.4l-.1 7.6c0 1.5.8 1.8 1.5 1.8.6 0 1.2-.4 1.8-1v1c-.8.9-2.2 2-3.5 2m-7.2-5.8c-.1.6-.3 1.1-.3 1.9 0 1.1.6 2.2 1.8 2.2 1.1 0 1.7-.4 2.7-1.1v-4.9c-.9.3-3.2 1.4-4.2 1.9m11 5.5v-.8c1.6-.1 2.1-.5 2.4-1.1V6.4c0-1.2-.2-1.7-2.7-1.9v-.7l6.6-1.7.2.6-1 1.3v21.1c.4.7 1 1 2.5 1.1v.8zm16.6.3c-3.8 0-6.7-3-6.7-7.2 0-5.1 3.1-8.6 7.6-8.6 3.6 0 5.5 2 5.5 5.2v.6l-9.7-.1c-.1.4-.1 1-.1 1.8 0 3.7 2.3 6.1 5.4 6.1 1.8 0 2.8-.6 4.2-1.9l.5.8c-2 2.1-3.7 3.3-6.7 3.3m.3-14.7c-1.8 0-3.1 1.4-3.5 3.7l6.3-.1c.1-1.8-1.1-3.6-2.8-3.6"></path></svg></a><div class="navigation-header-links"><a href="/about/" class="navigation-header-links__header-link" aria-label="Navigate to About YSM page"><div class="navigation-header-links__link-hover"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-header-links__link-icon"><path fill="none" d="M0 0h24v24H0z"></path><path d="m12 4-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg>About YSM</div></a><a href="/faculty/" class="navigation-header-links__header-link" aria-label="Navigate to Faculty page"><div class="navigation-header-links__link-hover"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-header-links__link-icon"><path fill="none" d="M0 0h24v24H0z"></path><path d="m12 4-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg>Faculty</div></a><a href="/myysm/" class="navigation-header-links__header-link" aria-label="Navigate to Staff page"><div class="navigation-header-links__link-hover"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-header-links__link-icon"><path fill="none" d="M0 0h24v24H0z"></path><path d="m12 4-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg>Staff</div></a><a href="/edu/" class="navigation-header-links__header-link" aria-label="Navigate to Students page"><div class="navigation-header-links__link-hover"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-header-links__link-icon"><path fill="none" d="M0 0h24v24H0z"></path><path d="m12 4-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg>Students</div></a><a href="/edu/residency-fellowships/" class="navigation-header-links__header-link" aria-label="Navigate to Residents & Fellows page"><div class="navigation-header-links__link-hover"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-header-links__link-icon"><path fill="none" d="M0 0h24v24H0z"></path><path d="m12 4-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg>Residents & Fellows</div></a><a href="https://yalemedicine.org" class="navigation-header-links__header-link" aria-label="Navigate to Patients page"><div class="navigation-header-links__link-hover"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-header-links__link-icon"><path fill="none" d="M0 0h24v24H0z"></path><path d="m12 4-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg>Patients</div></a><a href="/research/" class="navigation-header-links__header-link" aria-label="Navigate to Researchers page"><div class="navigation-header-links__link-hover"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-header-links__link-icon"><path fill="none" d="M0 0h24v24H0z"></path><path d="m12 4-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg>Researchers</div></a><a href="/alumni/" class="navigation-header-links__header-link" aria-label="Navigate to Alumni page"><div class="navigation-header-links__link-hover"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-header-links__link-icon"><path fill="none" d="M0 0h24v24H0z"></path><path d="m12 4-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg>Alumni</div></a></div></nav><div></div></div></div><div class="base-header__navigation"><div class="base-header__navigation-content--desktop"><div class="base-header__navigation-left-content"><div class="department-header__navigation-content"><nav class="department-header__breadcrumbs" aria-label="Navigation breadcrumbs"><ul class="department-header__breadcrumb-list"><li><a href="https://www.yale.edu" class="department-header__breadcrumb-link">Yale University</a><span class="department-header__slash-delimiter">/ </span></li></ul></nav><div class="department-header__department-link-container"><a href="/rnacenter" class="department-header__department-link">Yale Center for RNA Science and Medicine</a><div class="base-header__navigation-menu-button"><div class="navigation-menu-button__container"><button class="navigation-menu-button navigation-menu-button--open" type="button" aria-label="Menu"><div class="navigation-menu-button__hamburger"><span class="navigation-menu-button__hamburger-line"></span><span class="navigation-menu-button__hamburger-line"></span><span class="navigation-menu-button__hamburger-line"></span></div><div class="navigation-menu-button__text">MENU</div></button></div></div></div></div></div><div class="base-header__navigation-right-content"><div class="base-header__navigation-search-button"></div></div></div><div class="base-header__navigation-content--mobile"><div class="base-header__navigation-left-content"><button type="button" class="base-header__navigation-dropdown-button" aria-label="Go to the main page"><svg xmlns="http://www.w3.org/2000/svg" aria-label="Yale" viewBox="0 0 58.3 28.2" focusable="false" class="site-wordmark__icon site-wordmark__icon--mode-yale base-header__navigation-dropdown-logo"><desc>Yale</desc><path d="m19.5 7.4-5.9 10v6.7c.7 1.6 2.4 1.8 4.1 1.9v1H6v-.9c1.7-.1 3.7-.3 4.2-1.4v-6.9l-6-10.2C3.1 5.8 2.1 5.2.1 5v-.9h10.1V5c-1.9.2-2.5.5-3 .9l5.6 9.7L18.3 6c-.6-.5-1.4-.8-3.3-1v-.9h8.6V5c-1.9.1-3.1.8-4.1 2.4m11.8 19.9c-1.9 0-2.9-1.3-3-2.3-1.2 1.3-2.8 2.3-4.3 2.3-1.9 0-3.6-1.2-3.6-3.2 0-1 .3-2.1.8-2.9l7.2-2.6v-2.7c0-1.6-.8-3.2-2.4-3.2-1 0-1.9 1.2-2 3l-3.2.5V16c1.1-3.2 4.6-4.5 6.4-4.5 3.3 0 4.5 1.7 4.4 4.4l-.1 7.6c0 1.5.8 1.8 1.5 1.8.6 0 1.2-.4 1.8-1v1c-.8.9-2.2 2-3.5 2m-7.2-5.8c-.1.6-.3 1.1-.3 1.9 0 1.1.6 2.2 1.8 2.2 1.1 0 1.7-.4 2.7-1.1v-4.9c-.9.3-3.2 1.4-4.2 1.9m11 5.5v-.8c1.6-.1 2.1-.5 2.4-1.1V6.4c0-1.2-.2-1.7-2.7-1.9v-.7l6.6-1.7.2.6-1 1.3v21.1c.4.7 1 1 2.5 1.1v.8zm16.6.3c-3.8 0-6.7-3-6.7-7.2 0-5.1 3.1-8.6 7.6-8.6 3.6 0 5.5 2 5.5 5.2v.6l-9.7-.1c-.1.4-.1 1-.1 1.8 0 3.7 2.3 6.1 5.4 6.1 1.8 0 2.8-.6 4.2-1.9l.5.8c-2 2.1-3.7 3.3-6.7 3.3m.3-14.7c-1.8 0-3.1 1.4-3.5 3.7l6.3-.1c.1-1.8-1.1-3.6-2.8-3.6"></path></svg><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="base-header__navigation-dropdown-icon"><path d="M23.25 7.311 12.53 18.03a.75.75 0 0 1-1.06 0L.75 7.311" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px;fill-rule:evenodd"></path></svg></button><div></div></div><div class="base-header__navigation-right-content"><div class="base-header__navigation-menu-button"><div class="navigation-menu-button__container"><button class="navigation-menu-button navigation-menu-button--open" type="button" aria-label="Menu"><div class="navigation-menu-button__hamburger"><span class="navigation-menu-button__hamburger-line"></span><span class="navigation-menu-button__hamburger-line"></span><span class="navigation-menu-button__hamburger-line"></span></div><div class="navigation-menu-button__text">MENU</div></button></div></div></div></div></div><div class="base-header__navigation-panel"><div class="navigation-panel__wrapper navigation-panel__wrapper--hidden"><nav class="navigation-panel__top-container" aria-label="Navigation Panel"><div class="navigation-panel__header-container"><a href="/rnacenter" class="navigation-panel__header-text">Yale Center for RNA Science and Medicine</a></div></nav><div class="navigation-panel__grid-container"><div class="navigation-panel__grid-column"><ul><li class="navigation-panel__grid-column-list-item"><div class="navigation-panel__grid-item"><div class="navigation-panel-item navigation-panel-item--height"><a href="/rnacenter/about" class="navigation-panel-item__option-text navigation-panel-item__option-text--parent" aria-label="Navigate to About the Center page"><span class="navigation-panel-item__option-text-link navigation-panel-item__option-text-link--parent">About the Center</span></a></div></div></li><li class="navigation-panel__grid-column-list-item"><div class="navigation-panel__grid-item"><div class="navigation-panel-item navigation-panel-item--height"><a href="/rnacenter/publications" class="navigation-panel-item__option-text navigation-panel-item__option-text--parent" aria-label="Navigate to Publications page"><span class="navigation-panel-item__option-text-link navigation-panel-item__option-text-link--parent">Publications</span></a></div></div></li></ul></div><div class="navigation-panel__grid-column"><ul><li class="navigation-panel__grid-column-list-item"><div class="navigation-panel__grid-item"><div class="navigation-panel-item navigation-panel-item--height"><a href="/rnacenter/staff" class="navigation-panel-item__option-text navigation-panel-item__option-text--parent" aria-label="Navigate to Faculty page"><span class="navigation-panel-item__option-text-link navigation-panel-item__option-text-link--parent">Faculty</span></a></div></div></li><li class="navigation-panel__grid-column-list-item"><div class="navigation-panel__grid-item"><div class="navigation-panel-sub-panel" aria-level="0"><div id="sub-panel__heading-5" aria-controls="sub-panel__body-5" class="navigation-panel-sub-panel__header" aria-expanded="false"><div class="navigation-panel-item navigation-panel-item--height"><a href="/rnacenter/news" class="navigation-panel-item__option-text navigation-panel-item__option-text--parent" aria-label="Navigate to News & Events page"><span class="navigation-panel-item__option-text-link navigation-panel-item__option-text-link--parent">News & Events</span></a><button class="navigation-panel-item__button" type="button" aria-label="Open News & Events menu item."><div class="navigation-panel-item__icon navigation-panel-item__button-icon"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-panel-item__icon"><path d="M12 1v22M23 12H1" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round"></path></svg></div></button></div></div><div id="sub-panel__body-5" class="navigation-panel-sub-panel__body"><ul><li class="navigation-panel-sub-panel__body-list-item"><div class="navigation-panel-item"><a href="/rnacenter/news/events" class="navigation-panel-item__option-text" aria-label="Navigate to Event Calendar page" tabindex="-1"><span class="navigation-panel-item__option-text-link">Event Calendar</span></a></div></li></ul></div></div></div></li></ul></div><div class="navigation-panel__grid-column"><ul><li class="navigation-panel__grid-column-list-item"><div class="navigation-panel__grid-item"><div class="navigation-panel-sub-panel" aria-level="0"><div id="sub-panel__heading-2" aria-controls="sub-panel__body-2" class="navigation-panel-sub-panel__header" aria-expanded="false"><div class="navigation-panel-item navigation-panel-item--height"><a href="/rnacenter/programming" class="navigation-panel-item__option-text navigation-panel-item__option-text--parent" aria-label="Navigate to RNA Center Programming page"><span class="navigation-panel-item__option-text-link navigation-panel-item__option-text-link--parent">RNA Center Programming</span></a><button class="navigation-panel-item__button" type="button" aria-label="Open RNA Center Programming menu item."><div class="navigation-panel-item__icon navigation-panel-item__button-icon"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="navigation-panel-item__icon"><path d="M12 1v22M23 12H1" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round"></path></svg></div></button></div></div><div id="sub-panel__body-2" class="navigation-panel-sub-panel__body"><ul><li class="navigation-panel-sub-panel__body-list-item"><div class="navigation-panel-item"><a href="/rnacenter/programming/retreat" class="navigation-panel-item__option-text" aria-label="Navigate to Annual Retreat page" tabindex="-1"><span class="navigation-panel-item__option-text-link">Annual Retreat</span></a></div></li><li class="navigation-panel-sub-panel__body-list-item"><div class="navigation-panel-item"><a href="/rnacenter/programming/workshops" class="navigation-panel-item__option-text" aria-label="Navigate to Workshops page" tabindex="-1"><span class="navigation-panel-item__option-text-link">Workshops</span></a></div></li><li class="navigation-panel-sub-panel__body-list-item"><div class="navigation-panel-item"><a href="/rnacenter/programming/altman-symposium" class="navigation-panel-item__option-text" aria-label="Navigate to Sid Altman Memorial Symposium page" tabindex="-1"><span class="navigation-panel-item__option-text-link">Sid Altman Memorial Symposium</span></a></div></li><li class="navigation-panel-sub-panel__body-list-item"><div class="navigation-panel-item"><a href="/rnacenter/programming/pirc" class="navigation-panel-item__option-text" aria-label="Navigate to Yale Postdoc Initiative in RNA Careers page" tabindex="-1"><span class="navigation-panel-item__option-text-link">Yale Postdoc Initiative in RNA Careers</span></a></div></li></ul></div></div></div></li><li class="navigation-panel__grid-column-list-item"><div class="navigation-panel__grid-item"><div class="navigation-panel-item navigation-panel-item--height"><a href="/rnacenter/opportunities" class="navigation-panel-item__option-text navigation-panel-item__option-text--parent" aria-label="Navigate to Job Opportunities page"><span class="navigation-panel-item__option-text-link navigation-panel-item__option-text-link--parent">Job Opportunities</span></a></div></div></li></ul></div><div class="navigation-panel__grid-column"><ul><li class="navigation-panel__grid-column-list-item"><div class="navigation-panel__grid-item"><div class="navigation-panel-item navigation-panel-item--height"><a href="/rnacenter/rnaclub" class="navigation-panel-item__option-text navigation-panel-item__option-text--parent" aria-label="Navigate to RNA Club page"><span class="navigation-panel-item__option-text-link navigation-panel-item__option-text-link--parent">RNA Club</span></a></div></div></li><li class="navigation-panel__grid-column-list-item"><div class="navigation-panel__grid-item"><div class="navigation-panel-item navigation-panel-item--height"><a href="/rnacenter/joan-and-tom-steitz-rna-fellows-program" class="navigation-panel-item__option-text navigation-panel-item__option-text--parent" aria-label="Navigate to Joan and Tom Steitz RNA Fellows Program page"><span class="navigation-panel-item__option-text-link navigation-panel-item__option-text-link--parent">Joan and Tom Steitz RNA Fellows Program</span></a></div></div></li></ul></div></div></div></div></div><div class="base-header__mobile-navigation-dropdown"><div class="mobile-navigation-dropdown"><div class="mobile-navigation-dropdown__home-link"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="mobile-navigation-dropdown__home-icon"><path d="M3.753 13.944v8.25h6v-6a1.5 1.5 0 0 1 1.5-1.5h1.5a1.5 1.5 0 0 1 1.5 1.5v6h6v-8.25M.753 12.444 10.942 2.255a1.5 1.5 0 0 1 2.122 0l10.189 10.189" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg><a href="https://www.yale.edu" class="mobile-navigation-dropdown__link">Yale Home</a></div><p class="mobile-navigation-dropdown__title">INFORMATION FOR</p><ul><li><a href="/about/" class="mobile-navigation-dropdown__link">About YSM</a></li><li><a href="/faculty/" class="mobile-navigation-dropdown__link">Faculty</a></li><li><a href="/myysm/" class="mobile-navigation-dropdown__link">Staff</a></li><li><a href="/edu/" class="mobile-navigation-dropdown__link">Students</a></li><li><a href="/edu/residency-fellowships/" class="mobile-navigation-dropdown__link">Residents & Fellows</a></li><li><a href="https://yalemedicine.org" class="mobile-navigation-dropdown__link">Patients</a></li><li><a href="/research/" class="mobile-navigation-dropdown__link">Researchers</a></li><li><a href="/alumni/" class="mobile-navigation-dropdown__link">Alumni</a></li></ul></div></div></div><div class="base-page__context-navigation-container context-navigation-container"><nav class="context-navigation" aria-label="Context navigation"><div id="context-navigation-links-container" class="context-navigation__links-panel context-navigation__links-panel--expanded"><div class="context-navigation-links"><ul class="context-navigation-links__links-list"><li class="context-navigation-links__item"><a href="/rnacenter/about" class="context-navigation-links__item-link">About the Center</a></li><li class="context-navigation-links__item"><a href="/rnacenter/staff" class="context-navigation-links__item-link">Faculty</a></li><li class="context-navigation-links__item"><a href="/rnacenter/programming" class="context-navigation-links__item-link">RNA Center Programming</a></li><li class="context-navigation-links__item"><a href="/rnacenter/rnaclub" class="context-navigation-links__item-link">RNA Club</a></li><li class="context-navigation-links__item"><a href="/rnacenter/publications" class="context-navigation-links__item-link context-navigation-links__item-link--active">Publications</a></li><li class="context-navigation-links__item"><a href="/rnacenter/news" class="context-navigation-links__item-link">News & Events</a></li><li class="context-navigation-links__item"><a href="/rnacenter/opportunities" class="context-navigation-links__item-link">Job Opportunities</a></li><li class="context-navigation-links__item"><a href="/rnacenter/joan-and-tom-steitz-rna-fellows-program" class="context-navigation-links__item-link">Joan and Tom Steitz RNA Fellows Program</a></li></ul></div></div></nav></div></div><div style="margin-top:0px" class="base-page"><main class="page-container" tabindex="-1" id="page-container"><div class="content content--with-sidebar page__content-container"><div class="component-wrapper component-wrapper--all"><section class="organization-publication-list" aria-label="Organization Publication List"><h1 class="organization-publication-list__title">Publications</h1><ul class="share-panel share-panel--horizontal"><li class="share-panel__item"><button class="share-panel__link" aria-label="Share via X" type="button"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="share-panel__icon"><path d="M17.294 22.475 1.454 1.453h5.252l15.84 21.022zm4.508-21.022-8.35 8.954M2.198 22.475l8.344-8.948" style="fill:none;stroke:currentColor;stroke-width:1.5;stroke-linecap:round;stroke-linejoin:round"></path></svg></button></li><li class="share-panel__item"><button class="share-panel__link" aria-label="Share via Facebook" type="button"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="share-panel__icon"><path d="M12.5 23.5h-11a1 1 0 0 1-1-1v-21a1 1 0 0 1 1-1h21a1 1 0 0 1 1 1v21a1 1 0 0 1-1 1h-6v-9h2.559a.5.5 0 0 0 .5-.438l.375-3a.5.5 0 0 0-.5-.562H16.5V9.185A1.687 1.687 0 0 1 18.186 7.5H20a.5.5 0 0 0 .5-.5V4a.5.5 0 0 0-.5-.5h-1.814A5.69 5.69 0 0 0 12.5 9.185V10.5H10a.5.5 0 0 0-.5.5v3a.5.5 0 0 0 .5.5h2.5z" style="fill:currentColor;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round"></path></svg></button></li><li class="share-panel__item"><button class="share-panel__link" aria-label="Share via LinkedIn" type="button"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="share-panel__icon"><path d="M6.5 22.5h-5v-13h5Zm9-9a2 2 0 0 0-2 2v7h-5v-13h5v1.485a6.3 6.3 0 0 1 3.99-1.495c2.962 0 5.01 2.2 5.01 6.355V22.5h-5v-7a2 2 0 0 0-2-2M6.5 5A2.5 2.5 0 1 1 4 2.5 2.5 2.5 0 0 1 6.5 5" style="fill:currentColor;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round"></path></svg></button></li><li class="share-panel__item"><button type="button" aria-label="Share page via email" class="share-panel__button"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="share-panel__icon"><path d="M23.888 5.832a.18.18 0 0 0-.2.039l-9.747 9.745a2.75 2.75 0 0 1-3.888 0L.31 5.871a.18.18 0 0 0-.2-.039A.18.18 0 0 0 0 6v12a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2V6a.18.18 0 0 0-.112-.168" style="fill:currentColor"></path><path d="M11.115 14.556a1.25 1.25 0 0 0 1.768 0l9.686-9.686a.5.5 0 0 0 .121-.511C22.58 4.03 22.274 4 22 4H2c-.275 0-.583.03-.691.359a.5.5 0 0 0 .121.511Z" style="fill:currentColor"></path></svg></button></li><li class="share-panel__item"><button type="button" aria-label="Print page" class="share-panel__button"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="share-panel__icon share-panel__print-icon"><path d="M5.25 17.249h-3a1.5 1.5 0 0 1-1.5-1.5v-7.5a1.5 1.5 0 0 1 1.5-1.5h19.5a1.5 1.5 0 0 1 1.5 1.5v7.5a1.5 1.5 0 0 1-1.5 1.5h-3" style="stroke-linecap:round;stroke-linejoin:round;fill:currentColor;stroke-width:.5px"></path><path d="M3.75 9.749h1.5" style="stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px;stroke-opacity:1"></path><path d="M5.25 12.749h13.5v10H5.25z" class="paper" style="stroke-linecap:round;stroke-linejoin:round;fill:currentColor;stroke-width:2"></path><path d="M18.75 6.749H5.25v-4.5a1.5 1.5 0 0 1 1.5-1.5h10.5a1.5 1.5 0 0 1 1.5 1.5Z" style="stroke-linecap:round;stroke-linejoin:round;fill:currentColor;stroke-width:.25px;stroke-opacity:1"></path></svg></button></li></ul><div class="organization-publication-list__filter-panel-container"><div class="organization-publication-list-filter-panel"><div class="organization-publication-list-filter-panel__filters-container"><div class="organization-publication-list-filter-panel__search-container"><div class="search-panel"><input type="search" class="search-panel-input" placeholder="Search" aria-label="Search Input"/><button class="search-panel-button search-panel-button--medium" type="button" aria-label="Perform search"><span class="search-panel-button__icon-container" aria-hidden="true"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="search-panel-button__icon"><circle cx="9.813" cy="9.812" r="9.063" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px" transform="rotate(-23.025 9.813 9.812)"></circle><path d="m16.221 16.22 7.029 7.03" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></span></button></div></div><div class="organization-publication-list-filter-panel__buttons-container"><div class="organization-publication-list-filter-panel__filter-button-container"><button type="button" class="button button--large button--primary button--color-mode--blue button-with-icon" tabindex="0"><span class="button__icon button__icon--alignment--left" aria-hidden="true"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 22 24" focusable="false" class="organization-publication-list-filter-panel__filter-icon"><path d="M21.3 2.1a1 1 0 0 0-.8-1.6H2.48a1 1 0 0 0-.8 1.6l7.808 10.491V22.5a1 1 0 0 0 1.6.8l2-1.5a1 1 0 0 0 .4-.8v-8.41z" style="stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></span><span class="button__label">Filters</span></button></div><div class="organization-publication-list-filter-panel__sort-button-container"><div class="drop-down-button"><button type="button" class="button button--large button--secondary button--color-mode--blue button-with-icon" tabindex="0" aria-haspopup="listbox" aria-expanded="false"><span class="button__label">Newest First</span><span class="button__icon" aria-hidden="true"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="drop-down-button__icon"><path d="M12.637 21.124 22.4 3.875a.75.75 0 0 0-.637-1.125H2.237A.75.75 0 0 0 1.6 3.875l9.763 17.249a.729.729 0 0 0 1.274 0" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px;fill-rule:evenodd"></path></svg></span></button><ul role="listbox" class="drop-down-button-item-list drop-down-button-item-list--hidden drop-down-button-item-list--with-scroll" aria-label="Sort by"><li tabindex="0" class="base-drop-down-button__list-item drop-down-button-item-list__item" role="option" aria-selected="true">Newest First</li><li tabindex="0" class="base-drop-down-button__list-item drop-down-button-item-list__item" role="option" aria-selected="false">Most Cited</li><li tabindex="0" class="base-drop-down-button__list-item drop-down-button-item-list__item" role="option" aria-selected="false">Most Discussed</li></ul></div></div></div></div><p class="organization-publication-list-filter-panel__list-description">Showing 1 - <!-- -->100<!-- --> results of <!-- -->18,579<!-- --> publications</p></div></div><section class="organization-publication-list__group" aria-label="2024 publications"><h2 class="organization-publication-list__group-title">2024</h2><ul class="organization-publication-list__group-list"><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/38924775" class="research-list-item__link"><span>Single-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis.</span></a><span class="research-list-item__text">Zhao A, Unterman A, Abu Hussein N, Sharma P, Nikola F, Flint J, Yan X, Adams T, Justet A, Sumida T, Zhao J, Schupp J, Raredon M, Ahangari F, Deluliis G, Zhang Y, Buendia-Roldan I, Adegunsoye A, Sperling A, Prasse A, Ryu C, Herzog E, Selman M, Pardo A, <strong>Kaminski N</strong>. Single-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis. American Journal Of Respiratory And Critical Care Medicine 2024, 210: 1252-1266. <a href="https://pubmed.ncbi.nlm.nih.gov/38924775" target="_blank">PMID: 38924775</a>, <a href="https://doi.org/10.1164/rccm.202401-0078oc" target="_blank">DOI: 10.1164/rccm.202401-0078oc</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39522891" class="research-list-item__link"><span>GPR68 supports AML cells through the calcium/calcineurin pro-survival pathway and confers chemoresistance by mediating glucose metabolic symbiosis</span></a><span class="research-list-item__text">He X, Hawkins C, Lawley L, Phan T, Park I, Joven N, Zhang J, Wunderlich M, Mizukawa B, Pei S, Patel A, VanOudenhove J, <strong>Halene S</strong>, Fang J. GPR68 supports AML cells through the calcium/calcineurin pro-survival pathway and confers chemoresistance by mediating glucose metabolic symbiosis. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease 2024, 167565. <a href="https://pubmed.ncbi.nlm.nih.gov/39522891" target="_blank">PMID: 39522891</a>, <a href="https://doi.org/10.1016/j.bbadis.2024.167565" target="_blank">DOI: 10.1016/j.bbadis.2024.167565</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39514636" class="research-list-item__link"><span>A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses</span></a><span class="research-list-item__text">Yang Y, Treger R, Hernandez-Bird J, Lu P, Mao T, <strong>Iwasaki A</strong>. A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses. Science Immunology 2024, 9: eadd6608. <a href="https://pubmed.ncbi.nlm.nih.gov/39514636" target="_blank">PMID: 39514636</a>, <a href="https://doi.org/10.1126/sciimmunol.add6608" target="_blank">DOI: 10.1126/sciimmunol.add6608</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39504356" class="research-list-item__link"><span>Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population</span></a><span class="research-list-item__text">Ding J, Liu H, Zhang X, Zhao N, Peng Y, Shi J, Chen J, Chi X, Li L, Zhang M, Liu W, Zhang L, Ouyang J, Yuan Q, Liao M, Tan Y, Li M, Xu Z, Tang W, Xie C, Li Y, Pan Q, Xu Y, Cai S, Byrne C, Targher G, <strong>Ouyang X</strong>, Zhang L, Jiang Z, Zheng M, Sun F, Chai J. Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population. Science Translational Medicine 2024, 16: eadh9940. <a href="https://pubmed.ncbi.nlm.nih.gov/39504356" target="_blank">PMID: 39504356</a>, <a href="https://doi.org/10.1126/scitranslmed.adh9940" target="_blank">DOI: 10.1126/scitranslmed.adh9940</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1136/jitc-2024-sitc2024.0065" class="research-list-item__link"><span>65 High-fidelity enhanced AsCas12a knock-in mice for efficient multiplexed gene editing, disease modeling and orthogonal immunogenetics</span></a><span class="research-list-item__text">Tang K, Zhou X, Fang S, Vandenbulcke E, Du A, Shen J, Cao H, Zhou J, Chen K, Xin S, Zhou L, Lin S, Majety M, Lin X, Lam S, Chow R, Bai S, Nottoli T, Booth C, Liu C, Dong M, <strong>Chen S</strong>. 65 High-fidelity enhanced AsCas12a knock-in mice for efficient multiplexed gene editing, disease modeling and orthogonal immunogenetics. 2024, a72-a72. <a href="https://doi.org/10.1136/jitc-2024-sitc2024.0065" target="_blank">DOI: 10.1136/jitc-2024-sitc2024.0065</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39482410" class="research-list-item__link"><span>REliable PIcking by Consensus (REPIC): a consensus methodology for harnessing multiple cryo-EM particle pickers</span></a><span class="research-list-item__text">Cameron C, Seager S, Sigworth F, Tagare H, <strong>Gerstein M</strong>. REliable PIcking by Consensus (REPIC): a consensus methodology for harnessing multiple cryo-EM particle pickers. Communications Biology 2024, 7: 1421. <a href="https://pubmed.ncbi.nlm.nih.gov/39482410" target="_blank">PMID: 39482410</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528043" target="_blank">PMCID: PMC11528043</a>, <a href="https://doi.org/10.1038/s42003-024-07045-0" target="_blank">DOI: 10.1038/s42003-024-07045-0</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39475571" class="research-list-item__link"><span>Single-cell transcriptomic and proteomic analysis of Parkinson’s disease brains</span></a><span class="research-list-item__text">Zhu B, Park J, Coffey S, Russo A, Hsu I, Wang J, Su C, Chang R, Lam T, <strong>Gopal P</strong>, Ginsberg S, Zhao H, Hafler D, Chandra S, Zhang L. Single-cell transcriptomic and proteomic analysis of Parkinson’s disease brains. Science Translational Medicine 2024, 16: eabo1997. <a href="https://pubmed.ncbi.nlm.nih.gov/39475571" target="_blank">PMID: 39475571</a>, <a href="https://doi.org/10.1126/scitranslmed.abo1997" target="_blank">DOI: 10.1126/scitranslmed.abo1997</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39102635" class="research-list-item__link"><span>CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors</span></a><span class="research-list-item__text">Kwon N, Lu Y, Thompson E, Mancuso R, Wang L, Zhang P, <strong>Krause D</strong>. CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors. Blood 2024, 144: 1800-1812. <a href="https://pubmed.ncbi.nlm.nih.gov/39102635" target="_blank">PMID: 39102635</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530366" target="_blank">PMCID: PMC11530366</a>, <a href="https://doi.org/10.1182/blood.2024023963" target="_blank">DOI: 10.1182/blood.2024023963</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1038/s43586-024-00354-y" class="research-list-item__link"><span>Image-based 3D genomics through chromatin tracing</span></a><span class="research-list-item__text">Yang T, <strong>Wang S</strong>. Image-based 3D genomics through chromatin tracing. Nature Reviews Methods Primers 2024, 4: 76. <a href="https://doi.org/10.1038/s43586-024-00354-y" target="_blank">DOI: 10.1038/s43586-024-00354-y</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.3390/v16111653" class="research-list-item__link"><span>Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development</span></a><span class="research-list-item__text">Klontz E, Chowdhury N, Holbrook N, Solomon I, Telford S, Aliota M, Vogels C, <strong>Grubaugh N</strong>, Helgager J, Hughes H, Velez J, Piantadosi A, Chiu C, Lemieux J, Branda J. Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development. Viruses 2024, 16: 1653. <a href="https://doi.org/10.3390/v16111653" target="_blank">DOI: 10.3390/v16111653</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39443793" class="research-list-item__link"><span>Machine-guided design of cell-type-targeting cis-regulatory elements</span></a><span class="research-list-item__text">Gosai S, Castro R, Fuentes N, Butts J, Mouri K, Alasoadura M, Kales S, Nguyen T, Noche R, Rao A, Joy M, Sabeti P, <strong>Reilly S</strong>, Tewhey R. Machine-guided design of cell-type-targeting cis-regulatory elements. Nature 2024, 634: 1211-1220. <a href="https://pubmed.ncbi.nlm.nih.gov/39443793" target="_blank">PMID: 39443793</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525185" target="_blank">PMCID: PMC11525185</a>, <a href="https://doi.org/10.1038/s41586-024-08070-z" target="_blank">DOI: 10.1038/s41586-024-08070-z</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1038/s42256-024-00913-8" class="research-list-item__link"><span>Epitope-anchored contrastive transfer learning for paired CD8+ T cell receptor–antigen recognition</span></a><span class="research-list-item__text">Zhang Y, Wang Z, Jiang Y, Littler D, <strong>Gerstein M</strong>, Purcell A, Rossjohn J, Ou H, Song J. Epitope-anchored contrastive transfer learning for paired CD8+ T cell receptor–antigen recognition. Nature Machine Intelligence 2024, 1-15. <a href="https://doi.org/10.1038/s42256-024-00913-8" target="_blank">DOI: 10.1038/s42256-024-00913-8</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39438113" class="research-list-item__link"><span>Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships.</span></a><span class="research-list-item__text">Kudron M, Gewirtzman L, Victorsen A, Lear B, Vafeados D, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Hyunh C, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker S, <strong>Reinke V</strong>, Waterston R. Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships. Genome Research 2024, gr.279037.124. <a href="https://pubmed.ncbi.nlm.nih.gov/39438113" target="_blank">PMID: 39438113</a>, <a href="https://doi.org/10.1101/gr.279037.124" target="_blank">DOI: 10.1101/gr.279037.124</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39433914" class="research-list-item__link"><span>All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies</span></a><span class="research-list-item__text">Oberdoerffer S, <strong>Gilbert W</strong>. All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies. Nature Reviews Molecular Cell Biology 2024, 1-12. <a href="https://pubmed.ncbi.nlm.nih.gov/39433914" target="_blank">PMID: 39433914</a>, <a href="https://doi.org/10.1038/s41580-024-00784-2" target="_blank">DOI: 10.1038/s41580-024-00784-2</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39431827" class="research-list-item__link"><span>Rab6a enables BICD2/dynein-mediated trafficking of human papillomavirus from the trans-Golgi network during virus entry</span></a><span class="research-list-item__text">Choi J, Speckhart K, Tsai B, <strong>DiMaio D</strong>. Rab6a enables BICD2/dynein-mediated trafficking of human papillomavirus from the trans-Golgi network during virus entry. MBio 2024, 15: e02811-24. <a href="https://pubmed.ncbi.nlm.nih.gov/39431827" target="_blank">PMID: 39431827</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559006" target="_blank">PMCID: PMC11559006</a>, <a href="https://doi.org/10.1128/mbio.02811-24" target="_blank">DOI: 10.1128/mbio.02811-24</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39456630" class="research-list-item__link"><span>A TRilogy of ATR’s Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer</span></a><span class="research-list-item__text">Joo Y, Ramirez C, <strong>Kabeche L</strong>. A TRilogy of ATR’s Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers 2024, 16: 3536. <a href="https://pubmed.ncbi.nlm.nih.gov/39456630" target="_blank">PMID: 39456630</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506335" target="_blank">PMCID: PMC11506335</a>, <a href="https://doi.org/10.3390/cancers16203536" target="_blank">DOI: 10.3390/cancers16203536</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39402626" class="research-list-item__link"><span>SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data</span></a><span class="research-list-item__text">Liu Y, Li N, Qi J, Xu G, Zhao J, Wang N, Huang X, Jiang W, Wei H, Justet A, Adams T, Homer R, Amei A, Rosas I, <strong>Kaminski N</strong>, Wang Z, Yan X. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data. Genome Biology 2024, 25: 271. <a href="https://pubmed.ncbi.nlm.nih.gov/39402626" target="_blank">PMID: 39402626</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475911" target="_blank">PMCID: PMC11475911</a>, <a href="https://doi.org/10.1186/s13059-024-03416-2" target="_blank">DOI: 10.1186/s13059-024-03416-2</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39419034" class="research-list-item__link"><span>Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons</span></a><span class="research-list-item__text">Wijegunawardana D, Nayak A, Vishal S, Venkatesh N, <strong>Gopal P</strong>. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons. Developmental Cell 2024 <a href="https://pubmed.ncbi.nlm.nih.gov/39419034" target="_blank">PMID: 39419034</a>, <a href="https://doi.org/10.1016/j.devcel.2024.09.023" target="_blank">DOI: 10.1016/j.devcel.2024.09.023</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39393608" class="research-list-item__link"><span>Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis</span></a><span class="research-list-item__text">Maul-Newby H, <strong>Halene S</strong>. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Experimental Hematology 2024, 140: 104655. <a href="https://pubmed.ncbi.nlm.nih.gov/39393608" target="_blank">PMID: 39393608</a>, <a href="https://doi.org/10.1016/j.exphem.2024.104655" target="_blank">DOI: 10.1016/j.exphem.2024.104655</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39388546" class="research-list-item__link"><span>Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes</span></a><span class="research-list-item__text">Maury E, Jones A, Seplyarskiy V, Nguyen T, Rosenbluh C, Bae T, Wang Y, Abyzov A, Khoshkhoo S, Chahine Y, Zhao S, Venkatesh S, Root E, Voloudakis G, Roussos P, Network B, Park P, Akbarian S, <strong>Brennand K</strong>, <strong>Reilly S</strong>, Lee E, Sunyaev S, Walsh C, Chess A. Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes. Science 2024, 386: 217-224. <a href="https://pubmed.ncbi.nlm.nih.gov/39388546" target="_blank">PMID: 39388546</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490355" target="_blank">PMCID: PMC11490355</a>, <a href="https://doi.org/10.1126/science.adq1456" target="_blank">DOI: 10.1126/science.adq1456</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39384951" class="research-list-item__link"><span>Steering research on mRNA splicing in cancer towards clinical translation</span></a><span class="research-list-item__text">Anczukow O, Allain F, Angarola B, Black D, Brooks A, Cheng C, Conesa A, Crosse E, Eyras E, Guccione E, Lu S, <strong>Neugebauer K</strong>, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks K, Yeo G, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nature Reviews Cancer 2024, 1-19. <a href="https://pubmed.ncbi.nlm.nih.gov/39384951" target="_blank">PMID: 39384951</a>, <a href="https://doi.org/10.1038/s41568-024-00750-2" target="_blank">DOI: 10.1038/s41568-024-00750-2</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39382073" class="research-list-item__link"><span>Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate.</span></a><span class="research-list-item__text">Yurkevicz A, Liu Y, Katz S, <strong>Glazer P</strong>. Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate. Molecular Cancer Therapeutics 2024, of1-of13. <a href="https://pubmed.ncbi.nlm.nih.gov/39382073" target="_blank">PMID: 39382073</a>, <a href="https://doi.org/10.1158/1535-7163.mct-23-0809" target="_blank">DOI: 10.1158/1535-7163.mct-23-0809</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39378873" class="research-list-item__link"><span>Early Release - Dengue Outbreak Caused by Multiple Virus Serotypes and Lineages, Colombia, 2023–2024 - Volume 30, Number 11—November 2024 - Emerging Infectious Diseases journal - CDC</span></a><span class="research-list-item__text"><strong>Grubaugh N</strong>, Torres-Hernández D, Murillo-Ortiz M, Dávalos D, Lopez P, Hurtado I, Breban M, Bourgikos E, Hill V, López-Medina E. Early Release - Dengue Outbreak Caused by Multiple Virus Serotypes and Lineages, Colombia, 2023–2024 - Volume 30, Number 11—November 2024 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases 2024, 30: 2391-2395. <a href="https://pubmed.ncbi.nlm.nih.gov/39378873" target="_blank">PMID: 39378873</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521178" target="_blank">PMCID: PMC11521178</a>, <a href="https://doi.org/10.3201/eid3011.241031" target="_blank">DOI: 10.3201/eid3011.241031</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1007/978-3-031-72111-3_15" class="research-list-item__link"><span>CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation</span></a><span class="research-list-item__text">Liu C, Amodio M, Shen L, Gao F, Avesta A, Aneja S, Wang J, Del Priore L, <strong>Krishnaswamy S</strong>. CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation. Lecture Notes In Computer Science 2024, 15008: 155-165. <a href="https://doi.org/10.1007/978-3-031-72111-3_15" target="_blank">DOI: 10.1007/978-3-031-72111-3_15</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39365279" class="research-list-item__link"><span>CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and Cystic Fibrosis mice</span></a><span class="research-list-item__text">Öz H, Braga C, Gudneppanavar R, Di Pietro C, Huang P, Zhang P, <strong>Krause D</strong>, Egan M, Murray T, Bruscia E. CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and Cystic Fibrosis mice. Journal Of Leukocyte Biology 2024, qiae218. <a href="https://pubmed.ncbi.nlm.nih.gov/39365279" target="_blank">PMID: 39365279</a>, <a href="https://doi.org/10.1093/jleuko/qiae218" target="_blank">DOI: 10.1093/jleuko/qiae218</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39362854" class="research-list-item__link"><span>Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs</span></a><span class="research-list-item__text">Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan B, Schaudinn C, Lavigne R, <strong>Turner P</strong>, Raschke M, Trampuz A, Gonzalez Moreno M. Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nature Communications 2024, 15: 8572. <a href="https://pubmed.ncbi.nlm.nih.gov/39362854" target="_blank">PMID: 39362854</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450229" target="_blank">PMCID: PMC11450229</a>, <a href="https://doi.org/10.1038/s41467-024-52595-w" target="_blank">DOI: 10.1038/s41467-024-52595-w</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39413460" class="research-list-item__link"><span>Keratin 17 and A2ML1 are negative prognostic biomarkers in non-small cell lung cancer</span></a><span class="research-list-item__text">Babu S, Horowitz M, Delgado-Coka L, Roa-Peña L, Akalin A, <strong>Escobar-Hoyos L</strong>, Shroyer K. Keratin 17 and A2ML1 are negative prognostic biomarkers in non-small cell lung cancer. Pathology - Research And Practice 2024, 263: 155643. <a href="https://pubmed.ncbi.nlm.nih.gov/39413460" target="_blank">PMID: 39413460</a>, <a href="https://doi.org/10.1016/j.prp.2024.155643" target="_blank">DOI: 10.1016/j.prp.2024.155643</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/j.chest.2024.06.2020" class="research-list-item__link"><span>INTERACTIONS BETWEEN MITOCHONDRIAL DNA AND TOLL-LIKE RECEPTOR 9 MEDIATES PULMONARY FIBROSIS</span></a><span class="research-list-item__text">LEE C, TRUJILLO G, REGUEIRO-REN A, LIU C, HU B, SUN Y, KHOURY J, KHOURY J, AHANGARI F, ISHIKAWA G, WALIA A, PIVARNIK T, YU S, WOO S, FIORINI V, MCGOVERN J, AL JUMAILY K, SUN H, PENG X, ANTIN-OZERKIS D, SAULER M, <strong>KAMINSKI N</strong>, HERZOG E. INTERACTIONS BETWEEN MITOCHONDRIAL DNA AND TOLL-LIKE RECEPTOR 9 MEDIATES PULMONARY FIBROSIS. CHEST Journal 2024, 166: a3384-a3386. <a href="https://doi.org/10.1016/j.chest.2024.06.2020" target="_blank">DOI: 10.1016/j.chest.2024.06.2020</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39352803" class="research-list-item__link"><span>Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition</span></a><span class="research-list-item__text">Rackear M, Quijano E, Ianniello Z, Colón-Ríos D, Krysztofiak A, Abdullah R, Liu Y, Rogers F, Ludwig D, Dwivedi R, Bleichert F, <strong>Glazer P</strong>. Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition. Oncotarget 2024, 15: 699-713. <a href="https://pubmed.ncbi.nlm.nih.gov/39352803" target="_blank">PMID: 39352803</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444335" target="_blank">PMCID: PMC11444335</a>, <a href="https://doi.org/10.18632/oncotarget.28651" target="_blank">DOI: 10.18632/oncotarget.28651</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39366353" class="research-list-item__link"><span>Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing</span></a><span class="research-list-item__text">Carrocci T, <strong>Neugebauer K</strong>. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Molecular Cell 2024, 84: 3656-3666. <a href="https://pubmed.ncbi.nlm.nih.gov/39366353" target="_blank">PMID: 39366353</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463726" target="_blank">PMCID: PMC11463726</a>, <a href="https://doi.org/10.1016/j.molcel.2024.08.036" target="_blank">DOI: 10.1016/j.molcel.2024.08.036</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/j.ijrobp.2024.07.542" class="research-list-item__link"><span>Modern Photon-Based Craniospinal Irradiation in Leptomeningeal Disease</span></a><span class="research-list-item__text">Keit E, Peterson J, Johnstone P, <strong>Robinson T</strong>, Figura N. Modern Photon-Based Craniospinal Irradiation in Leptomeningeal Disease. International Journal Of Radiation Oncology • Biology • Physics 2024, 120: e242. <a href="https://doi.org/10.1016/j.ijrobp.2024.07.542" target="_blank">DOI: 10.1016/j.ijrobp.2024.07.542</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/j.ijrobp.2024.07.1421" class="research-list-item__link"><span>Patterns of CNS Failures in Relapse/Refractory Large B-Cell Lymphoma (LBCL) Patients with Secondary CNS Disease Following Chimeric Antigen Receptor T-Cell (CAR T) Therapy</span></a><span class="research-list-item__text">Nakashima J, Khatri V, Cruz-Chamorro R, Zhou J, Patra P, Gaballa S, Khimani F, Mirza S, Shah B, Saeed H, Chavez J, Locke F, Nishihori T, Liu H, Dong N, Lazaryan A, <strong>Robinson T</strong>, Freeman C, Jain M, Figura N. Patterns of CNS Failures in Relapse/Refractory Large B-Cell Lymphoma (LBCL) Patients with Secondary CNS Disease Following Chimeric Antigen Receptor T-Cell (CAR T) Therapy. International Journal Of Radiation Oncology • Biology • Physics 2024, 120: e646-e647. <a href="https://doi.org/10.1016/j.ijrobp.2024.07.1421" target="_blank">DOI: 10.1016/j.ijrobp.2024.07.1421</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/j.fertnstert.2024.07.121" class="research-list-item__link"><span>SENESCENT CELL CLEARANCE PROTECTS THE OVARIAN RESERVE IN AGING MICE</span></a><span class="research-list-item__text">Zhang J, Lopez J, Liang J, Sela M, <strong>Kallen A</strong>. SENESCENT CELL CLEARANCE PROTECTS THE OVARIAN RESERVE IN AGING MICE. Fertility And Sterility 2024, 122: e21. <a href="https://doi.org/10.1016/j.fertnstert.2024.07.121" target="_blank">DOI: 10.1016/j.fertnstert.2024.07.121</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/j.euroneuro.2024.08.502" class="research-list-item__link"><span>F91. MAPPING THE EFFECTS OF OPIOID USE DISORDER GENETIC ASSOCIATED VARIANTS IN BRAIN PATHWAYS AT A SINGLE CELL LEVEL</span></a><span class="research-list-item__text">Rivera-Hernández M, Martínez-Magaña J, <strong>Brennand K</strong>, Montalvo-Ortiz J. F91. MAPPING THE EFFECTS OF OPIOID USE DISORDER GENETIC ASSOCIATED VARIANTS IN BRAIN PATHWAYS AT A SINGLE CELL LEVEL. European Neuropsychopharmacology 2024, 87: 254. <a href="https://doi.org/10.1016/j.euroneuro.2024.08.502" target="_blank">DOI: 10.1016/j.euroneuro.2024.08.502</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/j.euroneuro.2024.08.156" class="research-list-item__link"><span>42. STRESS EXPOSURE DYNAMICALLY REGULATES EQTL ACTIVITY IN THE POST-MORTEM BRAIN AND IN HIPSC-DERIVED NEURONS</span></a><span class="research-list-item__text">Seah C, Signer R, Young H, Hicks E, Rusielewicz T, Bader H, Xu C, Breen M, Paull D, Yehuda R, Girgenti M, <strong>Brennand K</strong>, Huckins L. 42. STRESS EXPOSURE DYNAMICALLY REGULATES EQTL ACTIVITY IN THE POST-MORTEM BRAIN AND IN HIPSC-DERIVED NEURONS. European Neuropsychopharmacology 2024, 87: 71-72. <a href="https://doi.org/10.1016/j.euroneuro.2024.08.156" target="_blank">DOI: 10.1016/j.euroneuro.2024.08.156</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39353436" class="research-list-item__link"><span>Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues</span></a><span class="research-list-item__text">Bai Z, Zhang D, Gao Y, Tao B, Zhang D, Bao S, Enninful A, Wang Y, Li H, Su G, Tian X, Zhang N, Xiao Y, Liu Y, <strong>Gerstein M</strong>, Li M, Xing Y, <strong>Lu J</strong>, Xu M, <strong>Fan R</strong>. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 2024, 187: 6760-6779.e24. <a href="https://pubmed.ncbi.nlm.nih.gov/39353436" target="_blank">PMID: 39353436</a>, <a href="https://doi.org/10.1016/j.cell.2024.09.001" target="_blank">DOI: 10.1016/j.cell.2024.09.001</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39345217" class="research-list-item__link"><span>Deletion of miR‐33, a regulator of the ABCA1–APOE pathway, ameliorates neuropathological phenotypes in APP/PS1 mice</span></a><span class="research-list-item__text">Tate M, Wijeratne H, Kim B, Philtjens S, You Y, Lee D, Gutierrez D, Sharify D, Wells M, Perez‐Cardelo M, Doud E, <strong>Fernandez‐Hernando C</strong>, Lasagna‐Reeves C, Mosley A, Kim J. Deletion of miR‐33, a regulator of the ABCA1–APOE pathway, ameliorates neuropathological phenotypes in APP/PS1 mice. Alzheimer's & Dementia 2024, 20: 7805-7818. <a href="https://pubmed.ncbi.nlm.nih.gov/39345217" target="_blank">PMID: 39345217</a>, <a href="https://doi.org/10.1002/alz.14243" target="_blank">DOI: 10.1002/alz.14243</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39342225" class="research-list-item__link"><span>An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus</span></a><span class="research-list-item__text">Sagawa C, Thomson G, Mermaz B, Vernon C, Liu S, Jacob Y, <strong>Irish V</strong>. An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus. Plant Methods 2024, 20: 148. <a href="https://pubmed.ncbi.nlm.nih.gov/39342225" target="_blank">PMID: 39342225</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438372" target="_blank">PMCID: PMC11438372</a>, <a href="https://doi.org/10.1186/s13007-024-01274-4" target="_blank">DOI: 10.1186/s13007-024-01274-4</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39327528" class="research-list-item__link"><span>PIWI-interacting RNAs: who, what, when, where, why, and how</span></a><span class="research-list-item__text">Haase A, Ketting R, Lai E, van Rij R, Siomi M, Svoboda P, <strong>van Wolfswinkel J</strong>, Wu P. PIWI-interacting RNAs: who, what, when, where, why, and how. The EMBO Journal 2024, 1-5. <a href="https://pubmed.ncbi.nlm.nih.gov/39327528" target="_blank">PMID: 39327528</a>, <a href="https://doi.org/10.1038/s44318-024-00253-8" target="_blank">DOI: 10.1038/s44318-024-00253-8</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39322664" class="research-list-item__link"><span>Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission</span></a><span class="research-list-item__text">Bai Z, Feng B, McClory S, de Oliveira B, Diorio C, Gregoire C, Tao B, Yang L, Zhao Z, Peng L, Sferruzza G, Zhou L, Zhou X, Kerr J, Baysoy A, Su G, Yang M, Camara P, Chen S, Tang L, June C, Melenhorst J, Grupp S, <strong>Fan R</strong>. Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission. Nature 2024, 634: 702-711. <a href="https://pubmed.ncbi.nlm.nih.gov/39322664" target="_blank">PMID: 39322664</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485231" target="_blank">PMCID: PMC11485231</a>, <a href="https://doi.org/10.1038/s41586-024-07762-w" target="_blank">DOI: 10.1038/s41586-024-07762-w</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39322665" class="research-list-item__link"><span>The type 2 cytokine Fc–IL-4 revitalizes exhausted CD8+ T cells against cancer</span></a><span class="research-list-item__text">Feng B, Bai Z, Zhou X, Zhao Y, Xie Y, Huang X, Liu Y, Enbar T, Li R, Wang Y, Gao M, Bonati L, Peng M, Li W, Tao B, Charmoy M, Held W, Melenhorst J, <strong>Fan R</strong>, Guo Y, Tang L. The type 2 cytokine Fc–IL-4 revitalizes exhausted CD8+ T cells against cancer. Nature 2024, 634: 712-720. <a href="https://pubmed.ncbi.nlm.nih.gov/39322665" target="_blank">PMID: 39322665</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485240" target="_blank">PMCID: PMC11485240</a>, <a href="https://doi.org/10.1038/s41586-024-07962-4" target="_blank">DOI: 10.1038/s41586-024-07962-4</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39317199" class="research-list-item__link"><span>Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions</span></a><span class="research-list-item__text">Lee P, Sun Y, Soares A, Fai C, Picciotto M, <strong>Guo J</strong>. Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions. Molecular Cell 2024, 84: 3967-3978.e8. <a href="https://pubmed.ncbi.nlm.nih.gov/39317199" target="_blank">PMID: 39317199</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490368" target="_blank">PMCID: PMC11490368</a>, <a href="https://doi.org/10.1016/j.molcel.2024.08.032" target="_blank">DOI: 10.1016/j.molcel.2024.08.032</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39322118" class="research-list-item__link"><span>Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes—Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS])</span></a><span class="research-list-item__text">Aakash F, Gisriel S, Zeidan A, Bennett J, Bejar R, Bewersdorf J, Borate U, Boultwood J, Brunner A, Buckstein R, Carraway H, Churpek J, Daver N, DeZern A, Efficace F, Fenaux P, Figueroa M, Garcia-Manero G, Gore S, Greenberg P, Griffiths E, <strong>Halene S</strong>, Hourigan C, Kim T, Kim N, Komrokji R, Kutchroo V, List A, Little R, Majeti R, Nazha A, Nimer S, Odenike O, Padron E, Patnaik M, Platzbecker U, Della Porta M, Roboz G, Sallman D, Santini V, Sanz G, Savona M, Sekeres M, Stahl M, Starczynowski D, Steensma D, Taylor J, Abdel-Wahab O, Wei A, Xie Z, Xu M, Hasserjian R, Loghavi S. Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes—Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS]). Modern Pathology 2024, 37: 100615. <a href="https://pubmed.ncbi.nlm.nih.gov/39322118" target="_blank">PMID: 39322118</a>, <a href="https://doi.org/10.1016/j.modpat.2024.100615" target="_blank">DOI: 10.1016/j.modpat.2024.100615</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39302113" class="research-list-item__link"><span>IL-1β Induces Human Endothelial Surface Expression of IL-15 by Relieving let-7c-3p Suppression of Protein Translation.</span></a><span class="research-list-item__text">Mullan C, Summer L, Lopez-Giraldez F, Tobiasova Z, Manes T, Yasothan S, Song G, Jane-Wit D, <strong>Saltzman W</strong>, Pober J. IL-1β Induces Human Endothelial Surface Expression of IL-15 by Relieving let-7c-3p Suppression of Protein Translation. The Journal Of Immunology 2024, 213: 1338-1348. <a href="https://pubmed.ncbi.nlm.nih.gov/39302113" target="_blank">PMID: 39302113</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493510" target="_blank">PMCID: PMC11493510</a>, <a href="https://doi.org/10.4049/jimmunol.2400331" target="_blank">DOI: 10.4049/jimmunol.2400331</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39372273" class="research-list-item__link"><span>Diagnostic values of BALF metagenomic next-generation sequencing, BALF real-time PCR and serum BDG for Pneumocystis jirovecii pneumonia in HIV-infected patients</span></a><span class="research-list-item__text">Chen Q, Chen X, Mo P, Chen L, Du Q, Hu W, Jiang Q, Zhang Z, Zhang Y, Guo Q, <strong>Xiong Y</strong>, Deng L. Diagnostic values of BALF metagenomic next-generation sequencing, BALF real-time PCR and serum BDG for Pneumocystis jirovecii pneumonia in HIV-infected patients. Frontiers In Microbiology 2024, 15: 1421660. <a href="https://pubmed.ncbi.nlm.nih.gov/39372273" target="_blank">PMID: 39372273</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449763" target="_blank">PMCID: PMC11449763</a>, <a href="https://doi.org/10.3389/fmicb.2024.1421660" target="_blank">DOI: 10.3389/fmicb.2024.1421660</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39302833" class="research-list-item__link"><span>A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals</span></a><span class="research-list-item__text">Konstantinidou P, Loubalova Z, Ahrend F, Friman A, Almeida M, Poulet A, Horvat F, Wang Y, Losert W, Lorenzi H, Svoboda P, Miska E, <strong>van Wolfswinkel J</strong>, Haase A. A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals. Cell Reports 2024, 43: 114777. <a href="https://pubmed.ncbi.nlm.nih.gov/39302833" target="_blank">PMID: 39302833</a>, <a href="https://doi.org/10.1016/j.celrep.2024.114777" target="_blank">DOI: 10.1016/j.celrep.2024.114777</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39298321" class="research-list-item__link"><span>Protocol for detecting glycoRNAs using metabolic labeling and northwestern blot</span></a><span class="research-list-item__text">Li L, Zhang N, Pantoja C, Wang Y, <strong>Lu J</strong>. Protocol for detecting glycoRNAs using metabolic labeling and northwestern blot. STAR Protocols 2024, 5: 103321. <a href="https://pubmed.ncbi.nlm.nih.gov/39298321" target="_blank">PMID: 39298321</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426122" target="_blank">PMCID: PMC11426122</a>, <a href="https://doi.org/10.1016/j.xpro.2024.103321" target="_blank">DOI: 10.1016/j.xpro.2024.103321</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39360312" class="research-list-item__link"><span>Improved methods for genetic manipulation of the alkaliphile Halalkalibacterium halodurans</span></a><span class="research-list-item__text">Wencker F, Lyon S, <strong>Breaker R</strong>. Improved methods for genetic manipulation of the alkaliphile Halalkalibacterium halodurans. Frontiers In Microbiology 2024, 15: 1465811. <a href="https://pubmed.ncbi.nlm.nih.gov/39360312" target="_blank">PMID: 39360312</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445130" target="_blank">PMCID: PMC11445130</a>, <a href="https://doi.org/10.3389/fmicb.2024.1465811" target="_blank">DOI: 10.3389/fmicb.2024.1465811</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39288189" class="research-list-item__link"><span>Genome-wide association study between SARS-CoV-2 single nucleotide polymorphisms and virus copies during infections</span></a><span class="research-list-item__text">Li K, Chaguza C, Stamp J, Chew Y, Chen N, Ferguson D, Pandya S, Kerantzas N, Schulz W, Initiative Y, Hahn A, Ogbunugafor C, Pitzer V, Crawford L, Weinberger D, <strong>Grubaugh N</strong>. Genome-wide association study between SARS-CoV-2 single nucleotide polymorphisms and virus copies during infections. PLOS Computational Biology 2024, 20: e1012469. <a href="https://pubmed.ncbi.nlm.nih.gov/39288189" target="_blank">PMID: 39288189</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432881" target="_blank">PMCID: PMC11432881</a>, <a href="https://doi.org/10.1371/journal.pcbi.1012469" target="_blank">DOI: 10.1371/journal.pcbi.1012469</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39283942" class="research-list-item__link"><span>A new lineage nomenclature to aid genomic surveillance of dengue virus</span></a><span class="research-list-item__text">Hill V, Cleemput S, Pereira J, Gifford R, Fonseca V, Tegally H, Brito A, Ribeiro G, de Souza V, Brcko I, Ribeiro I, De Lima I, Slavov S, Sampaio S, Elias M, Tran V, Kien D, Huynh T, Yacoub S, Dieng I, Salvato R, Wallau G, Gregianini T, Godinho F, Vogels C, Breban M, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara L, Faria N, Carrington C, Hanley K, Holmes E, Dumon W, Lima A, de Oliveira T, <strong>Grubaugh N</strong>. A new lineage nomenclature to aid genomic surveillance of dengue virus. PLOS Biology 2024, 22: e3002834. <a href="https://pubmed.ncbi.nlm.nih.gov/39283942" target="_blank">PMID: 39283942</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426435" target="_blank">PMCID: PMC11426435</a>, <a href="https://doi.org/10.1371/journal.pbio.3002834" target="_blank">DOI: 10.1371/journal.pbio.3002834</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1158/1538-7445.pancreatic24-pr-05" class="research-list-item__link"><span>Abstract PR-05: Endocrine beta-cell stress promotes pancreatic ductal adenocarcinoma through endocrine-exocrine cell crosstalk</span></a><span class="research-list-item__text">Garcia C, Venkat A, McQuaid D, Agabiti S, Tong A, Cardone R, Kibbey R, <strong>Krishnaswamy S</strong>, Muzumdar M. Abstract PR-05: Endocrine beta-cell stress promotes pancreatic ductal adenocarcinoma through endocrine-exocrine cell crosstalk. Cancer Research 2024, 84: pr-05-pr-05. <a href="https://doi.org/10.1158/1538-7445.pancreatic24-pr-05" target="_blank">DOI: 10.1158/1538-7445.pancreatic24-pr-05</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1158/1538-7445.pancreatic24-pr-01" class="research-list-item__link"><span>Abstract PR-01: Systemic targeting of therapeutic RNA to pancreatic ductal adenocarcinoma via a novel, cell-penetrating, and nucleic acid-binding monoclonal antibody</span></a><span class="research-list-item__text">Martinez-Saucedo D, Quijano E, Ianniello Z, Rackear M, Liu Y, Hegan D, Chen H, Shan X, Tseng R, Yugawa D, Pinto-Medici N, Chowdhury S, Bindra R, Robert M, <strong>Saltzman W</strong>, <strong>Escobar-Hoyos L</strong>, <strong>Glazer P</strong>. Abstract PR-01: Systemic targeting of therapeutic RNA to pancreatic ductal adenocarcinoma via a novel, cell-penetrating, and nucleic acid-binding monoclonal antibody. Cancer Research 2024, 84: pr-01-pr-01. <a href="https://doi.org/10.1158/1538-7445.pancreatic24-pr-01" target="_blank">DOI: 10.1158/1538-7445.pancreatic24-pr-01</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1158/1538-7445.pancreatic24-c030" class="research-list-item__link"><span>Abstract C030: Evolutionary and epistatic analyses reveal genic interactions with KRAS during malignant progression of pancreatic ductal adenocarcinoma</span></a><span class="research-list-item__text">Fisk N, Song D, Moore M, Jensen C, Cannataro V, Nagib M, Mandell J, <strong>Escobar-Hoyos L</strong>, Kunstman J, Townsend J. Abstract C030: Evolutionary and epistatic analyses reveal genic interactions with KRAS during malignant progression of pancreatic ductal adenocarcinoma. Cancer Research 2024, 84: c030-c030. <a href="https://doi.org/10.1158/1538-7445.pancreatic24-c030" target="_blank">DOI: 10.1158/1538-7445.pancreatic24-c030</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1158/1538-7445.pancreatic24-pr-11" class="research-list-item__link"><span>Abstract PR-11: Altered mRNA splicing mimics chromosome loss and drives pancreatic cancer</span></a><span class="research-list-item__text">Medici N, Martinez-Saucedo D, Lee D, Chu T, Tseng R, Cannataro V, Townsend J, Iacobuzio-Donahue C, Robert M, Abdel-Wahab O, Leach S, <strong>Escobar-Hoyos L</strong>. Abstract PR-11: Altered mRNA splicing mimics chromosome loss and drives pancreatic cancer. Cancer Research 2024, 84: pr-11-pr-11. <a href="https://doi.org/10.1158/1538-7445.pancreatic24-pr-11" target="_blank">DOI: 10.1158/1538-7445.pancreatic24-pr-11</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1158/1538-7445.pancreatic24-b083" class="research-list-item__link"><span>Abstract B083: The splicing factor SMNDC1 facilitates alternative RNA splicing, contributing to therapy resistance in pancreatic cancer</span></a><span class="research-list-item__text">Siraj M, Zhang Y, Yugawa D, Giri G, Chakraborty P, Goda G, Rao G, Dominguez D, Kubicek S, Bhattacharya R, <strong>Escobar-Hoyos L</strong>, Mukherjee P. Abstract B083: The splicing factor SMNDC1 facilitates alternative RNA splicing, contributing to therapy resistance in pancreatic cancer. Cancer Research 2024, 84: b00-b00. <a href="https://doi.org/10.1158/1538-7445.pancreatic24-b083" target="_blank">DOI: 10.1158/1538-7445.pancreatic24-b083</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1158/1538-7445.pancreatic24-b079" class="research-list-item__link"><span>Abstract B079: Disassembly of embryonic keratin filaments promotes pancreatic cancer metastases</span></a><span class="research-list-item__text">Yugawa D, Kawalerski R, Gonçalves M, Pan C, Tseng R, Roa-Pena L, Leiton C, Torre-Healy L, Boyle T, Chowdhury S, Snider N, Shroyer K, <strong>Escobar-Hoyos L</strong>. Abstract B079: Disassembly of embryonic keratin filaments promotes pancreatic cancer metastases. Cancer Research 2024, 84: b079-b079. <a href="https://doi.org/10.1158/1538-7445.pancreatic24-b079" target="_blank">DOI: 10.1158/1538-7445.pancreatic24-b079</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1158/1538-7445.pancreatic24-c031" class="research-list-item__link"><span>Abstract C031: Keratin 17 promotes pancreatic cancer chemoresistance through mitochondrial translocation and stabilization of dihydroorotate dehydrogenase (DHODH)</span></a><span class="research-list-item__text">Lyu Y, Ghosh M, Pan C, Sarkar S, Rajacharya G, Chen B, Marchenko N, Singh P, Shroyer K, <strong>Escobar-Hoyos L</strong>. Abstract C031: Keratin 17 promotes pancreatic cancer chemoresistance through mitochondrial translocation and stabilization of dihydroorotate dehydrogenase (DHODH). Cancer Research 2024, 84: c031-c031. <a href="https://doi.org/10.1158/1538-7445.pancreatic24-c031" target="_blank">DOI: 10.1158/1538-7445.pancreatic24-c031</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1158/1538-7445.pancreatic24-c070" class="research-list-item__link"><span>Abstract C070: Keratin 17 and GATA6 correlate with diffusely infiltrative versus gland-forming components of PDAC: Uncovering the transitional state in pancreatic ductal adenocarcinoma</span></a><span class="research-list-item__text">Delgado- Coka L, Nelson B, Horowitz M, Sarkar S, Marchenko N, Powers S, <strong>Escobar-Hoyos L</strong>, Shroyer K. Abstract C070: Keratin 17 and GATA6 correlate with diffusely infiltrative versus gland-forming components of PDAC: Uncovering the transitional state in pancreatic ductal adenocarcinoma. Cancer Research 2024, 84: c070-c070. <a href="https://doi.org/10.1158/1538-7445.pancreatic24-c070" target="_blank">DOI: 10.1158/1538-7445.pancreatic24-c070</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1183/13993003.congress-2024.oa953" class="research-list-item__link"><span>Dissecting the immune cell niche in pulmonary sarcoidosis – CXCL10+ monocyte-derived macrophages are potential drivers of TH17.1 inflammation</span></a><span class="research-list-item__text">Ruwisch J, Schupp J, Bartkute B, Artysh N, <strong>Kaminski N</strong>, Prasse A. Dissecting the immune cell niche in pulmonary sarcoidosis – CXCL10+ monocyte-derived macrophages are potential drivers of TH17.1 inflammation. 2024, oa953. <a href="https://doi.org/10.1183/13993003.congress-2024.oa953" target="_blank">DOI: 10.1183/13993003.congress-2024.oa953</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1183/13993003.congress-2024.oa985" class="research-list-item__link"><span>Single-nuclei RNA-seq reveals aberrant cell populations in restrictive allograft syndrome after lung transplantation</span></a><span class="research-list-item__text">Leiber L, Christian L, Neubert L, Yilmaz H, Kamp J, Plucinski E, Welte T, Falk C, <strong>Kaminski N</strong>, Jonigk* D, Gottlieb* J, Schupp* J. Single-nuclei RNA-seq reveals aberrant cell populations in restrictive allograft syndrome after lung transplantation. 2024, oa985. <a href="https://doi.org/10.1183/13993003.congress-2024.oa985" target="_blank">DOI: 10.1183/13993003.congress-2024.oa985</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39261628" class="research-list-item__link"><span>Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency</span></a><span class="research-list-item__text">Wang H, Vant J, Zhang A, Sanchez R, Wu Y, Micou M, Luczak V, Whiddon Z, Carlson N, Yu S, Jabbo M, Yoon S, Abushawish A, Ghassemian M, Masubuchi T, Gan Q, Watanabe S, Griffis E, <strong>Hammarlund M</strong>, Singharoy A, Pekkurnaz G. Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency. Nature Metabolism 2024, 6: 1712-1735. <a href="https://pubmed.ncbi.nlm.nih.gov/39261628" target="_blank">PMID: 39261628</a>, <a href="https://doi.org/10.1038/s42255-024-01121-9" target="_blank">DOI: 10.1038/s42255-024-01121-9</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39258548" class="research-list-item__link"><span>HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration</span></a><span class="research-list-item__text">Jang S, Bedwell G, Singh S, Yu H, Arnarson B, Singh P, Radhakrishnan R, Douglas A, Ingram Z, Freniere C, Akkermans O, Sarafianos S, Ambrose Z, <strong>Xiong Y</strong>, Anekal P, Llopis P, KewalRamani V, Francis A, Engelman A. HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration. Nucleic Acids Research 2024, 52: 11060-11082. <a href="https://pubmed.ncbi.nlm.nih.gov/39258548" target="_blank">PMID: 39258548</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472059" target="_blank">PMCID: PMC11472059</a>, <a href="https://doi.org/10.1093/nar/gkae769" target="_blank">DOI: 10.1093/nar/gkae769</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39241085" class="research-list-item__link"><span>RluA is the major mRNA pseudouridine synthase in Escherichia coli</span></a><span class="research-list-item__text">Schaening-Burgos C, LeBlanc H, Fagre C, Li G, <strong>Gilbert W</strong>. RluA is the major mRNA pseudouridine synthase in Escherichia coli. PLOS Genetics 2024, 20: e1011100. <a href="https://pubmed.ncbi.nlm.nih.gov/39241085" target="_blank">PMID: 39241085</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421799" target="_blank">PMCID: PMC11421799</a>, <a href="https://doi.org/10.1371/journal.pgen.1011100" target="_blank">DOI: 10.1371/journal.pgen.1011100</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39232138" class="research-list-item__link"><span>Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis</span></a><span class="research-list-item__text">Joshi D, Coon B, Chakraborty R, Deng H, Yang Z, Babar M, Fernandez-Tussy P, Meredith E, Attanasio J, Joshi N, Traylor J, Orr A, <strong>Fernandez-Hernando C</strong>, Libreros S, Schwartz M. Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. Nature Cardiovascular Research 2024, 3: 1035-1048. <a href="https://pubmed.ncbi.nlm.nih.gov/39232138" target="_blank">PMID: 39232138</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399086" target="_blank">PMCID: PMC11399086</a>, <a href="https://doi.org/10.1038/s44161-024-00522-z" target="_blank">DOI: 10.1038/s44161-024-00522-z</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39230381" class="research-list-item__link"><span>Beyond the “spine of hydration”: Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures</span></a><span class="research-list-item__text">Perets E, Konstantinovsky D, Santiago T, Videla P, Tremblay M, Velarde L, Batista V, Hammes-Schiffer S, <strong>Yan E</strong>. Beyond the “spine of hydration”: Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. The Journal Of Chemical Physics 2024, 161: 095104. <a href="https://pubmed.ncbi.nlm.nih.gov/39230381" target="_blank">PMID: 39230381</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377083" target="_blank">PMCID: PMC11377083</a>, <a href="https://doi.org/10.1063/5.0220479" target="_blank">DOI: 10.1063/5.0220479</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39225418" class="research-list-item__link"><span>Aplastic anemia in association with multiple myeloma: clinical and pathophysiological insights</span></a><span class="research-list-item__text">Muradashvili T, Liu Y, VanOudenhove J, Gu S, <strong>Krause D</strong>, Montanari F, Carlino M, Mancuso R, Stempel J, <strong>Halene S</strong>, Zeidan A, Podoltsev N, Neparidze N. Aplastic anemia in association with multiple myeloma: clinical and pathophysiological insights. Leukemia & Lymphoma 2024, ahead-of-print: 1-8. <a href="https://pubmed.ncbi.nlm.nih.gov/39225418" target="_blank">PMID: 39225418</a>, <a href="https://doi.org/10.1080/10428194.2024.2393260" target="_blank">DOI: 10.1080/10428194.2024.2393260</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39101673" class="research-list-item__link"><span>Akt is a mediator of artery specification during zebrafish development</span></a><span class="research-list-item__text">Zhou W, Ghersi J, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, <strong>Sessa W</strong>, <strong>Nicoli S</strong>. Akt is a mediator of artery specification during zebrafish development. Development 2024, 151: dev202727. <a href="https://pubmed.ncbi.nlm.nih.gov/39101673" target="_blank">PMID: 39101673</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441982" target="_blank">PMCID: PMC11441982</a>, <a href="https://doi.org/10.1242/dev.202727" target="_blank">DOI: 10.1242/dev.202727</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39230702" class="research-list-item__link"><span>Predicting spatially resolved gene expression via tissue morphology using adaptive spatial GNNs</span></a><span class="research-list-item__text">Song T, Cosatto E, Wang G, Kuang R, <strong>Gerstein M</strong>, Min M, Warrell J. Predicting spatially resolved gene expression via tissue morphology using adaptive spatial GNNs. Bioinformatics 2024, 40: ii111-ii119. <a href="https://pubmed.ncbi.nlm.nih.gov/39230702" target="_blank">PMID: 39230702</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373608" target="_blank">PMCID: PMC11373608</a>, <a href="https://doi.org/10.1093/bioinformatics/btae383" target="_blank">DOI: 10.1093/bioinformatics/btae383</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/s1569-1993(24)01125-1" class="research-list-item__link"><span>285 Development of an electrochemiluminescence CFTR immunoassay</span></a><span class="research-list-item__text">Browne J, Lee J, Peterec K, Garrison A, Bruscia E, <strong>Saltzman W</strong>, Egan M. 285 Development of an electrochemiluminescence CFTR immunoassay. Journal Of Cystic Fibrosis 2024, 23: s152. <a href="https://doi.org/10.1016/s1569-1993(24)01125-1" target="_blank">DOI: 10.1016/s1569-1993(24)01125-1</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/s1569-1993(24)01235-9" class="research-list-item__link"><span>395 Altered hematopoiesis and functional decline of hematopoietic stem cells in cystic fibrosis mice</span></a><span class="research-list-item__text">Braga C, Mancuso R, Thompson E, Oez H, Gudneppannavar R, Zhang P, Huang P, Egan M, Murray T, <strong>Krause D</strong>, Bruscia E. 395 Altered hematopoiesis and functional decline of hematopoietic stem cells in cystic fibrosis mice. Journal Of Cystic Fibrosis 2024, 23: s207-s208. <a href="https://doi.org/10.1016/s1569-1993(24)01235-9" target="_blank">DOI: 10.1016/s1569-1993(24)01235-9</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/s1569-1993(24)01104-4" class="research-list-item__link"><span>264 Poly(amine-co-ester) nanoparticle delivery of CFTR mRNA shows restoration of CFTR activity in cystic fibrosis airway models</span></a><span class="research-list-item__text">Garrison A, Lee J, Browne J, Akhtar L, Peterec K, Suberi A, Eaton D, Ene M, Zhang X, Whang C, Oez H, Kizilirmak T, Bruscia E, Piotrowski-Daspit A, <strong>Saltzman W</strong>, Egan M. 264 Poly(amine-co-ester) nanoparticle delivery of CFTR mRNA shows restoration of CFTR activity in cystic fibrosis airway models. Journal Of Cystic Fibrosis 2024, 23: s140-s141. <a href="https://doi.org/10.1016/s1569-1993(24)01104-4" target="_blank">DOI: 10.1016/s1569-1993(24)01104-4</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/s1569-1993(24)01135-4" class="research-list-item__link"><span>295 Polymeric nanoparticles for in utero gene delivery in non-human primates</span></a><span class="research-list-item__text">Piotrowski-Daspit A, Lynn A, Eaton D, Bracaglia L, Mortlock R, Tarantal A, Glazer P, <strong>Saltzman W</strong>. 