CINXE.COM

Search results for: gamma radiation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gamma radiation</title> <meta name="description" content="Search results for: gamma radiation"> <meta name="keywords" content="gamma radiation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gamma radiation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gamma radiation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1722</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gamma radiation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1722</span> Effect of Gamma Radiation on Bromophenol Blue Dyed Films as Dosimeter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20R.%20Oberoi">Priyanka R. Oberoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20B.%20Maurya"> Chandra B. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20A.%20Mahanwar"> Prakash A. Mahanwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionizing radiation can cause a drastic change in the physical and chemical properties of the material exposed. Numerous medical devices are sterilized by ionizing radiation. In the current research paper, an attempt was made to develop precise and inexpensive polymeric film dosimeter which can be used for controlling radiation dosage. Polymeric film containing (pH sensitive dye) indicator dye Bromophenol blue (BPB) was casted to check the effect of Gamma radiation on its optical and physical properties. The film was exposed to gamma radiation at 4 kGy/hr in the range of 0 to 300 kGy at an interval of 50 kGy. Release of vinyl acetate from an emulsion on high radiation reacts with the BPB fading the color of the film from blue to light blue and then finally colorless, indicating a change in pH from basic to acidic form. The change was characterized by using CIE l*a*b*, ultra-violet spectroscopy and FT-IR respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bromophenol%20blue" title="bromophenol blue">bromophenol blue</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimeter" title=" dosimeter"> dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a> </p> <a href="https://publications.waset.org/abstracts/55840/effect-of-gamma-radiation-on-bromophenol-blue-dyed-films-as-dosimeter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1721</span> Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azuraida%20Amat">Azuraida Amat</a>, <a href="https://publications.waset.org/abstracts/search?q=Halimah%20Mohamed%20Kamari"> Halimah Mohamed Kamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Azurahanim%20Che%20Abdullah"> Che Azurahanim Che Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishak%20Mansor"> Ishak Mansor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different compositions [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes a profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defects in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give the smallest Eg and show less changes in FTIR spectra after gamma irradiation, which indicate that this glass is more resistant to gamma radiation compared to other glasses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boro-tellurite" title="boro-tellurite">boro-tellurite</a>, <a href="https://publications.waset.org/abstracts/search?q=bismuth" title=" bismuth"> bismuth</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/25457/gamma-irradiation-effect-on-structural-and-optical-properties-of-bismuth-boro-tellurite-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1720</span> Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Abbas%20Pour%20Khotbehsara">F. Abbas Pour Khotbehsara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Salehpour"> B. Salehpour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kianvash"> A. Kianvash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20ray%20irradiation" title="gamma ray irradiation">gamma ray irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20ferrite" title=" hard ferrite"> hard ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20coefficient" title=" magnetic coefficient"> magnetic coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20material" title=" magnetic material"> magnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/12934/gamma-irradiation-effects-on-the-magnetic-properties-of-hard-ferrites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1719</span> Design of a Remote Radiation Sensing Module Based on Portable Gamma Spectrometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Gil%20Kim">Young Gil Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Min%20Park"> Hye Min Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Jong%20Park"> Chan Jong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Koan%20Sik%20Joo"> Koan Sik Joo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A personal gamma spectrometer has to be sensitive, pocket-sized, and carriable on the users. To serve these requirements, we developed the SiPM-based portable radiation detectors. The prototype uses a Ce:GAGG scintillator coupled to a silicon photomultiplier and a radio frequency(RF) module to measure gamma-ray, and can be accessed wirelessly or remotely by mobile equipment. The prototype device consumes roughly 4.4W, weighs about 180g (including battery), and measures 5.0 7.0. It is able to achieve 5.8% FWHM energy resolution at 662keV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ce%3AGAGG" title="Ce:GAGG">Ce:GAGG</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-ray" title=" gamma-ray"> gamma-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency" title=" radio frequency"> radio frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20photomultiplier" title=" silicon photomultiplier"> silicon photomultiplier</a> </p> <a href="https://publications.waset.org/abstracts/66154/design-of-a-remote-radiation-sensing-module-based-on-portable-gamma-spectrometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1718</span> The MCNP Simulation of Prompt Gamma-Ray Neutron Activation Analysis at TRR-1/M1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sangaroon">S. Sangaroon</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Ratanatongchai"> W. Ratanatongchai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khaweerat"> S. Khaweerat</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Picha"> R. Picha</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Channuie"> J. Channuie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prompt gamma-ray neutron activation analysis system (PGNAA) has been constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/ Modification 1 (TRR-1/M1) since 1989. It was designed for the reactor operating power at 1.2 MW. The purpose of the system is for an elemental and isotopic analytical. In 2016, the PGNAA facility will be developed to reduce the leakage and background of neutrons and gamma radiation at the sample and detector position. In this work, the designed condition of these facilities is carried out based on the Monte Carlo method using MCNP5 computer code. The conditions with different modification materials, thicknesses and structure of the PGNAA facility, including gamma collimator and radiation shields of the detector, are simulated, and then the optimal structure parameters with a significantly improved performance of the facility