CINXE.COM

Search results for: Xudong He

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Xudong He</title> <meta name="description" content="Search results for: Xudong He"> <meta name="keywords" content="Xudong He"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Xudong He" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Xudong He"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Xudong He</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> A Survey of the Applications of Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Lin">Pingping Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20comments" title=" online comments"> online comments</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis "> sentiment analysis </a> </p> <a href="https://publications.waset.org/abstracts/128022/a-survey-of-the-applications-of-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Fine-Grained Sentiment Analysis: Recent Progress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Liu">Jie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Lin"> Pingping Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Fan"> Yifan Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title="sentiment analysis">sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fine-grained" title=" fine-grained"> fine-grained</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/140871/fine-grained-sentiment-analysis-recent-progress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> On Dialogue Systems Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Fan">Yifan Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Lin"> Pingping Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dialogue%20management" title="dialogue management">dialogue management</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20generation" title=" response generation"> response generation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/129369/on-dialogue-systems-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Personal Information Classification Based on Deep Learning in Automatic Form Filling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shunzuo%20Wu">Shunzuo Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanxiu%20Liao"> Yuanxiu Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence%20and%20office" title="artificial intelligence and office">artificial intelligence and office</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20classification" title=" text classification"> text classification</a> </p> <a href="https://publications.waset.org/abstracts/129742/personal-information-classification-based-on-deep-learning-in-automatic-form-filling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> A Survey of Response Generation of Dialogue Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Fan">Yifan Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Lin"> Pingping Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=generative" title=" generative"> generative</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20generation" title=" response generation"> response generation</a>, <a href="https://publications.waset.org/abstracts/search?q=retrieval" title=" retrieval"> retrieval</a> </p> <a href="https://publications.waset.org/abstracts/128195/a-survey-of-response-generation-of-dialogue-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> A Survey of Sentiment Analysis Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Lin">Pingping Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Fan"> Yifan Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=document%20analysis" title="document analysis">document analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20sentiment%20analysis" title=" multimodal sentiment analysis"> multimodal sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a> </p> <a href="https://publications.waset.org/abstracts/130107/a-survey-of-sentiment-analysis-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Co-Limitation of Iron Deficiency in Stem Allantoin and Amino-N Formation of Peanut Plants Intercropped with Cassava</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li">Hong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingxian%20Li"> Tingxian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Wang"> Xudong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibo%20Yang"> Weibo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Co-limitation of iron (Fe) deficiency in legume nitrogen fixation process is not well understood. Our objectives were to examine how peanut plants cope with Fe deficiency with the rhizobial inoculants and N-nutrient treatments. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 4.6±0.7) and deficient in Fe (9.2±2.3 mg/kg). Peanut plants were intercropped with cassava. The inoculants and N treatments were arranged in a split-plot design with three blocks. Peanut root nodulation, stem allantoin, amino acids and plant N derived from fixation (P) reduced with declining soil Fe concentrations. The treatment interactions were significant on relative ureide % and peanut yields (P<0.05). Residual fixed N from peanut plants was beneficial to cassava plants. It was concluded that co-variance of Fe deficiency could influence peanut N fixation efficiency and rhizobia and N inputs could help improving peanut tolerance to Fe deficiency stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20N%20derived%20from%20N%20fixation" title=" plant N derived from N fixation"> plant N derived from N fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20nodulation" title=" root nodulation"> root nodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20Fe%20co-variance" title=" soil Fe co-variance"> soil Fe co-variance</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20ureide" title=" stem ureide"> stem ureide</a>, <a href="https://publications.waset.org/abstracts/search?q=peanuts" title=" peanuts"> peanuts</a>, <a href="https://publications.waset.org/abstracts/search?q=cassava" title=" cassava"> cassava</a> </p> <a href="https://publications.waset.org/abstracts/10291/co-limitation-of-iron-deficiency-in-stem-allantoin-and-amino-n-formation-of-peanut-plants-intercropped-with-cassava" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Longan Tree Flowering and Bearing Induction Based on Chemicals and Growing Degree-Days Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li">Hong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingxian%20Li"> Tingxian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Wang"> Xudong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fengliang%20Zhao"> Fengliang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unreliable flowering of chilling-required longan (Dimocarpus longan) due to increased air-temperatures have been the common concerns in the tropical areas. Our objectives were to assess the efficiency of chemicals in longan tree flowering and bearing using Growing Degree Days (GDD). The 2-year study was contacted in the tropical Haihan Island during 2012-2013. At pruning (August) the GDD values were started to count. The KClO3 treatments were applied to the root zones under the canopies at GDD 1300ºC while KH2PO4 rates were applied to the leaves at fruit setting at GDD 3000ºC and GDD 4000ºC. The results showed