CINXE.COM

Factor analysis - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Factor analysis - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"85f3e550-f64a-437b-9ae1-8df5dc21d271","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Factor_analysis","wgTitle":"Factor analysis","wgCurRevisionId":1252363505,"wgRevisionId":1252363505,"wgArticleId":253492,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","CS1 errors: missing periodical","All pages needing factual verification","Wikipedia articles needing factual verification from November 2013","Articles needing additional references from August 2023","All articles needing additional references","Articles with short description","Short description is different from Wikidata","Wikipedia articles needing clarification from July 2019","Articles needing additional references from April 2012", "All articles with unsourced statements","Articles with unsourced statements from March 2016","Wikipedia articles needing clarification from March 2010","All Wikipedia articles needing clarification","Articles with unsourced statements from July 2021","Wikipedia articles needing clarification from May 2012","Commons category link is on Wikidata","Factor analysis","Latent variable models","Quantitative marketing research","Product management","Market research","Market segmentation"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Factor_analysis","wgRelevantArticleId":253492,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode": "en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q726474","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready", "ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions", "wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Factor analysis - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Factor_analysis"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Factor_analysis&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Factor_analysis"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Factor_analysis rootpage-Factor_analysis skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Factor+analysis" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Factor+analysis" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Factor+analysis" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Factor+analysis" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Statistical_model" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Statistical_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Statistical model</span> </div> </a> <button aria-controls="toc-Statistical_model-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Statistical model subsection</span> </button> <ul id="toc-Statistical_model-sublist" class="vector-toc-list"> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_model_of_the_same_example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematical_model_of_the_same_example"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Mathematical model of the same example</span> </div> </a> <ul id="toc-Mathematical_model_of_the_same_example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometric_interpretation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometric_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Geometric interpretation</span> </div> </a> <ul id="toc-Geometric_interpretation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Practical_implementation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Practical_implementation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Practical implementation</span> </div> </a> <button aria-controls="toc-Practical_implementation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Practical implementation subsection</span> </button> <ul id="toc-Practical_implementation-sublist" class="vector-toc-list"> <li id="toc-Types_of_factor_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Types_of_factor_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Types of factor analysis</span> </div> </a> <ul id="toc-Types_of_factor_analysis-sublist" class="vector-toc-list"> <li id="toc-Exploratory_factor_analysis" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Exploratory_factor_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Exploratory factor analysis</span> </div> </a> <ul id="toc-Exploratory_factor_analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Confirmatory_factor_analysis" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Confirmatory_factor_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Confirmatory factor analysis</span> </div> </a> <ul id="toc-Confirmatory_factor_analysis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Types_of_factor_extraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Types_of_factor_extraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Types of factor extraction</span> </div> </a> <ul id="toc-Types_of_factor_extraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Terminology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Terminology"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Terminology</span> </div> </a> <ul id="toc-Terminology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Criteria_for_determining_the_number_of_factors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Criteria_for_determining_the_number_of_factors"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Criteria for determining the number of factors</span> </div> </a> <ul id="toc-Criteria_for_determining_the_number_of_factors-sublist" class="vector-toc-list"> <li id="toc-Modern_criteria" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Modern_criteria"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.1</span> <span>Modern criteria</span> </div> </a> <ul id="toc-Modern_criteria-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Older_methods" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Older_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.2</span> <span>Older methods</span> </div> </a> <ul id="toc-Older_methods-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bayesian_methods" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Bayesian_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.3</span> <span>Bayesian methods</span> </div> </a> <ul id="toc-Bayesian_methods-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Rotation_methods" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rotation_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Rotation methods</span> </div> </a> <ul id="toc-Rotation_methods-sublist" class="vector-toc-list"> <li id="toc-Orthogonal_methods" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Orthogonal_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.1</span> <span>Orthogonal methods</span> </div> </a> <ul id="toc-Orthogonal_methods-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Problems_with_factor_rotation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Problems_with_factor_rotation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.2</span> <span>Problems with factor rotation</span> </div> </a> <ul id="toc-Problems_with_factor_rotation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Higher_order_factor_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higher_order_factor_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Higher order factor analysis</span> </div> </a> <ul id="toc-Higher_order_factor_analysis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Exploratory_factor_analysis_(EFA)_versus_principal_components_analysis_(PCA)" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Exploratory_factor_analysis_(EFA)_versus_principal_components_analysis_(PCA)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Exploratory factor analysis (EFA) versus principal components analysis (PCA)</span> </div> </a> <button aria-controls="toc-Exploratory_factor_analysis_(EFA)_versus_principal_components_analysis_(PCA)-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Exploratory factor analysis (EFA) versus principal components analysis (PCA) subsection</span> </button> <ul id="toc-Exploratory_factor_analysis_(EFA)_versus_principal_components_analysis_(PCA)-sublist" class="vector-toc-list"> <li id="toc-Arguments_contrasting_PCA_and_EFA" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arguments_contrasting_PCA_and_EFA"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Arguments contrasting PCA and EFA</span> </div> </a> <ul id="toc-Arguments_contrasting_PCA_and_EFA-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Variance_versus_covariance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Variance_versus_covariance"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Variance versus covariance</span> </div> </a> <ul id="toc-Variance_versus_covariance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differences_in_procedure_and_results" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differences_in_procedure_and_results"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Differences in procedure and results</span> </div> </a> <ul id="toc-Differences_in_procedure_and_results-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_psychometrics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_psychometrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>In psychometrics</span> </div> </a> <button aria-controls="toc-In_psychometrics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle In psychometrics subsection</span> </button> <ul id="toc-In_psychometrics-sublist" class="vector-toc-list"> <li id="toc-History" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications_in_psychology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications_in_psychology"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Applications in psychology</span> </div> </a> <ul id="toc-Applications_in_psychology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Advantages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Advantages"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Advantages</span> </div> </a> <ul id="toc-Advantages-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Disadvantages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Disadvantages"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Disadvantages</span> </div> </a> <ul id="toc-Disadvantages-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_cross-cultural_research" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_cross-cultural_research"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>In cross-cultural research</span> </div> </a> <ul id="toc-In_cross-cultural_research-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_political_science" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_political_science"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>In political science</span> </div> </a> <ul id="toc-In_political_science-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_marketing" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_marketing"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>In marketing</span> </div> </a> <button aria-controls="toc-In_marketing-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle In marketing subsection</span> </button> <ul id="toc-In_marketing-sublist" class="vector-toc-list"> <li id="toc-Information_collection" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Information_collection"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Information collection</span> </div> </a> <ul id="toc-Information_collection-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Analysis</span> </div> </a> <ul id="toc-Analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Advantages_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Advantages_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Advantages</span> </div> </a> <ul id="toc-Advantages_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Disadvantages_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Disadvantages_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Disadvantages</span> </div> </a> <ul id="toc-Disadvantages_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_physical_and_biological_sciences" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_physical_and_biological_sciences"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>In physical and biological sciences</span> </div> </a> <ul id="toc-In_physical_and_biological_sciences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_microarray_analysis" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_microarray_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>In microarray analysis</span> </div> </a> <ul id="toc-In_microarray_analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Implementation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Implementation"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Implementation</span> </div> </a> <button aria-controls="toc-Implementation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Implementation subsection</span> </button> <ul id="toc-Implementation-sublist" class="vector-toc-list"> <li id="toc-Stand-alone" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stand-alone"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Stand-alone</span> </div> </a> <ul id="toc-Stand-alone-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Factor analysis</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 39 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-39" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">39 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%AD%D9%84%D9%8A%D9%84_%D8%B9%D8%A7%D9%85%D9%84%D9%8A" title="تحليل عاملي – Arabic" lang="ar" hreflang="ar" data-title="تحليل عاملي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Faktor_analizi" title="Faktor analizi – Azerbaijani" lang="az" hreflang="az" data-title="Faktor analizi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%B0%D1%80%D0%BD%D1%8B_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7" title="Фактарны аналіз – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Фактарны аналіз" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B5%D0%BD_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" title="Факторен анализ – Bulgarian" lang="bg" hreflang="bg" data-title="Факторен анализ" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Faktorov%C3%A1_anal%C3%BDza" title="Faktorová analýza – Czech" lang="cs" hreflang="cs" data-title="Faktorová analýza" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Faktoranalyse" title="Faktoranalyse – Danish" lang="da" hreflang="da" data-title="Faktoranalyse" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Faktorenanalyse" title="Faktorenanalyse – German" lang="de" hreflang="de" data-title="Faktorenanalyse" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Faktoranal%C3%BC%C3%BCs" title="Faktoranalüüs – Estonian" lang="et" hreflang="et" data-title="Faktoranalüüs" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/An%C3%A1lisis_factorial" title="Análisis factorial – Spanish" lang="es" hreflang="es" data-title="Análisis factorial" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Faktore-analisi" title="Faktore-analisi – Basque" lang="eu" hreflang="eu" data-title="Faktore-analisi" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%AD%D9%84%DB%8C%D9%84_%D8%B9%D8%A7%D9%85%D9%84%DB%8C" title="تحلیل عاملی – Persian" lang="fa" hreflang="fa" data-title="تحلیل عاملی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Analyse_factorielle" title="Analyse factorielle – French" lang="fr" hreflang="fr" data-title="Analyse factorielle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Anail%C3%ADs_facht%C3%B3ir%C3%AD" title="Anailís fachtóirí – Irish" lang="ga" hreflang="ga" data-title="Anailís fachtóirí" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9D%B8%EC%9E%90_%EB%B6%84%EC%84%9D" title="인자 분석 – Korean" lang="ko" hreflang="ko" data-title="인자 분석" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A4%95_%E0%A4%B5%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B2%E0%A5%87%E0%A4%B7%E0%A4%A3" title="कारक विश्लेषण – Hindi" lang="hi" hreflang="hi" data-title="कारक विश्लेषण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Analisis_faktor" title="Analisis faktor – Indonesian" lang="id" hreflang="id" data-title="Analisis faktor" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Analisi_fattoriale" title="Analisi fattoriale – Italian" lang="it" hreflang="it" data-title="Analisi fattoriale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A0%D7%99%D7%AA%D7%95%D7%97_%D7%92%D7%95%D7%A8%D7%9E%D7%99%D7%9D" title="ניתוח גורמים – Hebrew" lang="he" hreflang="he" data-title="ניתוח גורמים" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%BB%D0%B0%D1%80_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D1%81%D1%8B" title="Факторлар теориясы – Kazakh" lang="kk" hreflang="kk" data-title="Факторлар теориясы" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Faktoru_anal%C4%ABze" title="Faktoru analīze – Latvian" lang="lv" hreflang="lv" data-title="Faktoru analīze" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Faktoranal%C3%ADzis" title="Faktoranalízis – Hungarian" lang="hu" hreflang="hu" data-title="Faktoranalízis" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Analisis_faktor" title="Analisis faktor – Malay" lang="ms" hreflang="ms" data-title="Analisis faktor" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A5%D2%AF%D1%87%D0%B8%D0%BD_%D0%B7%D2%AF%D0%B9%D0%BB%D0%B8%D0%B9%D0%BD_%D1%88%D0%B8%D0%BD%D0%B6%D0%B8%D0%BB%D0%B3%D1%8D%D1%8D" title="Хүчин зүйлийн шинжилгээ – Mongolian" lang="mn" hreflang="mn" data-title="Хүчин зүйлийн шинжилгээ" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Factoranalyse" title="Factoranalyse – Dutch" lang="nl" hreflang="nl" data-title="Factoranalyse" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%9B%A0%E5%AD%90%E5%88%86%E6%9E%90" title="因子分析 – Japanese" lang="ja" hreflang="ja" data-title="因子分析" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Faktoranalyse" title="Faktoranalyse – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Faktoranalyse" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Analiza_czynnikowa" title="Analiza czynnikowa – Polish" lang="pl" hreflang="pl" data-title="Analiza czynnikowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/An%C3%A1lise_fatorial" title="Análise fatorial – Portuguese" lang="pt" hreflang="pt" data-title="Análise fatorial" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" title="Факторный анализ – Russian" lang="ru" hreflang="ru" data-title="Факторный анализ" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Factor_analysis" title="Factor analysis – Simple English" lang="en-simple" hreflang="en-simple" data-title="Factor analysis" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D1%81%D0%BA%D0%B0_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0" title="Факторска анализа – Serbian" lang="sr" hreflang="sr" data-title="Факторска анализа" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Analisis_faktor" title="Analisis faktor – Sundanese" lang="su" hreflang="su" data-title="Analisis faktor" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Faktorianalyysi" title="Faktorianalyysi – Finnish" lang="fi" hreflang="fi" data-title="Faktorianalyysi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Faktoranalys" title="Faktoranalys – Swedish" lang="sv" hreflang="sv" data-title="Faktoranalys" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Analisis_ng_paktor" title="Analisis ng paktor – Tagalog" lang="tl" hreflang="tl" data-title="Analisis ng paktor" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7" title="Факторний аналіз – Ukrainian" lang="uk" hreflang="uk" data-title="Факторний аналіз" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C3%A2n_t%C3%ADch_nh%C3%A2n_t%E1%BB%91" title="Phân tích nhân tố – Vietnamese" lang="vi" hreflang="vi" data-title="Phân tích nhân tố" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%9B%A0%E7%B4%A0%E5%88%86%E6%9E%90" title="因素分析 – Cantonese" lang="yue" hreflang="yue" data-title="因素分析" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%9B%A0%E7%B4%A0%E5%88%86%E6%9E%90" title="因素分析 – Chinese" lang="zh" hreflang="zh" data-title="因素分析" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q726474#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Factor_analysis" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Factor_analysis" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Factor_analysis"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Factor_analysis&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Factor_analysis&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Factor_analysis"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Factor_analysis&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Factor_analysis&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Factor_analysis" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Factor_analysis" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Factor_analysis&amp;oldid=1252363505" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Factor_analysis&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Factor_analysis&amp;id=1252363505&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFactor_analysis"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFactor_analysis"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Factor_analysis&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Factor_analysis&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Factor_analysis" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q726474" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Factor_analysis" title="Special:EditPage/Factor analysis">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Factor+analysis%22">"Factor analysis"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Factor+analysis%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Factor+analysis%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Factor+analysis%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Factor+analysis%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Factor+analysis%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">August 2023</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Statistical method</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about factor loadings. For factorial design, see <a href="/wiki/Factorial_experiment" title="Factorial experiment">Factorial experiment</a>.</div> <p><b>Factor analysis</b> is a <a href="/wiki/Statistics" title="Statistics">statistical</a> method used to describe <a href="/wiki/Variance" title="Variance">variability</a> among observed, correlated <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a> in terms of a potentially lower number of unobserved variables called <b>factors</b>. For example, it is possible that variations in six observed variables mainly reflect the variations in two unobserved (underlying) variables. Factor analysis searches for such joint variations in response to unobserved <a href="/wiki/Latent_variable" class="mw-redirect" title="Latent variable">latent variables</a>. The observed variables are modelled as <a href="/wiki/Linear_combination" title="Linear combination">linear combinations</a> of the potential factors plus "<a href="/wiki/Errors_and_residuals_in_statistics" class="mw-redirect" title="Errors and residuals in statistics">error</a>" terms, hence factor analysis can be thought of as a special case of <a href="/wiki/Errors-in-variables_models" title="Errors-in-variables models">errors-in-variables models</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Simply put, the factor loading of a variable quantifies the extent to which the variable is related to a given factor.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>A common rationale behind factor analytic methods is that the information gained about the interdependencies between observed variables can be used later to reduce the set of variables in a dataset. Factor analysis is commonly used in <a href="/wiki/Psychometrics" title="Psychometrics">psychometrics</a>, <a href="/wiki/Personality" title="Personality">personality</a> psychology, biology, <a href="/wiki/Marketing" title="Marketing">marketing</a>, <a href="/wiki/Product_management" title="Product management">product management</a>, <a href="/wiki/Operations_research" title="Operations research">operations research</a>, <a href="/wiki/Finance" title="Finance">finance</a>, and <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>. It may help to deal with data sets where there are large numbers of observed variables that are thought to reflect a smaller number of underlying/latent variables. It is one of the most commonly used inter-dependency techniques and is used when the relevant set of variables shows a systematic inter-dependence and the objective is to find out the latent factors that create a commonality. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Statistical_model">Statistical model</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=1" title="Edit section: Statistical model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Definition">Definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=2" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The model attempts to explain a set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> observations in each of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> individuals with a set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> <i>common factors</i> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{i,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e56b8627bafaca53146323e7e5a054a922015b70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.074ex; height:2.843ex;" alt="{\displaystyle f_{i,j}}"></span>) where there are fewer factors per unit than observations per unit (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k&lt;p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&lt;</mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k&lt;p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/229de7ee6662b0bc10572cd59345957261087041" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.479ex; height:2.509ex;" alt="{\displaystyle k&lt;p}"></span>). Each individual has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> of their own common factors, and these are related to the observations via the factor <i>loading matrix</i> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\in \mathbb {R} ^{p\times k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x00D7;<!