are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MCNP%20simulation" title="MCNP simulation">MCNP simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=PGNAA" title=" PGNAA"> PGNAA</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20research%20reactor%20%28TRR-1%2FM1%29" title=" Thai research reactor (TRR-1/M1)"> Thai research reactor (TRR-1/M1)</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20shielding" title=" radiation shielding"> radiation shielding</a> </p> <a href="https://publications.waset.org/abstracts/41895/the-mcnp-simulation-of-prompt-gamma-ray-neutron-activation-analysis-at-trr-1m1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1717</span> Simulation of Gamma Rays Attenuation Coefficient for Some common Shielding Materials Using Monte Carlo Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherief%20Houria">Cherief Houria</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouka%20Mourad"> Fouka Mourad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the simulation of the radiation attenuation is carried out in a photon detector consisting of different common shielding material using a Monte Carlo program called PTM. The aim of the study is to investigate the effect of atomic weight and the thickness of shielding materials on the gamma radiation attenuation ability. The linear attenuation coefficients of Aluminum (Al), Iron (Fe), and lead (Pb) elements were evaluated at photons energy of 661:7KeV that are considered to be emitted from a standard radioactive point source Cs 137. The experimental measurements have been performed for three materials to obtain these linear attenuation coefficients, using a Gamma NaI(Tl) scintillation detector. Our results have been compared with the simulation results of the linear attenuation coefficient using the XCOM database and Geant4 codes and reveal that they are well agreed with both simulation data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20photon" title="gamma photon">gamma photon</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20program" title=" Monte Carlo program"> Monte Carlo program</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20attenuation" title=" radiation attenuation"> radiation attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20material" title=" shielding material"> shielding material</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20linear%20attenuation%20coefficient" title=" the linear attenuation coefficient"> the linear attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/132610/simulation-of-gamma-rays-attenuation-coefficient-for-some-common-shielding-materials-using-monte-carlo-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1716</span> Effect of Gamma Radiation, Age of Paddy, Rice Variety and Packaging Materials on the Surface Free Fatty Acid Content of Brown Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zenaida%20M.%20De%20Guzman">Zenaida M. De Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Davison%20T.%20Baldos"> Davison T. Baldos</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilberto%20T.%20Diano"> Gilberto T. Diano</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeff%20Darren%20G.%20Valdez"> Jeff Darren G. Valdez</a>, <a href="https://publications.waset.org/abstracts/search?q=Levelyn%20Mitos%20Tolentino"> Levelyn Mitos Tolentino</a>, <a href="https://publications.waset.org/abstracts/search?q=Gina%20B.%20Abrera"> Gina B. Abrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Lucia%20Cobar"> Ma. Lucia Cobar</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Gragasin"> Cristina Gragasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the factors affecting the quality of brown rice is the free fatty acid produced from surface lipids. It is the purpose of the study to determine the effect of gamma radiation, packaging materials and age and variety of paddy on the surface free fatty acid content using two different brown rice variety, namely, RC-160 and SL-7, packed in two different packaging materials, namely, regular polyethylene bag and Super bag irradiated at 0.5 and 1.0 kGy. Brown rice was produced from 2-week old (Lot 1) and two months old paddy (Lot 2) and irradiated at the Co-60 Multipurpose Irradiation Facility, PNRI. The surface Free Fatty Acid (FFA) content was obtained following the AOCS Official Method (1982) with some modifications. The experiment was laid out using Split-Plot Randomized Control Block Design. Analysis of variance (ANOVA) showed that the effects of variety, age of paddy and interactions of both were both significant. The surface FFA of SL-7 variety was found to be significantly higher than the RC-160 variety for all radiation doses. Likewise, Lot 2 was observed to have higher surface FFA than Lot 1 regardless of packaging material and radiation dose. It was observed that the surface FFA of both varieties packed in both packaging materials increased significantly up to the 2nd or 3rd month of storage and remains the same until the 5th month. On the other hand, radiation dose did not significantly affect the surface free fatty acid content for all storage/sampling time while the packaging material significantly interacts with the type of variety and radiation dose. Gamma radiation was proven to have no significant effect on the surface free fatty acid at 0.5 and 1.0 kGy and further analyses are needed to determine the action of gamma radiation to the activity of enzyme (lipase-induced and microbial) responsible for the production of other lipolytic products and the effect of gamma radiation on the integrity of the packaging materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown%20rice" title="brown rice">brown rice</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acid" title=" free fatty acid"> free fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20bag" title=" polyethylene bag "> polyethylene bag </a> </p> <a href="https://publications.waset.org/abstracts/58253/effect-of-gamma-radiation-age-of-paddy-rice-variety-and-packaging-materials-on-the-surface-free-fatty-acid-content-of-brown-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1715</span> Radiation Effects in the PVDF/Graphene Oxide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20V.%20Pereira">Juliana V. Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20S.%20M.%20Batista"> Adriana S. M. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=Jefferson%20P.%20Nascimento"> Jefferson P. Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Clasc%C3%ADdia%20A.%20Furtado"> Clascídia A. Furtado</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20O.%20Faria"> Luiz O. Faria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH<sub>2</sub>-CF<sub>2</sub>]<sub>n</sub> main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (T<sub>M</sub>) and melting latent heat (L<sub>M</sub>) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title="gamma irradiation">gamma irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a> </p> <a href="https://publications.waset.org/abstracts/66621/radiation-effects-in-the-pvdfgraphene-oxide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1714</span> Investigating Nanocrystalline CaF2:Tm for Carbon Beam and Gamma Radiation Dosimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Sharma">Kanika Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaila%20Bahl"> Shaila Bahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Birendra%20Singh"> Birendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Kumar"> Pratik Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Lochab"> S. P. Lochab</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandey"> A. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, initially nano-particles of CaF2 were prepared by the chemical co-precipitation method and later the prepared salt was activated by thulium (0.1 mol%) using the combustion technique. The final product was characterized and confirmed by X-Ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the thermoluminescence (TL) properties of the nanophosphor were studied by irradiating it with 1.25 MeV of gamma radiation and 65 MeV of carbon (C6+) ion beam. For gamma rays, two prominent TL peaks were observed with a low temperature peak at around 1070C and a high temperature peak at around 1570C. Furthermore, the nanophosphor maintained a linear TL response for the entire range of studied doses i.e. 10 Gy to 2000 Gy for both the temperature peaks. Moreover, when the nanophosphor was irradiated with 65 MeV of C6+ ion beam the shape and structure of the glow curves remained spectacularly similar and the nanophosphor displayed a linear TL response for the full range of studied fluences i.e. 5*1010 ions/cm2 to 1 *1012 ions/ cm2. Finally, various tests like reproducibility test and batch homogeneity were also carried out to define the final product. Thus, co-precipitation method followed by combustion technique was successful in effectively producing dosimetric grade CaF2:Tm for dosimetry of gamma as well as carbon (C6+) beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title="gamma radiation">gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20beam" title=" ion beam"> ion beam</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title=" nanocrystalline"> nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dosimetry" title=" radiation dosimetry"> radiation dosimetry</a> </p> <a href="https://publications.waset.org/abstracts/91069/investigating-nanocrystalline-caf2tm-for-carbon-beam-and-gamma-radiation-dosimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1713</span> Synthesis and Thermoluminescence Study of Nanocrystalline Radiation Dosimeter CaSO₄:Ce/Sm/Dy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anant%20Pandey">Anant Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Sharma"> Kanika Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibha%20Chopra"> Vibha Chopra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaila%20Bahl"> Shaila Bahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Kumar"> Pratik Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Lochab"> S. P. Lochab</a>, <a href="https://publications.waset.org/abstracts/search?q=Birendra%20Singh"> Birendra Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the thermoluminescence (TL) properties of nanocrystalline CaSO₄ activated by Ce, Sm, and Dy. TL properties are investigated by chiefly changing the dopant element and also by varying the concentration of the dopant elements (from 0.05 mol % to 0.5 mol %) so as to establish the optimized dopant concentration for each of the activators. The method of salt preparation used is the typical chemical co-precipitation method and the technique used for characterization of the prepared samples is the X-Ray Diffraction (XRD) technique. Further, the phosphors are irradiated with gamma radiation from Co-60 (1.25 MeV) source (dose range- 30 Gy to 500 Gy). The optimized concentration (vis-a-vis TL peak intensity) of activator for CaSO₄:Ce is found to be 0.2 mol %, for CaSO₄:Sm it is 0.1 mol % and for CaSO₄:Dy it is 0.2 mol %. Further, the primary study of the TL response curves for all the three phosphors confirms linearity in the studied dose range (i.e., 30 Gy to 500 Gy). Finally, CaSO₄:Dy was also studied for its energy dependence property which plays an important role in defining the utility of a phosphor for dosimetric applications. The range of doses used for the energy dependence study was from 30 Gy to 500 Gy from Cs-137 (0.662 MeV). The nano-phosphors showed potential to be used as radiation dosimeter in the studied range of gamma radiation and thus must be studied for a wider range of doses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title="gamma radiation">gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title=" nanocrystalline"> nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dosimetry" title=" radiation dosimetry"> radiation dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence"> thermoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/89842/synthesis-and-thermoluminescence-study-of-nanocrystalline-radiation-dosimeter-caso4cesmdy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1712</span> Design of a Portable Shielding System for a Newly Installed NaI(Tl) Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayesha%20Tahsin">Mayesha Tahsin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.S.%20Mollah"> A.S. Mollah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, a 1.5x1.5 inch NaI(Tl) detector based gamma-ray spectroscopy system has been installed in the laboratory of the Nuclear Science and Engineering Department of the Military Institute of Science and Technology for radioactivity detection purposes. The newly installed NaI(Tl) detector has a circular lead shield of 22 mm width. An important consideration of any gamma-ray spectroscopy is the minimization of natural background radiation not originating from the radioactive sample that is being measured. Natural background gamma-ray radiation comes from naturally occurring or man-made radionuclides in the environment or from cosmic sources. Moreover, the main problem with this system is that it is not suitable for measurements of radioactivity with a large sample container like Petridish or Marinelli beaker geometry. When any laboratory installs a new detector or/and new shield, it “must” first carry out quality and performance tests for the detector and shield. This paper describes a new portable shielding system with lead that can reduce the background radiation. Intensity of gamma radiation after passing the shielding will be calculated using shielding equation I=Ioe-µx where Io is initial intensity of the gamma source, I is intensity after passing through the shield, µ is linear attenuation coefficient of the shielding material, and x is the thickness of the shielding material. The height and width of the shielding will be selected in order to accommodate the large sample container. The detector will be surrounded by a 4π-geometry low activity lead shield. An additional 1.5 mm thick shield of tin and 1 mm thick shield of copper covering the inner part of the lead shielding will be added in order to remove the presence of characteristic X-rays from the lead shield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shield" title="shield">shield</a>, <a href="https://publications.waset.org/abstracts/search?q=NaI%20%28Tl%29%20detector" title=" NaI (Tl) detector"> NaI (Tl) detector</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity" title=" intensity"> intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20attenuation%20coefficient" title=" linear attenuation coefficient"> linear attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/146333/design-of-a-portable-shielding-system-for-a-newly-installed-naitl-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1711</span> Assessment of Gamma Radiation Exposure of Soils Associated with Granitic Rocks in Kapıdağ Peninsula, Turkey </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buket%20Canbaz%20%C3%96zt%C3%BCrk">Buket Canbaz Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20F%C3%BCsun%20%C3%87am"> N. Füsun Çam</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCnseli%20Yaprak"> Günseli Yaprak</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Candan"> Osman Candan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The external terrestrial radiation exposure is related to the types of rock from which the soils originate. Higher radiation levels are associated with igneous rocks, such as granite, and lower levels with sedimentary rocks. Therefore, this study aims to assess the gamma radiation exposure of soils associated with granitic rocks in Kapıdağ Peninsula, Turkey. In the ongoing study, a comprehensive survey carried out systematically as a part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters (238U, 232Th and 40K) in the surface soil samples and the granitic rocks carried out by means of NaI(Tl) gamma-ray spectrometry system. To evaluate the radiological hazard of the natural radioactivity, the absorbed dose rate (D), the annual effective dose rate (AED), the radium equivalent activity (Raeq) and the external (Hex) hazard index were calculated according to the UNSCEAR 2000 report. The corresponding absorbed dose rates in air from all natural radionuclides were always much lower than 200 nGy h-1 and did not exceed the typical range of worldwide average values noticed in the UNSCEAR (2000) report. Furthermore, the correlation between soil and granitic rock samples were utilized, and external gamma radiation exposure distribution was mapped in Kapıdağ Peninsula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20absorbed%20dose" title="external absorbed dose">external absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=granitic%20rocks" title=" granitic rocks"> granitic rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Kap%C4%B1da%C4%9F%20Peninsula" title=" Kapıdağ Peninsula"> Kapıdağ Peninsula</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/60866/assessment-of-gamma-radiation-exposure-of-soils-associated-with-granitic-rocks-in-kapidag-peninsula-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1710</span> Efficacy of Gamma Radiation on the Productivity of Bactrocera oleae Gmelin (Diptera: Tephritidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ahmadi">Mehrdad Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Babaie"> Mohamad Babaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Osouli"> Shiva Osouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Salehi"> Bahareh Salehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Kalantaraian"> Nadia Kalantaraian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive fruit fly, <em>Bactrocera oleae </em>Gmelin (Diptera: Tephritidae), is one of the most serious pests in olive orchards in growing province in Iran. The female lay eggs in green olive fruit and larvae hatch inside the fruit, where they feed upon the fruit matters. One of the main ecologically friendly and species-specific systems of pest control is the sterile insect technique (SIT) which is based on the release of large numbers of sterilized insects. The objective of our work was to develop a SIT against <em>B. oleae</em> by using of gamma radiation for the laboratory and field trial in Iran. Oviposition of female mated by irradiated males is one of the main parameters to determine achievement of SIT. To conclude the sterile dose, pupae were placed under 0 to 160 Gy of gamma radiation. The main factor in SIT is the productivity of females which are mated by irradiated males. The emerged adults from irradiated pupae were mated with untreated adults of the same age by confining them inside the transparent cages. The fecundity of the irradiated males mated with non-irradiated females was decreased with the increasing radiation dose level. It was observed that the number of eggs and also the percentage of the egg hatching was significantly (P &lt; 0.05) affected in either IM x NF crosses compared with NM x NF crosses in F<sub>1</sub> generation at all doses. Also, the statistical analysis showed a significant difference (P &lt; 0.05) in the mean number of eggs laid between irradiated and non-irradiated females crossed with irradiated males, which suggests that the males were susceptible to gamma radiation. The egg hatching percentage declined markedly with the increase of the radiation dose of the treated males in mating trials which demonstrated that egg hatch rate was dose dependent. Our results specified that gamma radiation affects the longevity of irradiated <em>B. oleae</em> larvae (established from irradiated pupae) and significantly increased their larval duration. Results show the gamma radiation, and SIT can be used successfully against olive fruit flies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertility" title="fertility">fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20fruit%20fly" title=" olive fruit fly"> olive fruit fly</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=sterile%20insect%20technique" title=" sterile insect technique"> sterile insect technique</a> </p> <a href="https://publications.waset.org/abstracts/75753/efficacy-of-gamma-radiation-on-the-productivity-of-bactrocera-oleae-gmelin-diptera-tephritidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1709</span> Thermoluminescence Characteristic of Nanocrystalline BaSO4 Doped with Europium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20S.%20Raheja">Kanika S. Raheja</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandey"> A. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaila%20Bahl"> Shaila Bahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Kumar"> Pratik Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Lochab"> S. P. Lochab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of undertaking for this paper is the study of BaSO4 nanophosphor doped with Europium in which mainly the concentration of the rare earth impurity Eu (0.05, 0.1, 0.2, 0.5, and 1 mol %) has been varied. A comparative study of the thermoluminescence(TL) properties of the given nanophosphor has also been done using a well-known standard dosimetry material i.e. TLD-100.Firstly, a number of samples were prepared successfully by the chemical co-precipitation method. The whole lot was then compared to a well established standard material (TLD-100) for its TL sensitivity property. BaSO4:Eu ( 0.2 mol%) showed the highest sensitivity out of the lot. It was also found that when compared to the standard TLD-100, BaSo4:Eu (0.2mol%) showed surprisingly high sensitivity for a large range of doses. The TL response curve for all prepared samples has also been studied over a wide range of doses i.e 10Gy to 2kGy for gamma radiation. Almost all the samples of BaSO4:Eu showed a remarkable linearity for a broad range of doses, which is a characteristic feature of a fine TL dosimeter. The graph remained linear even beyond 1kGy for gamma radiation. Thus, the given nanophosphor has been successfully optimised for the concentration