CINXE.COM

Glossary of group theory - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Glossary of group theory - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat": "dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"8adb0fdd-42ac-4139-80b4-43b4bdb98357","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Glossary_of_group_theory","wgTitle":"Glossary of group theory","wgCurRevisionId":1237475250,"wgRevisionId":1237475250,"wgArticleId":249268,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia glossaries using description lists","Group theory","Glossaries of mathematics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Glossary_of_group_theory","wgRelevantArticleId":249268,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{ "tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q104813495","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles": "ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","jquery.makeCollapsible","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns", "ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/1200px-Cyclic_group.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1167"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/800px-Cyclic_group.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="778"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/640px-Cyclic_group.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="623"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Glossary of group theory - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Glossary_of_group_theory"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Glossary_of_group_theory"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Glossary_of_group_theory rootpage-Glossary_of_group_theory skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Glossary+of+group+theory" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Glossary+of+group+theory" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Glossary+of+group+theory" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Glossary+of+group+theory" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Glossary of group theory</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 1 language" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-1" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">1 language</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B3%D8%B1%D8%AF_%D9%85%D8%B5%D8%B7%D9%84%D8%AD%D8%A7%D8%AA_%D9%86%D8%B8%D8%B1%D9%8A%D8%A9_%D8%A7%D9%84%D8%B2%D9%85%D8%B1" title="مسرد مصطلحات نظرية الزمر – Arabic" lang="ar" hreflang="ar" data-title="مسرد مصطلحات نظرية الزمر" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q104813495#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Glossary_of_group_theory" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Glossary_of_group_theory" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Glossary_of_group_theory"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Glossary_of_group_theory"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Glossary_of_group_theory" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Glossary_of_group_theory" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_group_theory&amp;oldid=1237475250" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Glossary_of_group_theory&amp;id=1237475250&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlossary_of_group_theory"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlossary_of_group_theory"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Glossary_of_group_theory&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_group_theory&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q104813495" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For general description of the topic, see <a href="/wiki/Group_theory" title="Group theory">group theory</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_group_theory_topics" title="List of group theory topics">list of group theory topics</a></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/Appendix:Glossary_of_group_theory" class="extiw" title="wiktionary:Appendix:Glossary of group theory">Appendix:Glossary of group theory</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks" style="width:20.0em;"><tbody><tr><th class="sidebar-title" style="padding-bottom:0.4em;"><span style="font-size: 8pt; font-weight: none"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structure</a> → <b>Group theory</b></span><br /><a href="/wiki/Group_theory" title="Group theory">Group theory</a></th></tr><tr><td class="sidebar-image"><span class="skin-invert"><span typeof="mw:File"><a href="/wiki/File:Cyclic_group.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/120px-Cyclic_group.svg.png" decoding="async" width="120" height="117" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/180px-Cyclic_group.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/240px-Cyclic_group.svg.png 2x" data-file-width="443" data-file-height="431" /></a></span></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Basic notions</div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Subgroup" title="Subgroup">Subgroup</a></li> <li><a href="/wiki/Normal_subgroup" title="Normal subgroup">Normal subgroup</a></li> <li><a href="/wiki/Group_action" title="Group action">Group action</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Quotient_group" title="Quotient group">Quotient group</a></li> <li><a href="/wiki/Semidirect_product" title="Semidirect product">(Semi-)</a><a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a></li> <li><a href="/wiki/Direct_sum_of_groups" title="Direct sum of groups">Direct sum</a></li> <li><a href="/wiki/Free_product" title="Free product">Free product</a></li> <li><a href="/wiki/Wreath_product" title="Wreath product">Wreath product</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <i><a href="/wiki/Group_homomorphism" title="Group homomorphism">Group homomorphisms</a></i></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Kernel_(algebra)#Group_homomorphisms" title="Kernel (algebra)">kernel</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Simple_group" title="Simple group">simple</a></li> <li><a href="/wiki/Finite_group" title="Finite group">finite</a></li> <li><a href="/wiki/Infinite_group" title="Infinite group">infinite</a></li> <li><a href="/wiki/Continuous_group" class="mw-redirect" title="Continuous group">continuous</a></li> <li><a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative</a></li> <li><a href="/wiki/Additive_group" title="Additive group">additive</a></li> <li><a href="/wiki/Cyclic_group" title="Cyclic group">cyclic</a></li> <li><a href="/wiki/Abelian_group" title="Abelian group">abelian</a></li> <li><a href="/wiki/Dihedral_group" title="Dihedral group">dihedral</a></li> <li><a href="/wiki/Nilpotent_group" title="Nilpotent group">nilpotent</a></li> <li><a href="/wiki/Solvable_group" title="Solvable group">solvable</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a class="mw-selflink selflink">Glossary of group theory</a></li> <li><a href="/wiki/List_of_group_theory_topics" title="List of group theory topics">List of group theory topics</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Finite_group" title="Finite group">Finite groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cyclic_group" title="Cyclic group">Cyclic group</a> Z<sub><i>n</i></sub></li> <li><a href="/wiki/Symmetric_group" title="Symmetric group">Symmetric group</a> S<sub><i>n</i></sub></li> <li><a href="/wiki/Alternating_group" title="Alternating group">Alternating group</a> A<sub><i>n</i></sub></li></ul> <ul><li><a