295 Polymeric nanoparticles for in utero gene delivery in non-human primates. Journal Of Cystic Fibrosis 2024, 23: s157. <a href="https://doi.org/10.1016/s1569-1993(24)01135-4" target="_blank">DOI: 10.1016/s1569-1993(24)01135-4</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/s2152-2650(24)01991-8" class="research-list-item__link"><span>P-088 Evaluating T-cell Fitness Pre B-Cell Maturation Antigen (BCMA)-Targeted T-Cell Redirection Therapies (TRT) as a Predictive Marker for Efficacy/Toxicity in Relapsed/Refractory Multiple Myeloma (RRMM)</span></a><span class="research-list-item__text">Theprungsirikul P, Yu M, Liu Y, Rall K, Matthews M, Neparidze N, Parker T, Browning S, Anderson T, Stevens E, Foss F, Gowda L, <strong>Pillai M</strong>, Isufi I, Seropian S, Mirza S, Bar N. P-088 Evaluating T-cell Fitness Pre B-Cell Maturation Antigen (BCMA)-Targeted T-Cell Redirection Therapies (TRT) as a Predictive Marker for Efficacy/Toxicity in Relapsed/Refractory Multiple Myeloma (RRMM). Clinical Lymphoma Myeloma & Leukemia 2024, 24: s92-s93. <a href="https://doi.org/10.1016/s2152-2650(24)01991-8" target="_blank">DOI: 10.1016/s2152-2650(24)01991-8</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://doi.org/10.1016/j.ajmo.2024.100078" class="research-list-item__link"><span>Post-Acute sequelae of COVID-19 in pediatric patients within the United States: A Scoping Review</span></a><span class="research-list-item__text">Miller C, Borre C, Green A, Funaro M, Oliveira C, <strong>Iwasaki A</strong>. Post-Acute sequelae of COVID-19 in pediatric patients within the United States: A Scoping Review. American Journal Of Medicine Open 2024, 100078. <a href="https://doi.org/10.1016/j.ajmo.2024.100078" target="_blank">DOI: 10.1016/j.ajmo.2024.100078</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39217658" class="research-list-item__link"><span>Massively parallel approaches for characterizing noncoding functional variation in human evolution</span></a><span class="research-list-item__text">Rong S, Root E, <strong>Reilly S</strong>. Massively parallel approaches for characterizing noncoding functional variation in human evolution. Current Opinion In Genetics & Development 2024, 88: 102256. <a href="https://pubmed.ncbi.nlm.nih.gov/39217658" target="_blank">PMID: 39217658</a>, <a href="https://doi.org/10.1016/j.gde.2024.102256" target="_blank">DOI: 10.1016/j.gde.2024.102256</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39192734" class="research-list-item__link"><span>Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide</span></a><span class="research-list-item__text">Moon M, Vock I, Streit A, Connor L, Senkina J, Ellman J, <strong>Simon M</strong>. Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide. ACS Chemical Biology 2024, 19: 2081-2086. <a href="https://pubmed.ncbi.nlm.nih.gov/39192734" target="_blank">PMID: 39192734</a>, <a href="https://doi.org/10.1021/acschembio.4c00538" target="_blank">DOI: 10.1021/acschembio.4c00538</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39189851" class="research-list-item__link"><span>Toll-like Receptor 9 Inhibition Mitigates Fibroproliferative Responses in Translational Models of Pulmonary Fibrosis.</span></a><span class="research-list-item__text">Trujillo G, Regueiro-Ren A, Liu C, Hu B, Sun Y, Ahangari F, Fiorini V, Ishikawa G, Al Jumaily K, Khoury J, McGovern J, Lee C, Peng X, Pivarnik T, Sun H, Walia A, Woo S, Yu S, Antin-Ozerkis D, Sauler M, <strong>Kaminski N</strong>, Herzog E, Ryu C. Toll-like Receptor 9 Inhibition Mitigates Fibroproliferative Responses in Translational Models of Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2024 <a href="https://pubmed.ncbi.nlm.nih.gov/39189851" target="_blank">PMID: 39189851</a>, <a href="https://doi.org/10.1164/rccm.202401-0065oc" target="_blank">DOI: 10.1164/rccm.202401-0065oc</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39190492" class="research-list-item__link"><span>miR-33 deletion in hepatocytes attenuates NAFLD-NASH-HCC progression</span></a><span class="research-list-item__text">Fernández-Tussy P, Cardelo M, Zhang H, Sun J, Price N, Boutagy N, Goedeke L, Cadena-Sandoval M, Xirouchaki C, Brown W, Yang X, Pastor-Rojo O, Haeusler R, Bennett A, Tiganis T, <strong>Suárez Y</strong>, <strong>Fernández-Hernando C</strong>. miR-33 deletion in hepatocytes attenuates NAFLD-NASH-HCC progression. JCI Insight 2024, 9: e168476. <a href="https://pubmed.ncbi.nlm.nih.gov/39190492" target="_blank">PMID: 39190492</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466198" target="_blank">PMCID: PMC11466198</a>, <a href="https://doi.org/10.1172/jci.insight.168476" target="_blank">DOI: 10.1172/jci.insight.168476</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39186078" class="research-list-item__link"><span>Similarity Metrics for Subcellular Analysis of FRET Microscopy Videos</span></a><span class="research-list-item__text">Burke M, Batista V, <strong>Davis C</strong>. Similarity Metrics for Subcellular Analysis of FRET Microscopy Videos. The Journal Of Physical Chemistry B 2024, 128: 8344-8354. <a href="https://pubmed.ncbi.nlm.nih.gov/39186078" target="_blank">PMID: 39186078</a>, <a href="https://doi.org/10.1021/acs.jpcb.4c02859" target="_blank">DOI: 10.1021/acs.jpcb.4c02859</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39174298" class="research-list-item__link"><span>Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-Seq</span></a><span class="research-list-item__text">Guo L, Grinko A, Olson S, Leipold A, Graveley B, Saliba A, <strong>Pyle A</strong>. Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-Seq. RNA 2024, 30: rna.080032.124. <a href="https://pubmed.ncbi.nlm.nih.gov/39174298" target="_blank">PMID: 39174298</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482623" target="_blank">PMCID: PMC11482623</a>, <a href="https://doi.org/10.1261/rna.080032.124" target="_blank">DOI: 10.1261/rna.080032.124</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39173635" class="research-list-item__link"><span>Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2</span></a><span class="research-list-item__text">Bell J, Davies E, Brereton C, Vukmirovic M, Roberts J, Lunn K, Wickens L, Conforti F, Ridley R, Ceccato J, Sayer L, Johnston D, Vallejo A, Alzetani A, Jogai S, Marshall B, Fabre A, Richeldi L, Monk P, Skipp P, <strong>Kaminski N</strong>, Offer E, Wang Y, Davies D, Jones M. Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2. Cell Reports Medicine 2024, 5: 101695. <a href="https://pubmed.ncbi.nlm.nih.gov/39173635" target="_blank">PMID: 39173635</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524965" target="_blank">PMCID: PMC11524965</a>, <a href="https://doi.org/10.1016/j.xcrm.2024.101695" target="_blank">DOI: 10.1016/j.xcrm.2024.101695</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39246333" class="research-list-item__link"><span>Exfoliation of a metal–organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand</span></a><span class="research-list-item__text">Logelin M, Schreiber E, Mercado B, Burke M, <strong>Davis C</strong>, Bartholomew A. Exfoliation of a metal–organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand. Chemical Science 2024, 15: 15198-15204. <a href="https://pubmed.ncbi.nlm.nih.gov/39246333" target="_blank">PMID: 39246333</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378025" target="_blank">PMCID: PMC11378025</a>, <a href="https://doi.org/10.1039/d4sc03524k" target="_blank">DOI: 10.1039/d4sc03524k</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/38800659" class="research-list-item__link"><span>Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling</span></a><span class="research-list-item__text">Liu Z, Grigas A, Sumner J, Knab E, <strong>Davis C</strong>, O'Hern C. Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling. Protein Science 2024, 33 <a href="https://pubmed.ncbi.nlm.nih.gov/38800659" target="_blank">PMID: 38800659</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118665" target="_blank">PMCID: PMC11118665</a>, <a href="https://doi.org/10.1002/pro.5219" target="_blank">DOI: 10.1002/pro.5219</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389620" class="research-list-item__link"><span>Corrigendum: Translation regulation by a guanidine-II riboswitch is highly tunable in sensitivity, dynamic range, and apparent cooperativity</span></a><span class="research-list-item__text">Focht C, Hiller D, Grunseich S, <strong>Strobel S</strong>. Corrigendum: Translation regulation by a guanidine-II riboswitch is highly tunable in sensitivity, dynamic range, and apparent cooperativity. RNA 2024, 30: 1259-2-1259-2. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389620" target="_blank">PMCID: PMC11389620</a>, <a href="https://doi.org/10.1261/rna.080150.124" target="_blank">DOI: 10.1261/rna.080150.124</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/38717443" class="research-list-item__link"><span>Single-Cell Profiling Reveals Immune Aberrations in Progressive Idiopathic Pulmonary Fibrosis.</span></a><span class="research-list-item__text">Unterman A, Zhao A, Neumark N, Schupp J, Ahangari F, Cosme C, Sharma P, Flint J, Stein Y, Ryu C, Ishikawa G, Sumida T, Gomez J, Herazo-Maya J, Dela Cruz C, Herzog E, <strong>Kaminski N</strong>. Single-Cell Profiling Reveals Immune Aberrations in Progressive Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2024, 210: 484-496. <a href="https://pubmed.ncbi.nlm.nih.gov/38717443" target="_blank">PMID: 38717443</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351796" target="_blank">PMCID: PMC11351796</a>, <a href="https://doi.org/10.1164/rccm.202306-0979oc" target="_blank">DOI: 10.1164/rccm.202306-0979oc</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39151428" class="research-list-item__link"><span>Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells</span></a><span class="research-list-item__text">Kim S, Seo S, Stein-O’Brien G, Jaishankar A, Ogawa K, Micali N, Luria V, Karger A, Wang Y, Kim H, Hyde T, Kleinman J, Voss T, Fertig E, Shin J, Bürli R, Cross A, Brandon N, Weinberger D, Chenoweth J, Hoeppner D, <strong>Sestan N</strong>, Colantuoni C, McKay R. Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells. Stem Cell Reports 2024, 19: 1336-1350. <a href="https://pubmed.ncbi.nlm.nih.gov/39151428" target="_blank">PMID: 39151428</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411333" target="_blank">PMCID: PMC11411333</a>, <a href="https://doi.org/10.1016/j.stemcr.2024.07.004" target="_blank">DOI: 10.1016/j.stemcr.2024.07.004</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39389673" class="research-list-item__link"><span>A user guide to RT-based mapping of RNA modifications</span></a><span class="research-list-item__text">Fang D, Babich J, Dangelmaier E, Wall V, <strong>Nachtergaele S</strong>. A user guide to RT-based mapping of RNA modifications. Methods In Enzymology 2024, 705: 51-79. <a href="https://pubmed.ncbi.nlm.nih.gov/39389673" target="_blank">PMID: 39389673</a>, <a href="https://doi.org/10.1016/bs.mie.2024.07.006" target="_blank">DOI: 10.1016/bs.mie.2024.07.006</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39205939" class="research-list-item__link"><span>Editorial: Synthetic biology and therapeutic applications of transfer RNA</span></a><span class="research-list-item__text"><strong>Söll D</strong>, O’Donoghue P, Heinemann I. Editorial: Synthetic biology and therapeutic applications of transfer RNA. Frontiers In Genetics 2024, 15: 1468891. <a href="https://pubmed.ncbi.nlm.nih.gov/39205939" target="_blank">PMID: 39205939</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349731" target="_blank">PMCID: PMC11349731</a>, <a href="https://doi.org/10.3389/fgene.2024.1468891" target="_blank">DOI: 10.3389/fgene.2024.1468891</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39134804" class="research-list-item__link"><span>CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors</span></a><span class="research-list-item__text">Peng L, Sferruzza G, Yang L, Zhou L, <strong>Chen S</strong>. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cellular & Molecular Immunology 2024, 21: 1089-1108. <a href="https://pubmed.ncbi.nlm.nih.gov/39134804" target="_blank">PMID: 39134804</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442786" target="_blank">PMCID: PMC11442786</a>, <a href="https://doi.org/10.1038/s41423-024-01207-0" target="_blank">DOI: 10.1038/s41423-024-01207-0</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39134824" class="research-list-item__link"><span>DNA methylation in mammalian development and disease</span></a><span class="research-list-item__text"><strong>Smith Z</strong>, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nature Reviews Genetics 2024, 1-24. <a href="https://pubmed.ncbi.nlm.nih.gov/39134824" target="_blank">PMID: 39134824</a>, <a href="https://doi.org/10.1038/s41576-024-00760-8" target="_blank">DOI: 10.1038/s41576-024-00760-8</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39121194" class="research-list-item__link"><span>The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity</span></a><span class="research-list-item__text">Marin-Lopez A, Huck J, Esterly A, Azcutia V, Rosen C, Garcia-Milian R, Sefik E, Vidal-Pedrola G, Raduwan H, Chen T, Arora G, <strong>Halene S</strong>, Shaw A, Palm N, <strong>Flavell R</strong>, Parkos C, Thangamani S, Ring A, Fikrig E. The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity. Science Immunology 2024, 9: eadk9872. <a href="https://pubmed.ncbi.nlm.nih.gov/39121194" target="_blank">PMID: 39121194</a>, <a href="https://doi.org/10.1126/sciimmunol.adk9872" target="_blank">DOI: 10.1126/sciimmunol.adk9872</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39123049" class="research-list-item__link"><span>Fast, sensitive detection of protein homologs using deep dense retrieval</span></a><span class="research-list-item__text">Hong L, Hu Z, Sun S, Tang X, Wang J, Tan Q, Zheng L, Wang S, Xu S, King I, <strong>Gerstein M</strong>, Li Y. Fast, sensitive detection of protein homologs using deep dense retrieval. Nature Biotechnology 2024, 1-13. <a href="https://pubmed.ncbi.nlm.nih.gov/39123049" target="_blank">PMID: 39123049</a>, <a href="https://doi.org/10.1038/s41587-024-02353-6" target="_blank">DOI: 10.1038/s41587-024-02353-6</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39122965" class="research-list-item__link"><span>Long COVID science, research and policy</span></a><span class="research-list-item__text">Al-Aly Z, Davis H, McCorkell L, Soares L, Wulf-Hanson S, <strong>Iwasaki A</strong>, Topol E. Long COVID science, research and policy. Nature Medicine 2024, 30: 2148-2164. <a href="https://pubmed.ncbi.nlm.nih.gov/39122965" target="_blank">PMID: 39122965</a>, <a href="https://doi.org/10.1038/s41591-024-03173-6" target="_blank">DOI: 10.1038/s41591-024-03173-6</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39122142" class="research-list-item__link"><span>Enhanced intratumoral delivery of immunomodulator MPLA via hyperbranched polyglycerol-coated biodegradable nanoparticles</span></a><span class="research-list-item__text">Chang J, Shin K, Lewis J, Suh H, Lee J, Damsky W, Xu S, Bosenberg M, <strong>Saltzman W</strong>, Girardi M. Enhanced intratumoral delivery of immunomodulator MPLA via hyperbranched polyglycerol-coated biodegradable nanoparticles. Journal Of Investigative Dermatology 2024 <a href="https://pubmed.ncbi.nlm.nih.gov/39122142" target="_blank">PMID: 39122142</a>, <a href="https://doi.org/10.1016/j.jid.2024.07.019" target="_blank">DOI: 10.1016/j.jid.2024.07.019</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39117421" class="research-list-item__link"><span>Plasma collagen neoepitopes are associated with multiorgan disease in the ACCESS and GRADS sarcoidosis cohorts</span></a><span class="research-list-item__text">Sand J, Jessen H, Leeming D, Yu S, Lee C, Hu B, Sun Y, Adams T, Pivarnik T, Liu A, Woo S, McGovern J, Fiorini V, Saber T, Higuero-Sevilla J, Gulati M, <strong>Kaminski N</strong>, Damsky W, Shaw A, Mohanty S, Goobie G, Zhang Y, Herzog E, Ryu C. Plasma collagen neoepitopes are associated with multiorgan disease in the ACCESS and GRADS sarcoidosis cohorts. Thorax 2024, 79: thorax-2023-221095. <a href="https://pubmed.ncbi.nlm.nih.gov/39117421" target="_blank">PMID: 39117421</a>, <a href="https://doi.org/10.1136/thorax-2023-221095" target="_blank">DOI: 10.1136/thorax-2023-221095</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39107154" class="research-list-item__link"><span>Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation</span></a><span class="research-list-item__text">Gupta A, Barone C, Quijano E, Piotrowski-Daspit A, Perera J, Riccardi A, Jamali H, Turchick A, Zao W, <strong>Saltzman W</strong>, <strong>Glazer P</strong>, Egan M. Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation. Journal Of Cystic Fibrosis 2024 <a href="https://pubmed.ncbi.nlm.nih.gov/39107154" target="_blank">PMID: 39107154</a>, <a href="https://doi.org/10.1016/j.jcf.2024.07.009" target="_blank">DOI: 10.1016/j.jcf.2024.07.009</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296858" class="research-list-item__link"><span>BSLM-03 BRANCHED-CHAIN KETO ACIDS PROMOTE AN IMMUNE-SUPPRESSIVE AND NEURODEGENERATIVE MICROENVIRONMENT IN LEPTOMENINGEAL DISEASE</span></a><span class="research-list-item__text">Khaled M, Ren Y, Kundalia R, Alhaddad H, Chen Z, Wallace G, Evernden B, Ospina O, Hall M, Liu M, Darville L, Izumi V, Chen Y, Pilon-Thomas S, Stewart P, Koomen J, Corallo S, Jain M, <strong>Robinson T</strong>, Locke F, Forsyth P, Smalley I. BSLM-03 BRANCHED-CHAIN KETO ACIDS PROMOTE AN IMMUNE-SUPPRESSIVE AND NEURODEGENERATIVE MICROENVIRONMENT IN LEPTOMENINGEAL DISEASE. Neuro-Oncology Advances 2024, 6: i5-i5. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296858" target="_blank">PMCID: PMC11296858</a>, <a href="https://doi.org/10.1093/noajnl/vdae090.014" target="_blank">DOI: 10.1093/noajnl/vdae090.014</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/38900452" class="research-list-item__link"><span>Perioperative Modified FOLFIRINOX for Resectable Pancreatic Cancer</span></a><span class="research-list-item__text">Cecchini M, Salem R, Robert M, Czerniak S, Blaha O, Zelterman D, Rajaei M, Townsend J, Cai G, Chowdhury S, Yugawa D, Tseng R, Arbelaez C, Jiao J, Shroyer K, Thumar J, Kortmansky J, Zaheer W, Fischbach N, Persico J, Stein S, Khan S, Cha C, Billingsley K, Kunstman J, Johung K, Wiess C, Muzumdar M, Spickard E, Aushev V, Laliotis G, Jurdi A, Liu M, <strong>Escobar-Hoyos L</strong>, Lacy J. Perioperative Modified FOLFIRINOX for Resectable Pancreatic Cancer. JAMA Oncology 2024, 10: 1027-1035. <a href="https://pubmed.ncbi.nlm.nih.gov/38900452" target="_blank">PMID: 38900452</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190830" target="_blank">PMCID: PMC11190830</a>, <a href="https://doi.org/10.1001/jamaoncol.2024.1575" target="_blank">DOI: 10.1001/jamaoncol.2024.1575</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39195572" class="research-list-item__link"><span>Challenges in LncRNA Biology: Views and Opinions</span></a><span class="research-list-item__text">Adjeroh D, Zhou X, Paschoal A, <strong>Dimitrova N</strong>, Derevyanchuk E, Shkurat T, Loeb J, Martinez I, Lipovich L. Challenges in LncRNA Biology: Views and Opinions. Non-Coding RNA 2024, 10: 43. <a href="https://pubmed.ncbi.nlm.nih.gov/39195572" target="_blank">PMID: 39195572</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357347" target="_blank">PMCID: PMC11357347</a>, <a href="https://doi.org/10.3390/ncrna10040043" target="_blank">DOI: 10.3390/ncrna10040043</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li><li class="organization-publication-list__group-list-item"><div class="research-list-item research-list-item--with-link"><div class="research-list-item__icon-wrapper"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="research-list-item__icon"><path d="M22.5 21.75a1.5 1.5 0 0 1-1.5 1.5H3a1.5 1.5 0 0 1-1.5-1.5V2.25A1.5 1.5 0 0 1 3 .75h15.045a1.5 1.5 0 0 1 1.048.426l2.954 2.883a1.5 1.5 0 0 1 .453 1.074ZM6.045 8.25h12M6.045 12.75h12M6.045 17.25h6" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></div><div class="research-list-item__content-container"><a href="https://pubmed.ncbi.nlm.nih.gov/39075235" class="research-list-item__link"><span>SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity</span></a><span class="research-list-item__text">Peña-Hernández M, Alfajaro M, Filler R, Moriyama M, Keeler E, Ranglin Z, Kong Y, Mao T, Menasche B, Mankowski M, Zhao Z, Vogels C, Hahn A, Kalinich C, Zhang S, Huston N, Wan H, Araujo-Tavares R, Lindenbach B, Homer R, <strong>Pyle A</strong>, Martinez D, <strong>Grubaugh N</strong>, Israelow B, <strong>Iwasaki A</strong>, <strong>Wilen C</strong>. SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity. Nature Microbiology 2024, 9: 2038-2050. <a href="https://pubmed.ncbi.nlm.nih.gov/39075235" target="_blank">PMID: 39075235</a>, <a href="https://doi.org/10.1038/s41564-024-01765-z" target="_blank">DOI: 10.1038/s41564-024-01765-z</a>.