of the dopant material to achieve its highest TL sensitivity. Further, the comparative study with the standard material revealed that the current optimised sample shows an astonishingly better TL sensitivity and a phenomenal linear response curve for an incredibly wide range of doses for gamma radiation (Co-60) as compared to the standard TLD-100, which makes the current optimised BaSo4:Eu quite promising as an efficient gamma radiation dosimeter. Lastly, the present phosphor has been optimised for its annealing temperature to acquire the best results while also studying its fading and reusability properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title="gamma radiation">gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dosimetry" title=" radiation dosimetry"> radiation dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence "> thermoluminescence </a> </p> <a href="https://publications.waset.org/abstracts/33558/thermoluminescence-characteristic-of-nanocrystalline-baso4-doped-with-europium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1708</span> Study on the Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamrun%20N.%20Keya">Kamrun N. Keya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20A.%20Kona"> Nasrin A. Kona</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruhul%20A.%20Khan"> Ruhul A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo fiber (BF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, bamboo composites were manufactured using different percentages of fiber, which were varying from 25-65% on the total weight of the composites. To fabricate the BF/PP composites untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical, and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact, and bending properties were observed precisely. Maximum tensile strength (TS) and bending strength (BS) were found for 50 wt% fiber composites, 65 MPa, and 85.5 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 5.73 GPa and 7.85 GPa respectively. The BF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (i.e. 10, 20, 30, 40, 50 and 60 kGy doses). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 30.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray) gamma dose showed better mechanical properties than other doses. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated BF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated BF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fiber" title="bamboo fiber">bamboo fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20molding%20technique" title=" compression molding technique"> compression molding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/111997/study-on-the-mechanical-properties-of-bamboo-fiber-reinforced-polypropylene-based-composites-effect-of-gamma-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1707</span> In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Nourmohammadi">Z. Nourmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Farahani"> F. Farahani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shaker"> M. Shaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aloe" title="aloe">aloe</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzyme" title=" antioxidant enzyme"> antioxidant enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variation" title=" genetic variation"> genetic variation</a> </p> <a href="https://publications.waset.org/abstracts/35879/in-vitro-propagation-of-aloe-vera-and-aloe-littoralis-plants-gamma-radiation-biochemical-and-genetic-changes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1706</span> Gamma Irradiation Effects on the Crystal Structural and Transport Properties of Bi₂Te₃ Thin Films Grown by Thermal Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoroog%20Alraddadi">Shoroog Alraddadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of gamma irradiation on the structural and transport properties of Bismuth Telluride (Bi₂Te₃) thin films was investigated. Bi₂Te₃ thin films with thicknesses varying from 100 nm to 500 nm were grown using thermal evaporation in vacuum 10⁻⁵ Torr. The films were irradiated by Gamma radiation with different doses (50, 200, and 500 kGy). The crystal structure of Bi₂Te₃ thin films was studied by XRD diffraction. It was showed that the degree of crystallinity of films increases as the doses increase. Furthermore, it was found that the electrical conductivity of Bi₂Te₃ increase as the doses increase. From these results, it can be concluding that the effect of radiation on the structural and transport properties was positive at the levels of irradiation used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth%20telluride" title="bismuth telluride">bismuth telluride</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title=" gamma irradiation"> gamma irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20properties" title=" transport properties"> transport properties</a> </p> <a href="https://publications.waset.org/abstracts/99624/gamma-irradiation-effects-on-the-crystal-structural-and-transport-properties-of-bi2te3-thin-films-grown-by-thermal-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1705</span> Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamrun%20N.%20Keya">Kamrun N. Keya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20A.%20Kona"> Nasrin A. Kona</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruhul%20A.%20Khan"> Ruhul A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse%20%28SCB%29" title="sugarcane bagasse (SCB)">sugarcane bagasse (SCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20%28PP%29" title=" polypropylene (PP)"> polypropylene (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope%20%28SEM%29" title=" scanning electron microscope (SEM)"> scanning electron microscope (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20uptake%20tests%20and%20soil%20degradation" title=" water uptake tests and soil degradation"> water uptake tests and soil degradation</a> </p> <a href="https://publications.waset.org/abstracts/111993/fabrication-and-mechanical-characterization-of-sugarcane-bagasse-fiber-reinforced-polypropylene-based-composites-effect-of-gamma-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1704</span> Determination of Full Energy Peak Efficiency and Resolution of Nai (Tl) Detector Using Gamma-ray Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jibon%20Sharma">Jibon Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Alakjyoti%20Patowary"> Alakjyoti Patowary</a>, <a href="https://publications.waset.org/abstracts/search?q=Moirangthem%20Nara%20Singh"> Moirangthem Nara Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In experimental research it is very much essential to obtain the quality control of the system used for the experiment. NaI (Tl) scintillation detector is the most commonly used in radiation and medical physics for measurement of the gamma ray activity of various samples. In addition, the scintillation detector has a lot of applications in the elemental analysis of various compounds, alloys using activation analysis. In each application for quantitative analysis, it is very much essential to know the detection efficiency and resolution for different gamma energies. In this work, the energy dependence of efficiency and resolution of NaI (Tl) detector using gamma-ray spectroscopy are investigated. Different photon energies of 356.01 keV,511keV,661.60keV,1170 keV,1274.53 keV and 1330 keV are obtained from four radioactive sources (133Ba,22Na,137Cs and 60 Co) used in these studies. Values of full energy peak efficiencies of these gamma energies are found to be respectively 58.46%,10.15%,14.39%,1.4%,3.27% and 1.31%. The values of percent resolution for above different gamma ray energies are found to be 11.27%,7.27%,6.38%,5.17%,4.86% and 4.74% respectively. It was found that the efficiency of the detector exponentially decreases with energy and the resolution of the detector is directly proportional to the energy of gamma-ray. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=naI%20%28Tl%29%20gamma-ray%20spectrometer" title="naI (Tl) gamma-ray spectrometer">naI (Tl) gamma-ray spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20energy%20peak%20efficiency" title=" full energy peak efficiency"> full energy peak efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20sources" title=" radioactive sources"> radioactive sources</a> </p> <a href="https://publications.waset.org/abstracts/158239/determination-of-full-energy-peak-efficiency-and-resolution-of-nai-tl-detector-using-gamma-ray-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1703</span> Investigation of Threshold Voltage Shift in Gamma Irradiated N-Channel and P-Channel MOS Transistors of CD4007</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Boorboor">S. Boorboor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20H.%20Feghhi"> S. A. H. Feghhi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jafari"> H. Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ionizing radiations cause different kinds of damages in electronic components. MOSFETs, most common transistors in today&rsquo;s digital and analog circuits, are severely sensitive to TID damage. In this work, the threshold voltage shift of CD4007 device, which is an integrated circuit including P-channel and N-channel MOS transistors, was investigated for low dose gamma irradiation under different gate bias voltages. We used linear extrapolation method to extract threshold voltage from I<sub>D</sub>-V<sub>G</sub> characteristic curve. The results showed that the threshold voltage shift was approximately 27.5 mV/Gy for N-channel and 3.5 mV/Gy for P-channel transistors at the gate bias of |9 V| after irradiation by Co-60 gamma ray source. Although the sensitivity of the devices under test were strongly dependent to biasing condition and transistor type, the threshold voltage shifted linearly versus accumulated dose in all cases. The overall results show that the application of CD4007 as an electronic buffer in a radiation therapy system is limited by TID damage. However, this integrated circuit can be used as a cheap and sensitive radiation dosimeter for accumulated dose measurement in radiation therapy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=threshold%20voltage%20shift" title="threshold voltage shift">threshold voltage shift</a>, <a href="https://publications.waset.org/abstracts/search?q=MOS%20transistor" title=" MOS transistor"> MOS transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20extrapolation" title=" linear extrapolation"> linear extrapolation</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title=" gamma irradiation"> gamma irradiation</a> </p> <a href="https://publications.waset.org/abstracts/55355/investigation-of-threshold-voltage-shift-in-gamma-irradiated-n-channel-and-p-channel-mos-transistors-of-cd4007" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1702</span> Effects of Gamma Irradiation on Chemical and Antioxidant Properties of Iranian Native Fresh Barberry Fruit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Berenji%20Ardestani">Samira Berenji Ardestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Akhavan"> Hamid Reza Akhavan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gamma irradiation greatly reduces the potential microbiological risk of fresh fruits, resulting in improved microbial safety as well as extending their shelf life. The effects of 0.5-2 kGy gamma doses on some physicochemical, microbial and sensory properties of fresh barberry fruits (<em>Berberis vulgaris</em>) during refrigerated storage for 40 days were evaluated. The total anthocyanin and total phenolic contents of barberry fruits decreased in a dose-dependent manner immediately after irradiation and after subsequent storage. In general, it is recommended that, according to the effect of gamma radiation on physicochemical, microbial and sensorial characteristics, doses of 1.25-2 kGy could be used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20property" title="antioxidant property">antioxidant property</a>, <a href="https://publications.waset.org/abstracts/search?q=barberry%20fruit" title=" barberry fruit"> barberry fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20properties" title=" chemical properties"> chemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title=" gamma irradiation"> gamma irradiation</a> </p> <a href="https://publications.waset.org/abstracts/81364/effects-of-gamma-irradiation-on-chemical-and-antioxidant-properties-of-iranian-native-fresh-barberry-fruit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1701</span> Simulation of the Collimator Plug Design for Prompt-Gamma Activation Analysis in the IEA-R1 Nuclear Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20G.%20Santos">Carlos G. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederico%20A.%20Genezini"> Frederico A. Genezini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Dos%20Santos"> A. P. Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yorivaz"> H. Yorivaz</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20T.%20D.%20Siqueira"> P. T. D. Siqueira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Prompt-Gamma Activation Analysis (PGAA) is a valuable technique for investigating the elemental composition of various samples. However, the installation of a PGAA system entails specific conditions such as filtering the neutron beam according to the target and providing adequate shielding for both users and detectors. These requirements incur substantial costs, exceeding $100,000, including manpower. Nevertheless, a cost-effective approach involves leveraging an existing neutron beam facility to create a hybrid system integrating PGAA and Neutron Tomography (NT). The IEA-R1 nuclear reactor at IPEN/USP possesses an NT facility with suitable conditions for adapting and implementing a PGAA device. The NT facility offers a thermal flux slightly colder and provides shielding for user protection. The key additional requirement involves designing detector shielding to mitigate high gamma ray background and safeguard the HPGe detector from neutron-induced damage. This study employs Monte Carlo simulations with the MCNP6 code to optimize the collimator plug for PGAA within the IEA-R1 NT facility. Three collimator models are proposed and simulated to assess their effectiveness in shielding gamma and neutron radiation from nucleon fission. The aim is to achieve a focused prompt-gamma signal while shielding ambient gamma radiation. The simulation results indicate that one of the proposed designs is particularly suitable for the PGAA-NT hybrid