that total cumulative GDD was 6050ºC for longan. The GDD-guided KClO3 applications induced significant tree budding and flowering. The GDD-guided KH2PO4 applications stimulated higher leaf photosynthesis, carbonxylation efficiency, marketable fruit yield and quality (K+ and sugar) (P<0.05). It was concluded that the GDD-based model could efficiently support longan reliable flowering and bearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canopy%20nutrition" title="canopy nutrition">canopy nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=flowering%20induction" title=" flowering induction"> flowering induction</a>, <a href="https://publications.waset.org/abstracts/search?q=growing%20degree%20days" title=" growing degree days"> growing degree days</a>, <a href="https://publications.waset.org/abstracts/search?q=longan" title=" longan"> longan</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidant%20KClO3" title=" oxidant KClO3"> oxidant KClO3</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20physiology" title=" tree physiology"> tree physiology</a> </p> <a href="https://publications.waset.org/abstracts/10236/longan-tree-flowering-and-bearing-induction-based-on-chemicals-and-growing-degree-days-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xudong%20He">Xudong He</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Wang"> Jian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiqiang%20Liu"> Jiqiang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Han"> Lei Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yu"> Yang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaohua%20Lv"> Shaohua Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20analysis" title="correlation analysis">correlation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20filtering" title=" hierarchical filtering"> hierarchical filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=multisource%20data" title=" multisource data"> multisource data</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security" title=" network security"> network security</a> </p> <a href="https://publications.waset.org/abstracts/88123/hierarchical-filtering-method-of-threat-alerts-based-on-correlation-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li">Hong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingxian%20Li"> Tingxian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Wang"> Xudong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinghuo%20Lin"> Qinghuo Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20N%20fixation" title="atmospheric N fixation">atmospheric N fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20nodulation" title=" root nodulation"> root nodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20Fe%20co-variance" title=" soil Fe co-variance"> soil Fe co-variance</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20ureide" title=" stem ureide"> stem ureide</a>, <a href="https://publications.waset.org/abstracts/search?q=yardlong-bean%20plants" title=" yardlong-bean plants"> yardlong-bean plants</a> </p> <a href="https://publications.waset.org/abstracts/10233/effects-of-excess-iron-stress-on-symbiotic-nitrogen-fixation-efficiency-of-yardlong-bean-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Guan">Xudong Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainong%20Li"> Ainong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaohuan%20Liu"> Gaohuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong%20Huang"> Chong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhao"> Wei Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title="image classification">image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20fusion" title=" decision fusion"> decision fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal" title=" multi-temporal"> multi-temporal</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/112195/integrating-time-series-and-high-spatial-remote-sensing-data-based-on-multilevel-decision-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Multi-Dimension Threat Situation Assessment Based on Network Security Attributes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yu">Yang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Wang"> Jian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiqiang%20Liu"> Jiqiang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Han"> Lei Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20He"> Xudong He</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaohua%20Lv"> Shaohua Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDoS%20evaluation" title="DDoS evaluation">DDoS evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20CVSS" title=" improved CVSS"> improved CVSS</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security%20attribute" title=" network security attribute"> network security attribute</a>, <a href="https://publications.waset.org/abstracts/search?q=threat%20situation%20assessment" title=" threat situation assessment"> threat situation assessment</a> </p> <a href="https://publications.waset.org/abstracts/88121/multi-dimension-threat-situation-assessment-based-on-network-security-attributes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Li">Ping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Feng"> Bing Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Junpu%20Zhao"> Junpu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Xie"> Xudong Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Dangpeng%20Xu"> Dangpeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuixing%20Zheng"> Kuixing Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qihua%20Zhu"> Qihua Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Wei"> Xiaofeng Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20confinement%20fusion" title="inertial confinement fusion">inertial confinement fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20pulse%20control" title=" laser pulse control"> laser pulse control</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20spatio-temporal%20multiplexing" title=" beam spatio-temporal multiplexing"> beam spatio-temporal multiplexing</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20balance" title=" power balance"> power balance</a> </p> <a href="https://publications.waset.org/abstracts/103616/beam-spatio-temporal-multiplexing-approach-for-improving-control-accuracy-of-high-contrast-pulse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiuguo%20Zhao">Xiuguo Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Ren"> Xudong Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Su"> Chen Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinxi%20Xu"> Xinxi Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%20Niu"> Fu Niu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingshuai%20Meng"> Lingshuai Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airflow%20structure" title="airflow structure">airflow structure</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20upper%20respiratory%20tract" title=" human upper respiratory tract"> human upper respiratory tract</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/62549/numerical-simulation-on-airflow-structure-in-the-human-upper-respiratory-tract-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10