href="/wiki/Dihedral_group" title="Dihedral group">Dihedral group</a> D<sub><i>n</i></sub></li> <li><a href="/wiki/Quaternion_group" title="Quaternion group">Quaternion group</a> Q</li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cauchy%27s_theorem_(group_theory)" title="Cauchy&#39;s theorem (group theory)">Cauchy's theorem</a></li> <li><a href="/wiki/Lagrange%27s_theorem_(group_theory)" title="Lagrange&#39;s theorem (group theory)">Lagrange's theorem</a></li></ul> <ul><li><a href="/wiki/Sylow_theorems" title="Sylow theorems">Sylow theorems</a></li> <li><a href="/wiki/Hall_subgroup" title="Hall subgroup">Hall's theorem</a></li></ul> <ul><li><a href="/wiki/P-group" title="P-group"><i>p</i>-group</a></li> <li><a href="/wiki/Elementary_abelian_group" title="Elementary abelian group">Elementary abelian group</a></li></ul> <ul><li><a href="/wiki/Frobenius_group" title="Frobenius group">Frobenius group</a></li></ul> <ul><li><a href="/wiki/Schur_multiplier" title="Schur multiplier">Schur multiplier</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Classification_of_finite_simple_groups" title="Classification of finite simple groups">Classification of finite simple groups</a></th></tr><tr><td class="sidebar-content"> <ul><li>cyclic</li> <li>alternating</li> <li><a href="/wiki/Group_of_Lie_type" title="Group of Lie type">Lie type</a></li> <li><a href="/wiki/Sporadic_group" title="Sporadic group">sporadic</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><div class="hlist"><ul><li><a href="/wiki/Discrete_group" title="Discrete group">Discrete groups</a></li><li><a href="/wiki/Lattice_(discrete_subgroup)" title="Lattice (discrete subgroup)">Lattices</a></li></ul></div></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Integer" title="Integer">Integers</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li><a href="/wiki/Free_group" title="Free group">Free group</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Modular_group" title="Modular group">Modular groups</a> <div class="hlist"><ul><li>PSL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li><li>SL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li></ul></div></div> <ul><li><a href="/wiki/Arithmetic_group" title="Arithmetic group">Arithmetic group</a></li> <li><a href="/wiki/Lattice_(group)" title="Lattice (group)">Lattice</a></li> <li><a href="/wiki/Hyperbolic_group" title="Hyperbolic group">Hyperbolic group</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Topological_group" title="Topological group">Topological</a> and <a href="/wiki/Lie_group" title="Lie group">Lie groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Solenoid_(mathematics)" title="Solenoid (mathematics)">Solenoid</a></li> <li><a href="/wiki/Circle_group" title="Circle group">Circle</a></li></ul> <ul><li><a href="/wiki/General_linear_group" title="General linear group">General linear</a> GL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_linear_group" title="Special linear group">Special linear</a> SL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Orthogonal_group" title="Orthogonal group">Orthogonal</a> O(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Euclidean_group" title="Euclidean group">Euclidean</a> E(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">Special orthogonal</a> SO(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Unitary_group" title="Unitary group">Unitary</a> U(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_unitary_group" title="Special unitary group">Special unitary</a> SU(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Symplectic_group" title="Symplectic group">Symplectic</a> Sp(<i>n</i>)</li></ul> <ul><li><a href="/wiki/G2_(mathematics)" title="G2 (mathematics)">G<sub>2</sub></a></li> <li><a href="/wiki/F4_(mathematics)" title="F4 (mathematics)">F<sub>4</sub></a></li> <li><a href="/wiki/E6_(mathematics)" title="E6 (mathematics)">E<sub>6</sub></a></li> <li><a href="/wiki/E7_(mathematics)" title="E7 (mathematics)">E<sub>7</sub></a></li> <li><a href="/wiki/E8_(mathematics)" title="E8 (mathematics)">E<sub>8</sub></a></li></ul> <ul><li><a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz</a></li> <li><a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré</a></li> <li><a href="/wiki/Conformal_group" title="Conformal group">Conformal</a></li></ul> <ul><li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a></li> <li><a href="/wiki/Loop_group" title="Loop group">Loop</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Infinite_dimensional_Lie_group" class="mw-redirect" title="Infinite dimensional Lie group">Infinite dimensional Lie group</a> <div class="hlist"><ul><li>O(∞)</li><li>SU(∞)</li><li>Sp(∞)</li></ul></div></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Algebraic_group" title="Algebraic group">Algebraic groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Linear_algebraic_group" title="Linear algebraic group">Linear algebraic group</a></li></ul> <ul><li><a href="/wiki/Reductive_group" title="Reductive group">Reductive group</a></li></ul> <ul><li><a href="/wiki/Abelian_variety" title="Abelian variety">Abelian variety</a></li></ul> <ul><li><a href="/wiki/Elliptic_curve" title="Elliptic curve">Elliptic curve</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Group_theory_sidebar" title="Template:Group theory sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Group_theory_sidebar" title="Template talk:Group theory sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Group_theory_sidebar" title="Special:EditPage/Template:Group theory sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>A <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> is a set together with an <a href="/wiki/Associative" class="mw-redirect" title="Associative">associative</a> operation that admits an <a href="/wiki/Identity_element" title="Identity element">identity element</a> and such that there exists an <a href="/wiki/Inverse_element" title="Inverse element">inverse</a> for every element. </p><p>Throughout this glossary, we use <span class="texhtml"><i>e</i></span> to denote the identity element of a group. </p> <div class="noprint"><div role="navigation" id="toc" class="toc plainlinks" aria-label="Contents" style="text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div style="margin:auto;"> <ul><li><a href="#A">A</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#L">L</a></li> <li><a href="#N">N</a></li> <li><a href="#O">O</a></li> <li><a href="#P">P</a></li> <li><a href="#Q">Q</a></li> <li><a href="#R">R</a></li> <li><a href="#S">S</a></li> <li><a href="#T">T</a> </li></ul> <p class="mw-empty-elt"> </p> <ul><li><a href="#See_also">See also</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="A">A</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=1" title="Edit section: A"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1228772891">.mw-parser-output .glossary dt{margin-top:0.4em}.mw-parser-output .glossary dt+dt{margin-top:-0.2em}.mw-parser-output .glossary .templatequote{margin-top:0;margin-bottom:-0.5em}</style> <dl class="glossary"> <dt id="abelian_group"><dfn>abelian group</dfn></dt> <dd>A group <span class="texhtml">(<i>G</i>, •)</span> is <a href="/wiki/Abelian_group" title="Abelian group">abelian</a> if <span class="texhtml">•</span> is commutative, i.e. <span class="texhtml"><i>g</i> • <i>h</i> = <i>h</i> • <i>g</i></span> for all <span class="texhtml"><i>g</i>, <i>h</i> &#8712; <i>G</i></span>. Likewise, a group is <i>nonabelian</i> if this relation fails to hold for any pair <span class="texhtml"><i>g</i>, <i>h</i> &#8712; <i>G</i></span>.