system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MCNP6.1" title="MCNP6.1">MCNP6.1</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron" title=" neutron"> neutron</a>, <a href="https://publications.waset.org/abstracts/search?q=prompt-gamma%20ray" title=" prompt-gamma ray"> prompt-gamma ray</a>, <a href="https://publications.waset.org/abstracts/search?q=prompt-gamma%20activation%20analysis" title=" prompt-gamma activation analysis"> prompt-gamma activation analysis</a> </p> <a href="https://publications.waset.org/abstracts/179265/simulation-of-the-collimator-plug-design-for-prompt-gamma-activation-analysis-in-the-iea-r1-nuclear-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1700</span> Radiation Protection Study for the Assessment of Mixed Fields Ionizing Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avram%20Irina">Avram Irina</a>, <a href="https://publications.waset.org/abstracts/search?q=Coiciu%20Eugenia-Mihaela"> Coiciu Eugenia-Mihaela</a>, <a href="https://publications.waset.org/abstracts/search?q=Popovici%20Mara-Georgiana"> Popovici Mara-Georgiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitu%20Iani%20Octavian"> Mitu Iani Octavian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ELI-NP stands as a cutting-edge facility globally, hosting unique radiological setups. It conducts experiments leveraging high-power lasers capable of producing extremely brief 10 PW pulses on two fronts. Moreover, it houses an exceptional gamma beam system with distinctive spectral characteristics. The facility hosts various experiments across designated experimental areas, encompassing ultra-short high-power laser tests, high-intensity gamma beam trials, and combined experiments utilizing both setups. The facility hosts a dosimetry laboratory, which recently obtained accreditation, where the radiation safety group employs a host of different types of detectors for monitoring the personnel, environment, and public exposure to ionizing radiation generated in experiments performed. ELI-NP's design was shaped by radiological protection assessments conducted through Monte Carlo simulations. The poster exemplifies an assessment conducted using the FLUKA code in an experimental area where a high-power laser system is implemented, and the future diagnostic system for variable energy gamma beams will soon be operational. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection" title="radiation protection">radiation protection</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=FLUKA" title=" FLUKA"> FLUKA</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title=" dosimetry"> dosimetry</a> </p> <a href="https://publications.waset.org/abstracts/179173/radiation-protection-study-for-the-assessment-of-mixed-fields-ionizing-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1699</span> Design and Simulation of a Radiation Spectrometer Using Scintillation Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20K.%20Saib">Waleed K. Saib</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulsalam%20M.%20Alhawsawi"> Abdulsalam M. Alhawsawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Banoqitah"> Essam Banoqitah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of this research is to design a radiation spectrometer using LSO scintillation detector coupled to a C series of SiPM (silicon photomultiplier). The device can be used to detects gamma and X-ray radiation. This device is also designed to estimates the activity of the source contamination. The SiPM will detect light in the visible range above the threshold and read them as counts. Three gamma sources were used for these experiments Cs-137, Am-241 and Co-60 with various activities. These sources are applied for four experiments operating the SiPM as a spectrometer, energy resolution, pile-up set and efficiency. The SiPM is connected to a MCA to perform as a spectrometer. Cerium doped Lutetium Silicate (Lu₂SiO₅) with light yield 26000 photons/Mev coupled with the SiPM. As a result, all the main features of the Cs-137, Am-241 and Co-60 are identified in MCA. The experiment shows how photon energy and probability of interaction are inversely related. Total attenuation reduces as photon energy increases. An analytical calculation was made to obtain the FWHM resolution for each gamma source. The FWHM resolution for Am-241 (59 keV) is 28.75 %, for Cs-137 (662 keV) is 7.85 %, for Co-60 (1173 keV) is 4.46 % and for Co-60 (1332 keV) is 3.70%. Moreover, the experiment shows that the dead time and counts number decreased when the pile-up rejection was disabled and the FWHM decreased when the pile-up was enabled. The efficiencies were calculated at four different distances from the detector 2, 4, 8 and 16 cm. The detection efficiency was observed to declined exponentially with increasing distance from the detector face. Conclusively, the SiPM board operated with an LSO scintillator crystal as a spectrometer. The SiPM energy resolution for the three gamma sources used was a decent comparison to other PMTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PMT" title="PMT">PMT</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20detection" title=" radiation detection"> radiation detection</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillation%20detectors" title=" scintillation detectors"> scintillation detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20photomultiplier" title=" silicon photomultiplier"> silicon photomultiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrometer" title=" spectrometer"> spectrometer</a> </p> <a href="https://publications.waset.org/abstracts/144058/design-and-simulation-of-a-radiation-spectrometer-using-scintillation-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1698</span> Protective Role of Curcumin against Ionising Radiation of Gamma Ray</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turban%20Kar">Turban Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maitree%20Bhattacharyya"> Maitree Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Curcumin, a dietary antioxidant has been identified as a wonder molecule to possess therapeutic properties protecting the cellular macromolecules from oxidative damage. In our experimental study, we have explored the effectiveness of curcumin in protecting the structural paradigm of Human Serum Albumin (HSA) when exposed to gamma irradiation. HSA, being an important transport protein of the circulatory system, is involved in binding of variety of metabolites, drugs, dyes and fatty acids due to the presence of hydrophobic pockets inside the structure. HSA is also actively involved in the transportation of drugs and metabolites to their targets, because of its long half-life and regulation of osmotic blood pressure. Gamma rays, in its increasing concentration, results in structural alteration of the protein and superoxide radical generation. Curcumin, on the other hand, mitigates the damage, which has been evidenced in the following experiments. Our study explores the possibility for protection by curcumin during the molecular and conformational changes of HSA when exposed to gamma irradiation. We used a combination of spectroscopic methods to probe the conformational ensemble of the irradiated HSA and finally evaluated the extent of restoration by curcumin. SDS - PAGE indicated the formation of cross linked aggregates as a consequence of increasing exposure of gamma radiation. CD