-- × --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\in \mathbb {R} ^{p\times k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c31cee48b332276f834d8592144659968c88c45d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.296ex; height:2.676ex;" alt="{\displaystyle L\in \mathbb {R} ^{p\times k}}"></span>), for a single observation, according to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i,m}-\mu _{i}=l_{i,1}f_{1,m}+\dots +l_{i,k}f_{k,m}+\varepsilon _{i,m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i,m}-\mu _{i}=l_{i,1}f_{1,m}+\dots +l_{i,k}f_{k,m}+\varepsilon _{i,m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96ee9be74ba01237658f1a680a6598303c4e9f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:40.998ex; height:2.843ex;" alt="{\displaystyle x_{i,m}-\mu _{i}=l_{i,1}f_{1,m}+\dots +l_{i,k}f_{k,m}+\varepsilon _{i,m}}"></span></dd></dl> <p>where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i,m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i,m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f16d1b6939392719c97865fc39478ebcf879a616" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.03ex; height:2.343ex;" alt="{\displaystyle x_{i,m}}"></span> is the value of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>th observation of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>th individual,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dea0a0293841cce9eef98b55e53a92b82ae59ee4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.201ex; height:2.176ex;" alt="{\displaystyle \mu _{i}}"></span> is the observation mean for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>th observation,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{i,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/083ec9d21bc4c5cbdd2afbe129de0c5fde732a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.628ex; height:2.843ex;" alt="{\displaystyle l_{i,j}}"></span> is the loading for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>th observation of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>th factor,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{j,m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{j,m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/388c7aa945f35184c7da5d0a2d5706cd3ac010a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.949ex; height:2.843ex;" alt="{\displaystyle f_{j,m}}"></span> is the value of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>th factor of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>th individual, and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{i,m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{i,m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c7547ac560c25481bfb5dd3fef46e42c9097b39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.783ex; height:2.343ex;" alt="{\displaystyle \varepsilon _{i,m}}"></span> is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i,m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i,m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e5edc2646b68b9eea30ce024d7b011d9192c245" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.686ex; height:2.843ex;" alt="{\displaystyle (i,m)}"></span>th <i>unobserved stochastic error term</i> with mean zero and finite variance.</li></ul> <p>In matrix notation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X-\mathrm {M} =LF+\varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mo>=</mo> <mi>L</mi> <mi>F</mi> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X-\mathrm {M} =LF+\varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86936898bf8ff7c6ce366d1919992972bce7cbd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.297ex; height:2.343ex;" alt="{\displaystyle X-\mathrm {M} =LF+\varepsilon }"></span></dd></dl> <p>where observation matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\in \mathbb {R} ^{p\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\in \mathbb {R} ^{p\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9e39b4707904cf9dd706c8ff7dd361683d1b69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.823ex; height:2.343ex;" alt="{\displaystyle X\in \mathbb {R} ^{p\times n}}"></span>, loading matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\in \mathbb {R} ^{p\times k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x00D7;<!-- × --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\in \mathbb {R} ^{p\times k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c31cee48b332276f834d8592144659968c88c45d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.296ex; height:2.676ex;" alt="{\displaystyle L\in \mathbb {R} ^{p\times k}}"></span>, factor matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\in \mathbb {R} ^{k\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\in \mathbb {R} ^{k\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30b911506dd930f0435ba8289fc36c6150126cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.613ex; height:2.676ex;" alt="{\displaystyle F\in \mathbb {R} ^{k\times n}}"></span>, error term matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon \in \mathbb {R} ^{p\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon \in \mathbb {R} ^{p\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42a2c0e8641279cae154df583a9b3d6adfb3d87d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.926ex; height:2.343ex;" alt="{\displaystyle \varepsilon \in \mathbb {R} ^{p\times n}}"></span> and mean matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {M} \in \mathbb {R} ^{p\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {M} \in \mathbb {R} ^{p\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14d513bc5a88e490985f5dbbe58fa368d2675f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.974ex; height:2.343ex;" alt="{\displaystyle \mathrm {M} \in \mathbb {R} ^{p\times n}}"></span> whereby the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i,m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i,m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e5edc2646b68b9eea30ce024d7b011d9192c245" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.686ex; height:2.843ex;" alt="{\displaystyle (i,m)}"></span>th element is simply <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {M} _{i,m}=\mu _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {M} _{i,m}=\mu _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/404abf9459c7d396be24d9eef9632e7f3ba4462c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.131ex; height:2.843ex;" alt="{\displaystyle \mathrm {M} _{i,m}=\mu _{i}}"></span>. </p><p>Also we will impose the following assumptions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> are independent.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {E} (F)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {E} (F)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55db70ba9e7fc49434f12f43424b91233974025c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.394ex; height:2.843ex;" alt="{\displaystyle \mathrm {E} (F)=0}"></span>; where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be1811407dea8b43727d28dbe8da7251985b03e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle \mathrm {E} }"></span> is <a href="/wiki/Multivariate_random_variable#Expected_value" title="Multivariate random variable">Expectation</a></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Cov} (F)=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">v</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Cov} (F)=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd37366a1f78ae3b9c3c34bf8cb3c3695f52ebcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.888ex; height:2.843ex;" alt="{\displaystyle \mathrm {Cov} (F)=I}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Cov} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Cov} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36b0fe39cfb65d3155e7064b065bb7a407d61495" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.068ex; height:2.176ex;" alt="{\displaystyle \mathrm {Cov} }"></span> is the <a href="/wiki/Covariance_matrix" title="Covariance matrix">covariance matrix</a>, to make sure that the factors are uncorrelated, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>.</li></ol> <p>Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Cov} (X-\mathrm {M} )=\Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">v</mi> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Cov} (X-\mathrm {M} )=\Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c2260b6015a90a029a1a78d556b36102b321f0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.605ex; height:2.843ex;" alt="{\displaystyle \mathrm {Cov} (X-\mathrm {M} )=\Sigma }"></span>. Then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma =\mathrm {Cov} (X-\mathrm {M} )=\mathrm {Cov} (LF+\varepsilon ),\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">v</mi> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">v</mi> </mrow> <mo stretchy="false">(</mo> <mi>L</mi> <mi>F</mi> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma =\mathrm {Cov} (X-\mathrm {M} )=\mathrm {Cov} (LF+\varepsilon ),\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de19d8ea19be50e69c81c7a8643135d0f32b426d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.862ex; height:2.843ex;" alt="{\displaystyle \Sigma =\mathrm {Cov} (X-\mathrm {M} )=\mathrm {Cov} (LF+\varepsilon ),\,}"></span></dd></dl> <p>and therefore, from conditions 1 and 2 imposed on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> above, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[LF]=LE[F]=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <mi>L</mi> <mi>F</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>L</mi> <mi>E</mi> <mo stretchy="false">[</mo> <mi>F</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[LF]=LE[F]=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a41534545c8bb038bd864fbfe4e9bd949fc6206" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.145ex; height:2.843ex;" alt="{\displaystyle E[LF]=LE[F]=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Cov(LF+\epsilon )=Cov(LF)+Cov(\epsilon )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>o</mi> <mi>v</mi> <mo stretchy="false">(</mo> <mi>L</mi> <mi>F</mi> <mo>+</mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>C</mi> <mi>o</mi> <mi>v</mi> <mo stretchy="false">(</mo> <mi>L</mi> <mi>F</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>C</mi> <mi>o</mi> <mi>v</mi> <mo stretchy="false">(</mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Cov(LF+\epsilon )=Cov(LF)+Cov(\epsilon )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a2d91f6c8b9fe4b0f0878d8add02347bb1bf819" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.807ex; height:2.843ex;" alt="{\displaystyle Cov(LF+\epsilon )=Cov(LF)+Cov(\epsilon )}"></span>, giving </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma =L\mathrm {Cov} (F)L^{T}+\mathrm {Cov} (\varepsilon ),\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>=</mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">v</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">v</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma =L\mathrm {Cov} (F)L^{T}+\mathrm {Cov} (\varepsilon ),\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88a53ac93a81f14b5cb3d5786250bc68dd71928b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.785ex; height:3.176ex;" alt="{\displaystyle \Sigma =L\mathrm {Cov} (F)L^{T}+\mathrm {Cov} (\varepsilon ),\,}"></span></dd></dl> <p>or, setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi :=\mathrm {Cov} (\varepsilon )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">v</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi :=\mathrm {Cov} (\varepsilon )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dddc381bfe11fd1bcd90c847d94037b6ebbf347" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.514ex; height:2.843ex;" alt="{\displaystyle \Psi :=\mathrm {Cov} (\varepsilon )}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma =LL^{T}+\Psi .\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>=</mo> <mi>L</mi> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma =LL^{T}+\Psi .\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568bb1c88cd224577144d96427a6b10f401c2af9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.014ex; height:2.843ex;" alt="{\displaystyle \Sigma =LL^{T}+\Psi .\,}"></span></dd></dl> <p>For any <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>, if we set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\prime }=\ LQ}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mtext>&#xA0;</mtext> <mi>L</mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\prime }=\ LQ}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d58cceabb7ff17cf7bf0f8b2ef6ef5b020a8b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.368ex; height:2.843ex;" alt="{\displaystyle L^{\prime }=\ LQ}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\prime }=Q^{T}F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\prime }=Q^{T}F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/399bc855beae0007830aba5db90bff9bdfb8b998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.566ex; height:3.009ex;" alt="{\displaystyle F^{\prime }=Q^{T}F}"></span>, the criteria for being factors and factor loadings still hold. Hence a set of factors and factor loadings is unique only up to an <a href="/wiki/Orthogonal_transformation" title="Orthogonal transformation">orthogonal transformation</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=3" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose a psychologist has the hypothesis that there are two kinds of <a href="/wiki/Intelligence_(trait)" class="mw-redirect" title="Intelligence (trait)">intelligence</a>, "verbal intelligence" and "mathematical intelligence", neither of which is directly observed.<sup id="cite_ref-latent_variables_3-0" class="reference"><a href="#cite_note-latent_variables-3"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Evidence" title="Evidence">Evidence</a> for the hypothesis is sought in the examination scores from each of 10 different academic fields of 1000 students. If each student is chosen randomly from a large <a href="/wiki/Population_(statistics)" class="mw-redirect" title="Population (statistics)">population</a>, then each student's 10 scores are random variables. The psychologist's hypothesis may say that for each of the 10 academic fields, the score averaged over the group of all students who share some common pair of values for verbal and mathematical "intelligences" is some <a href="/wiki/Constant_(mathematics)" title="Constant (mathematics)">constant</a> times their level of verbal intelligence plus another constant times their level of mathematical intelligence, i.e., it is a linear combination of those two "factors". The numbers for a particular subject, by which the two kinds of intelligence are multiplied to obtain the expected score, are posited by the hypothesis to be the same for all intelligence level pairs, and are called <b>"factor loading"</b> for this subject. <sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (July 2019)">clarification needed</span></a></i>&#93;</sup> For example, the hypothesis may hold that the predicted average student's aptitude in the field of <a href="/wiki/Astronomy" title="Astronomy">astronomy</a> is </p> <dl><dd>{10 × the student's verbal intelligence} + {6 × the student's mathematical intelligence}.</dd></dl> <p>The numbers 10 and 6 are the factor loadings associated with astronomy. Other academic subjects may have different factor loadings. </p><p>Two students assumed to have identical degrees of verbal and mathematical intelligence may have different measured aptitudes in astronomy because individual aptitudes differ from average aptitudes (predicted above) and because of measurement error itself. Such differences make up what is collectively called the "error" — a statistical term that means the amount by which an individual, as measured, differs from what is average for or predicted by his or her levels of intelligence (see <a href="/wiki/Errors_and_residuals_in_statistics" class="mw-redirect" title="Errors and residuals in statistics">errors and residuals in statistics</a>). </p><p>The observable data that go into factor analysis would be 10 scores of each of the 1000 students, a total of 10,000 numbers. The factor loadings and levels of the two kinds of intelligence of each student must be inferred from the data. </p> <div class="mw-heading mw-heading3"><h3 id="Mathematical_model_of_the_same_example">Mathematical model of the same example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=4" title="Edit section: Mathematical model of the same example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the following, matrices will be indicated by indexed variables. "Subject" indices will be indicated using letters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>, with values running from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> which is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 10}"></span> in the above example. "Factor" indices will be indicated using letters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, with values running from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> which is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> in the above example. "Instance" or "sample" indices will be indicated using letters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>, with values running from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>. In the example above, if a sample of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1000}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1000</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1000}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61bed31d4342cb97d4d8853c5c7ddd4d5b93adaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.812ex; height:2.176ex;" alt="{\displaystyle N=1000}"></span> students participated in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1267f97166497d4b1a3a8fac761952501b5e0e11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.682ex; height:2.509ex;" alt="{\displaystyle p=10}"></span> exams, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>th student's score for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>th exam is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{ai}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{ai}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afe8bfd57ba9ce5d18b68bf91445cccbba17b3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.999ex; height:2.009ex;" alt="{\displaystyle x_{ai}}"></span>. The purpose of factor analysis is to characterize the correlations between the variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcc83e1ad0eaf733b246521d51f5880901c563a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.432ex; height:2.009ex;" alt="{\displaystyle x_{a}}"></span> of which the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{ai}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{ai}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afe8bfd57ba9ce5d18b68bf91445cccbba17b3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.999ex; height:2.009ex;" alt="{\displaystyle x_{ai}}"></span> are a particular instance, or set of observations. In order for the variables to be on equal footing, they are <a href="/wiki/Normalization_(statistics)" title="Normalization (statistics)">normalized</a> into standard scores <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{ai}={\frac {x_{ai}-{\hat {\mu }}_{a}}{{\hat {\sigma }}_{a}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{ai}={\frac {x_{ai}-{\hat {\mu }}_{a}}{{\hat {\sigma }}_{a}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99556d8bfee8bbcf29aa8861ab968d46fb368086" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.028ex; height:6.009ex;" alt="{\displaystyle z_{ai}={\frac {x_{ai}-{\hat {\mu }}_{a}}{{\hat {\sigma }}_{a}}}}"></span></dd></dl> <p>where the sample mean is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mu }}_{a}={\tfrac {1}{N}}\sum _{i}x_{ai}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mstyle> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mu }}_{a}={\tfrac {1}{N}}\sum _{i}x_{ai}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c972299c151bed6dc59051e91fcc9459c76544a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.025ex; height:5.509ex;" alt="{\displaystyle {\hat {\mu }}_{a}={\tfrac {1}{N}}\sum _{i}x_{ai}}"></span></dd></dl> <p>and the sample variance is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\sigma }}_{a}^{2}={\tfrac {1}{N-1}}\sum _{i}(x_{ai}-{\hat {\mu }}_{a})^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mstyle> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\sigma }}_{a}^{2}={\tfrac {1}{N-1}}\sum _{i}(x_{ai}-{\hat {\mu }}_{a})^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ab784c1d70f440b4f3d54210b8633ed35cde88b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.874ex; height:5.509ex;" alt="{\displaystyle {\hat {\sigma }}_{a}^{2}={\tfrac {1}{N-1}}\sum _{i}(x_{ai}-{\hat {\mu }}_{a})^{2}}"></span></dd></dl> <p>The factor analysis model for this particular sample is then: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}z_{1,i}&amp;=&amp;\ell _{1,1}F_{1,i}&amp;+&amp;\ell _{1,2}F_{2,i}&amp;+&amp;\varepsilon _{1,i}\\\vdots &amp;&amp;\vdots &amp;&amp;\vdots &amp;&amp;\vdots \\z_{10,i}&amp;=&amp;\ell _{10,1}F_{1,i}&amp;+&amp;\ell _{10,2}F_{2,i}&amp;+&amp;\varepsilon _{10,i}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}z_{1,i}&amp;=&amp;\ell _{1,1}F_{1,i}&amp;+&amp;\ell _{1,2}F_{2,i}&amp;+&amp;\varepsilon _{1,i}\\\vdots &amp;&amp;\vdots &amp;&amp;\vdots &amp;&amp;\vdots \\z_{10,i}&amp;=&amp;\ell _{10,1}F_{1,i}&amp;+&amp;\ell _{10,2}F_{2,i}&amp;+&amp;\varepsilon _{10,i}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c996463d8d55356fb7755b283ab2dbba7ac897d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.62ex; margin-bottom: -0.218ex; width:43.476ex; height:10.843ex;" alt="{\displaystyle {\begin{matrix}z_{1,i}&amp;=&amp;\ell _{1,1}F_{1,i}&amp;+&amp;\ell _{1,2}F_{2,i}&amp;+&amp;\varepsilon _{1,i}\\\vdots &amp;&amp;\vdots &amp;&amp;\vdots &amp;&amp;\vdots \\z_{10,i}&amp;=&amp;\ell _{10,1}F_{1,i}&amp;+&amp;\ell _{10,2}F_{2,i}&amp;+&amp;\varepsilon _{10,i}\end{matrix}}}"></span></dd></dl> <p>or, more succinctly: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{ai}=\sum _{p}\ell _{ap}F_{pi}+\varepsilon _{ai}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munder> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{ai}=\sum _{p}\ell _{ap}F_{pi}+\varepsilon _{ai}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81b39ce53029e8b5e830d422b4e14dc3160926bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.204ex; height:5.676ex;" alt="{\displaystyle z_{ai}=\sum _{p}\ell _{ap}F_{pi}+\varepsilon _{ai}}"></span></dd></dl> <p>where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c24603202f530df356a55113fe6006a8fe247282" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.116ex; height:2.509ex;" alt="{\displaystyle F_{1i}}"></span> is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>th student's "verbal intelligence",</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/299ec3b6888d8fc0f1aeefe47543d1b0ae3c5cf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.116ex; height:2.509ex;" alt="{\displaystyle F_{2i}}"></span> is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>th student's "mathematical intelligence",</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{ap}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{ap}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9edc0630a958722caacd3f674fc179863516fe66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.898ex; height:2.843ex;" alt="{\displaystyle \ell _{ap}}"></span> are the factor loadings for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>th subject, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=1,2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=1,2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfbab2fcfff2128f2b8c2f60d54968faa7083534" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.716ex; height:2.509ex;" alt="{\displaystyle p=1,2}"></span>.</li></ul> <p>In <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> notation, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z=LF+\varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <mi>L</mi> <mi>F</mi> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z=LF+\varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd2c3f2dbce91ede7cfc151dda09506cdd8abdcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.026ex; height:2.343ex;" alt="{\displaystyle Z=LF+\varepsilon }"></span></dd></dl> <p>Observe that by doubling the scale on which "verbal intelligence"—the first component in each column of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>—is measured, and simultaneously halving the factor loadings for verbal intelligence makes no difference to the model. Thus, no generality is lost by assuming that the standard deviation of the factors for verbal intelligence is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>. Likewise for mathematical intelligence. Moreover, for similar reasons, no generality is lost by assuming the two factors are <a href="/wiki/Uncorrelated" class="mw-redirect" title="Uncorrelated">uncorrelated</a> with each other. In other words: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}F_{pi}F_{qi}=\delta _{pq}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}F_{pi}F_{qi}=\delta _{pq}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d417a4ec5c21ec853d3ada0f7c1937219b72d8ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.86ex; height:5.509ex;" alt="{\displaystyle \sum _{i}F_{pi}F_{qi}=\delta _{pq}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{pq}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{pq}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64ea47807b95e1d94f17e36db18eca4956d84683" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.848ex; height:3.009ex;" alt="{\displaystyle \delta _{pq}}"></span> is the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\neq q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\neq q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac1f5fae3451ae6d0b52465cb06703bb11681b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:5.427ex; height:2.676ex;" alt="{\displaystyle p\neq q}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cf52da7809003406aee7e680eb5476a05a5c546" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.427ex; height:2.009ex;" alt="{\displaystyle p=q}"></span>).The errors are assumed to be independent of the factors: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}F_{pi}\varepsilon _{ai}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}F_{pi}\varepsilon _{ai}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/009fb210acdbca75e28555843db9d664f89b80aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.877ex; height:5.509ex;" alt="{\displaystyle \sum _{i}F_{pi}\varepsilon _{ai}=0}"></span></dd></dl> <p>Since any rotation of a solution is also a solution, this makes interpreting the factors difficult. See disadvantages below. In this particular example, if we do not know beforehand that the two types of intelligence are uncorrelated, then we cannot interpret the two factors as the two different types of intelligence. Even if they are uncorrelated, we cannot tell which factor corresponds to verbal intelligence and which corresponds to mathematical intelligence without an outside argument. </p><p>The values of the loadings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>, the averages <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span>, and the <a href="/wiki/Variance" title="Variance">variances</a> of the "errors" <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> must be estimated given the observed data <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> (the assumption about the levels of the factors is fixed for a given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>). The "fundamental theorem" may be derived from the above conditions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}z_{ai}z_{bi}=\sum _{j}\ell _{aj}\ell _{bj}+\sum _{i}\varepsilon _{ai}\varepsilon _{bi}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}z_{ai}z_{bi}=\sum _{j}\ell _{aj}\ell _{bj}+\sum _{i}\varepsilon _{ai}\varepsilon _{bi}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff719e34edde39beb8eb80e524f1aff6c1cfeb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.177ex; height:5.843ex;" alt="{\displaystyle \sum _{i}z_{ai}z_{bi}=\sum _{j}\ell _{aj}\ell _{bj}+\sum _{i}\varepsilon _{ai}\varepsilon _{bi}}"></span></dd></dl> <p>The term on the left is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>-term of the correlation matrix (a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\times p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x00D7;<!-- × --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\times p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67e6de741a3aa8176f5a487de8e8f602aa75c5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.269ex; height:2.009ex;" alt="{\displaystyle p\times p}"></span> matrix derived as the product of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\times N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x00D7;<!