</dd> <dt id="ascendant_subgroup"><dfn>ascendant subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> <span class="texhtml"><i>H</i></span> of a group <span class="texhtml"><i>G</i></span> is <a href="/wiki/Ascendant_subgroup" title="Ascendant subgroup">ascendant</a> if there is an ascending <a href="#subgroup_series"><span title="See entry on this page at § subgroup series" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup series</span></a> starting from <span class="texhtml"><i>H</i></span> and ending at <span class="texhtml"><i>G</i></span>, such that every term in the series is a <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroup</span></a> of its successor. The series may be infinite. If the series is finite, then the subgroup is <a href="#subnormal_subgroup"><span title="See entry on this page at § subnormal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subnormal</span></a>.</dd> <dt id="automorphism"><dfn>automorphism</dfn></dt> <dd>An <a href="/wiki/Group_automorphism" class="mw-redirect" title="Group automorphism">automorphism</a> of a group is an <a href="#isomorphism"><span title="See entry on this page at § isomorphism" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">isomorphism</span></a> of the group to itself.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="C">C</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=2" title="Edit section: C"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="center_of_a_group"><dfn>center of a group</dfn></dt> <dd>The <a href="/wiki/Center_of_a_group" class="mw-redirect" title="Center of a group">center of a group</a> <span class="texhtml"><i>G</i></span>, denoted <span class="texhtml">Z(<i>G</i>)</span>, is the set of those group elements that commute with all elements of <span class="texhtml"><i>G</i></span>, that is, the set of all <span class="texhtml"><i>h</i> ∈ <i>G</i></span> such that <span class="texhtml"><i>hg</i> = <i>gh</i></span> for all <span class="texhtml"><i>g</i> ∈ <i>G</i></span>. <span class="texhtml">Z(<i>G</i>)</span> is always a <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroup</span></a> of <span class="texhtml"><i>G</i></span>. A group&#160;<span class="texhtml"><i>G</i></span> is <a href="#abelian_group"><span title="See entry on this page at § Abelian group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">abelian</span></a> if and only if <span class="texhtml">Z(<i>G</i>) = <i>G</i></span>.</dd> <dt id="centerless_group"><dfn>centerless group</dfn></dt> <dd>A group <span class="texhtml"><i>G</i></span> is centerless if its <a href="#center_of_a_group"><span title="See entry on this page at § center of a group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">center</span></a> <span class="texhtml">Z(<i>G</i>)</span> is <a href="#trivial_group"><span title="See entry on this page at § trivial group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">trivial</span></a>.</dd> <dt id="central_subgroup"><dfn>central subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> of a group is a <a href="/wiki/Central_subgroup" title="Central subgroup">central subgroup</a> of that group if it lies inside the <a href="#center_of_a_group"><span title="See entry on this page at § center of a group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">center of the group</span></a>.</dd> <dt id="centralizer"><dfn>centralizer</dfn></dt> <dd>For a subset <span class="texhtml"><i>S</i></span> of a group&#160;<span class="texhtml"><i>G</i></span>, the <a href="/wiki/Centralizer_and_normalizer" title="Centralizer and normalizer">centralizer</a> of <span class="texhtml"><i>S</i></span> in <span class="texhtml"><i>G</i></span>, denoted <span class="texhtml">C<sub><i>G</i></sub>(<i>S</i>)</span>, is the subgroup of <span class="texhtml"><i>G</i></span> defined by <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {C} _{G}(S)=\{g\in G\mid gs=sg{\text{ for all }}s\in S\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>g</mi> <mi>s</mi> <mo>=</mo> <mi>s</mi> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {C} _{G}(S)=\{g\in G\mid gs=sg{\text{ for all }}s\in S\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a88e32865958f7ce0dabdc8c528fde9f6029b2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.227ex; height:2.843ex;" alt="{\displaystyle \mathrm {C} _{G}(S)=\{g\in G\mid gs=sg{\text{ for all }}s\in S\}.}"></span></dd></dl></dd></dl> <dt id="characteristic_subgroup"><dfn>characteristic subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> of a group is a <a href="/wiki/Characteristic_subgroup" title="Characteristic subgroup">characteristic subgroup</a> of that group if it is mapped to itself by every <a href="#automorphism"><span title="See entry on this page at § automorphism" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">automorphism</span></a> of the parent group.</dd> <dt id="characteristically_simple_group"><dfn>characteristically simple group</dfn></dt> <dd>A group is said to be <a href="/wiki/Characteristically_simple_group" title="Characteristically simple group">characteristically simple</a> if it has no proper nontrivial <a href="#characteristic_subgroup"><span title="See entry on this page at § characteristic subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">characteristic subgroups</span></a>.</dd> <dt id="class_function"><dfn>class function</dfn></dt> <dd>A <a href="/wiki/Class_function" title="Class function">class function</a> on a group <span class="texhtml"><i>G</i></span> is a function that it is constant on the <a href="#conjugacy_class"><span title="See entry on this page at § conjugacy class" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">conjugacy classes</span></a> of <span class="texhtml"><i>G</i></span>.</dd> <dt id="class_number"><dfn>class number</dfn></dt> <dd>The <a href="/wiki/Class_number_(group_theory)" class="mw-redirect" title="Class number (group theory)">class number</a> of a group is the number of its <a href="#conjugacy_class"><span title="See entry on this page at § conjugacy class" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">conjugacy classes</span></a>.</dd> <dt id="commutator"><dfn>commutator</dfn></dt> <dd>The <a href="/wiki/Commutator_(group_theory)" class="mw-redirect" title="Commutator (group theory)">commutator</a> of two elements <span class="texhtml"><i>g</i></span> and <span class="texhtml"><i>h</i></span> of a group&#160;<span class="texhtml"><i>G</i></span> is the element <span class="texhtml">[<i>g</i>, <i>h</i>] = <i>g</i><sup>−1</sup><i>h</i><sup>−1</sup><i>gh</i></span>. Some authors define the commutator as <span class="texhtml">[<i>g</i>, <i>h</i>] = <i>ghg</i><sup>−1</sup><i>h</i><sup>−1</sup></span> instead. The commutator of two elements <span class="texhtml"><i>g</i></span> and <span class="texhtml"><i>h</i></span> is equal to the group's identity if and only if <span class="texhtml"><i>g</i></span> and <span class="texhtml"><i>h</i></span> commutate, that is, if and only if <span class="texhtml"><i>gh</i> = <i>hg</i></span>.</dd> <dt id="commutator_subgroup"><dfn>commutator subgroup</dfn></dt> <dd>The <a href="/wiki/Commutator_subgroup" title="Commutator subgroup">commutator subgroup</a> or derived subgroup of a group is the subgroup <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generated</a> by all the <a href="#commutator"><span title="See entry on this page at § commutator" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">commutators</span></a> of the group.