and FTIR spectroscopy inferred significant decrease in alpha helix content of HSA from 57% to 15% with increasing radiation doses. Steady state and time resolved fluorescence studies complemented the spectroscopic measurements when lifetime decay was significantly reduced from 6.35 ns to 0.37 ns. Hydrophobic and bityrosine study showed the effectiveness of curcumin for protection against radiation induced free radical generation. Moreover, bityrosine and hydrophobic profiling of gamma irradiated HSA in presence and absence of curcumin provided light on the formation of ROS species generation and the protective (magical) role of curcumin. The molecular mechanism of curcumin protection to HSA from gamma irradiation is yet unknown, though a possible explanation has been proposed in this work using Thioflavin T assay. It was elucidated, that when HSA is irradiated at low dose of gamma radiation in presence of curcumin, it is capable of retaining the native characteristic properties to a greater extent indicating stabilization of molecular structure. Thus, curcumin may be utilized as a therapeutic strategy to protect cellular proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bityrosine%20content" title="Bityrosine content">Bityrosine content</a>, <a href="https://publications.waset.org/abstracts/search?q=conformational%20change" title=" conformational change"> conformational change</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20serum%20albumin" title=" human serum albumin"> human serum albumin</a> </p> <a href="https://publications.waset.org/abstracts/77682/protective-role-of-curcumin-against-ionising-radiation-of-gamma-ray" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1697</span> Evaluation of Radio Protective Potential of Indian Bamboo Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansi%20Patel">Mansi Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Mehta"> Priti Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20leaf%20extract" title="bamboo leaf extract">bamboo leaf extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Cytokinesis%20blocked%20micronuclei%20%28CBMN%29%20assay" title=" Cytokinesis blocked micronuclei (CBMN) assay"> Cytokinesis blocked micronuclei (CBMN) assay</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20protector" title=" radio protector"> radio protector</a> </p> <a href="https://publications.waset.org/abstracts/99802/evaluation-of-radio-protective-potential-of-indian-bamboo-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1696</span> Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamrun%20N.%20Keya">Kamrun N. Keya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20A.%20Kona"> Nasrin A. Kona</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruhul%20A.%20Khan"> Ruhul A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PALF" title="PALF">PALF</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20molding%20technique" title=" compression molding technique"> compression molding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/111995/study-on-the-fabrication-and-mechanical-characterization-of-pineapple-fiber-reinforced-unsaturated-polyester-resin-based-composites-effect-of-gamma-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1695</span> Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Murshed%20Bhuyan">Md Murshed Bhuyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirotaka%20Okabe"> Hirotaka Okabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiki%20Hidaka"> Yoshiki Hidaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiro%20Hara"> Kazuhiro Hara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=vinyl%20phosphonic%20acid" title=" vinyl phosphonic acid"> vinyl phosphonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20adsorption" title=" metal adsorption"> metal adsorption</a> </p> <a href="https://publications.waset.org/abstracts/94101/competitive-adsorption-of-al-ga-and-in-by-gamma-irradiation-induced-pectin-acrylamide-vinyl-phosphonic-acid-hydrogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1694</span> Ameliorating Effects of Silver Nanoparticles Synthesized Using Chlorophytum borivillianum against Gamma Radiation Induced Oxidative Stress in Testis of Swiss Albino Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruchi%20Vyas">Ruchi Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Singh"> Sanjay Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Sisodia"> Rashmi Sisodia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Chlorophytum borivillianum </em>root extract (CBE) was chosen as a reducing agent to fabricate silver nanoparticles with the aim of studying its radioprotective efficacy. The formation of synthesized nanoparticles was characterized by UV&ndash;visible analysis (UV&ndash;vis), Fourier transform infra-red (FT-IR), Transmission electron microscopy (TEM), Scanning electron microscope (SEM). TEM analysis showed particles size in the range of 20-30 nm. For this study, Swiss albino mice were selected from inbred colony and were divided into 4 groups: group I- control (irradiated-6 Gy), group II- normal (vehicle treated), group III- plant extract alone and group IV- CB-AgNPs (dose of 50 mg/kg body wt./day) administered orally for 7 consecutive days before irradiation to serve as experimental. CB-AgNPs pretreatment rendered significant increase in body weight and testes weight at various post irradiation intervals in comparison to irradiated group. Supplementation of CB-AgNPs reversed the adverse effects of gamma radiation on biochemical parameters as it notably ameliorated the elevation in lipid peroxidation and decline in glutathione concentration in testes. These observations indicate the radio-protective potential of&nbsp;CB-AgNPs in testicular constituents against gamma irradiation in mice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chlorophytum%20borivillianum" title="Chlorophytum borivillianum">Chlorophytum borivillianum</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radioprotective" title=" radioprotective"> radioprotective</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/82691/ameliorating-effects-of-silver-nanoparticles-synthesized-using-chlorophytum-borivillianum-against-gamma-radiation-induced-oxidative-stress-in-testis-of-swiss-albino-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1693</span> Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Khosravi">Mohammad Khosravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kiani"> Ali Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Behroz%20Dastar"> Behroz Dastar</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Showrang"> Parvin Showrang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antitrypsin" title="antitrypsin">antitrypsin</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20anti-nutritional%20components" title=" gamma anti-nutritional components"> gamma anti-nutritional components</a>, <a href="https://publications.waset.org/abstracts/search?q=phytic%20acid" title=" phytic acid"> phytic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/58193/radiation-usage-impact-of-on-anti-nutritional-compounds-antitrypsin-and-phytic-acid-of-livestock-and-poultry-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=57">57</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gamma%20radiation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10