</span><div class="organization-publication-list__list-item-badges"></div></div></div></li></ul></section><div class="organization-publication-list__button-container"><div class="organization-publication-list__button"><button type="button" class="button button--large button--primary button--color-mode--blue" tabindex="0"><span class="button__label">Show More</span></button></div><div class="organization-publication-list__button"><a href="/organization-publication/csv/?organizationId=110394&orderBy=PublicationDate" tabindex="0" class="button button--large button--secondary button--color-mode--blue button--link" rel="nofollow"><span class="button__label">Download Full List</span></a></div></div></section></div></div><div class="sidebar page__sidebar-container"><div class="sidebar__sticky-container"></div></div></main><footer class="footer"><div class="footer__primary-panel-wrapper footer__primary-panel-wrapper--full-height"><div class="footer__content-container"><section class="footer__primary-panel" aria-label="Primary Links"><div class="desktop-footer-primary-panel"><div class="desktop-footer-primary-panel__organization-info-wrapper"><div class="footer-organization-info" role="presentation" aria-hidden="true"><svg xmlns="http://www.w3.org/2000/svg" aria-label="Yale" viewBox="0 0 58.3 28.2" focusable="false" class="site-wordmark__icon site-wordmark__icon--mode-yale footer-organization-info__icon"><desc>Yale</desc><path d="m19.5 7.4-5.9 10v6.7c.7 1.6 2.4 1.8 4.1 1.9v1H6v-.9c1.7-.1 3.7-.3 4.2-1.4v-6.9l-6-10.2C3.1 5.8 2.1 5.2.1 5v-.9h10.1V5c-1.9.2-2.5.5-3 .9l5.6 9.7L18.3 6c-.6-.5-1.4-.8-3.3-1v-.9h8.6V5c-1.9.1-3.1.8-4.1 2.4m11.8 19.9c-1.9 0-2.9-1.3-3-2.3-1.2 1.3-2.8 2.3-4.3 2.3-1.9 0-3.6-1.2-3.6-3.2 0-1 .3-2.1.8-2.9l7.2-2.6v-2.7c0-1.6-.8-3.2-2.4-3.2-1 0-1.9 1.2-2 3l-3.2.5V16c1.1-3.2 4.6-4.5 6.4-4.5 3.3 0 4.5 1.7 4.4 4.4l-.1 7.6c0 1.5.8 1.8 1.5 1.8.6 0 1.2-.4 1.8-1v1c-.8.9-2.2 2-3.5 2m-7.2-5.8c-.1.6-.3 1.1-.3 1.9 0 1.1.6 2.2 1.8 2.2 1.1 0 1.7-.4 2.7-1.1v-4.9c-.9.3-3.2 1.4-4.2 1.9m11 5.5v-.8c1.6-.1 2.1-.5 2.4-1.1V6.4c0-1.2-.2-1.7-2.7-1.9v-.7l6.6-1.7.2.6-1 1.3v21.1c.4.7 1 1 2.5 1.1v.8zm16.6.3c-3.8 0-6.7-3-6.7-7.2 0-5.1 3.1-8.6 7.6-8.6 3.6 0 5.5 2 5.5 5.2v.6l-9.7-.1c-.1.4-.1 1-.1 1.8 0 3.7 2.3 6.1 5.4 6.1 1.8 0 2.8-.6 4.2-1.9l.5.8c-2 2.1-3.7 3.3-6.7 3.3m.3-14.7c-1.8 0-3.1 1.4-3.5 3.7l6.3-.1c.1-1.8-1.1-3.6-2.8-3.6"></path></svg></div></div><div class="desktop-footer-primary-panel__primary-links-wrapper"><nav aria-label="Footer Primary Links"><ul class="footer-primary-sections-list"><li class="footer-primary-sections-list__item"><div class="footer-section footer-section--no-data addresses-footer-section"><div class="footer-primary-link__button-link"><a href="https://medicine.yale.edu/maps/" tabindex="0" class="button button--large button--primary button--color-mode--blue button--link button-with-icon" aria-label="Maps & Directions"><span class="button__label">Maps & Directions</span><span class="button__icon" aria-hidden="true"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="footer-primary-link__button-link-icon"><circle cx="12" cy="12" r="11.5" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round"></circle><path d="M11.352 18.758a.35.35 0 0 1-.66-.162v-4.938a.35.35 0 0 0-.35-.35H5.4a.35.35 0 0 1-.162-.66l11.751-6.109a.35.35 0 0 1 .472.472Z" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round"></path></svg></span></a></div></div></li><li class="footer-primary-sections-list__item"><div class="footer-section social-media-footer-section"><div class="footer-primary-link__content"><ul class="social-media-footer-section__links-list"><li class="social-media-footer-section__link-list-item"><a href="https://www.linkedin.com/in/yalecenterforrnascienceandmedicine" class="social-media-footer-section__link" aria-label="linkedin"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="social-media-footer-section__link-icon"><path d="M6.5 22.5h-5v-13h5Zm9-9a2 2 0 0 0-2 2v7h-5v-13h5v1.485a6.3 6.3 0 0 1 3.99-1.495c2.962 0 5.01 2.2 5.01 6.355V22.5h-5v-7a2 2 0 0 0-2-2M6.5 5A2.5 2.5 0 1 1 4 2.5 2.5 2.5 0 0 1 6.5 5" style="fill:currentColor;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round"></path></svg></a></li></ul></div><div class="footer-primary-link__button-link"><a href="https://preview.yale.edu/rnacenter/about/" tabindex="0" class="button button--large button--primary button--color-mode--blue button--link button-with-icon" aria-label="Contact Us"><span class="button__label">Contact Us</span><span class="button__icon" aria-hidden="true"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="footer-primary-link__button-link-icon"><rect width="22.5" height="15" x="0.75" y="4.5" rx="1.5" ry="1.5" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></rect><path d="M15.687 9.975 19.5 13.5M8.313 9.975 4.5 13.5M22.88 5.014l-9.513 6.56a2.41 2.41 0 0 1-2.734 0L1.12 5.014" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px"></path></svg></span></a></div></div></li></ul></nav></div></div></section></div></div><div class="footer__secondary-panel-wrapper"><div class="footer__content-container"><section class="footer__secondary-panel" aria-label="Secondary Links"><div class="footer__secondary-links"><nav class="footer-secondary-links-list" aria-label="Footer Secondary Links"><ul class="footer-secondary-links-list__list"><li class="footer-secondary-links-list__list-item"><a href="/intranet/" class="footer-secondary-links-list__link" aria-label="Intranet">Intranet</a></li><li class="footer-secondary-links-list__list-item"><a href="mailto:ysm.editor@yale.edu" class="footer-secondary-links-list__link" aria-label="Site Editor">Site Editor</a></li><li class="footer-secondary-links-list__list-item"><a href="https://medicine.yale.edu/accessibility/" class="footer-secondary-links-list__link" aria-label="Accessibility at YSM">Accessibility at YSM</a></li><li class="footer-secondary-links-list__list-item"><a href="https://medicine.yale.edu/myysm/personal-resources/diversity-equity-inclusion/" class="footer-secondary-links-list__link" aria-label="Nondiscrimination & Title IX">Nondiscrimination & Title IX</a></li><li class="footer-secondary-links-list__list-item"><a href="https://medicine.yale.edu/myysm/personal-resources/safety-security-resources/" class="footer-secondary-links-list__link" aria-label="Safety & Security">Safety & Security</a></li><li class="footer-secondary-links-list__list-item"><a href="/rnacenter/privacy" class="footer-secondary-links-list__link" aria-label="Terms & Privacy Statement">Terms & Privacy Statement</a></li><li class="footer-secondary-links-list__list-item"><a href="https://yale.edu" class="footer-secondary-links-list__link" aria-label="Yale University">Yale University</a></li><li class="footer-secondary-links-list__list-item footer-secondary-links-list__powered-by-list-item"><a href="https://medicine.yale.edu/communications/" class="footer-secondary-links-list__link" aria-label="Powered by Yale School of Medicine web platforms">Powered by Yale School of Medicine web platforms</a></li><li class="footer-secondary-links-list__list-item"><button type="button" class="footer-secondary-links-list__button" tabindex="0"><span>Manage Cookie Preferences</span></button></li></ul></nav></div><div class="footer__copyright-wrapper"><small class="footer-copyright">© <!-- -->2024<!-- --> <!-- -->Yale University<!-- -->. Updated <!-- -->09/17/2024</small></div></section></div></div></footer></div><div class="back-to-top-button back-to-top-button--hidden back-to-top-button--without-touch" aria-hidden="true"><button type="button" aria-label="Back to top" class="back-to-top-button__button" tabindex="-1"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" focusable="false" class="back-to-top-button__arrow"><path d="M.75 17.189 11.47 6.47a.75.75 0 0 1 1.06 0l10.72 10.719" style="fill:none;stroke:currentColor;stroke-linecap:round;stroke-linejoin:round;stroke-width:1.5px;fill-rule:evenodd"></path></svg></button></div></div><div class="outdated-browser-warning" aria-hidden="true">Your browser is antiquated and no longer supported on this website. Please update your browser or switch to Chrome, Firefox or Safari. <br/>You can update your IE here: <br/><a class="outdated-browser-warning__link" href="https://support.microsoft.com/en-us/help/17621/internet-explorer-downloads">https://support.microsoft.com/en-us/help/17621/internet-explorer-downloads</a></div></div> <script id='page-data' type='application/json'>{"header":{"key":"DepartmentHeader","orderOnPage":-1,"model":{"departmentHomeLink":{"url":"/rnacenter","text":"Yale Center for RNA Science and Medicine"},"breadcrumbs":[{"url":"https://www.yale.edu/","text":"Yale University"},{"url":"https://medicine.yale.edu/rnacenter/","text":"Center for RNA Science and Medicine"}],"titleBackgroundColor":null,"isMarketingTemplate":false,"rootOrganizationType":"yale","rootOrganizationLink":{"url":"https://www.yale.edu","text":"Yale University"},"navigationItems":[{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/about","text":"About the Center"},{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/staff","text":"Faculty"},{"topLink":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/programming","text":"RNA Center Programming"},"subNavigationItems":[{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/programming/retreat","text":"Annual Retreat"},{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/programming/workshops","text":"Workshops"},{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/programming/altman-symposium","text":"Sid Altman Memorial Symposium"},{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/programming/pirc","text":"Yale Postdoc Initiative in RNA Careers"}],"hasCurrentLink":false},{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/rnaclub","text":"RNA Club"},{"isCurrentLink":true,"rootOrganizationPrefix":null,"currentLinkUrl":"/rnacenter/publications","url":"/rnacenter/publications","text":"Publications"},{"topLink":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/news","text":"News & Events"},"subNavigationItems":[{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/news/events","text":"Event Calendar"}],"hasCurrentLink":false},{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/opportunities","text":"Job Opportunities"},{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/joan-and-tom-steitz-rna-fellows-program","text":"Joan and Tom Steitz RNA Fellows Program"}],"browseLinks":[{"url":"/ysm/about/","text":"About YSM"},{"url":"/ysm/faculty/","text":"Faculty"},{"url":"/ysm/myysm/","text":"Staff"},{"url":"/ysm/edu/","text":"Students"},{"url":"/ysm/edu/residency-fellowships/","text":"Residents & Fellows"},{"url":"https://yalemedicine.org","text":"Patients"},{"url":"/ysm/research/","text":"Researchers"},{"url":"/ysm/alumni/","text":"Alumni"}],"searchUrl":"/rnacenter/search/","ctaLink":null}},"footer":{"key":"Footer","orderOnPage":-1,"model":{"organizationType":"yale","primarySections":[{"mailingAddresses":[],"link":{"url":"https://medicine.yale.edu/maps/","text":"Maps & Directions"}},{"socialMediaLinks":{"linkedin":"https://www.linkedin.com/in/yalecenterforrnascienceandmedicine"},"link":{"url":"https://preview.yale.edu/rnacenter/about/","text":"Contact Us"}}],"secondaryLinks":[{"url":"/intranet/","text":"Intranet"},{"url":"mailto:ysm.editor@yale.edu","text":"Site Editor"},{"url":"https://medicine.yale.edu/accessibility/","text":"Accessibility at YSM"},{"url":"https://medicine.yale.edu/myysm/personal-resources/diversity-equity-inclusion/","text":"Nondiscrimination & Title IX"},{"url":"https://medicine.yale.edu/myysm/personal-resources/safety-security-resources/","text":"Safety & Security"},{"url":"/rnacenter/privacy","text":"Terms & Privacy Statement"},{"url":"https://yale.edu","text":"Yale University"}],"poweredByLink":{"url":"https://medicine.yale.edu/communications/","text":"Powered by Yale School of Medicine web platforms"},"lastModifiedDate":"2024-09-17T11:55:14.7050634Z"}},"pageSettings":{"hasContentOverlay":false,"hasCustomLayout":false,"isHomePage":false,"isHomePageLayout":false,"isDepartmentHeader":true,"showAnnouncementModal":false,"isWordPageVersion":false,"showEditPageSection":false,"useWideTemplate":false},"googleAdsSettings":null,"googleTagManagerSettings":{"id":"GTM-T29B2V8","isSpaTrackingEnabled":false},"freshpaintSettings":{"id":"b6b4bb12-e8a3-48f7-a8ed-aa0be94fb272","isEnabled":true},"facebookPixelSettings":{"id":null,"isEnabled":false},"trackersSettings":{"isMsClarityEnabled":true},"pageMetaData":{"socialMediaTitle":"Publications","siteName":"Yale Center for RNA Science and Medicine","googleSiteVerification":"","keywords":"","twitterAccountName":null,"twitterCardType":"summary","facebookAppId":"604142276782606","url":"https://medicine.yale.edu/rnacenter/publications/","resourceBaseUrl":"https://cdn1.medicine.yale.edu","faviconUrl":"https://cdn1.medicine.yale.edu/icons/ysm/favicon.ico","iconsFolderUrl":"https://cdn1.medicine.yale.edu/icons/ysm","webManifestFolderUrl":"https://cdn1.medicine.yale.edu/web-manifests/ysm","browserConfigFolderUrl":"https://cdn1.medicine.yale.edu/browser-configs/ysm","title":"Publications < Yale Center for RNA Science and Medicine","description":null,"imageMetaData":null,"videoMetaData":null,"audioMetaData":null,"author":null,"pageType":"website","publishDate":"2024-09-17T11:55:14.7050634Z","canonicalUrl":null,"isNoIndex":false},"popularSearches":[],"pageStructuredData":[],"cmsPageMetaData":{"id":15704,"lastPublishedDate":"2024-09-17T11:55:14.7050634Z","editPageUrl":"https://beatrix.yale.edu/cms/websites/379/pages/15704/content/edit"},"privacyCookiesUrl":"/ysm/privacy/#cookies","publicationUrl":"/rnacenter","topBanner":null,"mainComponents":[{"key":"OrganizationPublicationList","orderOnPage":1,"model":{"title":"","publications":{"collection":[{"pubMedUid":38924775,"doi":"10.1164/rccm.202401-0078oc","id":null,"title":"Single-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis.","citation":"Zhao A, Unterman A, Abu Hussein N, Sharma P, Nikola F, Flint J, Yan X, Adams T, Justet A, Sumida T, Zhao J, Schupp J, Raredon M, Ahangari F, Deluliis G, Zhang Y, Buendia-Roldan I, Adegunsoye A, Sperling A, Prasse A, Ryu C, Herzog E, Selman M, Pardo A, <strong>Kaminski N</strong>. Single-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis. American Journal Of Respiratory And Critical Care Medicine 2024, 210: 1252-1266. <a href=\"https://pubmed.ncbi.nlm.nih.gov/38924775\" target=\"_blank\">PMID: 38924775</a>, <a href=\"https://doi.org/10.1164/rccm.202401-0078oc\" target=\"_blank\">DOI: 10.1164/rccm.202401-0078oc</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/38924775","text":"Single-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis."}},{"pubMedUid":39522891,"doi":"10.1016/j.bbadis.2024.167565","id":null,"title":"GPR68 supports AML cells through the calcium/calcineurin pro-survival pathway and confers chemoresistance by mediating glucose metabolic symbiosis","citation":"He X, Hawkins C, Lawley L, Phan T, Park I, Joven N, Zhang J, Wunderlich M, Mizukawa B, Pei S, Patel A, VanOudenhove J, <strong>Halene S</strong>, Fang J. GPR68 supports AML cells through the calcium/calcineurin pro-survival pathway and confers chemoresistance by mediating glucose metabolic symbiosis. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease 2024, 167565. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39522891\" target=\"_blank\">PMID: 39522891</a>, <a href=\"https://doi.org/10.1016/j.bbadis.2024.167565\" target=\"_blank\">DOI: 10.1016/j.bbadis.2024.167565</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39522891","text":"GPR68 supports AML cells through the calcium/calcineurin pro-survival pathway and confers chemoresistance by mediating glucose metabolic symbiosis"}},{"pubMedUid":39514636,"doi":"10.1126/sciimmunol.add6608","id":null,"title":"A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses","citation":"Yang Y, Treger R, Hernandez-Bird J, Lu P, Mao T, <strong>Iwasaki A</strong>. A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses. Science Immunology 2024, 9: eadd6608. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39514636\" target=\"_blank\">PMID: 39514636</a>, <a href=\"https://doi.org/10.1126/sciimmunol.add6608\" target=\"_blank\">DOI: 10.1126/sciimmunol.add6608</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39514636","text":"A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses"}},{"pubMedUid":39504356,"doi":"10.1126/scitranslmed.adh9940","id":null,"title":"Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population","citation":"Ding J, Liu H, Zhang X, Zhao N, Peng Y, Shi J, Chen J, Chi X, Li L, Zhang M, Liu W, Zhang L, Ouyang J, Yuan Q, Liao M, Tan Y, Li M, Xu Z, Tang W, Xie C, Li Y, Pan Q, Xu Y, Cai S, Byrne C, Targher G, <strong>Ouyang X</strong>, Zhang L, Jiang Z, Zheng M, Sun F, Chai J. Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population. Science Translational Medicine 2024, 16: eadh9940. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39504356\" target=\"_blank\">PMID: 39504356</a>, <a href=\"https://doi.org/10.1126/scitranslmed.adh9940\" target=\"_blank\">DOI: 10.1126/scitranslmed.adh9940</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39504356","text":"Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population"}},{"pubMedUid":0,"doi":"10.1136/jitc-2024-sitc2024.0065","id":null,"title":"65 High-fidelity enhanced AsCas12a knock-in mice for efficient multiplexed gene editing, disease modeling and orthogonal immunogenetics","citation":"Tang K, Zhou X, Fang S, Vandenbulcke E, Du A, Shen J, Cao H, Zhou J, Chen K, Xin S, Zhou L, Lin S, Majety M, Lin X, Lam S, Chow R, Bai S, Nottoli T, Booth C, Liu C, Dong M, <strong>Chen S</strong>. 65 High-fidelity enhanced AsCas12a knock-in mice for efficient multiplexed gene editing, disease modeling and orthogonal immunogenetics. 2024, a72-a72. <a href=\"https://doi.org/10.1136/jitc-2024-sitc2024.0065\" target=\"_blank\">DOI: 10.1136/jitc-2024-sitc2024.0065</a>.","year":2024,"link":{"url":"https://doi.org/10.1136/jitc-2024-sitc2024.0065","text":"65 High-fidelity enhanced AsCas12a knock-in mice for efficient multiplexed gene editing, disease modeling and orthogonal immunogenetics"}},{"pubMedUid":39482410,"doi":"10.1038/s42003-024-07045-0","id":null,"title":"REliable PIcking by Consensus (REPIC): a consensus methodology for harnessing multiple cryo-EM particle pickers","citation":"Cameron C, Seager S, Sigworth F, Tagare H, <strong>Gerstein M</strong>. REliable PIcking by Consensus (REPIC): a consensus methodology for harnessing multiple cryo-EM particle pickers. Communications Biology 2024, 7: 1421. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39482410\" target=\"_blank\">PMID: 39482410</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528043\" target=\"_blank\">PMCID: PMC11528043</a>, <a href=\"https://doi.org/10.1038/s42003-024-07045-0\" target=\"_blank\">DOI: 10.1038/s42003-024-07045-0</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39482410","text":"REliable PIcking by Consensus (REPIC): a consensus methodology for harnessing multiple cryo-EM particle pickers"}},{"pubMedUid":39475571,"doi":"10.1126/scitranslmed.abo1997","id":null,"title":"Single-cell transcriptomic and proteomic analysis of Parkinson’s disease brains","citation":"Zhu B, Park J, Coffey S, Russo A, Hsu I, Wang J, Su C, Chang R, Lam T, <strong>Gopal P</strong>, Ginsberg S, Zhao H, Hafler D, Chandra S, Zhang L. Single-cell transcriptomic and proteomic analysis of Parkinson’s disease brains. Science Translational Medicine 2024, 16: eabo1997. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39475571\" target=\"_blank\">PMID: 39475571</a>, <a href=\"https://doi.org/10.1126/scitranslmed.abo1997\" target=\"_blank\">DOI: 10.1126/scitranslmed.abo1997</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39475571","text":"Single-cell transcriptomic and proteomic analysis of Parkinson’s disease brains"}},{"pubMedUid":39102635,"doi":"10.1182/blood.2024023963","id":null,"title":"CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors","citation":"Kwon N, Lu Y, Thompson E, Mancuso R, Wang L, Zhang P, <strong>Krause D</strong>. CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors. Blood 2024, 144: 1800-1812. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39102635\" target=\"_blank\">PMID: 39102635</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530366\" target=\"_blank\">PMCID: PMC11530366</a>, <a href=\"https://doi.org/10.1182/blood.2024023963\" target=\"_blank\">DOI: 10.1182/blood.2024023963</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39102635","text":"CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors"}},{"pubMedUid":0,"doi":"10.1038/s43586-024-00354-y","id":null,"title":"Image-based 3D genomics through chromatin tracing","citation":"Yang T, <strong>Wang S</strong>. Image-based 3D genomics through chromatin tracing. Nature Reviews Methods Primers 2024, 4: 76. <a href=\"https://doi.org/10.1038/s43586-024-00354-y\" target=\"_blank\">DOI: 10.1038/s43586-024-00354-y</a>.","year":2024,"link":{"url":"https://doi.org/10.1038/s43586-024-00354-y","text":"Image-based 3D genomics through chromatin tracing"}},{"pubMedUid":0,"doi":"10.3390/v16111653","id":null,"title":"Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development","citation":"Klontz E, Chowdhury N, Holbrook N, Solomon I, Telford S, Aliota M, Vogels C, <strong>Grubaugh N</strong>, Helgager J, Hughes H, Velez J, Piantadosi A, Chiu C, Lemieux J, Branda J. Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development. Viruses 2024, 16: 1653. <a href=\"https://doi.org/10.3390/v16111653\" target=\"_blank\">DOI: 10.3390/v16111653</a>.","year":2024,"link":{"url":"https://doi.org/10.3390/v16111653","text":"Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development"}},{"pubMedUid":39443793,"doi":"10.1038/s41586-024-08070-z","id":null,"title":"Machine-guided design of cell-type-targeting cis-regulatory elements","citation":"Gosai S, Castro R, Fuentes N, Butts J, Mouri K, Alasoadura M, Kales S, Nguyen T, Noche R, Rao A, Joy M, Sabeti P, <strong>Reilly S</strong>, Tewhey R. Machine-guided design of cell-type-targeting cis-regulatory elements. Nature 2024, 634: 1211-1220. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39443793\" target=\"_blank\">PMID: 39443793</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525185\" target=\"_blank\">PMCID: PMC11525185</a>, <a href=\"https://doi.org/10.1038/s41586-024-08070-z\" target=\"_blank\">DOI: 10.1038/s41586-024-08070-z</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39443793","text":"Machine-guided design of cell-type-targeting cis-regulatory elements"}},{"pubMedUid":0,"doi":"10.1038/s42256-024-00913-8","id":null,"title":"Epitope-anchored contrastive transfer learning for paired CD8+ T cell receptor–antigen recognition","citation":"Zhang Y, Wang Z, Jiang Y, Littler D, <strong>Gerstein M</strong>, Purcell A, Rossjohn J, Ou H, Song J. Epitope-anchored contrastive transfer learning for paired CD8+ T cell receptor–antigen recognition. Nature Machine Intelligence 2024, 1-15. <a href=\"https://doi.org/10.1038/s42256-024-00913-8\" target=\"_blank\">DOI: 10.1038/s42256-024-00913-8</a>.","year":2024,"link":{"url":"https://doi.org/10.1038/s42256-024-00913-8","text":"Epitope-anchored contrastive transfer learning for paired CD8+ T cell receptor–antigen recognition"}},{"pubMedUid":39438113,"doi":"10.1101/gr.279037.124","id":null,"title":"Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships.","citation":"Kudron M, Gewirtzman L, Victorsen A, Lear B, Vafeados D, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Hyunh C, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker S, <strong>Reinke V</strong>, Waterston R. Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships. Genome Research 2024, gr.279037.124. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39438113\" target=\"_blank\">PMID: 39438113</a>, <a href=\"https://doi.org/10.1101/gr.279037.124\" target=\"_blank\">DOI: 10.1101/gr.279037.124</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39438113","text":"Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships."}},{"pubMedUid":39433914,"doi":"10.1038/s41580-024-00784-2","id":null,"title":"All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies","citation":"Oberdoerffer S, <strong>Gilbert W</strong>. All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies. Nature Reviews Molecular Cell Biology 2024, 1-12. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39433914\" target=\"_blank\">PMID: 39433914</a>, <a href=\"https://doi.org/10.1038/s41580-024-00784-2\" target=\"_blank\">DOI: 10.1038/s41580-024-00784-2</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39433914","text":"All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies"}},{"pubMedUid":39431827,"doi":"10.1128/mbio.02811-24","id":null,"title":"Rab6a enables BICD2/dynein-mediated trafficking of human papillomavirus from the trans-Golgi network during virus entry","citation":"Choi J, Speckhart K, Tsai B, <strong>DiMaio D</strong>. Rab6a enables BICD2/dynein-mediated trafficking of human papillomavirus from the trans-Golgi network during virus entry. MBio 2024, 15: e02811-24. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39431827\" target=\"_blank\">PMID: 39431827</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559006\" target=\"_blank\">PMCID: PMC11559006</a>, <a href=\"https://doi.org/10.1128/mbio.02811-24\" target=\"_blank\">DOI: 10.1128/mbio.02811-24</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39431827","text":"Rab6a enables BICD2/dynein-mediated trafficking of human papillomavirus from the trans-Golgi network during virus entry"}},{"pubMedUid":39456630,"doi":"10.3390/cancers16203536","id":null,"title":"A TRilogy of ATR’s Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer","citation":"Joo Y, Ramirez C, <strong>Kabeche L</strong>. A TRilogy of ATR’s Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers 2024, 16: 3536. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39456630\" target=\"_blank\">PMID: 39456630</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506335\" target=\"_blank\">PMCID: PMC11506335</a>, <a href=\"https://doi.org/10.3390/cancers16203536\" target=\"_blank\">DOI: 10.3390/cancers16203536</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39456630","text":"A TRilogy of ATR’s Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer"}},{"pubMedUid":39402626,"doi":"10.1186/s13059-024-03416-2","id":null,"title":"SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data","citation":"Liu Y, Li N, Qi J, Xu G, Zhao J, Wang N, Huang X, Jiang W, Wei H, Justet A, Adams T, Homer R, Amei A, Rosas I, <strong>Kaminski N</strong>, Wang Z, Yan X. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data. Genome Biology 2024, 25: 271. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39402626\" target=\"_blank\">PMID: 39402626</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475911\" target=\"_blank\">PMCID: PMC11475911</a>, <a href=\"https://doi.org/10.1186/s13059-024-03416-2\" target=\"_blank\">DOI: 10.1186/s13059-024-03416-2</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39402626","text":"SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data"}},{"pubMedUid":39419034,"doi":"10.1016/j.devcel.2024.09.023","id":null,"title":"Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons","citation":"Wijegunawardana D, Nayak A, Vishal S, Venkatesh N, <strong>Gopal P</strong>. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons. Developmental Cell 2024 <a href=\"https://pubmed.ncbi.nlm.nih.gov/39419034\" target=\"_blank\">PMID: 39419034</a>, <a href=\"https://doi.org/10.1016/j.devcel.2024.09.023\" target=\"_blank\">DOI: 10.1016/j.devcel.2024.09.023</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39419034","text":"Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons"}},{"pubMedUid":39393608,"doi":"10.1016/j.exphem.2024.104655","id":null,"title":"Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis","citation":"Maul-Newby H, <strong>Halene S</strong>. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Experimental Hematology 2024, 140: 104655. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39393608\" target=\"_blank\">PMID: 39393608</a>, <a href=\"https://doi.org/10.1016/j.exphem.2024.104655\" target=\"_blank\">DOI: 10.1016/j.exphem.2024.104655</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39393608","text":"Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis"}},{"pubMedUid":39388546,"doi":"10.1126/science.adq1456","id":null,"title":"Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes","citation":"Maury E, Jones A, Seplyarskiy V, Nguyen T, Rosenbluh C, Bae T, Wang Y, Abyzov A, Khoshkhoo S, Chahine Y, Zhao S, Venkatesh S, Root E, Voloudakis G, Roussos P, Network B, Park P, Akbarian S, <strong>Brennand K</strong>, <strong>Reilly S</strong>, Lee E, Sunyaev S, Walsh C, Chess A. Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes. Science 2024, 386: 217-224. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39388546\" target=\"_blank\">PMID: 39388546</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490355\" target=\"_blank\">PMCID: PMC11490355</a>, <a href=\"https://doi.org/10.1126/science.adq1456\" target=\"_blank\">DOI: 10.1126/science.adq1456</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39388546","text":"Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes"}},{"pubMedUid":39384951,"doi":"10.1038/s41568-024-00750-2","id":null,"title":"Steering research on mRNA splicing in cancer towards clinical translation","citation":"Anczukow O, Allain F, Angarola B, Black D, Brooks A, Cheng C, Conesa A, Crosse E, Eyras E, Guccione E, Lu S, <strong>Neugebauer K</strong>, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks K, Yeo G, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nature Reviews Cancer 2024, 1-19. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39384951\" target=\"_blank\">PMID: 39384951</a>, <a href=\"https://doi.org/10.1038/s41568-024-00750-2\" target=\"_blank\">DOI: 10.1038/s41568-024-00750-2</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39384951","text":"Steering research on mRNA splicing in cancer towards clinical translation"}},{"pubMedUid":39382073,"doi":"10.1158/1535-7163.mct-23-0809","id":null,"title":"Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate.","citation":"Yurkevicz A, Liu Y, Katz S, <strong>Glazer P</strong>. Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate. Molecular Cancer Therapeutics 2024, of1-of13. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39382073\" target=\"_blank\">PMID: 39382073</a>, <a href=\"https://doi.org/10.1158/1535-7163.mct-23-0809\" target=\"_blank\">DOI: 10.1158/1535-7163.mct-23-0809</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39382073","text":"Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate."}},{"pubMedUid":39378873,"doi":"10.3201/eid3011.241031","id":null,"title":"Early Release - Dengue Outbreak Caused by Multiple Virus Serotypes and Lineages, Colombia, 2023–2024 - Volume 30, Number 11—November 2024 - Emerging Infectious Diseases journal - CDC","citation":"<strong>Grubaugh N</strong>, Torres-Hernández D, Murillo-Ortiz M, Dávalos D, Lopez P, Hurtado I, Breban M, Bourgikos E, Hill V, López-Medina E. Early Release - Dengue Outbreak Caused by Multiple Virus Serotypes and Lineages, Colombia, 2023–2024 - Volume 30, Number 11—November 2024 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases 2024, 30: 2391-2395. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39378873\" target=\"_blank\">PMID: 39378873</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521178\" target=\"_blank\">PMCID: PMC11521178</a>, <a href=\"https://doi.org/10.3201/eid3011.241031\" target=\"_blank\">DOI: 10.3201/eid3011.241031</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39378873","text":"Early Release - Dengue Outbreak Caused by Multiple Virus Serotypes and Lineages, Colombia, 2023–2024 - Volume 30, Number 11—November 2024 - Emerging Infectious Diseases journal - CDC"}},{"pubMedUid":0,"doi":"10.1007/978-3-031-72111-3_15","id":null,"title":"CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation","citation":"Liu C, Amodio M, Shen L, Gao F, Avesta A, Aneja S, Wang J, Del Priore L, <strong>Krishnaswamy S</strong>. CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation. Lecture Notes In Computer Science 2024, 15008: 155-165. <a href=\"https://doi.org/10.1007/978-3-031-72111-3_15\" target=\"_blank\">DOI: 10.1007/978-3-031-72111-3_15</a>.","year":2024,"link":{"url":"https://doi.org/10.1007/978-3-031-72111-3_15","text":"CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation"}},{"pubMedUid":39365279,"doi":"10.1093/jleuko/qiae218","id":null,"title":"CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and Cystic Fibrosis mice","citation":"Öz H, Braga C, Gudneppanavar R, Di Pietro C, Huang P, Zhang P, <strong>Krause D</strong>, Egan M, Murray T, Bruscia E. CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and Cystic Fibrosis mice. Journal Of Leukocyte Biology 2024, qiae218. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39365279\" target=\"_blank\">PMID: 39365279</a>, <a href=\"https://doi.org/10.1093/jleuko/qiae218\" target=\"_blank\">DOI: 10.1093/jleuko/qiae218</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39365279","text":"CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and Cystic Fibrosis mice"}},{"pubMedUid":39362854,"doi":"10.1038/s41467-024-52595-w","id":null,"title":"Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs","citation":"Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan B, Schaudinn C, Lavigne R, <strong>Turner P</strong>, Raschke M, Trampuz A, Gonzalez Moreno M. Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nature Communications 2024, 15: 8572. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39362854\" target=\"_blank\">PMID: 39362854</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450229\" target=\"_blank\">PMCID: PMC11450229</a>, <a href=\"https://doi.org/10.1038/s41467-024-52595-w\" target=\"_blank\">DOI: 10.1038/s41467-024-52595-w</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39362854","text":"Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs"}},{"pubMedUid":39413460,"doi":"10.1016/j.prp.2024.155643","id":null,"title":"Keratin 17 and A2ML1 are negative prognostic biomarkers in non-small cell lung cancer","citation":"Babu S, Horowitz M, Delgado-Coka L, Roa-Peña L, Akalin A, <strong>Escobar-Hoyos L</strong>, Shroyer K. Keratin 17 and A2ML1 are negative prognostic biomarkers in non-small cell lung cancer. Pathology - Research And Practice 2024, 263: 155643. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39413460\" target=\"_blank\">PMID: 39413460</a>, <a href=\"https://doi.org/10.1016/j.prp.2024.155643\" target=\"_blank\">DOI: 10.1016/j.prp.2024.155643</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39413460","text":"Keratin 17 and A2ML1 are negative prognostic biomarkers in non-small cell lung cancer"}},{"pubMedUid":0,"doi":"10.1016/j.chest.2024.06.2020","id":null,"title":"INTERACTIONS BETWEEN MITOCHONDRIAL DNA AND TOLL-LIKE RECEPTOR 9 MEDIATES PULMONARY FIBROSIS","citation":"LEE C, TRUJILLO G, REGUEIRO-REN A, LIU C, HU B, SUN Y, KHOURY J, KHOURY J, AHANGARI F, ISHIKAWA G, WALIA A, PIVARNIK T, YU S, WOO S, FIORINI V, MCGOVERN J, AL JUMAILY K, SUN H, PENG X, ANTIN-OZERKIS D, SAULER M, <strong>KAMINSKI N</strong>, HERZOG E. INTERACTIONS BETWEEN MITOCHONDRIAL DNA AND TOLL-LIKE RECEPTOR 9 MEDIATES PULMONARY FIBROSIS. CHEST Journal 2024, 166: a3384-a3386. <a href=\"https://doi.org/10.1016/j.chest.2024.06.2020\" target=\"_blank\">DOI: 10.1016/j.chest.2024.06.2020</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/j.chest.2024.06.2020","text":"INTERACTIONS BETWEEN MITOCHONDRIAL DNA AND TOLL-LIKE RECEPTOR 9 MEDIATES PULMONARY FIBROSIS"}},{"pubMedUid":39352803,"doi":"10.18632/oncotarget.28651","id":null,"title":"Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition","citation":"Rackear M, Quijano E, Ianniello Z, Colón-Ríos D, Krysztofiak A, Abdullah R, Liu Y, Rogers F, Ludwig D, Dwivedi R, Bleichert F, <strong>Glazer P</strong>. Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition. Oncotarget 2024, 15: 699-713. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39352803\" target=\"_blank\">PMID: 39352803</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444335\" target=\"_blank\">PMCID: PMC11444335</a>, <a href=\"https://doi.org/10.18632/oncotarget.28651\" target=\"_blank\">DOI: 10.18632/oncotarget.28651</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39352803","text":"Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition"}},{"pubMedUid":39366353,"doi":"10.1016/j.molcel.2024.08.036","id":null,"title":"Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing","citation":"Carrocci T, <strong>Neugebauer K</strong>. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Molecular Cell 2024, 84: 3656-3666. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39366353\" target=\"_blank\">PMID: 39366353</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463726\" target=\"_blank\">PMCID: PMC11463726</a>, <a href=\"https://doi.org/10.1016/j.molcel.2024.08.036\" target=\"_blank\">DOI: 10.1016/j.molcel.2024.08.036</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39366353","text":"Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing"}},{"pubMedUid":0,"doi":"10.1016/j.ijrobp.2024.07.542","id":null,"title":"Modern Photon-Based Craniospinal Irradiation in Leptomeningeal Disease","citation":"Keit E, Peterson J, Johnstone P, <strong>Robinson T</strong>, Figura N. Modern Photon-Based Craniospinal Irradiation in Leptomeningeal Disease. International Journal Of Radiation Oncology • Biology • Physics 2024, 120: e242. <a href=\"https://doi.org/10.1016/j.ijrobp.2024.07.542\" target=\"_blank\">DOI: 10.1016/j.ijrobp.2024.07.542</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/j.ijrobp.2024.07.542","text":"Modern Photon-Based Craniospinal Irradiation in Leptomeningeal Disease"}},{"pubMedUid":0,"doi":"10.1016/j.ijrobp.2024.07.1421","id":null,"title":"Patterns of CNS Failures in Relapse/Refractory Large B-Cell Lymphoma (LBCL) Patients with Secondary CNS Disease Following Chimeric Antigen Receptor T-Cell (CAR T) Therapy","citation":"Nakashima J, Khatri V, Cruz-Chamorro R, Zhou J, Patra P, Gaballa S, Khimani F, Mirza S, Shah B, Saeed H, Chavez J, Locke F, Nishihori T, Liu H, Dong N, Lazaryan A, <strong>Robinson T</strong>, Freeman C, Jain M, Figura N. Patterns of CNS Failures in Relapse/Refractory Large B-Cell Lymphoma (LBCL) Patients with Secondary CNS Disease Following Chimeric Antigen Receptor T-Cell (CAR T) Therapy. International Journal Of Radiation Oncology • Biology • Physics 2024, 120: e646-e647. <a href=\"https://doi.org/10.1016/j.ijrobp.2024.07.1421\" target=\"_blank\">DOI: 10.1016/j.ijrobp.2024.07.1421</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/j.ijrobp.2024.07.1421","text":"Patterns of CNS Failures in Relapse/Refractory Large B-Cell Lymphoma (LBCL) Patients with Secondary CNS Disease Following Chimeric Antigen Receptor T-Cell (CAR T) Therapy"}},{"pubMedUid":0,"doi":"10.1016/j.fertnstert.2024.07.121","id":null,"title":"SENESCENT CELL CLEARANCE PROTECTS THE OVARIAN RESERVE IN AGING MICE","citation":"Zhang J, Lopez J, Liang J, Sela M, <strong>Kallen A</strong>. SENESCENT CELL CLEARANCE PROTECTS THE OVARIAN RESERVE IN AGING MICE. Fertility And Sterility 2024, 122: e21. <a href=\"https://doi.org/10.1016/j.fertnstert.2024.07.121\" target=\"_blank\">DOI: 10.1016/j.fertnstert.2024.07.121</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/j.fertnstert.2024.07.121","text":"SENESCENT CELL CLEARANCE PROTECTS THE OVARIAN RESERVE IN AGING MICE"}},{"pubMedUid":0,"doi":"10.1016/j.euroneuro.2024.08.502","id":null,"title":"F91. MAPPING THE EFFECTS OF OPIOID USE DISORDER GENETIC ASSOCIATED VARIANTS IN BRAIN PATHWAYS AT A SINGLE CELL LEVEL","citation":"Rivera-Hernández M, Martínez-Magaña J, <strong>Brennand K</strong>, Montalvo-Ortiz J. F91. MAPPING THE EFFECTS OF OPIOID USE DISORDER GENETIC ASSOCIATED VARIANTS IN BRAIN PATHWAYS AT A SINGLE CELL LEVEL. European Neuropsychopharmacology 2024, 87: 254. <a href=\"https://doi.org/10.1016/j.euroneuro.2024.08.502\" target=\"_blank\">DOI: 10.1016/j.euroneuro.2024.08.502</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/j.euroneuro.2024.08.502","text":"F91. MAPPING THE EFFECTS OF OPIOID USE DISORDER GENETIC ASSOCIATED VARIANTS IN BRAIN PATHWAYS AT A SINGLE CELL LEVEL"}},{"pubMedUid":0,"doi":"10.1016/j.euroneuro.2024.08.156","id":null,"title":"42. STRESS EXPOSURE DYNAMICALLY REGULATES EQTL ACTIVITY IN THE POST-MORTEM BRAIN AND IN HIPSC-DERIVED NEURONS","citation":"Seah C, Signer R, Young H, Hicks E, Rusielewicz T, Bader H, Xu C, Breen M, Paull D, Yehuda R, Girgenti M, <strong>Brennand K</strong>, Huckins L. 42. STRESS EXPOSURE DYNAMICALLY REGULATES EQTL ACTIVITY IN THE POST-MORTEM BRAIN AND IN HIPSC-DERIVED NEURONS. European Neuropsychopharmacology 2024, 87: 71-72. <a href=\"https://doi.org/10.1016/j.euroneuro.2024.08.156\" target=\"_blank\">DOI: 10.1016/j.euroneuro.2024.08.156</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/j.euroneuro.2024.08.156","text":"42. STRESS EXPOSURE DYNAMICALLY REGULATES EQTL ACTIVITY IN THE POST-MORTEM BRAIN AND IN HIPSC-DERIVED NEURONS"}},{"pubMedUid":39353436,"doi":"10.1016/j.cell.2024.09.001","id":null,"title":"Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues","citation":"Bai Z, Zhang D, Gao Y, Tao B, Zhang D, Bao S, Enninful A, Wang Y, Li H, Su G, Tian X, Zhang N, Xiao Y, Liu Y, <strong>Gerstein M</strong>, Li M, Xing Y, <strong>Lu J</strong>, Xu M, <strong>Fan R</strong>. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 2024, 187: 6760-6779.e24. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39353436\" target=\"_blank\">PMID: 39353436</a>, <a href=\"https://doi.org/10.1016/j.cell.2024.09.001\" target=\"_blank\">DOI: 10.1016/j.cell.2024.09.001</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39353436","text":"Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues"}},{"pubMedUid":39345217,"doi":"10.1002/alz.14243","id":null,"title":"Deletion of miR‐33, a regulator of the ABCA1–APOE pathway, ameliorates neuropathological phenotypes in APP/PS1 mice","citation":"Tate M, Wijeratne H, Kim B, Philtjens S, You Y, Lee D, Gutierrez D, Sharify D, Wells M, Perez‐Cardelo M, Doud E, <strong>Fernandez‐Hernando C</strong>, Lasagna‐Reeves C, Mosley A, Kim J. Deletion of miR‐33, a regulator of the ABCA1–APOE pathway, ameliorates neuropathological phenotypes in APP/PS1 mice. Alzheimer's & Dementia 2024, 20: 7805-7818. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39345217\" target=\"_blank\">PMID: 39345217</a>, <a href=\"https://doi.org/10.1002/alz.14243\" target=\"_blank\">DOI: 10.1002/alz.14243</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39345217","text":"Deletion of miR‐33, a regulator of the ABCA1–APOE pathway, ameliorates neuropathological phenotypes in APP/PS1 mice"}},{"pubMedUid":39342225,"doi":"10.1186/s13007-024-01274-4","id":null,"title":"An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus","citation":"Sagawa C, Thomson G, Mermaz B, Vernon C, Liu S, Jacob Y, <strong>Irish V</strong>. An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus. Plant Methods 2024, 20: 148. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39342225\" target=\"_blank\">PMID: 39342225</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438372\" target=\"_blank\">PMCID: PMC11438372</a>, <a href=\"https://doi.org/10.1186/s13007-024-01274-4\" target=\"_blank\">DOI: 10.1186/s13007-024-01274-4</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39342225","text":"An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus"}},{"pubMedUid":39327528,"doi":"10.1038/s44318-024-00253-8","id":null,"title":"PIWI-interacting RNAs: who, what, when, where, why, and how","citation":"Haase A, Ketting R, Lai E, van Rij R, Siomi M, Svoboda P, <strong>van Wolfswinkel J</strong>, Wu P. PIWI-interacting RNAs: who, what, when, where, why, and how. The EMBO Journal 2024, 1-5. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39327528\" target=\"_blank\">PMID: 39327528</a>, <a href=\"https://doi.org/10.1038/s44318-024-00253-8\" target=\"_blank\">DOI: 10.1038/s44318-024-00253-8</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39327528","text":"PIWI-interacting RNAs: who, what, when, where, why, and how"}},{"pubMedUid":39322664,"doi":"10.1038/s41586-024-07762-w","id":null,"title":"Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission","citation":"Bai Z, Feng B, McClory S, de Oliveira B, Diorio C, Gregoire C, Tao B, Yang L, Zhao Z, Peng L, Sferruzza G, Zhou L, Zhou X, Kerr J, Baysoy A, Su G, Yang M, Camara P, Chen S, Tang L, June C, Melenhorst J, Grupp S, <strong>Fan R</strong>. Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission. Nature 2024, 634: 702-711. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39322664\" target=\"_blank\">PMID: 39322664</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485231\" target=\"_blank\">PMCID: PMC11485231</a>, <a href=\"https://doi.org/10.1038/s41586-024-07762-w\" target=\"_blank\">DOI: 10.1038/s41586-024-07762-w</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39322664","text":"Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission"}},{"pubMedUid":39322665,"doi":"10.1038/s41586-024-07962-4","id":null,"title":"The type 2 cytokine Fc–IL-4 revitalizes exhausted CD8+ T cells against cancer","citation":"Feng B, Bai Z, Zhou X, Zhao Y, Xie Y, Huang X, Liu Y, Enbar T, Li R, Wang Y, Gao M, Bonati L, Peng M, Li W, Tao B, Charmoy M, Held W, Melenhorst J, <strong>Fan R</strong>, Guo Y, Tang L. The type 2 cytokine Fc–IL-4 revitalizes exhausted CD8+ T cells against cancer. Nature 2024, 634: 712-720. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39322665\" target=\"_blank\">PMID: 39322665</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485240\" target=\"_blank\">PMCID: PMC11485240</a>, <a href=\"https://doi.org/10.1038/s41586-024-07962-4\" target=\"_blank\">DOI: 10.1038/s41586-024-07962-4</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39322665","text":"The type 2 cytokine Fc–IL-4 revitalizes exhausted CD8+ T cells against cancer"}},{"pubMedUid":39317199,"doi":"10.1016/j.molcel.2024.08.032","id":null,"title":"Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions","citation":"Lee P, Sun Y, Soares A, Fai C, Picciotto M, <strong>Guo J</strong>. Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions. Molecular Cell 2024, 84: 3967-3978.e8. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39317199\" target=\"_blank\">PMID: 39317199</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490368\" target=\"_blank\">PMCID: PMC11490368</a>, <a href=\"https://doi.org/10.1016/j.molcel.2024.08.032\" target=\"_blank\">DOI: 10.1016/j.molcel.2024.08.032</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39317199","text":"Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions"}},{"pubMedUid":39322118,"doi":"10.1016/j.modpat.2024.100615","id":null,"title":"Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes—Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS])","citation":"Aakash F, Gisriel S, Zeidan A, Bennett J, Bejar R, Bewersdorf J, Borate U, Boultwood J, Brunner A, Buckstein R, Carraway H, Churpek J, Daver N, DeZern A, Efficace F, Fenaux P, Figueroa M, Garcia-Manero G, Gore S, Greenberg P, Griffiths E, <strong>Halene S</strong>, Hourigan C, Kim T, Kim N, Komrokji R, Kutchroo V, List A, Little R, Majeti R, Nazha A, Nimer S, Odenike O, Padron E, Patnaik M, Platzbecker U, Della Porta M, Roboz G, Sallman D, Santini V, Sanz G, Savona M, Sekeres M, Stahl M, Starczynowski D, Steensma D, Taylor J, Abdel-Wahab O, Wei A, Xie Z, Xu M, Hasserjian R, Loghavi S. Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes—Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS]). Modern Pathology 2024, 37: 100615. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39322118\" target=\"_blank\">PMID: 39322118</a>, <a href=\"https://doi.org/10.1016/j.modpat.2024.100615\" target=\"_blank\">DOI: 10.1016/j.modpat.2024.100615</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39322118","text":"Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes—Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS])"}},{"pubMedUid":39302113,"doi":"10.4049/jimmunol.2400331","id":null,"title":"IL-1β Induces Human Endothelial Surface Expression of IL-15 by Relieving let-7c-3p Suppression of Protein Translation.","citation":"Mullan C, Summer L, Lopez-Giraldez F, Tobiasova Z, Manes T, Yasothan S, Song G, Jane-Wit D, <strong>Saltzman W</strong>, Pober J. IL-1β Induces Human Endothelial Surface Expression of IL-15 by Relieving let-7c-3p Suppression of Protein Translation. The Journal Of Immunology 2024, 213: 1338-1348. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39302113\" target=\"_blank\">PMID: 39302113</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493510\" target=\"_blank\">PMCID: PMC11493510</a>, <a href=\"https://doi.org/10.4049/jimmunol.2400331\" target=\"_blank\">DOI: 10.4049/jimmunol.2400331</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39302113","text":"IL-1β Induces Human Endothelial Surface Expression of IL-15 by Relieving let-7c-3p Suppression of Protein Translation."}},{"pubMedUid":39372273,"doi":"10.3389/fmicb.2024.1421660","id":null,"title":"Diagnostic values of BALF metagenomic next-generation sequencing, BALF real-time PCR and serum BDG for Pneumocystis jirovecii pneumonia in HIV-infected patients","citation":"Chen Q, Chen X, Mo P, Chen L, Du Q, Hu W, Jiang Q, Zhang Z, Zhang Y, Guo Q, <strong>Xiong Y</strong>, Deng L. Diagnostic values of BALF metagenomic next-generation sequencing, BALF real-time PCR and serum BDG for Pneumocystis jirovecii pneumonia in HIV-infected patients. Frontiers In Microbiology 2024, 15: 1421660. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39372273\" target=\"_blank\">PMID: 39372273</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449763\" target=\"_blank\">PMCID: PMC11449763</a>, <a href=\"https://doi.org/10.3389/fmicb.2024.1421660\" target=\"_blank\">DOI: 10.3389/fmicb.2024.1421660</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39372273","text":"Diagnostic values of BALF metagenomic next-generation sequencing, BALF real-time PCR and serum BDG for Pneumocystis jirovecii pneumonia in HIV-infected patients"}},{"pubMedUid":39302833,"doi":"10.1016/j.celrep.2024.114777","id":null,"title":"A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals","citation":"Konstantinidou P, Loubalova Z, Ahrend F, Friman A, Almeida M, Poulet A, Horvat F, Wang Y, Losert W, Lorenzi H, Svoboda P, Miska E, <strong>van Wolfswinkel J</strong>, Haase A. A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals. Cell Reports 2024, 43: 114777. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39302833\" target=\"_blank\">PMID: 39302833</a>, <a href=\"https://doi.org/10.1016/j.celrep.2024.114777\" target=\"_blank\">DOI: 10.1016/j.celrep.2024.114777</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39302833","text":"A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals"}},{"pubMedUid":39298321,"doi":"10.1016/j.xpro.2024.103321","id":null,"title":"Protocol for detecting glycoRNAs using metabolic labeling and northwestern blot","citation":"Li L, Zhang N, Pantoja C, Wang Y, <strong>Lu J</strong>. Protocol for detecting glycoRNAs using metabolic labeling and northwestern blot. STAR Protocols 2024, 5: 103321. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39298321\" target=\"_blank\">PMID: 39298321</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426122\" target=\"_blank\">PMCID: PMC11426122</a>, <a href=\"https://doi.org/10.1016/j.xpro.2024.103321\" target=\"_blank\">DOI: 10.1016/j.xpro.2024.103321</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39298321","text":"Protocol for detecting glycoRNAs using metabolic labeling and northwestern blot"}},{"pubMedUid":39360312,"doi":"10.3389/fmicb.2024.1465811","id":null,"title":"Improved methods for genetic manipulation of the alkaliphile Halalkalibacterium halodurans","citation":"Wencker F, Lyon S, <strong>Breaker R</strong>. Improved methods for genetic manipulation of the alkaliphile Halalkalibacterium halodurans. Frontiers In Microbiology 2024, 15: 1465811. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39360312\" target=\"_blank\">PMID: 39360312</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445130\" target=\"_blank\">PMCID: PMC11445130</a>, <a href=\"https://doi.org/10.3389/fmicb.2024.1465811\" target=\"_blank\">DOI: 10.3389/fmicb.2024.1465811</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39360312","text":"Improved methods for genetic manipulation of the alkaliphile Halalkalibacterium halodurans"}},{"pubMedUid":39288189,"doi":"10.1371/journal.pcbi.1012469","id":null,"title":"Genome-wide association study between SARS-CoV-2 single nucleotide polymorphisms and virus copies during infections","citation":"Li K, Chaguza C, Stamp J, Chew Y, Chen N, Ferguson D, Pandya S, Kerantzas N, Schulz W, Initiative Y, Hahn A, Ogbunugafor C, Pitzer V, Crawford L, Weinberger D, <strong>Grubaugh N</strong>. Genome-wide association study between SARS-CoV-2 single nucleotide polymorphisms and virus copies during infections. PLOS Computational Biology 2024, 20: e1012469. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39288189\" target=\"_blank\">PMID: 39288189</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432881\" target=\"_blank\">PMCID: PMC11432881</a>, <a href=\"https://doi.org/10.1371/journal.pcbi.1012469\" target=\"_blank\">DOI: 10.1371/journal.pcbi.1012469</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39288189","text":"Genome-wide association study between SARS-CoV-2 single nucleotide polymorphisms and virus copies during infections"}},{"pubMedUid":39283942,"doi":"10.1371/journal.pbio.3002834","id":null,"title":"A new lineage nomenclature to aid genomic surveillance of dengue virus","citation":"Hill V, Cleemput S, Pereira J, Gifford R, Fonseca V, Tegally H, Brito A, Ribeiro G, de Souza V, Brcko I, Ribeiro I, De Lima I, Slavov S, Sampaio S, Elias M, Tran V, Kien D, Huynh T, Yacoub S, Dieng I, Salvato R, Wallau G, Gregianini T, Godinho F, Vogels C, Breban M, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara L, Faria N, Carrington C, Hanley K, Holmes E, Dumon W, Lima A, de Oliveira T, <strong>Grubaugh N</strong>. A new lineage nomenclature to aid genomic surveillance of dengue virus. PLOS Biology 2024, 22: e3002834. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39283942\" target=\"_blank\">PMID: 39283942</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426435\" target=\"_blank\">PMCID: PMC11426435</a>, <a href=\"https://doi.org/10.1371/journal.pbio.3002834\" target=\"_blank\">DOI: 10.1371/journal.pbio.3002834</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39283942","text":"A new lineage nomenclature to aid genomic surveillance of dengue virus"}},{"pubMedUid":0,"doi":"10.1158/1538-7445.pancreatic24-pr-05","id":null,"title":"Abstract PR-05: Endocrine beta-cell stress promotes pancreatic ductal adenocarcinoma through endocrine-exocrine cell crosstalk","citation":"Garcia C, Venkat A, McQuaid D, Agabiti S, Tong A, Cardone R, Kibbey R, <strong>Krishnaswamy S</strong>, Muzumdar M. Abstract PR-05: Endocrine beta-cell stress promotes pancreatic ductal adenocarcinoma through endocrine-exocrine cell crosstalk. Cancer Research 2024, 84: pr-05-pr-05. <a href=\"https://doi.org/10.1158/1538-7445.pancreatic24-pr-05\" target=\"_blank\">DOI: 10.1158/1538-7445.pancreatic24-pr-05</a>.","year":2024,"link":{"url":"https://doi.org/10.1158/1538-7445.pancreatic24-pr-05","text":"Abstract PR-05: Endocrine beta-cell stress promotes pancreatic ductal adenocarcinoma through endocrine-exocrine cell crosstalk"}},{"pubMedUid":0,"doi":"10.1158/1538-7445.pancreatic24-pr-01","id":null,"title":"Abstract PR-01: Systemic targeting of therapeutic RNA to pancreatic ductal adenocarcinoma via a novel, cell-penetrating, and nucleic acid-binding monoclonal antibody","citation":"Martinez-Saucedo D, Quijano E, Ianniello Z, Rackear M, Liu Y, Hegan D, Chen H, Shan X, Tseng R, Yugawa D, Pinto-Medici N, Chowdhury S, Bindra R, Robert M, <strong>Saltzman W</strong>, <strong>Escobar-Hoyos L</strong>, <strong>Glazer P</strong>. Abstract PR-01: Systemic targeting of therapeutic RNA to pancreatic ductal adenocarcinoma via a novel, cell-penetrating, and nucleic acid-binding monoclonal antibody. Cancer Research 2024, 84: pr-01-pr-01. <a href=\"https://doi.org/10.1158/1538-7445.pancreatic24-pr-01\" target=\"_blank\">DOI: 10.1158/1538-7445.pancreatic24-pr-01</a>.","year":2024,"link":{"url":"https://doi.org/10.1158/1538-7445.pancreatic24-pr-01","text":"Abstract PR-01: Systemic targeting of therapeutic RNA to pancreatic ductal adenocarcinoma via a novel, cell-penetrating, and nucleic acid-binding monoclonal antibody"}},{"pubMedUid":0,"doi":"10.1158/1538-7445.pancreatic24-c030","id":null,"title":"Abstract C030: Evolutionary and epistatic analyses reveal genic interactions with KRAS during malignant progression of pancreatic ductal adenocarcinoma","citation":"Fisk N, Song D, Moore M, Jensen C, Cannataro V, Nagib M, Mandell J, <strong>Escobar-Hoyos L</strong>, Kunstman J, Townsend J. Abstract C030: Evolutionary and epistatic analyses reveal genic interactions with KRAS during malignant progression of pancreatic ductal adenocarcinoma. Cancer Research 2024, 84: c030-c030. <a href=\"https://doi.org/10.1158/1538-7445.pancreatic24-c030\" target=\"_blank\">DOI: 10.1158/1538-7445.pancreatic24-c030</a>.","year":2024,"link":{"url":"https://doi.org/10.1158/1538-7445.pancreatic24-c030","text":"Abstract C030: Evolutionary and epistatic analyses reveal genic interactions with KRAS during malignant progression of pancreatic ductal adenocarcinoma"}},{"pubMedUid":0,"doi":"10.1158/1538-7445.pancreatic24-pr-11","id":null,"title":"Abstract PR-11: Altered mRNA splicing mimics chromosome loss and drives pancreatic cancer","citation":"Medici N, Martinez-Saucedo D, Lee D, Chu T, Tseng R, Cannataro V, Townsend J, Iacobuzio-Donahue C, Robert M, Abdel-Wahab O, Leach S, <strong>Escobar-Hoyos L</strong>. Abstract PR-11: Altered mRNA splicing mimics chromosome loss and drives pancreatic cancer. Cancer Research 2024, 84: pr-11-pr-11. <a href=\"https://doi.org/10.1158/1538-7445.pancreatic24-pr-11\" target=\"_blank\">DOI: 10.1158/1538-7445.pancreatic24-pr-11</a>.","year":2024,"link":{"url":"https://doi.org/10.1158/1538-7445.pancreatic24-pr-11","text":"Abstract PR-11: Altered mRNA splicing mimics chromosome loss and drives pancreatic cancer"}},{"pubMedUid":0,"doi":"10.1158/1538-7445.pancreatic24-b083","id":null,"title":"Abstract B083: The splicing factor SMNDC1 facilitates alternative RNA splicing, contributing to therapy resistance in pancreatic cancer","citation":"Siraj M, Zhang Y, Yugawa D, Giri G, Chakraborty P, Goda G, Rao G, Dominguez D, Kubicek S, Bhattacharya R, <strong>Escobar-Hoyos L</strong>, Mukherjee P. Abstract B083: The splicing factor SMNDC1 facilitates alternative RNA splicing, contributing to therapy resistance in pancreatic cancer. Cancer Research 2024, 84: b00-b00. <a href=\"https://doi.org/10.1158/1538-7445.pancreatic24-b083\" target=\"_blank\">DOI: 10.1158/1538-7445.pancreatic24-b083</a>.","year":2024,"link":{"url":"https://doi.org/10.1158/1538-7445.pancreatic24-b083","text":"Abstract B083: The splicing factor SMNDC1 facilitates alternative RNA splicing, contributing to therapy resistance in pancreatic cancer"}},{"pubMedUid":0,"doi":"10.1158/1538-7445.pancreatic24-b079","id":null,"title":"Abstract B079: Disassembly of embryonic keratin filaments promotes pancreatic cancer metastases","citation":"Yugawa D, Kawalerski R, Gonçalves M, Pan C, Tseng R, Roa-Pena L, Leiton C, Torre-Healy L, Boyle T, Chowdhury S, Snider N, Shroyer K, <strong>Escobar-Hoyos L</strong>. Abstract B079: Disassembly of embryonic keratin filaments promotes pancreatic cancer metastases. Cancer Research 2024, 84: b079-b079. <a href=\"https://doi.org/10.1158/1538-7445.pancreatic24-b079\" target=\"_blank\">DOI: 10.1158/1538-7445.pancreatic24-b079</a>.","year":2024,"link":{"url":"https://doi.org/10.1158/1538-7445.pancreatic24-b079","text":"Abstract B079: Disassembly of embryonic keratin filaments promotes pancreatic cancer metastases"}},{"pubMedUid":0,"doi":"10.1158/1538-7445.pancreatic24-c031","id":null,"title":"Abstract C031: Keratin 17 promotes pancreatic cancer chemoresistance through mitochondrial translocation and stabilization of dihydroorotate dehydrogenase (DHODH)","citation":"Lyu Y, Ghosh M, Pan C, Sarkar S, Rajacharya G, Chen B, Marchenko N, Singh P, Shroyer K, <strong>Escobar-Hoyos L</strong>. Abstract C031: Keratin 17 promotes pancreatic cancer chemoresistance through mitochondrial translocation and stabilization of dihydroorotate dehydrogenase (DHODH). Cancer Research 2024, 84: c031-c031. <a href=\"https://doi.org/10.1158/1538-7445.pancreatic24-c031\" target=\"_blank\">DOI: 10.1158/1538-7445.pancreatic24-c031</a>.","year":2024,"link":{"url":"https://doi.org/10.1158/1538-7445.pancreatic24-c031","text":"Abstract C031: Keratin 17 promotes pancreatic cancer chemoresistance through mitochondrial translocation and stabilization of dihydroorotate dehydrogenase (DHODH)"}},{"pubMedUid":0,"doi":"10.1158/1538-7445.pancreatic24-c070","id":null,"title":"Abstract C070: Keratin 17 and GATA6 correlate with diffusely infiltrative versus gland-forming components of PDAC: Uncovering the transitional state in pancreatic ductal adenocarcinoma","citation":"Delgado- Coka L, Nelson B, Horowitz M, Sarkar S, Marchenko N, Powers S, <strong>Escobar-Hoyos L</strong>, Shroyer K. Abstract C070: Keratin 17 and GATA6 correlate with diffusely infiltrative versus gland-forming components of PDAC: Uncovering the transitional state in pancreatic ductal adenocarcinoma. Cancer Research 2024, 84: c070-c070. <a href=\"https://doi.org/10.1158/1538-7445.pancreatic24-c070\" target=\"_blank\">DOI: 10.1158/1538-7445.pancreatic24-c070</a>.","year":2024,"link":{"url":"https://doi.org/10.1158/1538-7445.pancreatic24-c070","text":"Abstract C070: Keratin 17 and GATA6 correlate with diffusely infiltrative versus gland-forming components of PDAC: Uncovering the transitional state in pancreatic ductal adenocarcinoma"}},{"pubMedUid":0,"doi":"10.1183/13993003.congress-2024.oa953","id":null,"title":"Dissecting the immune cell niche in pulmonary sarcoidosis – CXCL10+ monocyte-derived macrophages are potential drivers of TH17.1 inflammation","citation":"Ruwisch J, Schupp J, Bartkute B, Artysh N, <strong>Kaminski N</strong>, Prasse A. Dissecting the immune cell niche in pulmonary sarcoidosis – CXCL10+ monocyte-derived macrophages are potential drivers of TH17.1 inflammation. 2024, oa953. <a href=\"https://doi.org/10.1183/13993003.congress-2024.oa953\" target=\"_blank\">DOI: 10.1183/13993003.congress-2024.oa953</a>.","year":2024,"link":{"url":"https://doi.org/10.1183/13993003.congress-2024.oa953","text":"Dissecting the immune cell niche in pulmonary sarcoidosis – CXCL10+ monocyte-derived macrophages are potential drivers of TH17.1 inflammation"}},{"pubMedUid":0,"doi":"10.1183/13993003.congress-2024.oa985","id":null,"title":"Single-nuclei RNA-seq reveals aberrant cell populations in restrictive allograft syndrome after lung transplantation","citation":"Leiber L, Christian L, Neubert L, Yilmaz H, Kamp J, Plucinski E, Welte T, Falk C, <strong>Kaminski N</strong>, Jonigk* D, Gottlieb* J, Schupp* J. Single-nuclei RNA-seq reveals aberrant cell populations in restrictive allograft syndrome after lung transplantation. 2024, oa985. <a href=\"https://doi.org/10.1183/13993003.congress-2024.oa985\" target=\"_blank\">DOI: 10.1183/13993003.congress-2024.oa985</a>.","year":2024,"link":{"url":"https://doi.org/10.1183/13993003.congress-2024.oa985","text":"Single-nuclei RNA-seq reveals aberrant cell populations in restrictive allograft syndrome after lung transplantation"}},{"pubMedUid":39261628,"doi":"10.1038/s42255-024-01121-9","id":null,"title":"Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency","citation":"Wang H, Vant J, Zhang A, Sanchez R, Wu Y, Micou M, Luczak V, Whiddon Z, Carlson N, Yu S, Jabbo M, Yoon S, Abushawish A, Ghassemian M, Masubuchi T, Gan Q, Watanabe S, Griffis E, <strong>Hammarlund M</strong>, Singharoy A, Pekkurnaz G. Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency. Nature Metabolism 2024, 6: 1712-1735. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39261628\" target=\"_blank\">PMID: 39261628</a>, <a href=\"https://doi.org/10.1038/s42255-024-01121-9\" target=\"_blank\">DOI: 10.1038/s42255-024-01121-9</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39261628","text":"Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency"}},{"pubMedUid":39258548,"doi":"10.1093/nar/gkae769","id":null,"title":"HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration","citation":"Jang S, Bedwell G, Singh S, Yu H, Arnarson B, Singh P, Radhakrishnan R, Douglas A, Ingram Z, Freniere C, Akkermans O, Sarafianos S, Ambrose Z, <strong>Xiong Y</strong>, Anekal P, Llopis P, KewalRamani V, Francis A, Engelman A. HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration. Nucleic Acids Research 2024, 52: 11060-11082. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39258548\" target=\"_blank\">PMID: 39258548</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472059\" target=\"_blank\">PMCID: PMC11472059</a>, <a href=\"https://doi.org/10.1093/nar/gkae769\" target=\"_blank\">DOI: 10.1093/nar/gkae769</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39258548","text":"HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration"}},{"pubMedUid":39241085,"doi":"10.1371/journal.pgen.1011100","id":null,"title":"RluA is the major mRNA pseudouridine synthase in Escherichia coli","citation":"Schaening-Burgos C, LeBlanc H, Fagre C, Li G, <strong>Gilbert W</strong>. RluA is the major mRNA pseudouridine synthase in Escherichia coli. PLOS Genetics 2024, 20: e1011100. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39241085\" target=\"_blank\">PMID: 39241085</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421799\" target=\"_blank\">PMCID: PMC11421799</a>, <a href=\"https://doi.org/10.1371/journal.pgen.1011100\" target=\"_blank\">DOI: 10.1371/journal.pgen.1011100</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39241085","text":"RluA is the major mRNA pseudouridine synthase in Escherichia coli"}},{"pubMedUid":39232138,"doi":"10.1038/s44161-024-00522-z","id":null,"title":"Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis","citation":"Joshi D, Coon B, Chakraborty R, Deng H, Yang Z, Babar M, Fernandez-Tussy P, Meredith E, Attanasio J, Joshi N, Traylor J, Orr A, <strong>Fernandez-Hernando C</strong>, Libreros S, Schwartz M. Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. Nature Cardiovascular Research 2024, 3: 1035-1048. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39232138\" target=\"_blank\">PMID: 39232138</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399086\" target=\"_blank\">PMCID: PMC11399086</a>, <a href=\"https://doi.org/10.1038/s44161-024-00522-z\" target=\"_blank\">DOI: 10.1038/s44161-024-00522-z</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39232138","text":"Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis"}},{"pubMedUid":39230381,"doi":"10.1063/5.0220479","id":null,"title":"Beyond the “spine of hydration”: Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures","citation":"Perets E, Konstantinovsky D, Santiago T, Videla P, Tremblay M, Velarde L, Batista V, Hammes-Schiffer S, <strong>Yan E</strong>. Beyond the “spine of hydration”: Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. The Journal Of Chemical Physics 2024, 161: 095104. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39230381\" target=\"_blank\">PMID: 39230381</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377083\" target=\"_blank\">PMCID: PMC11377083</a>, <a href=\"https://doi.org/10.1063/5.0220479\" target=\"_blank\">DOI: 10.1063/5.0220479</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39230381","text":"Beyond the “spine of hydration”: Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures"}},{"pubMedUid":39225418,"doi":"10.1080/10428194.2024.2393260","id":null,"title":"Aplastic anemia in association with multiple myeloma: clinical and pathophysiological insights","citation":"Muradashvili T, Liu Y, VanOudenhove J, Gu S, <strong>Krause D</strong>, Montanari F, Carlino M, Mancuso R, Stempel J, <strong>Halene S</strong>, Zeidan A, Podoltsev N, Neparidze N. Aplastic anemia in association with multiple myeloma: clinical and pathophysiological insights. Leukemia & Lymphoma 2024, ahead-of-print: 1-8. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39225418\" target=\"_blank\">PMID: 39225418</a>, <a href=\"https://doi.org/10.1080/10428194.2024.2393260\" target=\"_blank\">DOI: 10.1080/10428194.2024.2393260</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39225418","text":"Aplastic anemia in association with multiple myeloma: clinical and pathophysiological insights"}},{"pubMedUid":39101673,"doi":"10.1242/dev.202727","id":null,"title":"Akt is a mediator of artery specification during zebrafish development","citation":"Zhou W, Ghersi J, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, <strong>Sessa W</strong>, <strong>Nicoli S</strong>. Akt is a mediator of artery specification during zebrafish development. Development 2024, 151: dev202727. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39101673\" target=\"_blank\">PMID: 39101673</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441982\" target=\"_blank\">PMCID: PMC11441982</a>, <a href=\"https://doi.org/10.1242/dev.202727\" target=\"_blank\">DOI: 10.1242/dev.202727</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39101673","text":"Akt is a mediator of artery specification during zebrafish development"}},{"pubMedUid":39230702,"doi":"10.1093/bioinformatics/btae383","id":null,"title":"Predicting spatially resolved gene expression via tissue morphology using adaptive spatial GNNs","citation":"Song T, Cosatto E, Wang G, Kuang R, <strong>Gerstein M</strong>, Min M, Warrell J. Predicting spatially resolved gene expression via tissue morphology using adaptive spatial GNNs. Bioinformatics 2024, 40: ii111-ii119. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39230702\" target=\"_blank\">PMID: 39230702</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373608\" target=\"_blank\">PMCID: PMC11373608</a>, <a href=\"https://doi.org/10.1093/bioinformatics/btae383\" target=\"_blank\">DOI: 10.1093/bioinformatics/btae383</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39230702","text":"Predicting spatially resolved gene expression via tissue morphology using adaptive spatial GNNs"}},{"pubMedUid":0,"doi":"10.1016/s1569-1993(24)01125-1","id":null,"title":"285 Development of an electrochemiluminescence CFTR immunoassay","citation":"Browne J, Lee J, Peterec K, Garrison A, Bruscia E, <strong>Saltzman W</strong>, Egan M. 285 Development of an electrochemiluminescence CFTR immunoassay. Journal Of Cystic Fibrosis 2024, 23: s152. <a href=\"https://doi.org/10.1016/s1569-1993(24)01125-1\" target=\"_blank\">DOI: 10.1016/s1569-1993(24)01125-1</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/s1569-1993(24)01125-1","text":"285 Development of an electrochemiluminescence CFTR immunoassay"}},{"pubMedUid":0,"doi":"10.1016/s1569-1993(24)01235-9","id":null,"title":"395 Altered hematopoiesis and functional decline of hematopoietic stem cells in cystic fibrosis mice","citation":"Braga C, Mancuso R, Thompson E, Oez H, Gudneppannavar R, Zhang P, Huang P, Egan M, Murray T, <strong>Krause D</strong>, Bruscia E. 395 Altered hematopoiesis and functional decline of hematopoietic stem cells in cystic fibrosis mice. Journal Of Cystic Fibrosis 2024, 23: s207-s208. <a href=\"https://doi.org/10.1016/s1569-1993(24)01235-9\" target=\"_blank\">DOI: 10.1016/s1569-1993(24)01235-9</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/s1569-1993(24)01235-9","text":"395 Altered hematopoiesis and functional decline of hematopoietic stem cells in cystic fibrosis mice"}},{"pubMedUid":0,"doi":"10.1016/s1569-1993(24)01104-4","id":null,"title":"264 Poly(amine-co-ester) nanoparticle delivery of CFTR mRNA shows restoration of CFTR activity in cystic fibrosis airway models","citation":"Garrison A, Lee J, Browne J, Akhtar L, Peterec K, Suberi A, Eaton D, Ene M, Zhang X, Whang C, Oez H, Kizilirmak T, Bruscia E, Piotrowski-Daspit A, <strong>Saltzman W</strong>, Egan M. 264 Poly(amine-co-ester) nanoparticle delivery of CFTR mRNA shows restoration of CFTR activity in cystic fibrosis airway models. Journal Of Cystic Fibrosis 2024, 23: s140-s141. <a href=\"https://doi.org/10.1016/s1569-1993(24)01104-4\" target=\"_blank\">DOI: 10.1016/s1569-1993(24)01104-4</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/s1569-1993(24)01104-4","text":"264 Poly(amine-co-ester) nanoparticle delivery of CFTR mRNA shows restoration of CFTR activity in cystic fibrosis airway models"}},{"pubMedUid":0,"doi":"10.1016/s1569-1993(24)01135-4","id":null,"title":"295 Polymeric nanoparticles for in utero gene delivery in non-human primates","citation":"Piotrowski-Daspit A, Lynn A, Eaton D, Bracaglia L, Mortlock R, Tarantal A, Glazer P, <strong>Saltzman W</strong>. 295 Polymeric nanoparticles for in utero gene delivery in non-human primates. Journal Of Cystic Fibrosis 2024, 23: s157. <a href=\"https://doi.org/10.1016/s1569-1993(24)01135-4\" target=\"_blank\">DOI: 10.1016/s1569-1993(24)01135-4</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/s1569-1993(24)01135-4","text":"295 Polymeric nanoparticles for in utero gene delivery in non-human primates"}},{"pubMedUid":0,"doi":"10.1016/s2152-2650(24)01991-8","id":null,"title":"P-088 Evaluating T-cell Fitness Pre B-Cell Maturation Antigen (BCMA)-Targeted T-Cell Redirection Therapies (TRT) as a Predictive Marker for Efficacy/Toxicity in Relapsed/Refractory Multiple Myeloma (RRMM)","citation":"Theprungsirikul P, Yu M, Liu Y, Rall K, Matthews M, Neparidze N, Parker T, Browning S, Anderson T, Stevens E, Foss F, Gowda L, <strong>Pillai M</strong>, Isufi I, Seropian S, Mirza S, Bar N. P-088 Evaluating T-cell Fitness Pre B-Cell Maturation Antigen (BCMA)-Targeted T-Cell Redirection Therapies (TRT) as a Predictive Marker for Efficacy/Toxicity in Relapsed/Refractory Multiple Myeloma (RRMM). Clinical Lymphoma Myeloma & Leukemia 2024, 24: s92-s93. <a href=\"https://doi.org/10.1016/s2152-2650(24)01991-8\" target=\"_blank\">DOI: 10.1016/s2152-2650(24)01991-8</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/s2152-2650(24)01991-8","text":"P-088 Evaluating T-cell Fitness Pre B-Cell Maturation Antigen (BCMA)-Targeted T-Cell Redirection Therapies (TRT) as a Predictive Marker for Efficacy/Toxicity in Relapsed/Refractory Multiple Myeloma (RRMM)"}},{"pubMedUid":0,"doi":"10.1016/j.ajmo.2024.100078","id":null,"title":"Post-Acute sequelae of COVID-19 in pediatric patients within the United States: A Scoping Review","citation":"Miller C, Borre C, Green A, Funaro M, Oliveira C, <strong>Iwasaki A</strong>. Post-Acute sequelae of COVID-19 in pediatric patients within the United States: A Scoping Review. American Journal Of Medicine Open 2024, 100078. <a href=\"https://doi.org/10.1016/j.ajmo.2024.100078\" target=\"_blank\">DOI: 10.1016/j.ajmo.2024.100078</a>.","year":2024,"link":{"url":"https://doi.org/10.1016/j.ajmo.2024.100078","text":"Post-Acute sequelae of COVID-19 in pediatric patients within the United States: A Scoping Review"}},{"pubMedUid":39217658,"doi":"10.1016/j.gde.2024.102256","id":null,"title":"Massively parallel approaches for characterizing noncoding functional variation in human evolution","citation":"Rong S, Root E, <strong>Reilly S</strong>. Massively parallel approaches for characterizing noncoding functional variation in human evolution. Current Opinion In Genetics & Development 2024, 88: 102256. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39217658\" target=\"_blank\">PMID: 39217658</a>, <a href=\"https://doi.org/10.1016/j.gde.2024.102256\" target=\"_blank\">DOI: 10.1016/j.gde.2024.102256</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39217658","text":"Massively parallel approaches for characterizing noncoding functional variation in human evolution"}},{"pubMedUid":39192734,"doi":"10.1021/acschembio.4c00538","id":null,"title":"Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide","citation":"Moon M, Vock I, Streit A, Connor L, Senkina J, Ellman J, <strong>Simon M</strong>. Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide. ACS Chemical Biology 2024, 19: 2081-2086. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39192734\" target=\"_blank\">PMID: 39192734</a>, <a href=\"https://doi.org/10.1021/acschembio.4c00538\" target=\"_blank\">DOI: 10.1021/acschembio.4c00538</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39192734","text":"Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide"}},{"pubMedUid":39189851,"doi":"10.1164/rccm.202401-0065oc","id":null,"title":"Toll-like Receptor 9 Inhibition Mitigates Fibroproliferative Responses in Translational Models of Pulmonary Fibrosis.","citation":"Trujillo G, Regueiro-Ren A, Liu C, Hu B, Sun Y, Ahangari F, Fiorini V, Ishikawa G, Al Jumaily K, Khoury J, McGovern J, Lee C, Peng X, Pivarnik T, Sun H, Walia A, Woo S, Yu S, Antin-Ozerkis D, Sauler M, <strong>Kaminski N</strong>, Herzog E, Ryu C. Toll-like Receptor 9 Inhibition Mitigates Fibroproliferative Responses in Translational Models of Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2024 <a href=\"https://pubmed.ncbi.nlm.nih.gov/39189851\" target=\"_blank\">PMID: 39189851</a>, <a href=\"https://doi.org/10.1164/rccm.202401-0065oc\" target=\"_blank\">DOI: 10.1164/rccm.202401-0065oc</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39189851","text":"Toll-like Receptor 9 Inhibition Mitigates Fibroproliferative Responses in Translational Models of Pulmonary Fibrosis."}},{"pubMedUid":39190492,"doi":"10.1172/jci.insight.168476","id":null,"title":"miR-33 deletion in hepatocytes attenuates NAFLD-NASH-HCC progression","citation":"Fernández-Tussy P, Cardelo M, Zhang H, Sun J, Price N, Boutagy N, Goedeke L, Cadena-Sandoval M, Xirouchaki C, Brown W, Yang X, Pastor-Rojo O, Haeusler R, Bennett A, Tiganis T, <strong>Suárez Y</strong>, <strong>Fernández-Hernando C</strong>. miR-33 deletion in hepatocytes attenuates NAFLD-NASH-HCC progression. JCI Insight 2024, 9: e168476. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39190492\" target=\"_blank\">PMID: 39190492</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466198\" target=\"_blank\">PMCID: PMC11466198</a>, <a href=\"https://doi.org/10.1172/jci.insight.168476\" target=\"_blank\">DOI: 10.1172/jci.insight.168476</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39190492","text":"miR-33 deletion in hepatocytes attenuates NAFLD-NASH-HCC progression"}},{"pubMedUid":39186078,"doi":"10.1021/acs.jpcb.4c02859","id":null,"title":"Similarity Metrics for Subcellular Analysis of FRET Microscopy Videos","citation":"Burke M, Batista V, <strong>Davis C</strong>. Similarity Metrics for Subcellular Analysis of FRET Microscopy Videos. The Journal Of Physical Chemistry B 2024, 128: 8344-8354. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39186078\" target=\"_blank\">PMID: 39186078</a>, <a href=\"https://doi.org/10.1021/acs.jpcb.4c02859\" target=\"_blank\">DOI: 10.1021/acs.jpcb.4c02859</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39186078","text":"Similarity Metrics for Subcellular Analysis of FRET Microscopy Videos"}},{"pubMedUid":39174298,"doi":"10.1261/rna.080032.124","id":null,"title":"Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-Seq","citation":"Guo L, Grinko A, Olson S, Leipold A, Graveley B, Saliba A, <strong>Pyle A</strong>. Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-Seq. RNA 2024, 30: rna.080032.124. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39174298\" target=\"_blank\">PMID: 39174298</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482623\" target=\"_blank\">PMCID: PMC11482623</a>, <a href=\"https://doi.org/10.1261/rna.080032.124\" target=\"_blank\">DOI: 10.1261/rna.080032.124</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39174298","text":"Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-Seq"}},{"pubMedUid":39173635,"doi":"10.1016/j.xcrm.2024.101695","id":null,"title":"Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2","citation":"Bell J, Davies E, Brereton C, Vukmirovic M, Roberts J, Lunn K, Wickens L, Conforti F, Ridley R, Ceccato J, Sayer L, Johnston D, Vallejo A, Alzetani A, Jogai S, Marshall B, Fabre A, Richeldi L, Monk P, Skipp P, <strong>Kaminski N</strong>, Offer E, Wang Y, Davies D, Jones M. Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2. Cell Reports Medicine 2024, 5: 101695. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39173635\" target=\"_blank\">PMID: 39173635</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524965\" target=\"_blank\">PMCID: PMC11524965</a>, <a href=\"https://doi.org/10.1016/j.xcrm.2024.101695\" target=\"_blank\">DOI: 10.1016/j.xcrm.2024.101695</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39173635","text":"Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2"}},{"pubMedUid":39246333,"doi":"10.1039/d4sc03524k","id":null,"title":"Exfoliation of a metal–organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand","citation":"Logelin M, Schreiber E, Mercado B, Burke M, <strong>Davis C</strong>, Bartholomew A. Exfoliation of a metal–organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand. Chemical Science 2024, 15: 15198-15204. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39246333\" target=\"_blank\">PMID: 39246333</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378025\" target=\"_blank\">PMCID: PMC11378025</a>, <a href=\"https://doi.org/10.1039/d4sc03524k\" target=\"_blank\">DOI: 10.1039/d4sc03524k</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39246333","text":"Exfoliation of a metal–organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand"}},{"pubMedUid":38800659,"doi":"10.1002/pro.5219","id":null,"title":"Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling","citation":"Liu Z, Grigas A, Sumner J, Knab E, <strong>Davis C</strong>, O'Hern C. Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling. Protein Science 2024, 33 <a href=\"https://pubmed.ncbi.nlm.nih.gov/38800659\" target=\"_blank\">PMID: 38800659</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118665\" target=\"_blank\">PMCID: PMC11118665</a>, <a href=\"https://doi.org/10.1002/pro.5219\" target=\"_blank\">DOI: 10.1002/pro.5219</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/38800659","text":"Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling"}},{"pubMedUid":0,"doi":"10.1261/rna.080150.124","id":null,"title":"Corrigendum: Translation regulation by a guanidine-II riboswitch is highly tunable in sensitivity, dynamic range, and apparent cooperativity","citation":"Focht C, Hiller D, Grunseich S, <strong>Strobel S</strong>. Corrigendum: Translation regulation by a guanidine-II riboswitch is highly tunable in sensitivity, dynamic range, and apparent cooperativity. RNA 2024, 30: 1259-2-1259-2. <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389620\" target=\"_blank\">PMCID: PMC11389620</a>, <a href=\"https://doi.org/10.1261/rna.080150.124\" target=\"_blank\">DOI: 10.1261/rna.080150.124</a>.","year":2024,"link":{"url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389620","text":"Corrigendum: Translation regulation by a guanidine-II riboswitch is highly tunable in sensitivity, dynamic range, and apparent cooperativity"}},{"pubMedUid":38717443,"doi":"10.1164/rccm.202306-0979oc","id":null,"title":"Single-Cell Profiling Reveals Immune Aberrations in Progressive Idiopathic Pulmonary Fibrosis.","citation":"Unterman A, Zhao A, Neumark N, Schupp J, Ahangari F, Cosme C, Sharma P, Flint J, Stein Y, Ryu C, Ishikawa G, Sumida T, Gomez J, Herazo-Maya J, Dela Cruz C, Herzog E, <strong>Kaminski N</strong>. Single-Cell Profiling Reveals Immune Aberrations in Progressive Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2024, 210: 484-496. <a href=\"https://pubmed.ncbi.nlm.nih.gov/38717443\" target=\"_blank\">PMID: 38717443</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351796\" target=\"_blank\">PMCID: PMC11351796</a>, <a href=\"https://doi.org/10.1164/rccm.202306-0979oc\" target=\"_blank\">DOI: 10.1164/rccm.202306-0979oc</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/38717443","text":"Single-Cell Profiling Reveals Immune Aberrations in Progressive Idiopathic Pulmonary Fibrosis."}},{"pubMedUid":39151428,"doi":"10.1016/j.stemcr.2024.07.004","id":null,"title":"Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells","citation":"Kim S, Seo S, Stein-O’Brien G, Jaishankar A, Ogawa K, Micali N, Luria V, Karger A, Wang Y, Kim H, Hyde T, Kleinman J, Voss T, Fertig E, Shin J, Bürli R, Cross A, Brandon N, Weinberger D, Chenoweth J, Hoeppner D, <strong>Sestan N</strong>, Colantuoni C, McKay R. Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells. Stem Cell Reports 2024, 19: 1336-1350. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39151428\" target=\"_blank\">PMID: 39151428</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411333\" target=\"_blank\">PMCID: PMC11411333</a>, <a href=\"https://doi.org/10.1016/j.stemcr.2024.07.004\" target=\"_blank\">DOI: 10.1016/j.stemcr.2024.07.004</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39151428","text":"Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells"}},{"pubMedUid":39389673,"doi":"10.1016/bs.mie.2024.07.006","id":null,"title":"A user guide to RT-based mapping of RNA modifications","citation":"Fang D, Babich J, Dangelmaier E, Wall V, <strong>Nachtergaele S</strong>. A user guide to RT-based mapping of RNA modifications. Methods In Enzymology 2024, 705: 51-79. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39389673\" target=\"_blank\">PMID: 39389673</a>, <a href=\"https://doi.org/10.1016/bs.mie.2024.07.006\" target=\"_blank\">DOI: 10.1016/bs.mie.2024.07.006</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39389673","text":"A user guide to RT-based mapping of RNA modifications"}},{"pubMedUid":39205939,"doi":"10.3389/fgene.2024.1468891","id":null,"title":"Editorial: Synthetic biology and therapeutic applications of transfer RNA","citation":"<strong>Söll D</strong>, O’Donoghue P, Heinemann I. Editorial: Synthetic biology and therapeutic applications of transfer RNA. Frontiers In Genetics 2024, 15: 1468891. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39205939\" target=\"_blank\">PMID: 39205939</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349731\" target=\"_blank\">PMCID: PMC11349731</a>, <a href=\"https://doi.org/10.3389/fgene.2024.1468891\" target=\"_blank\">DOI: 10.3389/fgene.2024.1468891</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39205939","text":"Editorial: Synthetic biology and therapeutic applications of transfer RNA"}},{"pubMedUid":39134804,"doi":"10.1038/s41423-024-01207-0","id":null,"title":"CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors","citation":"Peng L, Sferruzza G, Yang L, Zhou L, <strong>Chen S</strong>. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cellular & Molecular Immunology 2024, 21: 1089-1108. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39134804\" target=\"_blank\">PMID: 39134804</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442786\" target=\"_blank\">PMCID: PMC11442786</a>, <a href=\"https://doi.org/10.1038/s41423-024-01207-0\" target=\"_blank\">DOI: 10.1038/s41423-024-01207-0</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39134804","text":"CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors"}},{"pubMedUid":39134824,"doi":"10.1038/s41576-024-00760-8","id":null,"title":"DNA methylation in mammalian development and disease","citation":"<strong>Smith Z</strong>, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nature Reviews Genetics 2024, 1-24. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39134824\" target=\"_blank\">PMID: 39134824</a>, <a href=\"https://doi.org/10.1038/s41576-024-00760-8\" target=\"_blank\">DOI: 10.1038/s41576-024-00760-8</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39134824","text":"DNA methylation in mammalian development and disease"}},{"pubMedUid":39121194,"doi":"10.1126/sciimmunol.adk9872","id":null,"title":"The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity","citation":"Marin-Lopez A, Huck J, Esterly A, Azcutia V, Rosen C, Garcia-Milian R, Sefik E, Vidal-Pedrola G, Raduwan H, Chen T, Arora G, <strong>Halene S</strong>, Shaw A, Palm N, <strong>Flavell R</strong>, Parkos C, Thangamani S, Ring A, Fikrig E. The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity. Science Immunology 2024, 9: eadk9872. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39121194\" target=\"_blank\">PMID: 39121194</a>, <a href=\"https://doi.org/10.1126/sciimmunol.adk9872\" target=\"_blank\">DOI: 10.1126/sciimmunol.adk9872</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39121194","text":"The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity"}},{"pubMedUid":39123049,"doi":"10.1038/s41587-024-02353-6","id":null,"title":"Fast, sensitive detection of protein homologs using deep dense retrieval","citation":"Hong L, Hu Z, Sun S, Tang X, Wang J, Tan Q, Zheng L, Wang S, Xu S, King I, <strong>Gerstein M</strong>, Li Y. Fast, sensitive detection of protein homologs using deep dense retrieval. Nature Biotechnology 2024, 1-13. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39123049\" target=\"_blank\">PMID: 39123049</a>, <a href=\"https://doi.org/10.1038/s41587-024-02353-6\" target=\"_blank\">DOI: 10.1038/s41587-024-02353-6</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39123049","text":"Fast, sensitive detection of protein homologs using deep dense retrieval"}},{"pubMedUid":39122965,"doi":"10.1038/s41591-024-03173-6","id":null,"title":"Long COVID science, research and policy","citation":"Al-Aly Z, Davis H, McCorkell L, Soares L, Wulf-Hanson S, <strong>Iwasaki A</strong>, Topol E. Long COVID science, research and policy. Nature Medicine 2024, 30: 2148-2164. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39122965\" target=\"_blank\">PMID: 39122965</a>, <a href=\"https://doi.org/10.1038/s41591-024-03173-6\" target=\"_blank\">DOI: 10.1038/s41591-024-03173-6</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39122965","text":"Long COVID science, research and policy"}},{"pubMedUid":39122142,"doi":"10.1016/j.jid.2024.07.019","id":null,"title":"Enhanced intratumoral delivery of immunomodulator MPLA via hyperbranched polyglycerol-coated biodegradable nanoparticles","citation":"Chang J, Shin K, Lewis J, Suh H, Lee J, Damsky W, Xu S, Bosenberg M, <strong>Saltzman W</strong>, Girardi M. Enhanced intratumoral delivery of immunomodulator MPLA via hyperbranched polyglycerol-coated biodegradable nanoparticles. Journal Of Investigative Dermatology 2024 <a href=\"https://pubmed.ncbi.nlm.nih.gov/39122142\" target=\"_blank\">PMID: 39122142</a>, <a href=\"https://doi.org/10.1016/j.jid.2024.07.019\" target=\"_blank\">DOI: 10.1016/j.jid.2024.07.019</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39122142","text":"Enhanced intratumoral delivery of immunomodulator MPLA via hyperbranched polyglycerol-coated biodegradable nanoparticles"}},{"pubMedUid":39117421,"doi":"10.1136/thorax-2023-221095","id":null,"title":"Plasma collagen neoepitopes are associated with multiorgan disease in the ACCESS and GRADS sarcoidosis cohorts","citation":"Sand J, Jessen H, Leeming D, Yu S, Lee C, Hu B, Sun Y, Adams T, Pivarnik T, Liu A, Woo S, McGovern J, Fiorini V, Saber T, Higuero-Sevilla J, Gulati M, <strong>Kaminski N</strong>, Damsky W, Shaw A, Mohanty S, Goobie G, Zhang Y, Herzog E, Ryu C. Plasma collagen neoepitopes are associated with multiorgan disease in the ACCESS and GRADS sarcoidosis cohorts. Thorax 2024, 79: thorax-2023-221095. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39117421\" target=\"_blank\">PMID: 39117421</a>, <a href=\"https://doi.org/10.1136/thorax-2023-221095\" target=\"_blank\">DOI: 10.1136/thorax-2023-221095</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39117421","text":"Plasma collagen neoepitopes are associated with multiorgan disease in the ACCESS and GRADS sarcoidosis cohorts"}},{"pubMedUid":39107154,"doi":"10.1016/j.jcf.2024.07.009","id":null,"title":"Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation","citation":"Gupta A, Barone C, Quijano E, Piotrowski-Daspit A, Perera J, Riccardi A, Jamali H, Turchick A, Zao W, <strong>Saltzman W</strong>, <strong>Glazer P</strong>, Egan M. Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation. Journal Of Cystic Fibrosis 2024 <a href=\"https://pubmed.ncbi.nlm.nih.gov/39107154\" target=\"_blank\">PMID: 39107154</a>, <a href=\"https://doi.org/10.1016/j.jcf.2024.07.009\" target=\"_blank\">DOI: 10.1016/j.jcf.2024.07.009</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39107154","text":"Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation"}},{"pubMedUid":0,"doi":"10.1093/noajnl/vdae090.014","id":null,"title":"BSLM-03 BRANCHED-CHAIN KETO ACIDS PROMOTE AN IMMUNE-SUPPRESSIVE AND NEURODEGENERATIVE MICROENVIRONMENT IN LEPTOMENINGEAL DISEASE","citation":"Khaled M, Ren Y, Kundalia R, Alhaddad H, Chen Z, Wallace G, Evernden B, Ospina O, Hall M, Liu M, Darville L, Izumi V, Chen Y, Pilon-Thomas S, Stewart P, Koomen J, Corallo S, Jain M, <strong>Robinson T</strong>, Locke F, Forsyth P, Smalley I. BSLM-03 BRANCHED-CHAIN KETO ACIDS PROMOTE AN IMMUNE-SUPPRESSIVE AND NEURODEGENERATIVE MICROENVIRONMENT IN LEPTOMENINGEAL DISEASE. Neuro-Oncology Advances 2024, 6: i5-i5. <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296858\" target=\"_blank\">PMCID: PMC11296858</a>, <a href=\"https://doi.org/10.1093/noajnl/vdae090.014\" target=\"_blank\">DOI: 10.1093/noajnl/vdae090.014</a>.","year":2024,"link":{"url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296858","text":"BSLM-03 BRANCHED-CHAIN KETO ACIDS PROMOTE AN IMMUNE-SUPPRESSIVE AND NEURODEGENERATIVE MICROENVIRONMENT IN LEPTOMENINGEAL DISEASE"}},{"pubMedUid":38900452,"doi":"10.1001/jamaoncol.2024.1575","id":null,"title":"Perioperative Modified FOLFIRINOX for Resectable Pancreatic Cancer","citation":"Cecchini M, Salem R, Robert M, Czerniak S, Blaha O, Zelterman D, Rajaei M, Townsend J, Cai G, Chowdhury S, Yugawa D, Tseng R, Arbelaez C, Jiao J, Shroyer K, Thumar J, Kortmansky J, Zaheer W, Fischbach N, Persico J, Stein S, Khan S, Cha C, Billingsley K, Kunstman J, Johung K, Wiess C, Muzumdar M, Spickard E, Aushev V, Laliotis G, Jurdi A, Liu M, <strong>Escobar-Hoyos L</strong>, Lacy J. Perioperative Modified FOLFIRINOX for Resectable Pancreatic Cancer. JAMA Oncology 2024, 10: 1027-1035. <a href=\"https://pubmed.ncbi.nlm.nih.gov/38900452\" target=\"_blank\">PMID: 38900452</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190830\" target=\"_blank\">PMCID: PMC11190830</a>, <a href=\"https://doi.org/10.1001/jamaoncol.2024.1575\" target=\"_blank\">DOI: 10.1001/jamaoncol.2024.1575</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/38900452","text":"Perioperative Modified FOLFIRINOX for Resectable Pancreatic Cancer"}},{"pubMedUid":39195572,"doi":"10.3390/ncrna10040043","id":null,"title":"Challenges in LncRNA Biology: Views and Opinions","citation":"Adjeroh D, Zhou X, Paschoal A, <strong>Dimitrova N</strong>, Derevyanchuk E, Shkurat T, Loeb J, Martinez I, Lipovich L. Challenges in LncRNA Biology: Views and Opinions. Non-Coding RNA 2024, 10: 43. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39195572\" target=\"_blank\">PMID: 39195572</a>, <a href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357347\" target=\"_blank\">PMCID: PMC11357347</a>, <a href=\"https://doi.org/10.3390/ncrna10040043\" target=\"_blank\">DOI: 10.3390/ncrna10040043</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39195572","text":"Challenges in LncRNA Biology: Views and Opinions"}},{"pubMedUid":39075235,"doi":"10.1038/s41564-024-01765-z","id":null,"title":"SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity","citation":"Peña-Hernández M, Alfajaro M, Filler R, Moriyama M, Keeler E, Ranglin Z, Kong Y, Mao T, Menasche B, Mankowski M, Zhao Z, Vogels C, Hahn A, Kalinich C, Zhang S, Huston N, Wan H, Araujo-Tavares R, Lindenbach B, Homer R, <strong>Pyle A</strong>, Martinez D, <strong>Grubaugh N</strong>, Israelow B, <strong>Iwasaki A</strong>, <strong>Wilen C</strong>. SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity. Nature Microbiology 2024, 9: 2038-2050. <a href=\"https://pubmed.ncbi.nlm.nih.gov/39075235\" target=\"_blank\">PMID: 39075235</a>, <a href=\"https://doi.org/10.1038/s41564-024-01765-z\" target=\"_blank\">DOI: 10.1038/s41564-024-01765-z</a>.","year":2024,"link":{"url":"https://pubmed.ncbi.nlm.nih.gov/39075235","text":"SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity"}}],"pageNumber":1,"pageSize":100,"totalItemCount":18579},"organizationId":110394,"filterParameters":{"searchQuery":null,"authors":[],"startDate":null,"endDate":null,"orderBy":null},"featuredPublications":[]}}],"sidebarComponents":[],"contextNavigation":{"siteTitle":"Yale Center for RNA Science and Medicine","isTopLevelPage":true,"navigationItems":[{"link":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/about","text":"About the Center"},"type":"pageLink","isActive":false,"isHomeLink":false},{"link":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/staff","text":"Faculty"},"type":"pageLink","isActive":false,"isHomeLink":false},{"link":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/programming","text":"RNA Center Programming"},"type":"subLevelLink","isActive":false,"isHomeLink":false},{"link":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/rnaclub","text":"RNA Club"},"type":"pageLink","isActive":false,"isHomeLink":false},{"link":{"isCurrentLink":true,"rootOrganizationPrefix":null,"currentLinkUrl":"/rnacenter/publications","url":"/rnacenter/publications","text":"Publications"},"type":"pageLink","isActive":true,"isHomeLink":false},{"link":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/news","text":"News & Events"},"type":"subLevelLink","isActive":false,"isHomeLink":false},{"link":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/opportunities","text":"Job Opportunities"},"type":"pageLink","isActive":false,"isHomeLink":false},{"link":{"isCurrentLink":false,"rootOrganizationPrefix":null,"currentLinkUrl":null,"url":"/rnacenter/joan-and-tom-steitz-rna-fellows-program","text":"Joan and Tom Steitz RNA Fellows Program"},"type":"pageLink","isActive":false,"isHomeLink":false}]}}</script> <script>window['applicationSettings'] = {"shouldShowSuppressedImageWarnings":false,"shouldShowBugReportButton":false,"shouldShowDownloadAsWordButton":false,"captchaKey":"a46dfca5-98da-4ec7-83e2-16980be648d0","facebookShareUrl":"https://www.facebook.com/dialog/share?app_id=604142276782606&display=popup&href=","isSearchFeedbackEnabled":true,"isSearchAnalyticsEnabled":true,"siteimproveScriptUrl":"https://siteimproveanalytics.com/js/siteanalyze_373.js","radarKey":"prj_live_pk_e9bc38cc9ac871b02332c0d599d7a893c03ad94d","mediaStatistics":{"baseUrl":"https://media-statistics-prod.ysmdevs.com","apiKey":"249c64e3-d0cc-45ed-97a0-5d3106411485","isEnabled":true}};</script> <noscript id="modern__LOADABLE_REQUIRED_CHUNKS__">[2243,430,3053]</noscript><noscript id="modern__LOADABLE_REQUIRED_CHUNKS___ext">{"namedChunks":["modules-page-components-ComponentWrapper","modules-organization-components-OrganizationPublicationListContainer","modules-footer-components-Footer"]}</noscript> <script async data-chunk="main" src="https://cdn1.medicine.yale.edu/build/main.es2015.e71226adbc7ac9e6afaf.js" type="module" crossorigin="anonymous"></script> <script async data-chunk="modules-organization-components-OrganizationPublicationListContainer" src="https://cdn1.medicine.yale.edu/build/2243.es2015.9e66211ab4f469996a21.js" type="module" crossorigin="anonymous"></script> <script async data-chunk="modules-organization-components-OrganizationPublicationListContainer" src="https://cdn1.medicine.yale.edu/build/430.es2015.21413efed5ab6086179d.js" type="module" crossorigin="anonymous"></script> <script async data-chunk="modules-footer-components-Footer" src="https://cdn1.medicine.yale.edu/build/3053.es2015.404cba0e717f410cb74c.js" type="module" crossorigin="anonymous"></script> <link rel="stylesheet" href="https://use.typekit.net/eqf4dwf.css" as="style" crossorigin> <!--<![endif]--> <script async type="text/plain" data-cookiecategory="analytics" src="https://siteimproveanalytics.com/js/siteanalyze_373.js"></script> </body> </html>