</dd> <dt id="composition_series"><dfn>composition series</dfn></dt> <dd>A <a href="/wiki/Composition_series_(group_theory)" class="mw-redirect" title="Composition series (group theory)">composition series</a> of a group <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Subnormal_series" class="mw-redirect" title="Subnormal series">subnormal series</a> of finite length <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1=H_{0}\triangleleft H_{1}\triangleleft \cdots \triangleleft H_{n}=G,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x25C3;<!-- ◃ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x25C3;<!-- ◃ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x25C3;<!-- ◃ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>G</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1=H_{0}\triangleleft H_{1}\triangleleft \cdots \triangleleft H_{n}=G,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fed70241b071404c74a310da0e1f00816ad6b26b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:28.261ex; height:2.509ex;" alt="{\displaystyle 1=H_{0}\triangleleft H_{1}\triangleleft \cdots \triangleleft H_{n}=G,}"></span></dd></dl> with strict inclusions, such that each <span class="texhtml"><i>H</i><sub><i>i</i></sub></span> is a maximal strict <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroup</span></a> of <span class="texhtml"><i>H</i><sub><i>i</i>+1</sub></span>. Equivalently, a composition series is a subnormal series such that each <a href="#factor_group"><span title="See entry on this page at § factor group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">factor group</span></a> <span class="texhtml"><i>H</i><sub><i>i</i>+1</sub> / <i>H</i><sub><i>i</i></sub></span> is <a href="#simple_group"><span title="See entry on this page at § simple group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">simple</span></a>. The factor groups are called composition factors.</dd> <dt id="conjugacy-closed_subgroup"><dfn>conjugacy-closed subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> of a group is said to be <a href="/wiki/Conjugacy-closed_subgroup" title="Conjugacy-closed subgroup">conjugacy-closed</a> if any two elements of the subgroup that are <a href="#conjugate_elements"><span title="See entry on this page at § conjugate elements" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">conjugate</span></a> in the group are also conjugate in the subgroup.</dd> <dt id="conjugacy_class"><dfn>conjugacy class</dfn></dt> <dd>The <a href="/wiki/Conjugacy_classes" class="mw-redirect" title="Conjugacy classes">conjugacy classes</a> of a group <span class="texhtml"><i>G</i></span> are those subsets of <span class="texhtml"><i>G</i></span> containing group elements that are <a href="#conjugate_elements"><span title="See entry on this page at § conjugate elements" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">conjugate</span></a> with each other.</dd> <dt id="conjugate_elements"><dfn>conjugate elements</dfn></dt> <dd>Two elements <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> of a group&#160;<span class="texhtml"><i>G</i></span> are <a href="/wiki/Conjugate_(group_theory)" class="mw-redirect" title="Conjugate (group theory)">conjugate</a> if there exists an element <span class="texhtml"><i>g</i> ∈ <i>G</i></span> such that <span class="texhtml"><i>g</i><sup>−1</sup><i>xg</i> = <i>y</i></span>. The element <span class="texhtml"><i>g</i><sup>−1</sup><i>xg</i></span>, denoted <span class="texhtml"><i>x</i><sup><i>g</i></sup></span>, is called the conjugate of <span class="texhtml"><i>x</i></span> by <span class="texhtml"><i>g</i></span>. Some authors define the conjugate of <span class="texhtml"><i>x</i></span> by <span class="texhtml"><i>g</i></span> as <span class="texhtml"><i>gxg</i><sup>−1</sup></span>. This is often denoted <span class="texhtml"><sup><i>g</i></sup><i>x</i></span>. Conjugacy is an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a>. Its <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence classes</a> are called <a href="/wiki/Conjugacy_class" title="Conjugacy class">conjugacy classes</a>.</dd> <dt id="conjugate_subgroups"><dfn>conjugate subgroups</dfn></dt> <dd>Two subgroups <span class="texhtml"><i>H</i><sub>1</sub></span> and <span class="texhtml"><i>H</i><sub>2</sub></span> of a group <span class="texhtml"><i>G</i></span> are <a href="/wiki/Conjugate_subgroups" class="mw-redirect" title="Conjugate subgroups">conjugate subgroups</a> if there is a <span class="texhtml"><i>g</i> ∈ <i>G</i></span> such that <span class="texhtml"><i>gH</i><sub>1</sub><i>g</i><sup>−1</sup> = <i>H</i><sub>2</sub></span>.</dd> <dt id="contranormal_subgroup"><dfn>contranormal subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> of a group <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Contranormal_subgroup" title="Contranormal subgroup">contranormal subgroup</a> of <span class="texhtml"><i>G</i></span> if its <a href="#normal_closure"><span title="See entry on this page at § normal closure" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal closure</span></a> is <span class="texhtml"><i>G</i></span> itself.</dd> <dt id="cyclic_group"><dfn>cyclic group</dfn></dt> <dd>A <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> is a group that is <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generated</a> by a single element, that is, a group such that there is an element <span class="texhtml"><i>g</i></span> in the group such that every other element of the group may be obtained by repeatedly applying the group operation to&#160;<span class="texhtml"><i>g</i></span> or its inverse.</dd> <div class="mw-heading mw-heading2"><h2 id="D">D</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=3" title="Edit section: D"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="derived_subgroup"><dfn>derived subgroup</dfn></dt> <dd>Synonym for <a href="#commutator_subgroup"><span title="See entry on this page at § commutator subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">commutator subgroup</span></a>.</dd> <dt id="direct_product"><dfn>direct product</dfn></dt> <dd>The <a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a> of two groups <span class="texhtml"><i>G</i></span> and <span class="texhtml"><i>H</i></span>, denoted <span class="texhtml"><i>G</i> × <i>H</i></span>, is the <a href="/wiki/Cartesian_product" title="Cartesian product">cartesian product</a> of the underlying sets of <span class="texhtml"><i>G</i></span> and <span class="texhtml"><i>H</i></span>, equipped with a component-wise defined binary operation <span class="texhtml">(<i>g</i><sub>1</sub>, <i>h</i><sub>1</sub>) · (<i>g</i><sub>2</sub>, <i>h</i><sub>2</sub>) = (<i>g</i><sub>1</sub> ⋅ <i>g</i><sub>2</sub>, <i>h</i><sub>1</sub> ⋅ <i>h</i><sub>2</sub>)</span>. With this operation, <span class="texhtml"><i>G</i> × <i>H</i></span> itself forms a group.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="E">E</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=4" title="Edit section: E"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="exponent_of_a_group"><dfn>exponent of a group</dfn></dt> <dd>The exponent of a group <span class="texhtml"><i>G</i></span> is the smallest positive integer <span class="texhtml"><i>n</i></span> such that <span class="texhtml"><i>g</i><sup><i>n</i></sup> = <i>e</i></span> for all <span class="texhtml"><i>g</i> ∈ <i>G</i></span>. It is the <a href="/wiki/Least_common_multiple" title="Least common multiple">least common multiple</a> of the <a href="#order_of_a_group"><span title="See entry on this page at § order of a group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">orders</span></a> of all elements in the group. If no such positive integer exists, the exponent of the group is said to be infinite.