-- × --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\times N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c28d5f760d8220c636accf0f4e89c0719c73b056" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.163ex; height:2.509ex;" alt="{\displaystyle p\times N}"></span> matrix of standardized observations with its transpose) of the observed data, and its <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> diagonal elements will be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>s. The second term on the right will be a diagonal matrix with terms less than unity. The first term on the right is the "reduced correlation matrix" and will be equal to the correlation matrix except for its diagonal values which will be less than unity. These diagonal elements of the reduced correlation matrix are called "communalities" (which represent the fraction of the variance in the observed variable that is accounted for by the factors): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{a}^{2}=1-\psi _{a}=\sum _{j}\ell _{aj}\ell _{aj}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{a}^{2}=1-\psi _{a}=\sum _{j}\ell _{aj}\ell _{aj}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7691d4f84802ba77d3148fc911124274eb79ce9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:24.496ex; height:5.843ex;" alt="{\displaystyle h_{a}^{2}=1-\psi _{a}=\sum _{j}\ell _{aj}\ell _{aj}}"></span></dd></dl> <p>The sample data <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{ai}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{ai}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c77523a6abb3a352ece1ab961eae10fd5f24f93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.75ex; height:2.009ex;" alt="{\displaystyle z_{ai}}"></span> will not exactly obey the fundamental equation given above due to sampling errors, inadequacy of the model, etc. The goal of any analysis of the above model is to find the factors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{pi}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{pi}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08cf1cb9273e3efca6bdc00b9b92f7a4b7c09daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.121ex; height:2.843ex;" alt="{\displaystyle F_{pi}}"></span> and loadings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{ap}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{ap}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9edc0630a958722caacd3f674fc179863516fe66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.898ex; height:2.843ex;" alt="{\displaystyle \ell _{ap}}"></span> which give a "best fit" to the data. In factor analysis, the best fit is defined as the minimum of the mean square error in the off-diagonal residuals of the correlation matrix:<sup id="cite_ref-Harman_4-0" class="reference"><a href="#cite_note-Harman-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon ^{2}=\sum _{a\neq b}\left[\sum _{i}z_{ai}z_{bi}-\sum _{j}\ell _{aj}\ell _{bj}\right]^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>b</mi> </mrow> </munder> <msup> <mrow> <mo>[</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>j</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon ^{2}=\sum _{a\neq b}\left[\sum _{i}z_{ai}z_{bi}-\sum _{j}\ell _{aj}\ell _{bj}\right]^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0ee958e2ff337f289adad14c1757c7bea9462ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:33.738ex; height:8.343ex;" alt="{\displaystyle \varepsilon ^{2}=\sum _{a\neq b}\left[\sum _{i}z_{ai}z_{bi}-\sum _{j}\ell _{aj}\ell _{bj}\right]^{2}}"></span></dd></dl> <p>This is equivalent to minimizing the off-diagonal components of the error covariance which, in the model equations have expected values of zero. This is to be contrasted with principal component analysis which seeks to minimize the mean square error of all residuals.<sup id="cite_ref-Harman_4-1" class="reference"><a href="#cite_note-Harman-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Before the advent of high-speed computers, considerable effort was devoted to finding approximate solutions to the problem, particularly in estimating the communalities by other means, which then simplifies the problem considerably by yielding a known reduced correlation matrix. This was then used to estimate the factors and the loadings. With the advent of high-speed computers, the minimization problem can be solved iteratively with adequate speed, and the communalities are calculated in the process, rather than being needed beforehand. The <a href="/wiki/Generalized_minimal_residual_method" title="Generalized minimal residual method">MinRes</a> algorithm is particularly suited to this problem, but is hardly the only iterative means of finding a solution. </p><p>If the solution factors are allowed to be correlated (as in 'oblimin' rotation, for example), then the corresponding mathematical model uses <a href="/wiki/Skew_coordinates" title="Skew coordinates">skew coordinates</a> rather than orthogonal coordinates. </p> <div class="mw-heading mw-heading3"><h3 id="Geometric_interpretation">Geometric interpretation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=5" title="Edit section: Geometric interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:FactorPlot.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/FactorPlot.svg/330px-FactorPlot.svg.png" decoding="async" width="330" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/FactorPlot.svg/495px-FactorPlot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/56/FactorPlot.svg/660px-FactorPlot.svg.png 2x" data-file-width="590" data-file-height="407" /></a><figcaption>Geometric interpretation of Factor Analysis parameters for 3 respondents to question "a". The "answer" is represented by the unit vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dff854f1e7d5b45278ad11e623da84d3b83a0b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.29ex; height:2.009ex;" alt="{\displaystyle \mathbf {z} _{a}}"></span>, which is projected onto a plane defined by two orthonormal vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f52767d064aca73970f5a7bfc1946b2cfd77edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.737ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6389133972f39153163f091bc9922f5ce7385098" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.737ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{2}}"></span>. The projection vector is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {z} }}_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {z} }}_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/464503faa576ff6819ebd7bd91f3f338042b14bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.29ex; height:2.676ex;" alt="{\displaystyle {\hat {\mathbf {z} }}_{a}}"></span> and the error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\varepsilon }}_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B5;<!-- ε --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\varepsilon }}_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bfe393940f5113ca6391aefdaa6df2ff713e434" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.332ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\varepsilon }}_{a}}"></span> is perpendicular to the plane, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{a}={\hat {\mathbf {z} }}_{a}+{\boldsymbol {\varepsilon }}_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B5;<!-- ε --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{a}={\hat {\mathbf {z} }}_{a}+{\boldsymbol {\varepsilon }}_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9e1cb873046d915b3af0f948fb2bc5713334bb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.85ex; height:2.676ex;" alt="{\displaystyle \mathbf {z} _{a}={\hat {\mathbf {z} }}_{a}+{\boldsymbol {\varepsilon }}_{a}}"></span>. The projection vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {z} }}_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {z} }}_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/464503faa576ff6819ebd7bd91f3f338042b14bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.29ex; height:2.676ex;" alt="{\displaystyle {\hat {\mathbf {z} }}_{a}}"></span> may be represented in terms of the factor vectors as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {z} }}_{a}=\ell _{a1}\mathbf {F} _{1}+\ell _{a2}\mathbf {F} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {z} }}_{a}=\ell _{a1}\mathbf {F} _{1}+\ell _{a2}\mathbf {F} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/570b9ef746f3c63721104cd791ab1682dd456d2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.49ex; height:2.676ex;" alt="{\displaystyle {\hat {\mathbf {z} }}_{a}=\ell _{a1}\mathbf {F} _{1}+\ell _{a2}\mathbf {F} _{2}}"></span>. The square of the length of the projection vector is the communality: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ||{\hat {\mathbf {z} }}_{a}||^{2}=h_{a}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ||{\hat {\mathbf {z} }}_{a}||^{2}=h_{a}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae9841bc88b102533b1b55cf907c9bb9949a859a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.471ex; height:3.343ex;" alt="{\displaystyle ||{\hat {\mathbf {z} }}_{a}||^{2}=h_{a}^{2}}"></span>. If another data vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/796b2be7dd28b3f3a08f9f365a135f7d29b9cfd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.126ex; height:2.009ex;" alt="{\displaystyle \mathbf {z} _{b}}"></span> were plotted, the cosine of the angle between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dff854f1e7d5b45278ad11e623da84d3b83a0b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.29ex; height:2.009ex;" alt="{\displaystyle \mathbf {z} _{a}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/796b2be7dd28b3f3a08f9f365a135f7d29b9cfd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.126ex; height:2.009ex;" alt="{\displaystyle \mathbf {z} _{b}}"></span> would be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{ab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{ab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee5460aa81c388a4819aed4be5dca73af414a93b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.856ex; height:2.009ex;" alt="{\displaystyle r_{ab}}"></span>&#160;: the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>-entry in the correlation matrix. (Adapted from Harman Fig. 4.3)<sup id="cite_ref-Harman_4-2" class="reference"><a href="#cite_note-Harman-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>The parameters and variables of factor analysis can be given a geometrical interpretation. The data (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{ai}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{ai}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c77523a6abb3a352ece1ab961eae10fd5f24f93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.75ex; height:2.009ex;" alt="{\displaystyle z_{ai}}"></span>), the factors (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{pi}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{pi}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08cf1cb9273e3efca6bdc00b9b92f7a4b7c09daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.121ex; height:2.843ex;" alt="{\displaystyle F_{pi}}"></span>) and the errors (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{ai}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{ai}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac836a55e3bc880dd9b63f6a87bf6466034d7d43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.753ex; height:2.009ex;" alt="{\displaystyle \varepsilon _{ai}}"></span>) can be viewed as vectors in an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>-dimensional Euclidean space (sample space), represented as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dff854f1e7d5b45278ad11e623da84d3b83a0b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.29ex; height:2.009ex;" alt="{\displaystyle \mathbf {z} _{a}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f9e5be7d9aabb5ceafb61a21e637f72e5ce7dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.742ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{p}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\varepsilon }}_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B5;<!-- ε --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\varepsilon }}_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bfe393940f5113ca6391aefdaa6df2ff713e434" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.332ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\varepsilon }}_{a}}"></span> respectively. Since the data are standardized, the data vectors are of unit length (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ||\mathbf {z} _{a}||=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ||\mathbf {z} _{a}||=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76e4aba01b21f1bcbc5d0299204c6206f1111fa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.138ex; height:2.843ex;" alt="{\displaystyle ||\mathbf {z} _{a}||=1}"></span>). The factor vectors define an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-dimensional linear subspace (i.e. a hyperplane) in this space, upon which the data vectors are projected orthogonally. This follows from the model equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{a}=\sum _{p}\ell _{ap}\mathbf {F} _{p}+{\boldsymbol {\varepsilon }}_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munder> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>p</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B5;<!-- ε --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{a}=\sum _{p}\ell _{ap}\mathbf {F} _{p}+{\boldsymbol {\varepsilon }}_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2743091cf9952e2e6d3ddf81b0259a5e80805" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:19.943ex; height:5.676ex;" alt="{\displaystyle \mathbf {z} _{a}=\sum _{p}\ell _{ap}\mathbf {F} _{p}+{\boldsymbol {\varepsilon }}_{a}}"></span></dd></dl> <p>and the independence of the factors and the errors: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p}\cdot {\boldsymbol {\varepsilon }}_{a}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B5;<!-- ε --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p}\cdot {\boldsymbol {\varepsilon }}_{a}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49a9f974f592129ae2d8fded4ff6681d83d0df84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.014ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{p}\cdot {\boldsymbol {\varepsilon }}_{a}=0}"></span>. In the above example, the hyperplane is just a 2-dimensional plane defined by the two factor vectors. The projection of the data vectors onto the hyperplane is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {z} }}_{a}=\sum _{p}\ell _{ap}\mathbf {F} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munder> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>p</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {z} }}_{a}=\sum _{p}\ell _{ap}\mathbf {F} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f97a7e64e6a465267b482b0be6cc79cfd8739414" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:14.771ex; height:5.676ex;" alt="{\displaystyle {\hat {\mathbf {z} }}_{a}=\sum _{p}\ell _{ap}\mathbf {F} _{p}}"></span></dd></dl> <p>and the errors are vectors from that projected point to the data point and are perpendicular to the hyperplane. The goal of factor analysis is to find a hyperplane which is a "best fit" to the data in some sense, so it doesn't matter how the factor vectors which define this hyperplane are chosen, as long as they are independent and lie in the hyperplane. We are free to specify them as both orthogonal and normal (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{p}\cdot \mathbf {F} _{q}=\delta _{pq}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{p}\cdot \mathbf {F} _{q}=\delta _{pq}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edee85201f7b5a70fb364af683cd387824ba0973" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.039ex; height:3.009ex;" alt="{\displaystyle \mathbf {F} _{p}\cdot \mathbf {F} _{q}=\delta _{pq}}"></span>) with no loss of generality. After a suitable set of factors are found, they may also be arbitrarily rotated within the hyperplane, so that any rotation of the factor vectors will define the same hyperplane, and also be a solution. As a result, in the above example, in which the fitting hyperplane is two dimensional, if we do not know beforehand that the two types of intelligence are uncorrelated, then we cannot interpret the two factors as the two different types of intelligence. Even if they are uncorrelated, we cannot tell which factor corresponds to verbal intelligence and which corresponds to mathematical intelligence, or whether the factors are linear combinations of both, without an outside argument. </p><p>The data vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dff854f1e7d5b45278ad11e623da84d3b83a0b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.29ex; height:2.009ex;" alt="{\displaystyle \mathbf {z} _{a}}"></span> have unit length. The entries of the correlation matrix for the data are given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{ab}=\mathbf {z} _{a}\cdot \mathbf {z} _{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{ab}=\mathbf {z} _{a}\cdot \mathbf {z} _{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e2fdeb17ff53cbd120be742bcbde4a453bc8e80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.049ex; height:2.009ex;" alt="{\displaystyle r_{ab}=\mathbf {z} _{a}\cdot \mathbf {z} _{b}}"></span>. The correlation matrix can be geometrically interpreted as the cosine of the angle between the two data vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dff854f1e7d5b45278ad11e623da84d3b83a0b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.29ex; height:2.009ex;" alt="{\displaystyle \mathbf {z} _{a}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} _{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} _{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/796b2be7dd28b3f3a08f9f365a135f7d29b9cfd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.126ex; height:2.009ex;" alt="{\displaystyle \mathbf {z} _{b}}"></span>. The diagonal elements will clearly be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>s and the off diagonal elements will have absolute values less than or equal to unity. The "reduced correlation matrix" is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {r}}_{ab}={\hat {\mathbf {z} }}_{a}\cdot {\hat {\mathbf {z} }}_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {r}}_{ab}={\hat {\mathbf {z} }}_{a}\cdot {\hat {\mathbf {z} }}_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc0899aa70a7c4a16aae3d9499a42203c312cb35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.292ex; height:2.676ex;" alt="{\displaystyle {\hat {r}}_{ab}={\hat {\mathbf {z} }}_{a}\cdot {\hat {\mathbf {z} }}_{b}}"></span>.</dd></dl> <p>The goal of factor analysis is to choose the fitting hyperplane such that the reduced correlation matrix reproduces the correlation matrix as nearly as possible, except for the diagonal elements of the correlation matrix which are known to have unit value. In other words, the goal is to reproduce as accurately as possible the cross-correlations in the data. Specifically, for the fitting hyperplane, the mean square error in the off-diagonal components </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon ^{2}=\sum _{a\neq b}\left(r_{ab}-{\hat {r}}_{ab}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>b</mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon ^{2}=\sum _{a\neq b}\left(r_{ab}-{\hat {r}}_{ab}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cd4a49f268e3ea1e2278aa4c35681a8f1e98a12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:20.637ex; height:6.009ex;" alt="{\displaystyle \varepsilon ^{2}=\sum _{a\neq b}\left(r_{ab}-{\hat {r}}_{ab}\right)^{2}}"></span></dd></dl> <p>is to be minimized, and this is accomplished by minimizing it with respect to a set of orthonormal factor vectors. It can be seen that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{ab}-{\hat {r}}_{ab}={\boldsymbol {\varepsilon }}_{a}\cdot {\boldsymbol {\varepsilon }}_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B5;<!-- ε --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03B5;<!-- ε --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{ab}-{\hat {r}}_{ab}={\boldsymbol {\varepsilon }}_{a}\cdot {\boldsymbol {\varepsilon }}_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d89043ff32eced55342ccc376c812d1edf5d999d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.072ex; height:2.509ex;" alt="{\displaystyle r_{ab}-{\hat {r}}_{ab}={\boldsymbol {\varepsilon }}_{a}\cdot {\boldsymbol {\varepsilon }}_{b}}"></span></dd></dl> <p>The term on the right is just the covariance of the errors. In the model, the error covariance is stated to be a diagonal matrix and so the above minimization problem will in fact yield a "best fit" to the model: It will yield a sample estimate of the error covariance which has its off-diagonal components minimized in the mean square sense. It can be seen that since the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {z}}_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {z}}_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6caebb5d0105fef09ac51d0db54d4fe71fb4185d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.398ex; height:2.509ex;" alt="{\displaystyle {\hat {z}}_{a}}"></span> are orthogonal projections of the data vectors, their length will be less than or equal to the length of the projected data vector, which is unity. The square of these lengths are just the diagonal elements of the reduced correlation matrix. These diagonal elements of the reduced correlation matrix are known as "communalities": </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {h_{a}}^{2}=||{\hat {\mathbf {z} }}_{a}||^{2}=\sum _{p}{\ell _{ap}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munder> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>p</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {h_{a}}^{2}=||{\hat {\mathbf {z} }}_{a}||^{2}=\sum _{p}{\ell _{ap}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d7e8fa4ffbc0053ec10c8f137cd45079dcbbda9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.318ex; height:5.676ex;" alt="{\displaystyle {h_{a}}^{2}=||{\hat {\mathbf {z} }}_{a}||^{2}=\sum _{p}{\ell _{ap}}^{2}}"></span></dd></dl> <p>Large values of the communalities will indicate that the fitting hyperplane is rather accurately reproducing the correlation matrix. The mean values of the factors must also be constrained to be zero, from which it follows that the mean values of the errors will also be zero. </p> <div class="mw-heading mw-heading2"><h2 id="Practical_implementation">Practical implementation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=6" title="Edit section: Practical implementation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Factor_analysis" title="Special:EditPage/Factor analysis">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">April 2012</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Types_of_factor_analysis">Types of factor analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=7" title="Edit section: Types of factor analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Exploratory_factor_analysis">Exploratory factor analysis</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=8" title="Edit section: Exploratory factor analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">For broader coverage of this topic, see <a href="/wiki/Exploratory_factor_analysis" title="Exploratory factor analysis">Exploratory factor analysis</a>.</div> <p>Exploratory factor analysis (EFA) is used to identify complex interrelationships among items and group items that are part of unified concepts.<sup id="cite_ref-Polit_5-0" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The researcher makes no <i>a priori</i> assumptions about relationships among factors.<sup id="cite_ref-Polit_5-1" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Confirmatory_factor_analysis">Confirmatory factor analysis</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=9" title="Edit section: Confirmatory factor analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">For broader coverage of this topic, see <a href="/wiki/Confirmatory_factor_analysis" title="Confirmatory factor analysis">Confirmatory factor analysis</a>.</div> <p>Confirmatory factor analysis (CFA) is a more complex approach that tests the hypothesis that the items are associated with specific factors.<sup id="cite_ref-Polit_5-2" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> CFA uses <a href="/wiki/Structural_equation_modeling" title="Structural equation modeling">structural equation modeling</a> to test a measurement model whereby loading on the factors allows for evaluation of relationships between observed variables and unobserved variables.<sup id="cite_ref-Polit_5-3" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Structural equation modeling approaches can accommodate measurement error and are less restrictive than <a href="/wiki/Least-squares_estimation" class="mw-redirect" title="Least-squares estimation">least-squares estimation</a>.<sup id="cite_ref-Polit_5-4" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Hypothesized models are tested against actual data, and the analysis would demonstrate loadings of observed variables on the latent variables (factors), as well as the correlation between the latent variables.<sup id="cite_ref-Polit_5-5" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Types_of_factor_extraction">Types of factor extraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=10" title="Edit section: Types of factor extraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Principal_component_analysis" title="Principal component analysis">Principal component analysis</a> (PCA) is a widely used method for factor extraction, which is the first phase of EFA.<sup id="cite_ref-Polit_5-6" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Factor weights are computed to extract the maximum possible variance, with successive factoring continuing until there is no further meaningful variance left.<sup id="cite_ref-Polit_5-7" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The factor model must then be rotated for analysis.<sup id="cite_ref-Polit_5-8" class="reference"><a href="#cite_note-Polit-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Canonical factor analysis, also called Rao's canonical factoring, is a different method of computing the same model as PCA, which uses the principal axis method. Canonical factor analysis seeks factors that have the highest canonical correlation with the observed variables. Canonical factor analysis is unaffected by arbitrary rescaling of the data. </p><p>Common factor analysis, also called <a href="/wiki/Principal_factor_analysis" class="mw-redirect" title="Principal factor analysis">principal factor analysis</a> (PFA) or principal axis factoring (PAF), seeks the fewest factors which can account for the common variance (correlation) of a set of variables. </p><p>Image factoring is based on the <a href="/wiki/Correlation_matrix" class="mw-redirect" title="Correlation matrix">correlation matrix</a> of predicted variables rather than actual variables, where each variable is predicted from the others using <a href="/wiki/Multiple_regression" class="mw-redirect" title="Multiple regression">multiple regression</a>. </p><p>Alpha factoring is based on maximizing the reliability of factors, assuming variables are randomly sampled from a universe of variables. All other methods assume cases to be sampled and variables fixed. </p><p>Factor regression model is a combinatorial model of factor model and regression model; or alternatively, it can be viewed as the hybrid factor model,<sup id="cite_ref-meng2011_6-0" class="reference"><a href="#cite_note-meng2011-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> whose factors are partially known. </p> <div class="mw-heading mw-heading3"><h3 id="Terminology">Terminology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=11" title="Edit section: Terminology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1228772891">.mw-parser-output .glossary dt{margin-top:0.4em}.mw-parser-output .glossary dt+dt{margin-top:-0.2em}.mw-parser-output .glossary .templatequote{margin-top:0;margin-bottom:-0.5em}</style> <dl class="glossary"> <dt id="factor_loadings"><dfn>Factor loadings</dfn></dt> <dd>Communality is the square of the standardized outer loading of an item. Analogous to <a href="/wiki/Pearson_product-moment_correlation_coefficient" class="mw-redirect" title="Pearson product-moment correlation coefficient">Pearson's r</a>-squared, the squared factor loading is the percent of variance in that indicator variable explained by the factor. To get the percent of variance in all the variables accounted for by each factor, add the sum of the squared factor loadings for that factor (column) and divide by the number of variables. (The number of variables equals the sum of their variances as the variance of a standardized variable is 1.) This is the same as dividing the factor's <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalue</a> by the number of variables. <div class="paragraphbreak" style="margin-top:0.5em"></div>When interpreting, by one rule of thumb in confirmatory factor analysis, factor loadings should be .7 or higher to confirm that independent variables identified a priori are represented by a particular factor, on the rationale that the .7 level corresponds to about half of the variance in the indicator being explained by the factor. However, the .7 standard is a high one and real-life data may well not meet this criterion, which is why some researchers, particularly for exploratory purposes, will use a lower level such as .4 for the central factor and .25 for other factors. In any event, factor loadings must be interpreted in the light of theory, not by arbitrary cutoff levels. <div class="paragraphbreak" style="margin-top:0.5em"></div>In <a href="/wiki/Angle#Types_of_angles" title="Angle">oblique</a> rotation, one may examine both a pattern matrix and a structure matrix. The structure matrix is simply the factor loading matrix as in orthogonal rotation, representing the variance in a measured variable explained by a factor on both a unique and common contributions basis. The pattern matrix, in contrast, contains <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> which just represent unique contributions. The more factors, the lower the pattern coefficients as a rule since there will be more common contributions to variance explained. For oblique rotation, the researcher looks at both the structure and pattern coefficients when attributing a label to a factor. Principles of oblique rotation can be derived from both cross entropy and its dual entropy.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></dd> <dt id="communality"><dfn>Communality</dfn></dt> <dd>The sum of the squared factor loadings for all factors for a given variable (row) is the variance in that variable accounted for by all the factors. The communality measures the percent of variance in a given variable explained by all the factors jointly and may be interpreted as the reliability of the indicator in the context of the factors being posited.</dd> <dt id="spurious_solutions"><dfn>Spurious solutions</dfn></dt> <dd>If the communality exceeds 1.0, there is a spurious solution, which may reflect too small a sample or the choice to extract too many or too few factors.</dd> <dt id="uniqueness_of_a_variable"><dfn>Uniqueness of a variable</dfn></dt> <dd>The variability of a variable minus its communality.</dd> <dt id="eigenvalues/characteristic_roots"><dfn>Eigenvalues/characteristic roots</dfn></dt> <dd>Eigenvalues measure the amount of variation in the total sample accounted for by each factor. The ratio of eigenvalues is the ratio of explanatory importance of the factors with respect to the variables. If a factor has a low eigenvalue, then it is contributing little to the explanation of variances in the variables and may be ignored as less important than the factors with higher eigenvalues.</dd> <dt id="extraction_sums_of_squared_loadings"><dfn>Extraction sums of squared loadings</dfn></dt> <dd>Initial eigenvalues and eigenvalues after extraction (listed by SPSS as "Extraction Sums of Squared Loadings") are the same for PCA extraction, but for other extraction methods, eigenvalues after extraction will be lower than their initial counterparts. SPSS also prints "Rotation Sums of Squared Loadings" and even for PCA, these eigenvalues will differ from initial and extraction eigenvalues, though their total will be the same.</dd> <dt id="factor_scores"><dfn>Factor scores</dfn></dt> <dt id="component_scores_(in_pca)"><dfn>Component scores (in PCA)</dfn></dt> <dd><p class="glossary-hatnote"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><span role="note" class="hatnote navigation-not-searchable selfref">Explained from PCA perspective, not from Factor Analysis perspective.</span></p> The scores of each case (row) on each factor (column). To compute the factor score for a given case for a given factor, one takes the case's standardized score on each variable, multiplies by the corresponding loadings of the variable for the given factor, and sums these products. Computing factor scores allows one to look for factor outliers. Also, factor scores may be used as variables in subsequent modeling.</dd> </dl> <div class="mw-heading mw-heading3"><h3 id="Criteria_for_determining_the_number_of_factors">Criteria for determining the number of factors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=12" title="Edit section: Criteria for determining the number of factors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Researchers wish to avoid such subjective or arbitrary criteria for factor retention as "it made sense to me". A number of objective methods have been developed to solve this problem, allowing users to determine an appropriate range of solutions to investigate.<sup id="cite_ref-Zwick1986_8-0" class="reference"><a href="#cite_note-Zwick1986-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> However these different methods often disagree with one another as to the number of factors that ought to be retained. For instance, the <a href="/wiki/Parallel_analysis" title="Parallel analysis">parallel analysis</a> may suggest 5 factors while Velicer's MAP suggests 6, so the researcher may request both 5 and 6-factor solutions and discuss each in terms of their relation to external data and theory. </p> <div class="mw-heading mw-heading4"><h4 id="Modern_criteria">Modern criteria</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=13" title="Edit section: Modern criteria"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Horn%27s_parallel_analysis" class="mw-redirect" title="Horn&#39;s parallel analysis">Horn's parallel analysis</a> (PA):<sup id="cite_ref-Horn1965_9-0" class="reference"><a href="#cite_note-Horn1965-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> A Monte-Carlo based simulation method that compares the observed eigenvalues with those obtained from uncorrelated normal variables. A factor or component is retained if the associated eigenvalue is bigger than the 95th percentile of the distribution of eigenvalues derived from the random data. PA is among the more commonly recommended rules for determining the number of components to retain,<sup id="cite_ref-Zwick1986_8-1" class="reference"><a href="#cite_note-Zwick1986-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> but many programs fail to include this option (a notable exception being <a href="/wiki/R_(programming_language)" title="R (programming language)">R</a>).<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> However, <a href="/wiki/Anton_Formann" title="Anton Formann">Formann</a> provided both theoretical and empirical evidence that its application might not be appropriate in many cases since its performance is considerably influenced by <a href="/wiki/Sample_size" class="mw-redirect" title="Sample size">sample size</a>, <a href="/wiki/Item_response_theory#The_item_response_function" title="Item response theory">item discrimination</a>, and type of <a href="/wiki/Correlation_coefficient" title="Correlation coefficient">correlation coefficient</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Velicer's (1976) MAP test<sup id="cite_ref-Velicer_13-0" class="reference"><a href="#cite_note-Velicer-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> as described by Courtney (2013)<sup id="cite_ref-pareonline.net_14-0" class="reference"><a href="#cite_note-pareonline.net-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> “involves a complete principal components analysis followed by the examination of a series of matrices of partial correlations” (p.&#160;397 (though this quote does not occur in Velicer (1976) and the cited page number is outside the pages of the citation). The squared correlation for Step “0” (see Figure 4) is the average squared off-diagonal correlation for the unpartialed correlation matrix. On Step 1, the first principal component and its associated items are partialed out. Thereafter, the average squared off-diagonal correlation for the subsequent correlation matrix is then computed for Step 1. On Step 2, the first two principal components are partialed out and the resultant average squared off-diagonal correlation is again computed. The computations are carried out for k minus one step (k representing the total number of variables in the matrix). Thereafter, all of the average squared correlations for each step are lined up and the step number in the analyses that resulted in the lowest average squared partial correlation determines the number of components or factors to retain.<sup id="cite_ref-Velicer_13-1" class="reference"><a href="#cite_note-Velicer-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> By this method, components are maintained as long as the variance in the correlation matrix represents systematic variance, as opposed to residual or error variance. Although methodologically akin to principal components analysis, the MAP technique has been shown to perform quite well in determining the number of factors to retain in multiple simulation studies.<sup id="cite_ref-Zwick1986_8-2" class="reference"><a href="#cite_note-Zwick1986-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Warne,_R._T._2014_15-0" class="reference"><a href="#cite_note-Warne,_R._T._2014-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ruscio_16-0" class="reference"><a href="#cite_note-Ruscio-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Garrido_17-0" class="reference"><a href="#cite_note-Garrido-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> This procedure is made available through SPSS's user interface,<sup id="cite_ref-pareonline.net_14-1" class="reference"><a href="#cite_note-pareonline.net-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> as well as the <i>psych</i> package for the <a href="/wiki/R_(programming_language)" title="R (programming language)">R programming language</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Older_methods">Older methods</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=14" title="Edit section: Older methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kaiser criterion: The Kaiser rule is to drop all components with eigenvalues under 1.0 – this being the eigenvalue equal to the information accounted for by an average single item.<sup id="cite_ref-Kaiser1960_20-0" class="reference"><a href="#cite_note-Kaiser1960-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> The Kaiser criterion is the default in <a href="/wiki/SPSS" title="SPSS">SPSS</a> and most <a href="/wiki/Statistical_software" class="mw-redirect" title="Statistical software">statistical software</a> but is not recommended when used as the sole cut-off criterion for estimating the number of factors as it tends to over-extract factors.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> A variation of this method has been created where a researcher calculates <a href="/wiki/Confidence_interval" title="Confidence interval">confidence intervals</a> for each eigenvalue and retains only factors which have the entire confidence interval greater than 1.0.<sup id="cite_ref-Warne,_R._T._2014_15-1" class="reference"><a href="#cite_note-Warne,_R._T._2014-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Scree_plot" title="Scree plot">Scree plot</a>:<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> The Cattell scree test plots the components as the X-axis and the corresponding <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> as the <a href="/wiki/Y-axis" class="mw-redirect" title="Y-axis">Y-axis</a>. As one moves to the right, toward later components, the eigenvalues drop. When the drop ceases and the curve makes an elbow toward less steep decline, Cattell's scree test says to drop all further components after the one starting at the elbow. This rule is sometimes criticised for being amenable to researcher-controlled "<a href="https://en.wiktionary.org/wiki/fudge_factor" class="extiw" title="wiktionary:fudge factor">fudging</a>". That is, as picking the "elbow" can be subjective because the curve has multiple elbows or is a smooth curve, the researcher may be tempted to set the cut-off at the number of factors desired by their research agenda.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2016)">citation needed</span></a></i>&#93;</sup> </p><p>Variance explained criteria: Some researchers simply use the rule of keeping enough factors to account for 90% (sometimes 80%) of the variation. Where the researcher's goal emphasizes <a href="/wiki/Occam%27s_razor" title="Occam&#39;s razor">parsimony</a> (explaining variance with as few factors as possible), the criterion could be as low as 50%. </p> <div class="mw-heading mw-heading4"><h4 id="Bayesian_methods">Bayesian methods</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=15" title="Edit section: Bayesian methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By placing a <a href="/wiki/Prior_probability" title="Prior probability">prior distribution</a> over the number of latent factors and then applying Bayes' theorem, Bayesian models can return a <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> over the number of latent factors. This has been modeled using the <a href="/wiki/Indian_buffet_process" title="Indian buffet process">Indian buffet process</a>,<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> but can be modeled more simply by placing any discrete prior (e.g. a <a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">negative binomial distribution</a>) on the number of components. </p> <div class="mw-heading mw-heading3"><h3 id="Rotation_methods">Rotation methods</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=16" title="Edit section: Rotation methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The output of PCA maximizes the variance accounted for by the first factor first, then the second factor, etc. A disadvantage of this procedure is that most items load on the early factors, while very few items load on later variables. This makes interpreting the factors by reading through a list of questions and loadings difficult, as every question is strongly correlated with the first few components, while very few questions are strongly correlated with the last few components. </p><p>Rotation serves to make the output easier to interpret. By <a href="/wiki/Change_of_basis" title="Change of basis">choosing a different basis</a> for the same principal components&#160;&#8211;&#32;that is, choosing different factors to express the same correlation structure&#160;&#8211;&#32;it is possible to create variables that are more easily interpretable. </p><p>Rotations can be orthogonal or oblique; oblique rotations allow the factors to correlate.<sup id="cite_ref-StackExchangeRotation_25-0" class="reference"><a href="#cite_note-StackExchangeRotation-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> This increased flexibility means that more rotations are possible, some of which may be better at achieving a specified goal. However, this can also make the factors more difficult to interpret, as some information is "double-counted" and included multiple times in different components; some factors may even appear to be near-duplicates of each other. </p> <div class="mw-heading mw-heading4"><h4 id="Orthogonal_methods">Orthogonal methods</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=17" title="Edit section: Orthogonal methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two broad classes of orthogonal rotations exist: those that look for sparse rows (where each row is a case, i.e. subject), and those that look for sparse columns (where each column is a variable). </p> <ul><li>Simple factors: these rotations try to explain all factors by using only a few important variables. This effect can be achieved by using <i>Varimax</i> (the most common rotation).</li> <li>Simple variables: these rotations try to explain all variables using only a few important factors. This effect can be achieved using either <i>Quartimax</i> or the unrotated components of PCA.</li> <li>Both: these rotations try to compromise between both of the above goals, but in the process, may achieve a fit that is poor at both tasks; as such, they are unpopular compared to the above methods. <i>Equamax</i> is one such rotation.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Problems_with_factor_rotation">Problems with factor rotation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=18" title="Edit section: Problems with factor rotation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It can be difficult to interpret a factor structure when each variable is loading on multiple factors. Small changes in the data can sometimes tip a balance in the factor rotation criterion so that a completely different factor rotation is produced. This can make it difficult to compare the results of different experiments. This problem is illustrated by a comparison of different studies of world-wide cultural differences. Each study has used different measures of cultural variables and produced a differently rotated factor analysis result. The authors of each study believed that they had discovered something new, and invented new names for the factors they found. A later comparison of the studies found that the results were rather similar when the unrotated results were compared. The common practice of factor rotation has obscured the similarity between the results of the different studies.<sup id="cite_ref-Fog2022_26-0" class="reference"><a href="#cite_note-Fog2022-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Higher_order_factor_analysis">Higher order factor analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=19" title="Edit section: Higher order factor analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Confusing plainlinks metadata ambox ambox-style ambox-confusing" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>may be <a href="/wiki/Wikipedia:Vagueness" title="Wikipedia:Vagueness">confusing or unclear</a> to readers</b>.<span class="hide-when-compact"> Please help <a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify">clarify the article</a>. There might be a discussion about this on <a href="/wiki/Talk:Factor_analysis" title="Talk:Factor analysis">the talk page</a>.</span> <span class="date-container"><i>(<span class="date">March 2010</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p><b>Higher-order factor analysis</b> is a statistical method consisting of repeating steps factor analysis – <a href="/w/index.php?title=Oblique_rotation&amp;action=edit&amp;redlink=1" class="new" title="Oblique rotation (page does not exist)">oblique rotation</a> – factor analysis of rotated factors. Its merit is to enable the researcher to see the hierarchical structure of studied phenomena. To interpret the results, one proceeds either by <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">post-multiplying</a> the primary <a href="/w/index.php?title=Factor_pattern_matrix&amp;action=edit&amp;redlink=1" class="new" title="Factor pattern matrix (page does not exist)">factor pattern matrix</a> by the higher-order factor pattern matrices (Gorsuch, 1983) and perhaps applying a <a href="/wiki/Varimax_rotation" title="Varimax rotation">Varimax rotation</a> to the result (Thompson, 1990) or by using a Schmid-Leiman solution (SLS, Schmid &amp; Leiman, 1957, also known as Schmid-Leiman transformation) which attributes the <a href="/wiki/Statistical_dispersion" title="Statistical dispersion">variation</a> from the primary factors to the second-order factors. </p> <div class="mw-heading mw-heading2"><h2 id="Exploratory_factor_analysis_(EFA)_versus_principal_components_analysis_(PCA)"><span id="Exploratory_factor_analysis_.28EFA.29_versus_principal_components_analysis_.28PCA.29"></span>Exploratory factor analysis (EFA) versus principal components analysis (PCA)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=20" title="Edit section: Exploratory factor analysis (EFA) versus principal components analysis (PCA)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Principal_component_analysis" title="Principal component analysis">Principal component analysis</a> and <a href="/wiki/Exploratory_factor_analysis" title="Exploratory factor analysis">Exploratory factor analysis</a></div> <p>Factor analysis is related to <a href="/wiki/Principal_component_analysis" title="Principal component analysis">principal component analysis</a> (PCA), but the two are not identical.<sup id="cite_ref-Bartholomew2008_27-0" class="reference"><a href="#cite_note-Bartholomew2008-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> There has been significant controversy in the field over differences between the two techniques. PCA can be considered as a more basic version of <a href="/wiki/Exploratory_factor_analysis" title="Exploratory factor analysis">exploratory factor analysis</a> (EFA) that was developed in the early days prior to the advent of high-speed computers. Both PCA and factor analysis aim to reduce the dimensionality of a set of data, but the approaches taken to do so are different for the two techniques. Factor analysis is clearly designed with the objective to identify certain unobservable factors from the observed variables, whereas PCA does not directly address this objective; at best, PCA provides an approximation to the required factors.<sup id="cite_ref-Principal_Component_Analysis_28-0" class="reference"><a href="#cite_note-Principal_Component_Analysis-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> From the point of view of exploratory analysis, the <a href="/wiki/Eigenvalues" class="mw-redirect" title="Eigenvalues">eigenvalues</a> of PCA are inflated component loadings, i.e., contaminated with error variance.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>Whilst <a href="/wiki/Exploratory_factor_analysis" title="Exploratory factor analysis">EFA</a> and <a href="/wiki/Principal_component_analysis" title="Principal component analysis">PCA</a> are treated as synonymous techniques in some fields of statistics, this has been criticised.<sup id="cite_ref-Fabrigar_35-0" class="reference"><a href="#cite_note-Fabrigar-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Suhr_36-0" class="reference"><a href="#cite_note-Suhr-36"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Factor analysis "deals with <i>the assumption of an underlying causal structure</i>: [it] assumes that the covariation in the observed variables is due to the presence of one or more latent variables (factors) that exert causal influence on these observed variables".<sup id="cite_ref-Sas_37-0" class="reference"><a href="#cite_note-Sas-37"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> In contrast, PCA neither assumes nor depends on such an underlying causal relationship. Researchers have argued that the distinctions between the two techniques may mean that there are objective benefits for preferring one over the other based on the analytic goal. If the factor model is incorrectly formulated or the assumptions are not met, then factor analysis will give erroneous results. Factor analysis has been used successfully where adequate understanding of the system permits good initial model formulations. PCA employs a mathematical transformation to the original data with no assumptions about the form of the covariance matrix. The objective of PCA is to determine linear combinations of the original variables and select a few that can be used to summarize the data set without losing much information.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Arguments_contrasting_PCA_and_EFA">Arguments contrasting PCA and EFA</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=21" title="Edit section: Arguments contrasting PCA and EFA"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fabrigar et al. (1999)<sup id="cite_ref-Fabrigar_35-1" class="reference"><a href="#cite_note-Fabrigar-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> address a number of reasons used to suggest that PCA is not equivalent to factor analysis: </p> <ol><li>It is sometimes suggested that PCA is computationally quicker and requires fewer resources than factor analysis. Fabrigar et al. suggest that readily available computer resources have rendered this practical concern irrelevant.</li> <li>PCA and factor analysis can produce similar results. This point is also addressed by Fabrigar et al.; in certain cases, whereby the communalities are low (e.g. 0.4), the two techniques produce divergent results. In fact, Fabrigar et al. argue that in cases where the data correspond to assumptions of the common factor model, the results of PCA are inaccurate results.</li> <li>There are certain cases where factor analysis leads to 'Heywood cases'. These encompass situations whereby 100% or more of the <a href="/wiki/Variance" title="Variance">variance</a> in a measured variable is estimated to be accounted for by the model. Fabrigar et al. suggest that these cases are actually informative to the researcher, indicating an incorrectly specified model or a violation of the common factor model. The lack of Heywood cases in the PCA approach may mean that such issues pass unnoticed.</li> <li>Researchers gain extra information from a PCA approach, such as an individual's score on a certain component; such information is not yielded from factor analysis. However, as Fabrigar et al. contend, the typical aim of factor analysis – i.e. to determine the factors accounting for the structure of the <a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">correlations</a> between measured variables – does not require knowledge of factor scores and thus this advantage is negated. It is also possible to compute factor scores from a factor analysis.</li></ol> <div class="mw-heading mw-heading3"><h3 id="Variance_versus_covariance">Variance versus covariance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=22" title="Edit section: Variance versus covariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Factor analysis takes into account the <a href="/wiki/Random_error" class="mw-redirect" title="Random error">random error</a> that is inherent in measurement, whereas PCA fails to do so. This point is exemplified by Brown (2009),<sup id="cite_ref-Brown_39-0" class="reference"><a href="#cite_note-Brown-39"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> who indicated that, in respect to the correlation matrices involved in the calculations: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>"In PCA, 1.00s are put in the diagonal meaning that all of the variance in the matrix is to be accounted for (including variance unique to each variable, variance common among variables, and error variance). That would, therefore, by definition, include all of the variance in the variables. In contrast, in EFA, the communalities are put in the diagonal meaning that only the variance shared with other variables is to be accounted for (excluding variance unique to each variable and error variance). That would, therefore, by definition, include only variance that is common among the variables."