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="F">F</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=5" title="Edit section: F"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="factor_group"><dfn>factor group</dfn></dt> <dd>Synonym for <a href="#quotient_group"><span title="See entry on this page at § quotient group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">quotient group</span></a>.</dd> <dt id="fc-group"><dfn>FC-group</dfn></dt> <dd>A group is an <a href="/wiki/FC-group" title="FC-group">FC-group</a> if every <a href="#conjugacy_class"><span title="See entry on this page at § conjugacy class" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">conjugacy class</span></a> of its elements has finite cardinality.</dd> <dt id="finite_group"><dfn>finite group</dfn></dt> <dd>A <a href="/wiki/Finite_group" title="Finite group">finite group</a> is a group of finite <a href="#order_of_a_group"><span title="See entry on this page at § order of a group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">order</span></a>, that is, a group with a finite number of elements.</dd> <dt id="finitely_generated_group"><dfn>finitely generated group</dfn></dt> <dd>A group <span class="texhtml"><i>G</i></span> is <a href="/wiki/Finitely_generated_group" title="Finitely generated group">finitely generated</a> if there is a finite <a href="#generating_set"><span title="See entry on this page at § generating set" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">generating set</span></a>, that is, if there is a finite set <span class="texhtml"><i>S</i></span> of elements of <span class="texhtml mvar" style="font-style:italic;">G</span> such that every element of <span class="texhtml"><i>G</i></span> can be written as the combination of finitely many elements of <span class="texhtml"><i>S</i></span> and of inverses of elements of <span class="texhtml"><i>S</i></span>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="G">G</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=6" title="Edit section: G"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="generating_set"><dfn>generating set</dfn></dt> <dd>A <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generating set</a> of a group <span class="texhtml"><i>G</i></span> is a subset <span class="texhtml"><i>S</i></span> of <span class="texhtml"><i>G</i></span> such that every element of <span class="texhtml"><i>G</i></span> can be expressed as a combination (under the group operation) of finitely many elements of <span class="texhtml"><i>S</i></span> and inverses of elements of <span class="texhtml">S</span>. Given a subset <span class="texhtml"><i>S</i></span> of <span class="texhtml"><i>G</i></span>. We denote by <span class="texhtml"><span class="nowrap">&#x27e8;<i>S</i>&#x27e9;</span></span> the smallest subgroup of <span class="texhtml"><i>G</i></span> containing <span class="texhtml"><i>S</i></span>. <span class="texhtml"><span class="nowrap">&#x27e8;<i>S</i>&#x27e9;</span></span> is called the subgroup of <span class="texhtml"><i>G</i></span> generated by <span class="texhtml"><i>S</i></span>.</dd> <dt id="group_automorphism"><dfn>group automorphism</dfn></dt> <dd>See <a href="#automorphism"><span title="See entry on this page at § automorphism" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">automorphism</span></a>.</dd> <dt id="group_homomorphism"><dfn>group homomorphism</dfn></dt> <dd>See <a href="#homomorphism"><span title="See entry on this page at § homomorphism" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">homomorphism</span></a>.</dd> <dt id="group_isomorphism"><dfn>group isomorphism</dfn></dt> <dd>See <a href="#isomorphism"><span title="See entry on this page at § isomorphism" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">isomorphism</span></a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="H">H</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=7" title="Edit section: H"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="homomorphism"><dfn>homomorphism</dfn></dt> <dd>Given two groups <span class="texhtml">(<i>G</i>, •)</span> and <span class="texhtml">(<i>H</i>, ·)</span>, a <a href="/wiki/Group_homomorphism" title="Group homomorphism">homomorphism</a> from <span class="texhtml"><i>G</i></span> to <span class="texhtml"><i>H</i></span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="texhtml"><i>h</i>&#160;: <i>G</i> → <i>H</i></span> such that for all <span class="texhtml"><i>a</i></span> and <span class="texhtml"><i>b</i></span> in <span class="texhtml"><i>G</i></span>, <span class="texhtml"><i>h</i>(<i>a</i> • <i>b</i>) = <i>h</i>(<i>a</i>) · <i>h</i>(<i>b</i>)</span>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="I">I</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=8" title="Edit section: I"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="index_of_a_subgroup"><dfn>index of a subgroup</dfn></dt> <dd>The <a href="/wiki/Index_of_a_subgroup" title="Index of a subgroup">index</a> of a <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> <span class="texhtml"><i>H</i></span> of a group <span class="texhtml"><i>G</i></span>, denoted <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>G</i>&#160;: <i>H</i></span>&#124;</span> or <span class="texhtml">&#91;<i>G</i>&#160;: <i>H</i>&#93;</span> or <span class="texhtml">(<i>G</i>&#160;: <i>H</i>)</span>, is the number of <a href="/wiki/Coset" title="Coset">cosets</a> of <span class="texhtml"><i>H</i></span> in <span class="texhtml"><i>G</i></span>. For a <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroup</span></a> <span class="texhtml"><i>N</i></span> of a group <span class="texhtml"><i>G</i></span>, the index of <span class="texhtml"><i>N</i></span> in <span class="texhtml"><i>G</i></span> is equal to the <a href="#order_of_a_group"><span title="See entry on this page at § order of a group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">order</span></a> of the <a href="#quotient_group"><span title="See entry on this page at § quotient group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">quotient group</span></a> <span class="texhtml"><i>G</i> / <i>N</i></span>. For a <a href="#finite_group"><span title="See entry on this page at § finite group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">finite</span></a> subgroup <span class="texhtml"><i>H</i></span> of a finite group <span class="texhtml"><i>G</i></span>, the index of <span class="texhtml"><i>H</i></span> in <span class="texhtml"><i>G</i></span> is equal to the quotient of the orders of <span class="texhtml"><i>G</i></span> and <span class="texhtml"><i>H</i></span>.</dd> <dt id="isomorphism"><dfn>isomorphism</dfn></dt> <dd>Given two groups <span class="texhtml">(<i>G</i>, •)</span> and <span class="texhtml">(<i>H</i>, ·)</span>, an <a href="/wiki/Group_isomorphism" title="Group isomorphism">isomorphism</a> between <span class="texhtml"><i>G</i></span> and <span class="texhtml"><i>H</i></span> is a <a href="/wiki/Bijection" title="Bijection">bijective</a> <a href="#homomorphism"><span title="See entry on this page at § homomorphism" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">homomorphism</span></a> from <span class="texhtml"><i>G</i></span> to <span class="texhtml"><i>H</i></span>, that is, a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. Two groups are <i>isomorphic</i> if there exists a group isomorphism mapping from one to the other. Isomorphic groups can be thought of as essentially the same, only with different labels on the individual elements.