</p><div class="templatequotecite">—&#8202;<cite>Brown (2009), Principal components analysis and exploratory factor analysis – Definitions, differences and choices</cite></div></blockquote> <p>For this reason, Brown (2009) recommends using factor analysis when theoretical ideas about relationships between variables exist, whereas PCA should be used if the goal of the researcher is to explore patterns in their data. </p> <div class="mw-heading mw-heading3"><h3 id="Differences_in_procedure_and_results">Differences in procedure and results</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=23" title="Edit section: Differences in procedure and results"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The differences between PCA and factor analysis (FA) are further illustrated by Suhr (2009):<sup id="cite_ref-Suhr_36-1" class="reference"><a href="#cite_note-Suhr-36"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>PCA results in principal components that account for a maximal amount of variance for observed variables; FA accounts for <i>common</i> variance in the data.</li> <li>PCA inserts ones on the diagonals of the correlation matrix; FA adjusts the diagonals of the correlation matrix with the unique factors.</li> <li>PCA minimizes the sum of squared perpendicular distance to the component axis; FA estimates factors that influence responses on observed variables.</li> <li>The component scores in PCA represent a linear combination of the observed variables weighted by <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvectors</a>; the observed variables in FA are linear combinations of the underlying and unique factors.</li> <li>In PCA, the components yielded are uninterpretable, i.e. they do not represent underlying ‘constructs’; in FA, the underlying constructs can be labelled and readily interpreted, given an accurate model specification.</li></ul> <div class="mw-heading mw-heading2"><h2 id="In_psychometrics">In psychometrics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=24" title="Edit section: In psychometrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="History">History</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=25" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Charles_Spearman" title="Charles Spearman">Charles Spearman</a> was the first psychologist to discuss common factor analysis<sup id="cite_ref-:0_40-0" class="reference"><a href="#cite_note-:0-40"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> and did so in his 1904 paper.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> It provided few details about his methods and was concerned with single-factor models.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> He discovered that school children's scores on a wide variety of seemingly unrelated subjects were positively correlated, which led him to postulate that a single general mental ability, or <i><a href="/wiki/G_factor_(psychometrics)" title="G factor (psychometrics)">g</a></i>, underlies and shapes human cognitive performance. </p><p>The initial development of common factor analysis with multiple factors was given by <a href="/wiki/Louis_Leon_Thurstone" title="Louis Leon Thurstone">Louis Thurstone</a> in two papers in the early 1930s,<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> summarized in his 1935 book, <i><a href="/wiki/The_Vectors_of_Mind" title="The Vectors of Mind">The Vector of Mind</a>.</i><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> Thurstone introduced several important factor analysis concepts, including communality, uniqueness, and rotation.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> He advocated for "simple structure", and developed methods of rotation that could be used as a way to achieve such structure.<sup id="cite_ref-:0_40-1" class="reference"><a href="#cite_note-:0-40"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p><p>In <a href="/wiki/Q_methodology" title="Q methodology">Q methodology</a>, <a href="/wiki/William_Stephenson_(psychologist)" title="William Stephenson (psychologist)">William Stephenson</a>, a student of Spearman, distinguish between <i>R</i> factor analysis, oriented toward the study of inter-individual differences, and <i>Q</i> factor analysis oriented toward subjective intra-individual differences.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Raymond_Cattell" title="Raymond Cattell">Raymond Cattell</a> was a strong advocate of factor analysis and <a href="/wiki/Psychometrics" title="Psychometrics">psychometrics</a> and used Thurstone's multi-factor theory to explain intelligence. Cattell also developed the <a href="/wiki/Scree_plot" title="Scree plot">scree test</a> and similarity coefficients. </p> <div class="mw-heading mw-heading3"><h3 id="Applications_in_psychology">Applications in psychology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=26" title="Edit section: Applications in psychology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Factor analysis is used to identify "factors" that explain a variety of results on different tests. For example, intelligence research found that people who get a high score on a test of verbal ability are also good on other tests that require verbal abilities. Researchers explained this by using factor analysis to isolate one factor, often called verbal intelligence, which represents the degree to which someone is able to solve problems involving verbal skills.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="&quot;which researchers? What examples?&quot; (July 2021)">citation needed</span></a></i>&#93;</sup> </p><p>Factor analysis in psychology is most often associated with intelligence research. However, it also has been used to find factors in a broad range of domains such as personality, attitudes, beliefs, etc. It is linked to <a href="/wiki/Psychometrics" title="Psychometrics">psychometrics</a>, as it can assess the validity of an instrument by finding if the instrument indeed measures the postulated factors.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="&quot;Are there any studies which show any of the above claims?&quot; (July 2021)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Advantages">Advantages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=27" title="Edit section: Advantages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Reduction of number of variables, by combining two or more variables into a single factor. For example, performance at running, ball throwing, batting, jumping and weight lifting could be combined into a single factor such as general athletic ability. Usually, in an item by people matrix, factors are selected by grouping related items. In the Q factor analysis technique, the matrix is transposed and factors are created by grouping related people. For example, liberals, libertarians, conservatives, and socialists might form into separate groups.</li> <li>Identification of groups of inter-related variables, to see how they are related to each other. For example, Carroll used factor analysis to build his <a href="/wiki/Three_Stratum_Theory" class="mw-redirect" title="Three Stratum Theory">Three Stratum Theory</a>. He found that a factor called "broad visual perception" relates to how good an individual is at visual tasks. He also found a "broad auditory perception" factor, relating to auditory task capability. Furthermore, he found a global factor, called "g" or general intelligence, that relates to both "broad visual perception" and "broad auditory perception". This means someone with a high "g" is likely to have both a high "visual perception" capability and a high "auditory perception" capability, and that "g" therefore explains a good part of why someone is good or bad in both of those domains.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Disadvantages">Disadvantages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=28" title="Edit section: Disadvantages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>"...each orientation is equally acceptable mathematically. But different factorial theories proved to differ as much in terms of the orientations of factorial axes for a given solution as in terms of anything else, so that model fitting did not prove to be useful in distinguishing among theories." (Sternberg, 1977<sup id="cite_ref-Sternberg_49-0" class="reference"><a href="#cite_note-Sternberg-49"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup>). This means all rotations represent different underlying processes, but all rotations are equally valid outcomes of standard factor analysis optimization. Therefore, it is impossible to pick the proper rotation using factor analysis alone.</li> <li>Factor analysis can be only as good as the data allows. In psychology, where researchers often have to rely on less valid and reliable measures such as self-reports, this can be problematic.</li> <li>Interpreting factor analysis is based on using a "heuristic", which is a solution that is "convenient even if not absolutely true".<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> More than one interpretation can be made of the same data factored the same way, and factor analysis cannot identify causality.</li></ul> <div class="mw-heading mw-heading2"><h2 id="In_cross-cultural_research">In cross-cultural research</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=29" title="Edit section: In cross-cultural research"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Factor analysis is a frequently used technique in cross-cultural research. It serves the purpose of extracting <a href="/wiki/Hofstede%27s_cultural_dimensions_theory" title="Hofstede&#39;s cultural dimensions theory">cultural dimensions</a>. The best known cultural dimensions models are those elaborated by <a href="/wiki/Geert_Hofstede" title="Geert Hofstede">Geert Hofstede</a>, <a href="/wiki/Ronald_Inglehart" title="Ronald Inglehart">Ronald Inglehart</a>, <a href="/wiki/Christian_Welzel" title="Christian Welzel">Christian Welzel</a>, <a href="/wiki/Shalom_H._Schwartz" title="Shalom H. Schwartz">Shalom Schwartz</a> and Michael Minkov. A popular visualization is <a href="/wiki/Inglehart%E2%80%93Welzel_cultural_map_of_the_world" title="Inglehart–Welzel cultural map of the world">Inglehart and Welzel's cultural map of the world</a>.<sup id="cite_ref-Fog2022_26-1" class="reference"><a href="#cite_note-Fog2022-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_political_science">In political science</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=30" title="Edit section: In political science"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In an early 1965 study, political systems around the world are examined via factor analysis to construct related theoretical models and research, compare political systems, and create typological categories.<sup id="cite_ref-gregg1965_51-0" class="reference"><a href="#cite_note-gregg1965-51"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> For these purposes, in this study seven basic political dimensions are identified, which are related to a wide variety of political behaviour: these dimensions are Access, Differentiation, Consensus, Sectionalism, Legitimation, Interest, and Leadership Theory and Research. </p><p>Other political scientists explore the measurement of internal political efficacy using four new questions added to the 1988 National Election Study. Factor analysis is here used to find that these items measure a single concept distinct from external efficacy and political trust, and that these four questions provided the best measure of internal political efficacy up to that point in time.<sup id="cite_ref-niemi1991_52-0" class="reference"><a href="#cite_note-niemi1991-52"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_marketing">In marketing</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=31" title="Edit section: In marketing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The basic steps are: </p> <ul><li>Identify the salient attributes consumers use to evaluate <a href="/wiki/Product_(business)" title="Product (business)">products</a> in this category.</li> <li>Use <a href="/wiki/Quantitative_marketing_research" title="Quantitative marketing research">quantitative marketing research</a> techniques (such as <a href="/wiki/Statistical_survey" class="mw-redirect" title="Statistical survey">surveys</a>) to collect data from a sample of potential <a href="/wiki/Customer" title="Customer">customers</a> concerning their ratings of all the product attributes.</li> <li>Input the data into a statistical program and run the factor analysis procedure. The computer will yield a set of underlying attributes (or factors).</li> <li>Use these factors to construct <a href="/wiki/Perceptual_mapping" title="Perceptual mapping">perceptual maps</a> and other <a href="/wiki/Positioning_(marketing)" title="Positioning (marketing)">product positioning</a> devices.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Information_collection">Information collection</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=32" title="Edit section: Information collection"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The data collection stage is usually done by marketing research professionals. Survey questions ask the respondent to rate a product sample or descriptions of product concepts on a range of attributes. Anywhere from five to twenty attributes are chosen. They could include things like: ease of use, weight, accuracy, durability, colourfulness, price, or size. The attributes chosen will vary depending on the product being studied. The same question is asked about all the products in the study. The data for multiple products is coded and input into a statistical program such as <a href="/wiki/R_(programming_language)" title="R (programming language)">R</a>, <a href="/wiki/SPSS" title="SPSS">SPSS</a>, <a href="/wiki/SAS_System" class="mw-redirect" title="SAS System">SAS</a>, <a href="/wiki/Stata" title="Stata">Stata</a>, <a href="/wiki/STATISTICA" class="mw-redirect" title="STATISTICA">STATISTICA</a>, JMP, and SYSTAT. </p> <div class="mw-heading mw-heading3"><h3 id="Analysis">Analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=33" title="Edit section: Analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The analysis will isolate the underlying factors that explain the data using a matrix of associations.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> Factor analysis is an interdependence technique. The complete set of interdependent relationships is examined. There is no specification of dependent variables, independent variables, or causality. Factor analysis assumes that all the rating data on different attributes can be reduced down to a few important dimensions. This reduction is possible because some attributes may be related to each other. The rating given to any one attribute is partially the result of the influence of other attributes. The statistical algorithm deconstructs the rating (called a raw score) into its various components and reconstructs the partial scores into underlying factor scores. The degree of correlation between the initial raw score and the final factor score is called a <i>factor loading</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Advantages_2">Advantages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=34" title="Edit section: Advantages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Both objective and subjective attributes can be used provided the subjective attributes can be converted into scores.</li> <li>Factor analysis can identify latent dimensions or constructs that direct analysis may not.</li> <li>It is easy and inexpensive.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Disadvantages_2">Disadvantages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=35" title="Edit section: Disadvantages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Usefulness depends on the researchers' ability to collect a sufficient set of product attributes. If important attributes are excluded or neglected, the value of the procedure is reduced.</li> <li>If sets of observed variables are highly similar to each other and distinct from other items, factor analysis will assign a single factor to them. This may obscure factors that represent more interesting relationships. <sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (May 2012)">clarification needed</span></a></i>&#93;</sup></li> <li>Naming factors may require knowledge of theory because seemingly dissimilar attributes can correlate strongly for unknown reasons.</li></ul> <div class="mw-heading mw-heading2"><h2 id="In_physical_and_biological_sciences">In physical and biological sciences</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=36" title="Edit section: In physical and biological sciences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Factor analysis has also been widely used in physical sciences such as <a href="/wiki/Geochemistry" title="Geochemistry">geochemistry</a>, <a href="/wiki/Hydrochemistry" class="mw-redirect" title="Hydrochemistry">hydrochemistry</a>,<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Astrophysics" title="Astrophysics">astrophysics</a> and <a href="/wiki/Cosmology" title="Cosmology">cosmology</a>, as well as biological sciences, such as <a href="/wiki/Ecology" title="Ecology">ecology</a>, <a href="/wiki/Molecular_biology" title="Molecular biology">molecular biology</a>, <a href="/wiki/Neuroscience" title="Neuroscience">neuroscience</a> and <a href="/wiki/Biochemistry" title="Biochemistry">biochemistry</a>. </p><p>In groundwater quality management, it is important to relate the spatial distribution of different chemical parameters to different possible sources, which have different chemical signatures. For example, a sulfide mine is likely to be associated with high levels of acidity, dissolved sulfates and transition metals. These signatures can be identified as factors through R-mode factor analysis, and the location of possible sources can be suggested by contouring the factor scores.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>In <a href="/wiki/Geochemistry" title="Geochemistry">geochemistry</a>, different factors can correspond to different mineral associations, and thus to mineralisation.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_microarray_analysis">In microarray analysis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=37" title="Edit section: In microarray analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Factor analysis can be used for summarizing high-density <a href="/wiki/Oligonucleotide" title="Oligonucleotide">oligonucleotide</a> <a href="/wiki/DNA_microarrays" class="mw-redirect" title="DNA microarrays">DNA microarrays</a> data at probe level for <a href="/wiki/Affymetrix" title="Affymetrix">Affymetrix</a> GeneChips. In this case, the latent variable corresponds to the <a href="/wiki/RNA" title="RNA">RNA</a> concentration in a sample.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Implementation">Implementation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=38" title="Edit section: Implementation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Structural_equation_modeling#Software" title="Structural equation modeling">Structural equation modeling §&#160;Software</a></div> <p>Factor analysis has been implemented in several statistical analysis programs since the 1980s: </p> <ul><li><a href="/wiki/BMDP" title="BMDP">BMDP</a></li> <li><a href="/wiki/JMP_(statistical_software)" title="JMP (statistical software)">JMP (statistical software)</a></li> <li><a href="/w/index.php?title=Mplus&amp;action=edit&amp;redlink=1" class="new" title="Mplus (page does not exist)">Mplus</a> (statistical software)]</li> <li><a href="/wiki/Python_(programming_language)" title="Python (programming language)">Python</a>: module <a href="/wiki/Scikit-learn" title="Scikit-learn">scikit-learn</a><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/R_(programming_language)" title="R (programming language)">R</a> (with the base function <i>factanal</i> or <i>fa</i> function in package <b>psych</b>). Rotations are implemented in the <i>GPArotation</i> R package.</li> <li><a href="/wiki/SAS_(software)" title="SAS (software)">SAS</a> (using PROC FACTOR or PROC CALIS)</li> <li><a href="/wiki/SPSS" title="SPSS">SPSS</a><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Stata" title="Stata">Stata</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Stand-alone">Stand-alone</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=39" title="Edit section: Stand-alone"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Factor <a rel="nofollow" class="external autonumber" href="https://psico.fcep.urv.cat/utilitats/factor/Download.html">[1]</a> - free factor analysis software developed by the <a href="/wiki/Rovira_i_Virgili_University" class="mw-redirect" title="Rovira i Virgili University">Rovira i Virgili University</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=40" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Confirmatory_factor_analysis" title="Confirmatory factor analysis">Confirmatory factor analysis</a></li> <li><a href="/wiki/Exploratory_factor_analysis" title="Exploratory factor analysis">Exploratory factor analysis</a></li> <li><a href="/wiki/Design_of_experiments" title="Design of experiments">Design of experiments</a></li> <li><a href="/wiki/Formal_concept_analysis" title="Formal concept analysis">Formal concept analysis</a></li> <li><a href="/wiki/Independent_component_analysis" title="Independent component analysis">Independent component analysis</a></li> <li><a href="/wiki/Non-negative_matrix_factorization" title="Non-negative matrix factorization">Non-negative matrix factorization</a></li> <li><a href="/wiki/Q_methodology" title="Q methodology">Q methodology</a></li> <li><a href="/wiki/Recommendation_system" class="mw-redirect" title="Recommendation system">Recommendation system</a></li> <li><a href="/wiki/Root_cause_analysis" title="Root cause analysis">Root cause analysis</a></li> <li><a href="/wiki/Facet_theory" title="Facet theory">Facet theory</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=41" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-latent_variables-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-latent_variables_3-0">^</a></b></span> <span class="reference-text">In this example, "verbal intelligence" and "mathematical intelligence" are latent variables. The fact that they're not directly observed is what makes them latent.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=42" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFJöreskog1983" class="citation book cs1"><a href="/wiki/Karl_Gustav_J%C3%B6reskog" title="Karl Gustav Jöreskog">Jöreskog, Karl G.</a> (1983). "Factor Analysis as an Errors-in-Variables Model". <i>Principals of Modern Psychological Measurement</i>. Hillsdale: Erlbaum. pp.&#160;185–196. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-89859-277-1" title="Special:BookSources/0-89859-277-1"><bdi>0-89859-277-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Factor+Analysis+as+an+Errors-in-Variables+Model&amp;rft.btitle=Principals+of+Modern+Psychological+Measurement&amp;rft.place=Hillsdale&amp;rft.pages=185-196&amp;rft.pub=Erlbaum&amp;rft.date=1983&amp;rft.isbn=0-89859-277-1&amp;rft.aulast=J%C3%B6reskog&amp;rft.aufirst=Karl+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBandalos2017" class="citation book cs1">Bandalos, Deborah L. (2017). <i>Measurement Theory and Applications for the Social Sciences</i>. The Guilford Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measurement+Theory+and+Applications+for+the+Social+Sciences&amp;rft.pub=The+Guilford+Press&amp;rft.date=2017&amp;rft.aulast=Bandalos&amp;rft.aufirst=Deborah+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Harman-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Harman_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Harman_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Harman_4-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarman1976" class="citation book cs1">Harman, Harry H. (1976). <i>Modern Factor Analysis</i>. University of Chicago Press. pp.&#160;175, 176. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-226-31652-9" title="Special:BookSources/978-0-226-31652-9"><bdi>978-0-226-31652-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Factor+Analysis&amp;rft.pages=175%2C+176&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1976&amp;rft.isbn=978-0-226-31652-9&amp;rft.aulast=Harman&amp;rft.aufirst=Harry+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Polit-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Polit_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Polit_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Polit_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Polit_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Polit_5-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Polit_5-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Polit_5-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Polit_5-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Polit_5-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolit_DF_Beck_CT2012" class="citation book cs1">Polit DF Beck CT (2012). <i>Nursing Research: Generating and Assessing Evidence for Nursing Practice, 9th ed</i>. Philadelphia, USA: Wolters Klower Health, Lippincott Williams &amp; Wilkins.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nursing+Research%3A+Generating+and+Assessing+Evidence+for+Nursing+Practice%2C+9th+ed.&amp;rft.place=Philadelphia%2C+USA&amp;rft.pub=Wolters+Klower+Health%2C+Lippincott+Williams+%26+Wilkins&amp;rft.date=2012&amp;rft.au=Polit+DF+Beck+CT&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-meng2011-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-meng2011_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeng2011" class="citation journal cs1">Meng, J. (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111123144133/http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=4439">"Uncover cooperative gene regulations by microRNAs and transcription factors in glioblastoma using a nonnegative hybrid factor model"</a>. <i>International Conference on Acoustics, Speech and Signal Processing</i>. Archived from <a rel="nofollow" class="external text" href="http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=4439">the original</a> on 2011-11-23.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&amp;rft.atitle=Uncover+cooperative+gene+regulations+by+microRNAs+and+transcription+factors+in+glioblastoma+using+a+nonnegative+hybrid+factor+model&amp;rft.date=2011&amp;rft.aulast=Meng&amp;rft.aufirst=J.&amp;rft_id=http%3A%2F%2Fwww.cmsworldwide.com%2FICASSP2011%2FPapers%2FViewPapers.asp%3FPaperNum%3D4439&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiouMusicus2008" class="citation journal cs1">Liou, C.-Y.; Musicus, B.R. (2008). <a rel="nofollow" class="external text" href="http://ntur.lib.ntu.edu.tw/bitstream/246246/155199/1/23.pdf">"Cross Entropy Approximation of Structured Gaussian Covariance Matrices"</a> <span class="cs1-format">(PDF)</span>. <i>IEEE Transactions on Signal Processing</i>. <b>56</b> (7): 3362–3367. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008ITSP...56.3362L">2008ITSP...56.3362L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTSP.2008.917878">10.1109/TSP.2008.917878</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15255630">15255630</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Signal+Processing&amp;rft.atitle=Cross+Entropy+Approximation+of+Structured+Gaussian+Covariance+Matrices&amp;rft.volume=56&amp;rft.issue=7&amp;rft.pages=3362-3367&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15255630%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FTSP.2008.917878&amp;rft_id=info%3Abibcode%2F2008ITSP...56.3362L&amp;rft.aulast=Liou&amp;rft.aufirst=C.-Y.&amp;rft.au=Musicus%2C+B.R.&amp;rft_id=http%3A%2F%2Fntur.lib.ntu.edu.tw%2Fbitstream%2F246246%2F155199%2F1%2F23.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Zwick1986-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zwick1986_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zwick1986_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Zwick1986_8-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZwickVelicer1986" class="citation journal cs1">Zwick, William R.; Velicer, Wayne F. (1986). "Comparison of five rules for determining the number of components to retain". <i>Psychological Bulletin</i>. <b>99</b> (3): 432–442. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2F0033-2909.99.3.432">10.1037/0033-2909.99.3.432</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychological+Bulletin&amp;rft.atitle=Comparison+of+five+rules+for+determining+the+number+of+components+to+retain.&amp;rft.volume=99&amp;rft.issue=3&amp;rft.pages=432-442&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1037%2F0033-2909.99.3.432&amp;rft.aulast=Zwick&amp;rft.aufirst=William+R.&amp;rft.au=Velicer%2C+Wayne+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Horn1965-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Horn1965_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHorn1965" class="citation journal cs1">Horn, John L. (June 1965). "A rationale and test for the number of factors in factor analysis". <i>Psychometrika</i>. <b>30</b> (2): 179–185. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02289447">10.1007/BF02289447</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14306381">14306381</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19663974">19663974</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychometrika&amp;rft.atitle=A+rationale+and+test+for+the+number+of+factors+in+factor+analysis&amp;rft.volume=30&amp;rft.issue=2&amp;rft.pages=179-185&amp;rft.date=1965-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19663974%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F14306381&amp;rft_id=info%3Adoi%2F10.1007%2FBF02289447&amp;rft.aulast=Horn&amp;rft.aufirst=John+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDobriban2017" class="citation arxiv cs1">Dobriban, Edgar (2017-10-02). "Permutation methods for factor analysis and PCA". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1710.00479v2">1710.00479v2</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.ST">math.ST</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Permutation+methods+for+factor+analysis+and+PCA&amp;rft.date=2017-10-02&amp;rft_id=info%3Aarxiv%2F1710.00479v2&amp;rft.aulast=Dobriban&amp;rft.aufirst=Edgar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLedesmaValero-Mora2007" class="citation journal cs1">Ledesma, R.D.; Valero-Mora, P. (2007). <a rel="nofollow" class="external text" href="http://pareonline.net/getvn.asp?v=12&amp;n=2">"Determining the Number of Factors to Retain in EFA: An easy-to-use computer program for carrying out Parallel Analysis"</a>. <i>Practical Assessment Research &amp; Evaluation</i>. <b>12</b> (2): 1–11.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Practical+Assessment+Research+%26+Evaluation&amp;rft.atitle=Determining+the+Number+of+Factors+to+Retain+in+EFA%3A+An+easy-to-use+computer+program+for+carrying+out+Parallel+Analysis&amp;rft.volume=12&amp;rft.issue=2&amp;rft.pages=1-11&amp;rft.date=2007&amp;rft.aulast=Ledesma&amp;rft.aufirst=R.D.&amp;rft.au=Valero-Mora%2C+P.&amp;rft_id=http%3A%2F%2Fpareonline.net%2Fgetvn.asp%3Fv%3D12%26n%3D2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Tran, U. S., &amp; Formann, A. K. (2009). Performance of parallel analysis in retrieving unidimensionality in the presence of binary data. <i>Educational and Psychological Measurement, 69,</i> 50-61.</span> </li> <li id="cite_note-Velicer-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Velicer_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Velicer_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVelicer1976" class="citation journal cs1">Velicer, W.F. (1976). "Determining the number of components from the matrix of partial correlations". <i>Psychometrika</i>. <b>41</b> (3): 321–327. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf02293557">10.1007/bf02293557</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122907389">122907389</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychometrika&amp;rft.atitle=Determining+the+number+of+components+from+the+matrix+of+partial+correlations&amp;rft.volume=41&amp;rft.issue=3&amp;rft.pages=321-327&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.1007%2Fbf02293557&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122907389%23id-name%3DS2CID&amp;rft.aulast=Velicer&amp;rft.aufirst=W.F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-pareonline.net-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-pareonline.net_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pareonline.net_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Courtney, M. G. R. (2013). Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2.0 to make more judicious estimations. Practical Assessment, Research and Evaluation, 18(8). Available online: <a rel="nofollow" class="external free" href="http://pareonline.net/getvn.asp?v=18&amp;n=8">http://pareonline.net/getvn.asp?v=18&amp;n=8</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150317145450/http://pareonline.net/getvn.asp?v=18&amp;n=8">Archived</a> 2015-03-17 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-Warne,_R._T._2014-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Warne,_R._T._2014_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Warne,_R._T._2014_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarneLarsen2014" class="citation journal cs1">Warne, R. T.; Larsen, R. (2014). "Evaluating a proposed modification of the Guttman rule for determining the number of factors in an exploratory factor analysis". <i>Psychological Test and Assessment Modeling</i>. <b>56</b>: 104–123.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychological+Test+and+Assessment+Modeling&amp;rft.atitle=Evaluating+a+proposed+modification+of+the+Guttman+rule+for+determining+the+number+of+factors+in+an+exploratory+factor+analysis&amp;rft.volume=56&amp;rft.pages=104-123&amp;rft.date=2014&amp;rft.aulast=Warne&amp;rft.aufirst=R.+T.&amp;rft.au=Larsen%2C+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Ruscio-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ruscio_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRuscioRoche,_B.2012" class="citation journal cs1">Ruscio, John; Roche, B. (2012). "Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure". <i>Psychological Assessment</i>. <b>24</b> (2): 282–292. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2Fa0025697">10.1037/a0025697</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21966933">21966933</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychological+Assessment&amp;rft.atitle=Determining+the+number+of+factors+to+retain+in+an+exploratory+factor+analysis+using+comparison+data+of+known+factorial+structure&amp;rft.volume=24&amp;rft.issue=2&amp;rft.pages=282-292&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1037%2Fa0025697&amp;rft_id=info%3Apmid%2F21966933&amp;rft.aulast=Ruscio&amp;rft.aufirst=John&amp;rft.au=Roche%2C+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Garrido-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Garrido_17-0">^</a></b></span> <span class="reference-text">Garrido, L. E., &amp; Abad, F. J., &amp; Ponsoda, V. (2012). A new look at Horn's parallel analysis with ordinal variables. Psychological Methods. Advance online publication. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2Fa0030005">10.1037/a0030005</a></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRevelle2007" class="citation journal cs1">Revelle, William (2007). <a rel="nofollow" class="external text" href="http://www.personality-project.org/r/book/numberoffactors.pdf">"Determining the number of factors: the example of the NEO-PI-R"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Determining+the+number+of+factors%3A+the+example+of+the+NEO-PI-R&amp;rft.date=2007&amp;rft.aulast=Revelle&amp;rft.aufirst=William&amp;rft_id=http%3A%2F%2Fwww.personality-project.org%2Fr%2Fbook%2Fnumberoffactors.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: </span><span class="cs1-visible-error citation-comment">Cite journal requires <code class="cs1-code">&#124;journal=</code> (<a href="/wiki/Help:CS1_errors#missing_periodical" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRevelle2020" class="citation web cs1">Revelle, William (8 January 2020). <a rel="nofollow" class="external text" href="https://cran.r-project.org/web/packages/psych/">"psych: Procedures for Psychological, Psychometric, and PersonalityResearch"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=psych%3A+Procedures+for+Psychological%2C+Psychometric%2C+and+PersonalityResearch&amp;rft.date=2020-01-08&amp;rft.aulast=Revelle&amp;rft.aufirst=William&amp;rft_id=https%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fpsych%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Kaiser1960-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kaiser1960_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaiser1960" class="citation journal cs1">Kaiser, Henry F. (April 1960). "The Application of Electronic Computers to Factor Analysis". <i>Educational and Psychological Measurement</i>. <b>20</b> (1): 141–151. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F001316446002000116">10.1177/001316446002000116</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:146138712">146138712</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Educational+and+Psychological+Measurement&amp;rft.atitle=The+Application+of+Electronic+Computers+to+Factor+Analysis&amp;rft.volume=20&amp;rft.issue=1&amp;rft.pages=141-151&amp;rft.date=1960-04&amp;rft_id=info%3Adoi%2F10.1177%2F001316446002000116&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A146138712%23id-name%3DS2CID&amp;rft.aulast=Kaiser&amp;rft.aufirst=Henry+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBandalosBoehm-Kaufman2008" class="citation book cs1">Bandalos, D.L.; Boehm-Kaufman, M.R. (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=KFAnkvqD8CgC&amp;pg=PA61">"Four common misconceptions in exploratory factor analysis"</a>. In Lance, Charles E.; Vandenberg, Robert J. (eds.). <i>Statistical and Methodological Myths and Urban Legends: Doctrine, Verity and Fable in the Organizational and Social Sciences</i>. Taylor &amp; Francis. pp.&#160;61–87. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8058-6237-9" title="Special:BookSources/978-0-8058-6237-9"><bdi>978-0-8058-6237-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Four+common+misconceptions+in+exploratory+factor+analysis&amp;rft.btitle=Statistical+and+Methodological+Myths+and+Urban+Legends%3A+Doctrine%2C+Verity+and+Fable+in+the+Organizational+and+Social+Sciences&amp;rft.pages=61-87&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=2008&amp;rft.isbn=978-0-8058-6237-9&amp;rft.aulast=Bandalos&amp;rft.aufirst=D.L.&amp;rft.au=Boehm-Kaufman%2C+M.R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKFAnkvqD8CgC%26pg%3DPA61&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsenWarne2010" class="citation journal cs1">Larsen, R.; Warne, R. T. (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.3758%2FBRM.42.3.871">"Estimating confidence intervals for eigenvalues in exploratory factor analysis"</a>. <i>Behavior Research Methods</i>. <b>42</b> (3): 871–876. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3758%2FBRM.42.3.871">10.3758/BRM.42.3.871</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20805609">20805609</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Behavior+Research+Methods&amp;rft.atitle=Estimating+confidence+intervals+for+eigenvalues+in+exploratory+factor+analysis&amp;rft.volume=42&amp;rft.issue=3&amp;rft.pages=871-876&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.3758%2FBRM.42.3.871&amp;rft_id=info%3Apmid%2F20805609&amp;rft.aulast=Larsen&amp;rft.aufirst=R.&amp;rft.au=Warne%2C+R.+T.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3758%252FBRM.42.3.871&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCattell1966" class="citation journal cs1">Cattell, Raymond (1966). "The scree test for the number of factors". <i>Multivariate Behavioral Research</i>. <b>1</b> (2): 245–76. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1207%2Fs15327906mbr0102_10">10.1207/s15327906mbr0102_10</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26828106">26828106</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Multivariate+Behavioral+Research&amp;rft.atitle=The+scree+test+for+the+number+of+factors&amp;rft.volume=1&amp;rft.issue=2&amp;rft.pages=245-76&amp;rft.date=1966&amp;rft_id=info%3Adoi%2F10.1207%2Fs15327906mbr0102_10&amp;rft_id=info%3Apmid%2F26828106&amp;rft.aulast=Cattell&amp;rft.aufirst=Raymond&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlpaydin2020" class="citation book cs1">Alpaydin (2020). <i>Introduction to Machine Learning</i> (5th&#160;ed.). pp.&#160;528–9.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Machine+Learning&amp;rft.pages=528-9&amp;rft.edition=5th&amp;rft.date=2020&amp;rft.au=Alpaydin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-StackExchangeRotation-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-StackExchangeRotation_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://stats.stackexchange.com/q/185216">"Factor rotation methods"</a>. <i>Stack Exchange</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 November</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Stack+Exchange&amp;rft.atitle=Factor+rotation+methods&amp;rft_id=https%3A%2F%2Fstats.stackexchange.com%2Fq%2F185216&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Fog2022-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fog2022_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fog2022_26-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFog2022" class="citation journal cs1">Fog, A (2022). <a rel="nofollow" class="external text" href="https://backend.orbit.dtu.dk/ws/files/292673942/Two_dimensional_models_of_culture.pdf">"Two-Dimensional Models of Cultural Differences: Statistical and Theoretical Analysis"</a> <span class="cs1-format">(PDF)</span>. <i>Cross-Cultural Research</i>. <b>57</b> (2–3): 115–165. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F10693971221135703">10.1177/10693971221135703</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:253153619">253153619</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cross-Cultural+Research&amp;rft.atitle=Two-Dimensional+Models+of+Cultural+Differences%3A+Statistical+and+Theoretical+Analysis&amp;rft.volume=57&amp;rft.issue=2%E2%80%933&amp;rft.pages=115-165&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1177%2F10693971221135703&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A253153619%23id-name%3DS2CID&amp;rft.aulast=Fog&amp;rft.aufirst=A&amp;rft_id=https%3A%2F%2Fbackend.orbit.dtu.dk%2Fws%2Ffiles%2F292673942%2FTwo_dimensional_models_of_culture.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Bartholomew2008-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bartholomew2008_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartholomewSteeleGalbraithMoustaki2008" class="citation book cs1">Bartholomew, D.J.; Steele, F.; Galbraith, J.; Moustaki, I. (2008). <i>Analysis of Multivariate Social Science Data</i>. Statistics in the Social and Behavioral Sciences Series (2nd&#160;ed.). Taylor &amp; Francis. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1584889601" title="Special:BookSources/978-1584889601"><bdi>978-1584889601</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analysis+of+Multivariate+Social+Science+Data&amp;rft.series=Statistics+in+the+Social+and+Behavioral+Sciences+Series&amp;rft.edition=2nd&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=2008&amp;rft.isbn=978-1584889601&amp;rft.aulast=Bartholomew&amp;rft.aufirst=D.J.&amp;rft.au=Steele%2C+F.&amp;rft.au=Galbraith%2C+J.&amp;rft.au=Moustaki%2C+I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Principal_Component_Analysis-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Principal_Component_Analysis_28-0">^</a></b></span> <span class="reference-text">Jolliffe I.T. <i>Principal Component Analysis</i>, Series: Springer Series in Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p. 28 illus. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95442-4" title="Special:BookSources/978-0-387-95442-4">978-0-387-95442-4</a></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text">Cattell, R. B. (1952). <i>Factor analysis</i>. New York: Harper.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">Fruchter, B. (1954). <i>Introduction to Factor Analysis</i>. Van Nostrand.</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Cattell, R. B. (1978). <i>Use of Factor Analysis in Behavioral and Life Sciences</i>. New York: Plenum.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Child, D. (2006). <i>The Essentials of Factor Analysis, 3rd edition</i>. Bloomsbury Academic Press.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Gorsuch, R. L. (1983). <i>Factor Analysis, 2nd edition</i>. Hillsdale, NJ: Erlbaum.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">McDonald, R. P. (1985). <i>Factor Analysis and Related Methods</i>. Hillsdale, NJ: Erlbaum.</span> </li> <li id="cite_note-Fabrigar-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fabrigar_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fabrigar_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFabrigar1999" class="citation web cs1">Fabrigar; et&#160;al. (1999). <a rel="nofollow" class="external text" href="http://www.statpower.net/Content/312/Handout/Fabrigar1999.pdf">"Evaluating the use of exploratory factor analysis in psychological research"</a> <span class="cs1-format">(PDF)</span>. Psychological Methods.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Evaluating+the+use+of+exploratory+factor+analysis+in+psychological+research.&amp;rft.pub=Psychological+Methods&amp;rft.date=1999&amp;rft.au=Fabrigar&amp;rft_id=http%3A%2F%2Fwww.statpower.net%2FContent%2F312%2FHandout%2FFabrigar1999.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Suhr-36"><span class="mw-cite-backlink">^ <a href="#cite_ref-Suhr_36-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Suhr_36-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuhr2009" class="citation web cs1">Suhr, Diane (2009). <a rel="nofollow" class="external text" href="http://www2.sas.com/proceedings/sugi30/203-30.pdf">"Principal component analysis vs. exploratory factor analysis"</a> <span class="cs1-format">(PDF)</span>. SUGI 30 Proceedings<span class="reference-accessdate">. Retrieved <span class="nowrap">5 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Principal+component+analysis+vs.+exploratory+factor+analysis&amp;rft.pub=SUGI+30+Proceedings&amp;rft.date=2009&amp;rft.aulast=Suhr&amp;rft.aufirst=Diane&amp;rft_id=http%3A%2F%2Fwww2.sas.com%2Fproceedings%2Fsugi30%2F203-30.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Sas-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sas_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSAS_Statistics" class="citation web cs1">SAS Statistics. <a rel="nofollow" class="external text" href="http://support.sas.com/publishing/pubcat/chaps/55129.pdf">"Principal Components Analysis"</a> <span class="cs1-format">(PDF)</span>. <i>SAS Support Textbook</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=SAS+Support+Textbook&amp;rft.atitle=Principal+Components+Analysis&amp;rft.au=SAS+Statistics&amp;rft_id=http%3A%2F%2Fsupport.sas.com%2Fpublishing%2Fpubcat%2Fchaps%2F55129.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeglen1991" class="citation journal cs1">Meglen, R.R. (1991). "Examining Large Databases: A Chemometric Approach Using Principal Component Analysis". <i>Journal of Chemometrics</i>. <b>5</b> (3): 163–179. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fcem.1180050305">10.1002/cem.1180050305</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120886184">120886184</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Chemometrics&amp;rft.atitle=Examining+Large+Databases%3A+A+Chemometric+Approach+Using+Principal+Component+Analysis&amp;rft.volume=5&amp;rft.issue=3&amp;rft.pages=163-179&amp;rft.date=1991&amp;rft_id=info%3Adoi%2F10.1002%2Fcem.1180050305&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120886184%23id-name%3DS2CID&amp;rft.aulast=Meglen&amp;rft.aufirst=R.R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Brown-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brown_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrown2009" class="citation web cs1">Brown, J. D. (January 2009). <a rel="nofollow" class="external text" href="http://jalt.org/test/PDF/Brown29.pdf">"Principal components analysis and exploratory factor analysis – Definitions, differences and choices"</a> <span class="cs1-format">(PDF)</span>. Shiken: JALT Testing &amp; Evaluation SIG Newsletter<span class="reference-accessdate">. Retrieved <span class="nowrap">16 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Principal+components+analysis+and+exploratory+factor+analysis+%E2%80%93+Definitions%2C+differences+and+choices.&amp;rft.pub=Shiken%3A+JALT+Testing+%26+Evaluation+SIG+Newsletter&amp;rft.date=2009-01&amp;rft.aulast=Brown&amp;rft.aufirst=J.+D.&amp;rft_id=http%3A%2F%2Fjalt.org%2Ftest%2FPDF%2FBrown29.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-:0-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMulaik2010" class="citation book cs1">Mulaik, Stanley A (2010). <i>Foundations of Factor Analysis. Second Edition</i>. Boca Raton, Florida: CRC Press. p.&#160;6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4200-9961-4" title="Special:BookSources/978-1-4200-9961-4"><bdi>978-1-4200-9961-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Factor+Analysis.+Second+Edition&amp;rft.place=Boca+Raton%2C+Florida&amp;rft.pages=6&amp;rft.pub=CRC+Press&amp;rft.date=2010&amp;rft.isbn=978-1-4200-9961-4&amp;rft.aulast=Mulaik&amp;rft.aufirst=Stanley+A&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpearman1904" class="citation journal cs1">Spearman, Charles (1904). "General intelligence objectively determined and measured". <i>American Journal of Psychology</i>. <b>15</b> (2): 201–293. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1412107">10.2307/1412107</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1412107">1412107</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Psychology&amp;rft.atitle=General+intelligence+objectively+determined+and+measured&amp;rft.volume=15&amp;rft.issue=2&amp;rft.pages=201-293&amp;rft.date=1904&amp;rft_id=info%3Adoi%2F10.2307%2F1412107&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1412107%23id-name%3DJSTOR&amp;rft.aulast=Spearman&amp;rft.aufirst=Charles&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartholomew1995" class="citation journal cs1">Bartholomew, D. J. (1995). "Spearman and the origin and development of factor analysis". <i>British Journal of Mathematical and Statistical Psychology</i>. <b>48</b> (2): 211–220. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.2044-8317.1995.tb01060.x">10.1111/j.2044-8317.1995.tb01060.x</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=British+Journal+of+Mathematical+and+Statistical+Psychology&amp;rft.atitle=Spearman+and+the+origin+and+development+of+factor+analysis&amp;rft.volume=48&amp;rft.issue=2&amp;rft.pages=211-220&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1111%2Fj.2044-8317.1995.tb01060.x&amp;rft.aulast=Bartholomew&amp;rft.aufirst=D.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThurstone1931" class="citation journal cs1">Thurstone, Louis (1931). "Multiple factor analysis". <i>Psychological Review</i>. <b>38</b> (5): 406–427. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2Fh0069792">10.1037/h0069792</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychological+Review&amp;rft.atitle=Multiple+factor+analysis&amp;rft.volume=38&amp;rft.issue=5&amp;rft.pages=406-427&amp;rft.date=1931&amp;rft_id=info%3Adoi%2F10.1037%2Fh0069792&amp;rft.aulast=Thurstone&amp;rft.aufirst=Louis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThurstone1934" class="citation journal cs1">Thurstone, Louis (1934). "The Vectors of Mind". <i>The Psychological Review</i>. <b>41</b>: 1–32. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2Fh0075959">10.1037/h0075959</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Psychological+Review&amp;rft.atitle=The+Vectors+of+Mind&amp;rft.volume=41&amp;rft.pages=1-32&amp;rft.date=1934&amp;rft_id=info%3Adoi%2F10.1037%2Fh0075959&amp;rft.aulast=Thurstone&amp;rft.aufirst=Louis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThurstone1935" class="citation book cs1">Thurstone, L. L. (1935). <i>The Vectors of Mind. Multiple-Factor Analysis for the Isolation of Primary Traits</i>. Chicago, Illinois: University of Chicago Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Vectors+of+Mind.+Multiple-Factor+Analysis+for+the+Isolation+of+Primary+Traits.&amp;rft.place=Chicago%2C+Illinois&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1935&amp;rft.aulast=Thurstone&amp;rft.aufirst=L.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBock2007" class="citation book cs1">Bock, Robert (2007). "Rethinking Thurstone". In Cudeck, Robert; MacCallum, Robert C. (eds.). <i>Factor Analysis at 100</i>. Mahwah, New Jersey: Lawrence Erlbaum Associates. p.&#160;37. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8058-6212-6" title="Special:BookSources/978-0-8058-6212-6"><bdi>978-0-8058-6212-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Rethinking+Thurstone&amp;rft.btitle=Factor+Analysis+at+100&amp;rft.place=Mahwah%2C+New+Jersey&amp;rft.pages=37&amp;rft.pub=Lawrence+Erlbaum+Associates&amp;rft.date=2007&amp;rft.isbn=978-0-8058-6212-6&amp;rft.aulast=Bock&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMckeown,_Bruce2013" class="citation book cs1">Mckeown, Bruce (2013-06-21). <i>Q Methodology</i>. SAGE Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781452242194" title="Special:BookSources/9781452242194"><bdi>9781452242194</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/841672556">841672556</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Q+Methodology&amp;rft.pub=SAGE+Publications&amp;rft.date=2013-06-21&amp;rft_id=info%3Aoclcnum%2F841672556&amp;rft.isbn=9781452242194&amp;rft.au=Mckeown%2C+Bruce&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStephenson1935" class="citation journal cs1">Stephenson, W. (August 1935). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F136297b0">"Technique of Factor Analysis"</a>. <i>Nature</i>. <b>136</b> (3434): 297. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1935Natur.136..297S">1935Natur.136..297S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F136297b0">10.1038/136297b0</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:26952603">26952603</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Technique+of+Factor+Analysis&amp;rft.volume=136&amp;rft.issue=3434&amp;rft.pages=297&amp;rft.date=1935-08&amp;rft_id=info%3Adoi%2F10.1038%2F136297b0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A26952603%23id-name%3DS2CID&amp;rft.issn=0028-0836&amp;rft_id=info%3Abibcode%2F1935Natur.136..297S&amp;rft.aulast=Stephenson&amp;rft.aufirst=W.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F136297b0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Sternberg-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sternberg_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSternberg1977" class="citation book cs1">Sternberg, R. J. (1977). <i>Metaphors of Mind: Conceptions of the Nature of Intelligence</i>. New York: Cambridge University Press. pp.&#160;85–111.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Metaphors+of+Mind%3A+Conceptions+of+the+Nature+of+Intelligence&amp;rft.place=New+York&amp;rft.pages=85-111&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1977&amp;rft.aulast=Sternberg&amp;rft.aufirst=R.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="The material near this tag needs to be fact-checked with the cited source(s). (November 2013)">verification needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20040818062948/http://comp9.psych.cornell.edu/Darlington/factor.htm">"Factor Analysis"</a>. Archived from <a rel="nofollow" class="external text" href="http://comp9.psych.cornell.edu/Darlington/factor.htm">the original</a> on August 18, 2004<span class="reference-accessdate">. Retrieved <span class="nowrap">July 22,</span> 2004</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Factor+Analysis&amp;rft_id=http%3A%2F%2Fcomp9.psych.cornell.edu%2FDarlington%2Ffactor.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-gregg1965-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-gregg1965_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreggBanks1965" class="citation journal cs1">Gregg, Phillip M.; Banks, Arthur S. (1965). "Dimensions of political systems: Factor analysis of a cross-polity survey". <i>American Political Science Review</i>. <b>59</b> (3): 602–614. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1953171">10.2307/1953171</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1953171">1953171</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:145459216">145459216</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Political+Science+Review&amp;rft.atitle=Dimensions+of+political+systems%3A+Factor+analysis+of+a+cross-polity+survey&amp;rft.volume=59&amp;rft.issue=3&amp;rft.pages=602-614&amp;rft.date=1965&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A145459216%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1953171%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1953171&amp;rft.aulast=Gregg&amp;rft.aufirst=Phillip+M.&amp;rft.au=Banks%2C+Arthur+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-niemi1991-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-niemi1991_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNiemiCraigMattei1991" class="citation journal cs1">Niemi, Richard G.; Craig, Stephen C.; Mattei, Franco (December 1991). <a rel="nofollow" class="external text" href="https://doi.org/10.2307/1963953">"Measuring Internal Political Efficacy in the 1988 National Election Study"</a>. <i>American Political Science Review</i>. <b>85</b> (4): 1407–1413. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1963953">10.2307/1963953</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-0554">0003-0554</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1963953">1963953</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:146641381">146641381</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Political+Science+Review&amp;rft.atitle=Measuring+Internal+Political+Efficacy+in+the+1988+National+Election+Study&amp;rft.volume=85&amp;rft.issue=4&amp;rft.pages=1407-1413&amp;rft.date=1991-12&amp;rft.issn=0003-0554&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A146641381%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1963953%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1963953&amp;rft.aulast=Niemi&amp;rft.aufirst=Richard+G.&amp;rft.au=Craig%2C+Stephen+C.&amp;rft.au=Mattei%2C+Franco&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2307%2F1963953&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text">Ritter, N. (2012). A comparison of distribution-free and non-distribution free methods in factor analysis. Paper presented at Southwestern Educational Research Association (SERA) Conference 2012, New Orleans, LA (ED529153).</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSubbaraoSubbaraoChandu1996" class="citation journal cs1">Subbarao, C.; Subbarao, N.V.; Chandu, S.N. (December 1996). "Characterisation of groundwater contamination using factor analysis". <i>Environmental Geology</i>. <b>28</b> (4): 175–180. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996EnGeo..28..175S">1996EnGeo..28..175S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs002540050091">10.1007/s002540050091</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:129655232">129655232</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Environmental+Geology&amp;rft.atitle=Characterisation+of+groundwater+contamination+using+factor+analysis&amp;rft.volume=28&amp;rft.issue=4&amp;rft.pages=175-180&amp;rft.date=1996-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A129655232%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs002540050091&amp;rft_id=info%3Abibcode%2F1996EnGeo..28..175S&amp;rft.aulast=Subbarao&amp;rft.aufirst=C.&amp;rft.au=Subbarao%2C+N.V.&amp;rft.au=Chandu%2C+S.N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoveHallbauerAmosHranova2004" class="citation journal cs1">Love, D.; Hallbauer, D.K.; Amos, A.; Hranova, R.K. (2004). "Factor analysis as a tool in groundwater quality management: two southern African case studies". <i>Physics and Chemistry of the Earth</i>. <b>29</b> (15–18): 1135–43. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PCE....29.1135L">2004PCE....29.1135L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pce.2004.09.027">10.1016/j.pce.2004.09.027</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+and+Chemistry+of+the+Earth&amp;rft.atitle=Factor+analysis+as+a+tool+in+groundwater+quality+management%3A+two+southern+African+case+studies&amp;rft.volume=29&amp;rft.issue=15%E2%80%9318&amp;rft.pages=1135-43&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1016%2Fj.pce.2004.09.027&amp;rft_id=info%3Abibcode%2F2004PCE....29.1135L&amp;rft.aulast=Love&amp;rft.aufirst=D.&amp;rft.au=Hallbauer%2C+D.K.&amp;rft.au=Amos%2C+A.&amp;rft.au=Hranova%2C+R.K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartonHallbauer1996" class="citation journal cs1">Barton, E.S.; Hallbauer, D.K. (1996). "Trace-element and U—Pb isotope compositions of pyrite types in the Proterozoic Black Reef, Transvaal Sequence, South Africa: Implications on genesis and age". <i>Chemical Geology</i>. <b>133</b> (1–4): 173–199. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996ChGeo.133..173B">1996ChGeo.133..173B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0009-2541%2896%2900075-7">10.1016/S0009-2541(96)00075-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Geology&amp;rft.atitle=Trace-element+and+U%E2%80%94Pb+isotope+compositions+of+pyrite+types+in+the+Proterozoic+Black+Reef%2C+Transvaal+Sequence%2C+South+Africa%3A+Implications+on+genesis+and+age&amp;rft.volume=133&amp;rft.issue=1%E2%80%934&amp;rft.pages=173-199&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1016%2FS0009-2541%2896%2900075-7&amp;rft_id=info%3Abibcode%2F1996ChGeo.133..173B&amp;rft.aulast=Barton&amp;rft.aufirst=E.S.&amp;rft.au=Hallbauer%2C+D.K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHochreiterClevertObermayer2006" class="citation journal cs1">Hochreiter, Sepp; Clevert, Djork-Arné; Obermayer, Klaus (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbioinformatics%2Fbtl033">"A new summarization method for affymetrix probe level data"</a>. <i>Bioinformatics</i>. <b>22</b> (8): 943–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbioinformatics%2Fbtl033">10.1093/bioinformatics/btl033</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16473874">16473874</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bioinformatics&amp;rft.atitle=A+new+summarization+method+for+affymetrix+probe+level+data&amp;rft.volume=22&amp;rft.issue=8&amp;rft.pages=943-9&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1093%2Fbioinformatics%2Fbtl033&amp;rft_id=info%3Apmid%2F16473874&amp;rft.aulast=Hochreiter&amp;rft.aufirst=Sepp&amp;rft.au=Clevert%2C+Djork-Arn%C3%A9&amp;rft.au=Obermayer%2C+Klaus&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fbioinformatics%252Fbtl033&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html">"sklearn.decomposition.FactorAnalysis — scikit-learn 0.23.2 documentation"</a>. <i>scikit-learn.org</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=scikit-learn.org&amp;rft.atitle=sklearn.decomposition.FactorAnalysis+%E2%80%94+scikit-learn+0.23.2+documentation&amp;rft_id=https%3A%2F%2Fscikit-learn.org%2Fstable%2Fmodules%2Fgenerated%2Fsklearn.decomposition.FactorAnalysis.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacCallum1983" class="citation journal cs1">MacCallum, Robert (June 1983). "A comparison of factor analysis programs in SPSS, BMDP, and SAS". <i>Psychometrika</i>. <b>48</b> (2): 223–231. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02294017">10.1007/BF02294017</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120770421">120770421</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychometrika&amp;rft.atitle=A+comparison+of+factor+analysis+programs+in+SPSS%2C+BMDP%2C+and+SAS&amp;rft.volume=48&amp;rft.issue=2&amp;rft.pages=223-231&amp;rft.date=1983-06&amp;rft_id=info%3Adoi%2F10.1007%2FBF02294017&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120770421%23id-name%3DS2CID&amp;rft.aulast=MacCallum&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=43" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChild2006" class="citation cs2">Child, Dennis (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rQ2vdJgohH0C"><i>The Essentials of Factor Analysis</i></a> (3rd&#160;ed.), <a href="/wiki/Continuum_International" class="mw-redirect" title="Continuum International">Continuum International</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8264-8000-2" title="Special:BookSources/978-0-8264-8000-2"><bdi>978-0-8264-8000-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Essentials+of+Factor+Analysis&amp;rft.edition=3rd&amp;rft.pub=Continuum+International&amp;rft.date=2006&amp;rft.isbn=978-0-8264-8000-2&amp;rft.aulast=Child&amp;rft.aufirst=Dennis&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DrQ2vdJgohH0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFabrigarWegenerMacCallumStrahan1999" class="citation journal cs1">Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. (September 1999). "Evaluating the use of exploratory factor analysis in psychological research". <i>Psychological Methods</i>. <b>4</b> (3): 272–299. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2F1082-989X.4.3.272">10.1037/1082-989X.4.3.272</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Psychological+Methods&amp;rft.atitle=Evaluating+the+use+of+exploratory+factor+analysis+in+psychological+research&amp;rft.volume=4&amp;rft.issue=3&amp;rft.pages=272-299&amp;rft.date=1999-09&amp;rft_id=info%3Adoi%2F10.1037%2F1082-989X.4.3.272&amp;rft.aulast=Fabrigar&amp;rft.aufirst=L.R.&amp;rft.au=Wegener%2C+D.T.&amp;rft.au=MacCallum%2C+R.C.&amp;rft.au=Strahan%2C+E.J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></li> <li>B.T. Gray (1997) <a rel="nofollow" class="external text" href="http://eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED407418">Higher-Order Factor Analysis</a> (Conference paper)</li> <li>Jennrich, Robert I., "Rotation to Simple Loadings Using Component Loss Function: The Oblique Case," <i>Psychometrika</i>, Vol. 71, No. 1, pp.&#160;173–191, March 2006.</li> <li>Katz, Jeffrey Owen, and Rohlf, F. James. Primary product functionplane: An oblique rotation to simple structure. <i>Multivariate Behavioral Research</i>, April 1975, Vol. 10, pp.&#160;219–232.</li> <li>Katz, Jeffrey Owen, and Rohlf, F. James. Functionplane: A new approach to simple structure rotation. <i>Psychometrika</i>, March 1974, Vol. 39, No. 1, pp.&#160;37–51.</li> <li>Katz, Jeffrey Owen, and Rohlf, F. James. Function-point cluster analysis. <i>Systematic Zoology</i>, September 1973, Vol. 22, No. 3, pp.&#160;295–301.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMulaik2010" class="citation cs2"><a href="/wiki/Stanley_A._Mulaik" title="Stanley A. Mulaik">Mulaik, S. A.</a> (2010), <i>Foundations of Factor Analysis</i>, <a href="/wiki/Chapman_%26_Hall" title="Chapman &amp; Hall">Chapman &amp; Hall</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Factor+Analysis&amp;rft.pub=Chapman+%26+Hall&amp;rft.date=2010&amp;rft.aulast=Mulaik&amp;rft.aufirst=S.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreacherMacCallum2003" class="citation journal cs1">Preacher, K.J.; MacCallum, R.C. (2003). <a rel="nofollow" class="external text" href="https://kuscholarworks.ku.edu/bitstream/1808/1492/1/preacher_maccallum_2003.pdf">"Repairing Tom Swift's Electric Factor Analysis Machine"</a> <span class="cs1-format">(PDF)</span>. <i>Understanding Statistics</i>. <b>2</b> (1): 13–43. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1207%2FS15328031US0201_02">10.1207/S15328031US0201_02</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1808%2F1492">1808/1492</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Understanding+Statistics&amp;rft.atitle=Repairing+Tom+Swift%27s+Electric+Factor+Analysis+Machine&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=13-43&amp;rft.date=2003&amp;rft_id=info%3Ahdl%2F1808%2F1492&amp;rft_id=info%3Adoi%2F10.1207%2FS15328031US0201_02&amp;rft.aulast=Preacher&amp;rft.aufirst=K.J.&amp;rft.au=MacCallum%2C+R.C.&amp;rft_id=https%3A%2F%2Fkuscholarworks.ku.edu%2Fbitstream%2F1808%2F1492%2F1%2Fpreacher_maccallum_2003.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span></li> <li>J.Schmid and J. M. Leiman (1957). The development of hierarchical factor solutions. <i>Psychometrika</i>, 22(1), 53–61.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThompson2004" class="citation cs2">Thompson, B. (2004), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/exploratoryconfi0000thom"><i>Exploratory and Confirmatory Factor Analysis: Understanding concepts and applications</i></a></span>, Washington DC: <a href="/wiki/American_Psychological_Association" title="American Psychological Association">American Psychological Association</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1591470939" title="Special:BookSources/978-1591470939"><bdi>978-1591470939</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Exploratory+and+Confirmatory+Factor+Analysis%3A+Understanding+concepts+and+applications&amp;rft.place=Washington+DC&amp;rft.pub=American+Psychological+Association&amp;rft.date=2004&amp;rft.isbn=978-1591470939&amp;rft.aulast=Thompson&amp;rft.aufirst=B.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fexploratoryconfi0000thom&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFactor+analysis" class="Z3988"></span>.</li></ul> <ul><li>Hans-Georg Wolff, Katja Preising (2005)<a rel="nofollow" class="external text" href="https://web.archive.org/web/20120523230030/http://cat.inist.fr/?aModele=afficheN&amp;cpsidt=16877522">Exploring item and higher order factor structure with the schmid-leiman solution&#160;: Syntax codes for SPSS and SAS</a><i>Behavior research methods, instruments &amp; computers</i>, 37 (1), 48-58</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Factor_analysis&amp;action=edit&amp;section=44" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Factor_analysis" class="extiw" title="commons:Category:Factor analysis">Factor analysis</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.tqmp.org/RegularArticles/vol09-2/p079/p079.pdf">A Beginner's Guide to Factor Analysis</a></li> <li>Exploratory Factor Analysis. A Book Manuscript by Tucker, L. &amp; MacCallum R. (1993). Retrieved June 8, 2006, from: <a rel="nofollow" class="external autonumber" href="http://www.unc.edu/~rcm/book/factornew.htm">[2]</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130523100027/http://www.unc.edu/~rcm/book/factornew.htm">Archived</a> 2013-05-23 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li>Garson, G. David, "Factor Analysis," from <i>Statnotes: Topics in Multivariate Analysis</i>. Retrieved on April 13, 2009, from <a rel="nofollow" class="external text" href="https://archive.today/20121214194305/http://www2.chass.ncsu.edu/garson/pa765/statnote.htm">StatNotes: Topics in Multivariate Analysis, from G. David Garson at North Carolina State University, Public Administration Program</a></li> <li><a rel="nofollow" class="external text" href="http://www.fa100.info/index.html">Factor Analysis at 100</a> — conference material</li> <li><a rel="nofollow" class="external text" href="http://www.bioinf.jku.at/software/farms/farms.html">FARMS — Factor Analysis for Robust Microarray Summarization, an R package</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Statistics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible uncollapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Statistics" title="Template:Statistics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Statistics" title="Template talk:Statistics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Statistics" title="Special:EditPage/Template:Statistics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Statistics" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistics" title="Statistics">Statistics</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Outline_of_statistics" title="Outline of statistics">Outline</a></li> <li><a href="/wiki/List_of_statistics_articles" title="List of statistics articles">Index</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Descriptive_statistics" style="font-size:114%;margin:0 4em"><a href="/wiki/Descriptive_statistics" title="Descriptive statistics">Descriptive statistics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Continuous_probability_distribution" class="mw-redirect" title="Continuous probability distribution">Continuous data</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Central_tendency" title="Central tendency">Center</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mean" title="Mean">Mean</a> <ul><li><a href="/wiki/Arithmetic_mean" title="Arithmetic mean">Arithmetic</a></li> <li><a href="/wiki/Arithmetic%E2%80%93geometric_mean" title="Arithmetic–geometric mean">Arithmetic-Geometric</a></li> <li><a href="/wiki/Contraharmonic_mean" title="Contraharmonic mean">Contraharmonic</a></li> <li><a href="/wiki/Cubic_mean" title="Cubic mean">Cubic</a></li> <li><a href="/wiki/Generalized_mean" title="Generalized mean">Generalized/power</a></li> <li><a href="/wiki/Geometric_mean" title="Geometric mean">Geometric</a></li> <li><a href="/wiki/Harmonic_mean" title="Harmonic mean">Harmonic</a></li> <li><a href="/wiki/Heronian_mean" title="Heronian mean">Heronian</a></li> <li><a href="/wiki/Heinz_mean" title="Heinz mean">Heinz</a></li> <li><a href="/wiki/Lehmer_mean" title="Lehmer mean">Lehmer</a></li></ul></li> <li><a href="/wiki/Median" title="Median">Median</a></li> <li><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Statistical_dispersion" title="Statistical dispersion">Dispersion</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Average_absolute_deviation" title="Average absolute deviation">Average absolute deviation</a></li> <li><a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">Coefficient of variation</a></li> <li><a href="/wiki/Interquartile_range" title="Interquartile range">Interquartile range</a></li> <li><a href="/wiki/Percentile" title="Percentile">Percentile</a></li> <li><a href="/wiki/Range_(statistics)" title="Range (statistics)">Range</a></li> <li><a href="/wiki/Standard_deviation" title="Standard deviation">Standard deviation</a></li> <li><a href="/wiki/Variance#Sample_variance" title="Variance">Variance</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Shape_of_the_distribution" class="mw-redirect" title="Shape of the distribution">Shape</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_limit_theorem" title="Central limit theorem">Central limit theorem</a></li> <li><a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">Moments</a> <ul><li><a href="/wiki/Kurtosis" title="Kurtosis">Kurtosis</a></li> <li><a href="/wiki/L-moment" title="L-moment">L-moments</a></li> <li><a href="/wiki/Skewness" title="Skewness">Skewness</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Count_data" title="Count data">Count data</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Index_of_dispersion" title="Index of dispersion">Index of dispersion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Summary tables</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Contingency_table" title="Contingency table">Contingency table</a></li> <li><a href="/wiki/Frequency_distribution" class="mw-redirect" title="Frequency distribution">Frequency distribution</a></li> <li><a href="/wiki/Grouped_data" title="Grouped data">Grouped data</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Dependence</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Pearson_correlation_coefficient" title="Pearson correlation coefficient">Pearson product-moment correlation</a></li> <li><a href="/wiki/Rank_correlation" title="Rank correlation">Rank correlation</a> <ul><li><a href="/wiki/Kendall_rank_correlation_coefficient" title="Kendall rank correlation coefficient">Kendall's τ</a></li> <li><a href="/wiki/Spearman%27s_rank_correlation_coefficient" title="Spearman&#39;s rank correlation coefficient">Spearman's ρ</a></li></ul></li> <li><a href="/wiki/Scatter_plot" title="Scatter plot">Scatter plot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Statistical_graphics" title="Statistical graphics">Graphics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bar_chart" title="Bar chart">Bar chart</a></li> <li><a href="/wiki/Biplot" title="Biplot">Biplot</a></li> <li><a href="/wiki/Box_plot" title="Box plot">Box plot</a></li> <li><a href="/wiki/Control_chart" title="Control chart">Control chart</a></li> <li><a href="/wiki/Correlogram" title="Correlogram">Correlogram</a></li> <li><a href="/wiki/Fan_chart_(statistics)" title="Fan chart (statistics)">Fan chart</a></li> <li><a href="/wiki/Forest_plot" title="Forest plot">Forest plot</a></li> <li><a href="/wiki/Histogram" title="Histogram">Histogram</a></li> <li><a href="/wiki/Pie_chart" title="Pie chart">Pie chart</a></li> <li><a href="/wiki/Q%E2%80%93Q_plot" title="Q–Q plot">Q–Q plot</a></li> <li><a href="/wiki/Radar_chart" title="Radar chart">Radar chart</a></li> <li><a href="/wiki/Run_chart" title="Run chart">Run chart</a></li> <li><a href="/wiki/Scatter_plot" title="Scatter plot">Scatter plot</a></li> <li><a href="/wiki/Stem-and-leaf_display" title="Stem-and-leaf display">Stem-and-leaf display</a></li> <li><a href="/wiki/Violin_plot" title="Violin plot">Violin plot</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Data_collection" style="font-size:114%;margin:0 4em"><a href="/wiki/Data_collection" title="Data collection">Data collection</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Design_of_experiments" title="Design of experiments">Study design</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Effect_size" title="Effect size">Effect size</a></li> <li><a href="/wiki/Missing_data" title="Missing data">Missing data</a></li> <li><a href="/wiki/Optimal_design" class="mw-redirect" title="Optimal design">Optimal design</a></li> <li><a href="/wiki/Statistical_population" title="Statistical population">Population</a></li> <li><a href="/wiki/Replication_(statistics)" title="Replication (statistics)">Replication</a></li> <li><a href="/wiki/Sample_size_determination" title="Sample size determination">Sample size determination</a></li> <li><a href="/wiki/Statistic" title="Statistic">Statistic</a></li> <li><a href="/wiki/Statistical_power" class="mw-redirect" title="Statistical power">Statistical power</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Survey_methodology" title="Survey methodology">Survey methodology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sampling_(statistics)" title="Sampling (statistics)">Sampling</a> <ul><li><a href="/wiki/Cluster_sampling" title="Cluster sampling">Cluster</a></li> <li><a href="/wiki/Stratified_sampling" title="Stratified sampling">Stratified</a></li></ul></li> <li><a href="/wiki/Opinion_poll" title="Opinion poll">Opinion poll</a></li> <li><a href="/wiki/Questionnaire" title="Questionnaire">Questionnaire</a></li> <li><a href="/wiki/Standard_error" title="Standard error">Standard error</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Experiment" title="Experiment">Controlled experiments</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Blocking_(statistics)" title="Blocking (statistics)">Blocking</a></li> <li><a href="/wiki/Factorial_experiment" title="Factorial experiment">Factorial experiment</a></li> <li><a href="/wiki/Interaction_(statistics)" title="Interaction (statistics)">Interaction</a></li> <li><a href="/wiki/Random_assignment" title="Random assignment">Random assignment</a></li> <li><a href="/wiki/Randomized_controlled_trial" title="Randomized controlled trial">Randomized controlled trial</a></li> <li><a href="/wiki/Randomized_experiment" title="Randomized experiment">Randomized experiment</a></li> <li><a href="/wiki/Scientific_control" title="Scientific control">Scientific control</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Adaptive designs</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adaptive_clinical_trial" class="mw-redirect" title="Adaptive clinical trial">Adaptive clinical trial</a></li> <li><a href="/wiki/Stochastic_approximation" title="Stochastic approximation">Stochastic approximation</a></li> <li><a href="/wiki/Up-and-Down_Designs" class="mw-redirect" title="Up-and-Down Designs">Up-and-down designs</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Observational_study" title="Observational study">Observational studies</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cohort_study" title="Cohort study">Cohort study</a></li> <li><a href="/wiki/Cross-sectional_study" title="Cross-sectional study">Cross-sectional study</a></li> <li><a href="/wiki/Natural_experiment" title="Natural experiment">Natural experiment</a></li> <li><a href="/wiki/Quasi-experiment" title="Quasi-experiment">Quasi-experiment</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Statistical_inference" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistical_inference" title="Statistical inference">Statistical inference</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Statistical_theory" title="Statistical theory">Statistical theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Population_(statistics)" class="mw-redirect" title="Population (statistics)">Population</a></li> <li><a href="/wiki/Statistic" title="Statistic">Statistic</a></li> <li><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a></li> <li><a href="/wiki/Sampling_distribution" title="Sampling distribution">Sampling distribution</a> <ul><li><a href="/wiki/Order_statistic" title="Order statistic">Order statistic</a></li></ul></li> <li><a href="/wiki/Empirical_distribution_function" title="Empirical distribution function">Empirical distribution</a> <ul><li><a href="/wiki/Density_estimation" title="Density estimation">Density estimation</a></li></ul></li> <li><a href="/wiki/Statistical_model" title="Statistical model">Statistical model</a> <ul><li><a href="/wiki/Model_specification" class="mw-redirect" title="Model specification">Model specification</a></li> <li><a href="/wiki/Lp_space" title="Lp space">L<sup><i>p</i></sup> space</a></li></ul></li> <li><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameter</a> <ul><li><a href="/wiki/Location_parameter" title="Location parameter">location</a></li> <li><a href="/wiki/Scale_parameter" title="Scale parameter">scale</a></li> <li><a href="/wiki/Shape_parameter" title="Shape parameter">shape</a></li></ul></li> <li><a href="/wiki/Parametric_statistics" title="Parametric statistics">Parametric family</a> <ul><li><a href="/wiki/Likelihood_function" title="Likelihood function">Likelihood</a>&#160;<a href="/wiki/Monotone_likelihood_ratio" title="Monotone likelihood ratio"><span style="font-size:85%;">(monotone)</span></a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale family</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential family</a></li></ul></li> <li><a href="/wiki/Completeness_(statistics)" title="Completeness (statistics)">Completeness</a></li> <li><a href="/wiki/Sufficient_statistic" title="Sufficient statistic">Sufficiency</a></li> <li><a href="/wiki/Plug-in_principle" class="mw-redirect" title="Plug-in principle">Statistical functional</a> <ul><li><a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">Bootstrap</a></li> <li><a href="/wiki/U-statistic" title="U-statistic">U</a></li> <li><a href="/wiki/V-statistic" title="V-statistic">V</a></li></ul></li> <li><a href="/wiki/Optimal_decision" title="Optimal decision">Optimal decision</a> <ul><li><a href="/wiki/Loss_function" title="Loss function">loss function</a></li></ul></li> <li><a href="/wiki/Efficiency_(statistics)" title="Efficiency (statistics)">Efficiency</a></li> <li><a href="/wiki/Statistical_distance" title="Statistical distance">Statistical