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="L">L</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=9" title="Edit section: L"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="lattice_of_subgroups"><dfn>lattice of subgroups</dfn></dt> <dd>The <a href="/wiki/Lattice_of_subgroups" title="Lattice of subgroups">lattice of subgroups</a> of a group is the <a href="/wiki/Lattice_(order)" title="Lattice (order)">lattice</a> defined by its <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroups</span></a>, <a href="/wiki/Partially_ordered_set" title="Partially ordered set">partially ordered</a> by <a href="/wiki/Set_inclusion" class="mw-redirect" title="Set inclusion">set inclusion</a>.</dd> <dt id="locally_cyclic_group"><dfn>locally cyclic group</dfn></dt> <dd>A group is <a href="/wiki/Locally_cyclic_group" title="Locally cyclic group">locally cyclic</a> if every <a href="#finitely_generated_group"><span title="See entry on this page at § finitely generated group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">finitely generated</span></a> subgroup is <a href="#cyclic_group"><span title="See entry on this page at § cyclic group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">cyclic</span></a>. Every cyclic group is locally cyclic, and every <a href="#finitely_generated_group"><span title="See entry on this page at § finitely generated group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">finitely-generated</span></a> locally cyclic group is cyclic. Every locally cyclic group is <a href="#abelian_group"><span title="See entry on this page at § abelian group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">abelian</span></a>. Every <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a>, every <a href="#quotient_group"><span title="See entry on this page at § quotient group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">quotient group</span></a> and every <a href="#group_homomorphism"><span title="See entry on this page at § group homomorphism" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">homomorphic</span></a> image of a locally cyclic group is locally cyclic.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="N">N</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=10" title="Edit section: N"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="no_small_subgroup"><dfn>no small subgroup</dfn></dt> <dd>A <a href="/wiki/Topological_group" title="Topological group">topological group</a> has <a href="/wiki/No_small_subgroup" title="No small subgroup">no small subgroup</a> if there exists a neighborhood of the identity element that does not contain any nontrivial subgroup.</dd> <dt id="normal_closure"><dfn>normal closure</dfn></dt> <dd>The <a href="/wiki/Normal_closure_(group_theory)" title="Normal closure (group theory)">normal closure</a> of a subset&#160;<span class="texhtml"><i>S</i></span> of a group&#160;<span class="texhtml"><i>G</i></span> is the intersection of all <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroups</span></a> of&#160;<span class="texhtml"><i>G</i></span> that contain&#160;<span class="texhtml"><i>S</i></span>.</dd> <dt id="normal_core"><dfn>normal core</dfn></dt> <dd>The <a href="/wiki/Normal_core" class="mw-redirect" title="Normal core">normal core</a> of a <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> <span class="texhtml"><i>H</i></span> of a group <span class="texhtml"><i>G</i></span> is the largest <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroup</span></a> of <span class="texhtml"><i>G</i></span> that is contained in <span class="texhtml"><i>H</i></span>.</dd> <dt id="normal_series"><dfn>normal series</dfn></dt> <dd>A <a href="/wiki/Normal_series" class="mw-redirect" title="Normal series">normal series</a> of a group&#160;<span class="texhtml"><i>G</i></span> is a sequence of <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroups</span></a> of <span class="texhtml"><i>G</i></span> such that each element of the sequence is a normal subgroup of the next element: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1=A_{0}\triangleleft A_{1}\triangleleft \cdots \triangleleft A_{n}=G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x25C3;<!-- ◃ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x25C3;<!-- ◃ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x25C3;<!-- ◃ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1=A_{0}\triangleleft A_{1}\triangleleft \cdots \triangleleft A_{n}=G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e9db9ae4c211193cfb9db08a0f9bb4175a96fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.05ex; height:2.509ex;" alt="{\displaystyle 1=A_{0}\triangleleft A_{1}\triangleleft \cdots \triangleleft A_{n}=G}"></span></dd></dl> with <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{i}\triangleleft G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x25C3;<!-- ◃ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{i}\triangleleft G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aef32fe22faef5e4be2c5f65a930f0a61ebee7de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.564ex; height:2.509ex;" alt="{\displaystyle A_{i}\triangleleft G}"></span>.</dd></dl></dd></dl> <dt id="normal_subgroup"><dfn>normal subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> <span class="texhtml"><i>N</i></span> of a group <span class="texhtml"><i>G</i></span> is <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal</a> in <span class="texhtml"><i>G</i></span> (denoted <span class="texhtml"><i>N</i> ◅ <i>G</i></span>) if the <a href="#conjugate_elements"><span title="See entry on this page at § conjugate elements" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">conjugation</span></a> of an element <span class="texhtml"><i>n</i></span> of <span class="texhtml"><i>N</i></span> by an element <span class="texhtml"><i>g</i></span> of <span class="texhtml"><i>G</i></span> is always in <span class="texhtml"><i>N</i></span>, that is, if for all <span class="texhtml"><i>g</i> ∈ <i>G</i></span> and <span class="texhtml"><i>n</i> ∈ <i>N</i></span>, <span class="texhtml"><i>gng</i><sup>−1</sup> ∈ <i>N</i></span>. A normal subgroup <span class="texhtml"><i>N</i></span> of a group <span class="texhtml"><i>G</i></span> can be used to construct the <a href="#quotient_group"><span title="See entry on this page at § quotient group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">quotient group</span></a> <span class="texhtml"><i>G</i> / <i>N</i></span>.</dd> <dt id="normalizer"><dfn>normalizer</dfn></dt> <dd>For a subset <span class="texhtml"><i>S</i></span> of a group&#160;<span class="texhtml"><i>G</i></span>, the <a href="/wiki/Centralizer_and_normalizer" title="Centralizer and normalizer">normalizer</a> of <span class="texhtml"><i>S</i></span> in <span class="texhtml"><i>G</i></span>, denoted <span class="texhtml">N<sub><i>G</i></sub>(<i>S</i>)</span>, is the subgroup of <span class="texhtml"><i>G</i></span> defined by <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {N} _{G}(S)=\{g\in G\mid gS=Sg\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>g</mi> <mi>S</mi> <mo>=</mo> <mi>S</mi> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {N} _{G}(S)=\{g\in G\mid gS=Sg\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/038ee9ce297092d8ad882e97a4a2e3cdd2f4f3ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.695ex; height:2.843ex;" alt="{\displaystyle \mathrm {N} _{G}(S)=\{g\in G\mid gS=Sg\}.}"></span></dd></dl></dd> <div class="mw-heading mw-heading2"><h2 id="O">O</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=11" title="Edit section: O"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="orbit"><dfn>orbit</dfn></dt> <dd>Consider a group <span class="texhtml"><i>G</i></span> acting on a set <span class="texhtml"><i>X</i></span>. The <a href="/wiki/Orbit_(group_theory)" class="mw-redirect" title="Orbit (group theory)">orbit</a> of an element <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span> is the set of elements in <span class="texhtml"><i>X</i></span> to which <span class="texhtml"><i>x</i></span> can be moved by the elements of <span class="texhtml"><i>G</i></span>. The orbit of <span class="texhtml"><i>x</i></span> is denoted by <span class="texhtml"><i>G</i> ⋅ <i>x</i></span></dd> <dt id="order_of_a_group"><dfn>order of a group</dfn></dt> <dd>The <a href="/wiki/Order_of_a_group" class="mw-redirect" title="Order of a group">order of a group</a> <span class="texhtml">(<i>G</i>, •)</span> is the <a href="/wiki/Cardinal_number" title="Cardinal number">cardinality</a> (i.e. number of elements) of <span class="texhtml">G</span>. A group with finite order is called a <a href="/wiki/Finite_group" title="Finite group">finite group</a>.</dd> <dt id="order_of_a_group_element"><dfn>order of a group element</dfn></dt> <dd>The <a href="/wiki/Order_of_a_group_element" class="mw-redirect" title="Order of a group element">order of an element</a> <span class="texhtml"><i>g</i></span> of a group <span class="texhtml"><i>G</i></span> is the smallest <a href="/wiki/Positive_number" class="mw-redirect" title="Positive number">positive</a> <a href="/wiki/Integer" title="Integer">integer</a> <span class="texhtml"><i>n</i></span> such that <span class="texhtml"><i>g</i><sup><i>n</i></sup> = <i>e</i></span>. If no such integer exists, then the order of <span class="texhtml"><i>g</i></span> is said to be infinite. The order of a finite group is <a href="/wiki/Divisible" class="mw-redirect" title="Divisible">divisible</a> by the order of every element.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="P">P</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=12" title="Edit section: P"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="perfect_core"><dfn>perfect core</dfn></dt> <dd>The <a href="/wiki/Perfect_core" title="Perfect core">perfect core</a> of a group is its largest <a href="#perfect_group"><span title="See entry on this page at § perfect group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">perfect</span></a> subgroup.</dd> <dt id="perfect_group"><dfn>perfect group</dfn></dt> <dd>A <a href="/wiki/Perfect_group" title="Perfect group">perfect group</a> is a group that is equal to its own <a href="#commutator_subgroup"><span title="See entry on this page at § commutator subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">commutator subgroup</span></a>.</dd> <dt id="periodic_group"><dfn>periodic group</dfn></dt> <dd>A group is <a href="/wiki/Periodic_group" class="mw-redirect" title="Periodic group">periodic</a> if every group element has finite <a href="#order_of_a_group_element"><span title="See entry on this page at § order of a group element" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">order</span></a>. Every <a href="/wiki/Finite_group" title="Finite group">finite group</a> is periodic.</dd> <dt id="permutation_group"><dfn>permutation group</dfn></dt> <dd>A <a href="/wiki/Permutation_group" title="Permutation group">permutation group</a> is a group whose elements are <a href="/wiki/Permutation" title="Permutation">permutations</a> of a given <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="texhtml"><i>M</i></span> (the <a href="/wiki/Bijective_function" class="mw-redirect" title="Bijective function">bijective functions</a> from set <span class="texhtml"><i>M</i></span> to itself) and whose <a href="/wiki/Group_operation" class="mw-redirect" title="Group operation">group operation</a> is the <a href="/wiki/Function_composition" title="Function composition">composition</a> of those permutations. The group consisting of all permutations of a set <span class="texhtml"><i>M</i></span> is the <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a> of <span class="texhtml"><i>M</i></span>.</dd> <dt id="&#39;&#39;p&#39;&#39;-group"><dfn><i>p</i>-group</dfn></dt> <dd>If <span class="texhtml"><i>p</i></span> is a <a href="/wiki/Prime_number" title="Prime number">prime number</a>, then a <a href="/wiki/P-group" title="P-group"><span class="texhtml"><i>p</i></span>-group</a> is one in which the order of every element is a power of <span class="texhtml"><i>p</i></span>. A finite group is a <span class="texhtml"><i>p</i></span>-group if and only if the <a href="#order_of_a_group"><span title="See entry on this page at § order of a group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">order</span></a> of the group is a power of <span class="texhtml"><i>p</i></span>.</dd> <dt id="&#39;&#39;p&#39;&#39;-subgroup"><dfn><i>p</i>-subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> that is also a <a href="#p-group"><span title="See entry on this page at § &#39;&#39;p&#39;&#39;-group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;"><span class="texhtml"><i>p</i></span>-group</span></a>. The study of <span class="texhtml"><i>p</i></span>-subgroups is the central object of the <a href="/wiki/Sylow_theorems" title="Sylow theorems">Sylow theorems</a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Q">Q</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=13" title="Edit section: Q"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="quotient_group"><dfn>quotient group</dfn></dt> <dd>Given a group <span class="texhtml"><i>G</i></span> and a <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroup</span></a> <span class="texhtml"><i>N</i></span> of <span class="texhtml"><i>G</i></span>, the <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a> is the set <span class="texhtml"><i>G</i> / <i>N</i></span> of <a href="/wiki/Left_coset" class="mw-redirect" title="Left coset">left cosets</a> <span class="texhtml">{<i>aN</i>&#160;: <i>a</i> &#8712; <i>G</i>}</span> together with the operation <span class="texhtml"><i>aN</i> • <i>bN</i> = <i>abN</i></span>. The relationship between normal subgroups, homomorphisms, and factor groups is summed up in the <a href="/wiki/Fundamental_theorem_on_homomorphisms" title="Fundamental theorem on homomorphisms">fundamental theorem on homomorphisms</a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="R">R</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=14" title="Edit section: R"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="real_element"><dfn>real element</dfn></dt> <dd>An element <span class="texhtml"><i>g</i></span> of a group <span class="texhtml"><i>G</i></span> is called a <a href="/wiki/Real_element" title="Real element">real element</a> of <span class="texhtml"><i>G</i></span> if it belongs to the same <a href="#conjugacy_class"><span title="See entry on this page at § conjugacy class" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">conjugacy class</span></a> as its inverse, that is, if there is a <span class="texhtml"><i>h</i></span> in <span class="texhtml"><i>G</i></span> with&#160;<span class="texhtml"><i>g</i><sup><i>h</i></sup> = <i>g</i><sup>−1</sup></span>, where <span class="texhtml"><i>g</i><sup><i>h</i></sup></span> is defined as <span class="texhtml"><i>h</i><sup>−1</sup><i>gh</i></span>. An element of a group <span class="texhtml"><i>G</i></span> is real if and only if for all <a href="/wiki/Group_representation" title="Group representation">representations</a> of <span class="texhtml"><i>G</i></span> the <a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">trace</a> of the corresponding matrix is a real number.