distance</a> <ul><li><a href="/wiki/Divergence_(statistics)" title="Divergence (statistics)">divergence</a></li></ul></li> <li><a href="/wiki/Asymptotic_theory_(statistics)" title="Asymptotic theory (statistics)">Asymptotics</a></li> <li><a href="/wiki/Robust_statistics" title="Robust statistics">Robustness</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Frequentist_inference" title="Frequentist inference">Frequentist inference</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Point_estimation" title="Point estimation">Point estimation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Estimating_equations" title="Estimating equations">Estimating equations</a> <ul><li><a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">Maximum likelihood</a></li> <li><a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">Method of moments</a></li> <li><a href="/wiki/M-estimator" title="M-estimator">M-estimator</a></li> <li><a href="/wiki/Minimum_distance_estimation" class="mw-redirect" title="Minimum distance estimation">Minimum distance</a></li></ul></li> <li><a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">Unbiased estimators</a> <ul><li><a href="/wiki/Minimum-variance_unbiased_estimator" title="Minimum-variance unbiased estimator">Mean-unbiased minimum-variance</a> <ul><li><a href="/wiki/Rao%E2%80%93Blackwell_theorem" title="Rao–Blackwell theorem">Rao–Blackwellization</a></li> <li><a href="/wiki/Lehmann%E2%80%93Scheff%C3%A9_theorem" title="Lehmann–Scheffé theorem">Lehmann–Scheffé theorem</a></li></ul></li> <li><a href="/wiki/Median-unbiased_estimator" class="mw-redirect" title="Median-unbiased estimator">Median unbiased</a></li></ul></li> <li><a href="/wiki/Plug-in_principle" class="mw-redirect" title="Plug-in principle">Plug-in</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Interval_estimation" title="Interval estimation">Interval estimation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Confidence_interval" title="Confidence interval">Confidence interval</a></li> <li><a href="/wiki/Pivotal_quantity" title="Pivotal quantity">Pivot</a></li> <li><a href="/wiki/Likelihood_interval" class="mw-redirect" title="Likelihood interval">Likelihood interval</a></li> <li><a href="/wiki/Prediction_interval" title="Prediction interval">Prediction interval</a></li> <li><a href="/wiki/Tolerance_interval" title="Tolerance interval">Tolerance interval</a></li> <li><a href="/wiki/Resampling_(statistics)" title="Resampling (statistics)">Resampling</a> <ul><li><a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">Bootstrap</a></li> <li><a href="/wiki/Jackknife_resampling" title="Jackknife resampling">Jackknife</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Statistical_hypothesis_testing" class="mw-redirect" title="Statistical hypothesis testing">Testing hypotheses</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/One-_and_two-tailed_tests" title="One- and two-tailed tests">1- &amp; 2-tails</a></li> <li><a href="/wiki/Power_(statistics)" title="Power (statistics)">Power</a> <ul><li><a href="/wiki/Uniformly_most_powerful_test" title="Uniformly most powerful test">Uniformly most powerful test</a></li></ul></li> <li><a href="/wiki/Permutation_test" title="Permutation test">Permutation test</a> <ul><li><a href="/wiki/Randomization_test" class="mw-redirect" title="Randomization test">Randomization test</a></li></ul></li> <li><a href="/wiki/Multiple_comparisons" class="mw-redirect" title="Multiple comparisons">Multiple comparisons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Parametric_statistics" title="Parametric statistics">Parametric tests</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Likelihood-ratio_test" title="Likelihood-ratio test">Likelihood-ratio</a></li> <li><a href="/wiki/Score_test" title="Score test">Score/Lagrange multiplier</a></li> <li><a href="/wiki/Wald_test" title="Wald test">Wald</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/List_of_statistical_tests" title="List of statistical tests">Specific tests</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Z-test" title="Z-test"><i>Z</i>-test <span style="font-size:85%;">(normal)</span></a></li> <li><a href="/wiki/Student%27s_t-test" title="Student&#39;s t-test">Student's <i>t</i>-test</a></li> <li><a href="/wiki/F-test" title="F-test"><i>F</i>-test</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Goodness_of_fit" title="Goodness of fit">Goodness of fit</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chi-squared_test" title="Chi-squared test">Chi-squared</a></li> <li><a href="/wiki/G-test" title="G-test"><i>G</i>-test</a></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov–Smirnov</a></li> <li><a href="/wiki/Anderson%E2%80%93Darling_test" title="Anderson–Darling test">Anderson–Darling</a></li> <li><a href="/wiki/Lilliefors_test" title="Lilliefors test">Lilliefors</a></li> <li><a href="/wiki/Jarque%E2%80%93Bera_test" title="Jarque–Bera test">Jarque–Bera</a></li> <li><a href="/wiki/Shapiro%E2%80%93Wilk_test" title="Shapiro–Wilk test">Normality <span style="font-size:85%;">(Shapiro–Wilk)</span></a></li> <li><a href="/wiki/Likelihood-ratio_test" title="Likelihood-ratio test">Likelihood-ratio test</a></li> <li><a href="/wiki/Model_selection" title="Model selection">Model selection</a> <ul><li><a href="/wiki/Cross-validation_(statistics)" title="Cross-validation (statistics)">Cross validation</a></li> <li><a href="/wiki/Akaike_information_criterion" title="Akaike information criterion">AIC</a></li> <li><a href="/wiki/Bayesian_information_criterion" title="Bayesian information criterion">BIC</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Rank_statistics" class="mw-redirect" title="Rank statistics">Rank statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sign_test" title="Sign test">Sign</a> <ul><li><a href="/wiki/Sample_median" class="mw-redirect" title="Sample median">Sample median</a></li></ul></li> <li><a href="/wiki/Wilcoxon_signed-rank_test" title="Wilcoxon signed-rank test">Signed rank <span style="font-size:85%;">(Wilcoxon)</span></a> <ul><li><a href="/wiki/Hodges%E2%80%93Lehmann_estimator" title="Hodges–Lehmann estimator">Hodges–Lehmann estimator</a></li></ul></li> <li><a href="/wiki/Mann%E2%80%93Whitney_U_test" title="Mann–Whitney U test">Rank sum <span style="font-size:85%;">(Mann–Whitney)</span></a></li> <li><a href="/wiki/Nonparametric_statistics" title="Nonparametric statistics">Nonparametric</a> <a href="/wiki/Analysis_of_variance" title="Analysis of variance">anova</a> <ul><li><a href="/wiki/Kruskal%E2%80%93Wallis_test" title="Kruskal–Wallis test">1-way <span style="font-size:85%;">(Kruskal–Wallis)</span></a></li> <li><a href="/wiki/Friedman_test" title="Friedman test">2-way <span style="font-size:85%;">(Friedman)</span></a></li> <li><a href="/wiki/Jonckheere%27s_trend_test" title="Jonckheere&#39;s trend test">Ordered alternative <span style="font-size:85%;">(Jonckheere–Terpstra)</span></a></li></ul></li> <li><a href="/wiki/Van_der_Waerden_test" title="Van der Waerden test">Van der Waerden test</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bayesian_probability" title="Bayesian probability">Bayesian probability</a> <ul><li><a href="/wiki/Prior_probability" title="Prior probability">prior</a></li> <li><a href="/wiki/Posterior_probability" title="Posterior probability">posterior</a></li></ul></li> <li><a href="/wiki/Credible_interval" title="Credible interval">Credible interval</a></li> <li><a href="/wiki/Bayes_factor" title="Bayes factor">Bayes factor</a></li> <li><a href="/wiki/Bayes_estimator" title="Bayes estimator">Bayesian estimator</a> <ul><li><a href="/wiki/Maximum_a_posteriori_estimation" title="Maximum a posteriori estimation">Maximum posterior estimator</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="CorrelationRegression_analysis" style="font-size:114%;margin:0 4em"><div class="hlist"><ul><li><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation</a></li><li><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></li></ul></div></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pearson_product-moment_correlation_coefficient" class="mw-redirect" title="Pearson product-moment correlation coefficient">Pearson product-moment</a></li> <li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Confounding" title="Confounding">Confounding variable</a></li> <li><a href="/wiki/Coefficient_of_determination" title="Coefficient of determination">Coefficient of determination</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Errors_and_residuals" title="Errors and residuals">Errors and residuals</a></li> <li><a href="/wiki/Regression_validation" title="Regression validation">Regression validation</a></li> <li><a href="/wiki/Mixed_model" title="Mixed model">Mixed effects models</a></li> <li><a href="/wiki/Simultaneous_equations_model" title="Simultaneous equations model">Simultaneous equations models</a></li> <li><a href="/wiki/Multivariate_adaptive_regression_splines" class="mw-redirect" title="Multivariate adaptive regression splines">Multivariate adaptive regression splines (MARS)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Simple_linear_regression" title="Simple linear regression">Simple linear regression</a></li> <li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary least squares</a></li> <li><a href="/wiki/General_linear_model" title="General linear model">General linear model</a></li> <li><a href="/wiki/Bayesian_linear_regression" title="Bayesian linear regression">Bayesian regression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Non-standard predictors</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonlinear_regression" title="Nonlinear regression">Nonlinear regression</a></li> <li><a href="/wiki/Nonparametric_regression" title="Nonparametric regression">Nonparametric</a></li> <li><a href="/wiki/Semiparametric_regression" title="Semiparametric regression">Semiparametric</a></li> <li><a href="/wiki/Isotonic_regression" title="Isotonic regression">Isotonic</a></li> <li><a href="/wiki/Robust_regression" title="Robust regression">Robust</a></li> <li><a href="/wiki/Heteroscedasticity" class="mw-redirect" title="Heteroscedasticity">Heteroscedasticity</a></li> <li><a href="/wiki/Homoscedasticity" class="mw-redirect" title="Homoscedasticity">Homoscedasticity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Generalized_linear_model" title="Generalized linear model">Generalized linear model</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exponential_family" title="Exponential family">Exponential families</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic <span style="font-size:85%;">(Bernoulli)</span></a>&#160;/&#32;<a href="/wiki/Binomial_regression" title="Binomial regression">Binomial</a>&#160;/&#32;<a href="/wiki/Poisson_regression" title="Poisson regression">Poisson regressions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Partition_of_sums_of_squares" title="Partition of sums of squares">Partition of variance</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analysis_of_variance" title="Analysis of variance">Analysis of variance (ANOVA, anova)</a></li> <li><a href="/wiki/Analysis_of_covariance" title="Analysis of covariance">Analysis of covariance</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Multivariate ANOVA</a></li> <li><a href="/wiki/Degrees_of_freedom_(statistics)" title="Degrees of freedom (statistics)">Degrees of freedom</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible uncollapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Categorical_/_Multivariate_/_Time-series_/_Survival_analysis" style="font-size:114%;margin:0 4em"><a href="/wiki/Categorical_variable" title="Categorical variable">Categorical</a>&#160;/&#32;<a href="/wiki/Multivariate_statistics" title="Multivariate statistics">Multivariate</a>&#160;/&#32;<a href="/wiki/Time_series" title="Time series">Time-series</a>&#160;/&#32;<a href="/wiki/Survival_analysis" title="Survival analysis">Survival analysis</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Categorical_variable" title="Categorical variable">Categorical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cohen%27s_kappa" title="Cohen&#39;s kappa">Cohen's kappa</a></li> <li><a href="/wiki/Contingency_table" title="Contingency table">Contingency table</a></li> <li><a href="/wiki/Graphical_model" title="Graphical model">Graphical model</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Log-linear model</a></li> <li><a href="/wiki/McNemar%27s_test" title="McNemar&#39;s test">McNemar's test</a></li> <li><a href="/wiki/Cochran%E2%80%93Mantel%E2%80%93Haenszel_statistics" title="Cochran–Mantel–Haenszel statistics">Cochran–Mantel–Haenszel statistics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Multivariate_statistics" title="Multivariate statistics">Multivariate</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_linear_model" title="General linear model">Regression</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Manova</a></li> <li><a href="/wiki/Principal_component_analysis" title="Principal component analysis">Principal components</a></li> <li><a href="/wiki/Canonical_correlation" title="Canonical correlation">Canonical correlation</a></li> <li><a href="/wiki/Linear_discriminant_analysis" title="Linear discriminant analysis">Discriminant analysis</a></li> <li><a href="/wiki/Cluster_analysis" title="Cluster analysis">Cluster analysis</a></li> <li><a href="/wiki/Statistical_classification" title="Statistical classification">Classification</a></li> <li><a href="/wiki/Structural_equation_modeling" title="Structural equation modeling">Structural equation model</a> <ul><li><a class="mw-selflink selflink">Factor analysis</a></li></ul></li> <li><a href="/wiki/Multivariate_distribution" class="mw-redirect" title="Multivariate distribution">Multivariate distributions</a> <ul><li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical distributions</a> <ul><li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Normal</a></li></ul></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Time_series" title="Time series">Time-series</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Decomposition_of_time_series" title="Decomposition of time series">Decomposition</a></li> <li><a href="/wiki/Trend_estimation" class="mw-redirect" title="Trend estimation">Trend</a></li> <li><a href="/wiki/Stationary_process" title="Stationary process">Stationarity</a></li> <li><a href="/wiki/Seasonal_adjustment" title="Seasonal adjustment">Seasonal adjustment</a></li> <li><a href="/wiki/Exponential_smoothing" title="Exponential smoothing">Exponential smoothing</a></li> <li><a href="/wiki/Cointegration" title="Cointegration">Cointegration</a></li> <li><a href="/wiki/Structural_break" title="Structural break">Structural break</a></li> <li><a href="/wiki/Granger_causality" title="Granger causality">Granger causality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Specific tests</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dickey%E2%80%93Fuller_test" title="Dickey–Fuller test">Dickey–Fuller</a></li> <li><a href="/wiki/Johansen_test" title="Johansen test">Johansen</a></li> <li><a href="/wiki/Ljung%E2%80%93Box_test" title="Ljung–Box test">Q-statistic <span style="font-size:85%;">(Ljung–Box)</span></a></li> <li><a href="/wiki/Durbin%E2%80%93Watson_statistic" title="Durbin–Watson statistic">Durbin–Watson</a></li> <li><a href="/wiki/Breusch%E2%80%93Godfrey_test" title="Breusch–Godfrey test">Breusch–Godfrey</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Time_domain" title="Time domain">Time domain</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autocorrelation" title="Autocorrelation">Autocorrelation (ACF)</a> <ul><li><a href="/wiki/Partial_autocorrelation_function" title="Partial autocorrelation function">partial (PACF)</a></li></ul></li> <li><a href="/wiki/Cross-correlation" title="Cross-correlation">Cross-correlation (XCF)</a></li> <li><a href="/wiki/Autoregressive%E2%80%93moving-average_model" class="mw-redirect" title="Autoregressive–moving-average model">ARMA model</a></li> <li><a href="/wiki/Box%E2%80%93Jenkins_method" title="Box–Jenkins method">ARIMA model <span style="font-size:85%;">(Box–Jenkins)</span></a></li> <li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Autoregressive conditional heteroskedasticity (ARCH)</a></li> <li><a href="/wiki/Vector_autoregression" title="Vector autoregression">Vector autoregression (VAR)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Frequency_domain" title="Frequency domain">Frequency domain</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Spectral_density_estimation" title="Spectral density estimation">Spectral density estimation</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a></li> <li><a href="/wiki/Wavelet" title="Wavelet">Wavelet</a></li> <li><a href="/wiki/Whittle_likelihood" title="Whittle likelihood">Whittle likelihood</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Survival_analysis" title="Survival analysis">Survival</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Survival_function" title="Survival function">Survival function</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kaplan%E2%80%93Meier_estimator" title="Kaplan–Meier estimator">Kaplan–Meier estimator (product limit)</a></li> <li><a href="/wiki/Proportional_hazards_model" title="Proportional hazards model">Proportional hazards models</a></li> <li><a href="/wiki/Accelerated_failure_time_model" title="Accelerated failure time model">Accelerated failure time (AFT) model</a></li> <li><a href="/wiki/First-hitting-time_model" title="First-hitting-time model">First hitting time</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Failure_rate" title="Failure rate">Hazard function</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nelson%E2%80%93Aalen_estimator" title="Nelson–Aalen estimator">Nelson–Aalen estimator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Test</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Log-rank_test" class="mw-redirect" title="Log-rank test">Log-rank test</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Applications" style="font-size:114%;margin:0 4em"><a href="/wiki/List_of_fields_of_application_of_statistics" title="List of fields of application of statistics">Applications</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Biostatistics" title="Biostatistics">Biostatistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bioinformatics" title="Bioinformatics">Bioinformatics</a></li> <li><a href="/wiki/Clinical_trial" title="Clinical trial">Clinical trials</a>&#160;/&#32;<a href="/wiki/Clinical_study_design" title="Clinical study design">studies</a></li> <li><a href="/wiki/Epidemiology" title="Epidemiology">Epidemiology</a></li> <li><a href="/wiki/Medical_statistics" title="Medical statistics">Medical statistics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Engineering_statistics" title="Engineering statistics">Engineering statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chemometrics" title="Chemometrics">Chemometrics</a></li> <li><a href="/wiki/Methods_engineering" title="Methods engineering">Methods engineering</a></li> <li><a href="/wiki/Probabilistic_design" title="Probabilistic design">Probabilistic design</a></li> <li><a href="/wiki/Statistical_process_control" title="Statistical process control">Process</a>&#160;/&#32;<a href="/wiki/Quality_control" title="Quality control">quality control</a></li> <li><a href="/wiki/Reliability_engineering" title="Reliability engineering">Reliability</a></li> <li><a href="/wiki/System_identification" title="System identification">System identification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Social_statistics" title="Social statistics">Social statistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Actuarial_science" title="Actuarial science">Actuarial science</a></li> <li><a href="/wiki/Census" title="Census">Census</a></li> <li><a href="/wiki/Crime_statistics" title="Crime statistics">Crime statistics</a></li> <li><a href="/wiki/Demographic_statistics" title="Demographic statistics">Demography</a></li> <li><a href="/wiki/Econometrics" title="Econometrics">Econometrics</a></li> <li><a href="/wiki/Jurimetrics" title="Jurimetrics">Jurimetrics</a></li> <li><a href="/wiki/National_accounts" title="National accounts">National accounts</a></li> <li><a href="/wiki/Official_statistics" title="Official statistics">Official statistics</a></li> <li><a href="/wiki/Population_statistics" class="mw-redirect" title="Population statistics">Population statistics</a></li> <li><a href="/wiki/Psychometrics" title="Psychometrics">Psychometrics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Spatial_analysis" title="Spatial analysis">Spatial statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cartography" title="Cartography">Cartography</a></li> <li><a href="/wiki/Environmental_statistics" title="Environmental statistics">Environmental statistics</a></li> <li><a href="/wiki/Geographic_information_system" title="Geographic information system">Geographic information system</a></li> <li><a href="/wiki/Geostatistics" title="Geostatistics">Geostatistics</a></li> <li><a href="/wiki/Kriging" title="Kriging">Kriging</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><b><a href="/wiki/Category:Statistics" title="Category:Statistics">Category</a></b></li> <li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span><b><a href="https://commons.wikimedia.org/wiki/Category:Statistics" class="extiw" title="commons:Category:Statistics">Commons</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <b><a href="/wiki/Wikipedia:WikiProject_Statistics" title="Wikipedia:WikiProject Statistics">WikiProject</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q726474#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4016338-6">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Factor analysis"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85046817">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Analyse factorielle"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11934806q">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Analyse factorielle"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11934806q">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="faktorová analýza"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph120126&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007565339305171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐mkx9z Cached time: 20241122140823 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.114 seconds Real time usage: 1.455 seconds Preprocessor visited node count: 7491/1000000 Post‐expand include size: 289961/2097152 bytes Template argument size: 11323/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 15/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 224086/5000000 bytes Lua time usage: 0.588/10.000 seconds Lua memory usage: 8651471/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1053.262 1 -total 37.92% 399.433 2 Template:Reflist 13.07% 137.695 28 Template:Cite_journal 12.22% 128.689 12 Template:Cite_book 12.18% 128.236 1 Template:Statistics 11.97% 126.059 1 Template:Navbox_with_collapsible_groups 7.31% 77.010 1 Template:Citations_needed 6.96% 73.355 1 Template:Commons_category 6.77% 71.356 3 Template:Ambox 5.65% 59.560 1 Template:Short_description --> <!-- Saved in parser cache with key enwiki:pcache:idhash:253492-0!canonical and timestamp 20241122140823 and revision id 1252363505. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Factor_analysis&amp;oldid=1252363505">https://en.wikipedia.org/w/index.php?title=Factor_analysis&amp;oldid=1252363505</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Factor_analysis" title="Category:Factor analysis">Factor analysis</a></li><li><a href="/wiki/Category:Latent_variable_models" title="Category:Latent variable models">Latent variable models</a></li><li><a href="/wiki/Category:Quantitative_marketing_research" title="Category:Quantitative marketing research">Quantitative marketing research</a></li><li><a href="/wiki/Category:Product_management" title="Category:Product management">Product management</a></li><li><a href="/wiki/Category:Market_research" title="Category:Market research">Market research</a></li><li><a href="/wiki/Category:Market_segmentation" title="Category:Market segmentation">Market segmentation</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_errors:_missing_periodical" title="Category:CS1 errors: missing periodical">CS1 errors: missing periodical</a></li><li><a href="/wiki/Category:All_pages_needing_factual_verification" title="Category:All pages needing factual verification">All pages needing factual verification</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_factual_verification_from_November_2013" title="Category:Wikipedia articles needing factual verification from November 2013">Wikipedia articles needing factual verification from November 2013</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_August_2023" title="Category:Articles needing additional references from August 2023">Articles needing additional references from August 2023</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_July_2019" title="Category:Wikipedia articles needing clarification from July 2019">Wikipedia articles needing clarification from July 2019</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_April_2012" title="Category:Articles needing additional references from April 2012">Articles needing additional references from April 2012</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2016" title="Category:Articles with unsourced statements from March 2016">Articles with unsourced statements from March 2016</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_March_2010" title="Category:Wikipedia articles needing clarification from March 2010">Wikipedia articles needing clarification from March 2010</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_needing_clarification" title="Category:All Wikipedia articles needing clarification">All Wikipedia articles needing clarification</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2021" title="Category:Articles with unsourced statements from July 2021">Articles with unsourced statements from July 2021</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_May_2012" title="Category:Wikipedia articles needing clarification from May 2012">Wikipedia articles needing clarification from May 2012</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 October 2024, at 00:48<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Factor_analysis&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-f2r5r","wgBackendResponseTime":213,"wgPageParseReport":{"limitreport":{"cputime":"1.114","walltime":"1.455","ppvisitednodes":{"value":7491,"limit":1000000},"postexpandincludesize":{"value":289961,"limit":2097152},"templateargumentsize":{"value":11323,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":15,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":224086,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1053.262 1 -total"," 37.92% 399.433 2 Template:Reflist"," 13.07% 137.695 28 Template:Cite_journal"," 12.22% 128.689 12 Template:Cite_book"," 12.18% 128.236 1 Template:Statistics"," 11.97% 126.059 1 Template:Navbox_with_collapsible_groups"," 7.31% 77.010 1 Template:Citations_needed"," 6.96% 73.355 1 Template:Commons_category"," 6.77% 71.356 3 Template:Ambox"," 5.65% 59.560 1 Template:Short_description"]},"scribunto":{"limitreport-timeusage":{"value":"0.588","limit":"10.000"},"limitreport-memusage":{"value":8651471,"limit":52428800},"limitreport-logs":"table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-mkx9z","timestamp":"20241122140823","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Factor analysis","url":"https:\/\/en.wikipedia.org\/wiki\/Factor_analysis","sameAs":"http:\/\/www.wikidata.org\/entity\/Q726474","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q726474","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-06-26T20:35:11Z","dateModified":"2024-10-21T00:48:20Z","headline":"statistical method used to describe correlation through fewer possibly latent variables"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10