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="S">S</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=15" title="Edit section: S"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="serial_subgroup"><dfn>serial subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> <span class="texhtml"><i>H</i></span> of a group <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Serial_subgroup" title="Serial subgroup">serial subgroup</a> of <span class="texhtml"><i>G</i></span> if there is a chain <span class="texhtml"><i>C</i></span> of subgroups of <span class="texhtml"><i>G</i></span> from <span class="texhtml"><i>H</i></span> to <span class="texhtml"><i>G</i></span> such that for each pair of consecutive subgroups <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> in <span class="texhtml"><i>C</i></span>, <span class="texhtml"><i>X</i></span> is a <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroup</span></a> of <span class="texhtml"><i>Y</i></span>. If the chain is finite, then <span class="texhtml"><i>H</i></span> is a <a href="#subnormal_subgroup"><span title="See entry on this page at § subnormal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subnormal subgroup</span></a> of <span class="texhtml"><i>G</i></span>.</dd> <dt id="simple_group"><dfn>simple group</dfn></dt> <dd>A <a href="/wiki/Simple_group" title="Simple group">simple group</a> is a <a href="#trivial_group"><span title="See entry on this page at § trivial group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">nontrivial group</span></a> whose only <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroups</span></a> are the trivial group and the group itself.</dd> <dt id="subgroup"><dfn>subgroup</dfn></dt> <dd>A <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of a group <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Subset" title="Subset">subset</a> <span class="texhtml"><i>H</i></span> of the elements of <span class="texhtml"><i>G</i></span> that itself forms a group when equipped with the restriction of the <a href="/wiki/Group_operation" class="mw-redirect" title="Group operation">group operation</a> of <span class="texhtml"><i>G</i></span> to <span class="texhtml"><i>H</i> × <i>H</i></span>. A subset <span class="texhtml"><i>H</i></span> of a group <span class="texhtml"><i>G</i></span> is a subgroup of <span class="texhtml"><i>G</i></span> if and only if it is nonempty and <a href="/wiki/Closure_(mathematics)" title="Closure (mathematics)">closed</a> under products and inverses, that is, if and only if for every <span class="texhtml"><i>a</i></span> and <span class="texhtml"><i>b</i></span> in <span class="texhtml"><i>H</i></span>, <span class="texhtml"><i>ab</i></span> and <span class="texhtml"><i>a</i><sup>−1</sup></span> are also in <span class="texhtml"><i>H</i></span>.</dd> <dt id="subgroup_series"><dfn>subgroup series</dfn></dt> <dd>A <a href="/wiki/Subgroup_series" title="Subgroup series">subgroup series</a> of a group <span class="texhtml"><i>G</i></span> is a sequence of <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroups</span></a> of <span class="texhtml"><i>G</i></span> such that each element in the series is a subgroup of the next element: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1=A_{0}\leq A_{1}\leq \cdots \leq A_{n}=G.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>G</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1=A_{0}\leq A_{1}\leq \cdots \leq A_{n}=G.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d4ee117c021e508ea35f3cf7b1e65ea4adf7ff5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:30.408ex; height:2.509ex;" alt="{\displaystyle 1=A_{0}\leq A_{1}\leq \cdots \leq A_{n}=G.}"></span></dd></dl></dd></dl> <dt id="subnormal_subgroup"><dfn>subnormal subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> <span class="texhtml"><i>H</i></span> of a group <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Subnormal_subgroup" title="Subnormal subgroup">subnormal subgroup</a> of <span class="texhtml"><i>G</i></span> if there is a finite chain of subgroups of the group, each one <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal</span></a> in the next, beginning at <span class="texhtml"><i>H</i></span> and ending at <span class="texhtml"><i>G</i></span>.</dd> <dt id="symmetric_group"><dfn>symmetric group</dfn></dt> <dd>Given a set <span class="texhtml"><i>M</i></span>, the <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a> of <span class="texhtml"><i>M</i></span> is the set of all <a href="/wiki/Permutation" title="Permutation">permutations</a> of <span class="texhtml"><i>M</i></span> (the set all <a href="/wiki/Bijective_function" class="mw-redirect" title="Bijective function">bijective functions</a> from <span class="texhtml"><i>M</i></span> to <span class="texhtml"><i>M</i></span>) with the <a href="/wiki/Function_composition" title="Function composition">composition</a> of the permutations as group operation. The symmetric group of a <a href="/wiki/Finite_set" title="Finite set">finite set</a> of size <span class="texhtml"><i>n</i></span> is denoted <span class="texhtml">S<sub><i>n</i></sub></span>. (The symmetric groups of any two sets of the same size are <a href="/wiki/Group_isomorphism" title="Group isomorphism">isomorphic</a>.)</dd> <div class="mw-heading mw-heading2"><h2 id="T">T</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=16" title="Edit section: T"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="torsion_group"><dfn>torsion group</dfn></dt> <dd>Synonym for <a href="#periodic_group"><span title="See entry on this page at § periodic group" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">periodic group</span></a>.</dd> <dt id="transitively_normal_subgroup"><dfn>transitively normal subgroup</dfn></dt> <dd>A <a href="#subgroup"><span title="See entry on this page at § subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">subgroup</span></a> of a group is said to be <a href="/wiki/Transitively_normal_subgroup" title="Transitively normal subgroup">transitively normal</a> in the group if every <a href="#normal_subgroup"><span title="See entry on this page at § normal subgroup" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">normal subgroup</span></a> of the subgroup is also normal in the whole group.</dd> <dt id="trivial_group"><dfn>trivial group</dfn></dt> <dd>A <a href="/wiki/Trivial_group" title="Trivial group">trivial group</a> is a group consisting of a single element, namely the identity element of the group. All such groups are <a href="/wiki/Group_isomorphism" title="Group isomorphism">isomorphic</a>, and one often speaks of <i>the</i> trivial group.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Basic_definitions">Basic definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=17" title="Edit section: Basic definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Both subgroups and normal subgroups of a given group form a <a href="/wiki/Complete_lattice" title="Complete lattice">complete lattice</a> under inclusion of subsets; this property and some related results are described by the <a href="/wiki/Lattice_theorem" class="mw-redirect" title="Lattice theorem">lattice theorem</a>. </p><p><b><a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">Kernel</a> of a group homomorphism</b>. It is the <a href="/wiki/Preimage" class="mw-redirect" title="Preimage">preimage</a> of the identity in the <a href="/wiki/Codomain" title="Codomain">codomain</a> of a group homomorphism. Every normal subgroup is the kernel of a group homomorphism and vice versa. </p><p><b><a href="/wiki/Direct_product" title="Direct product">Direct product</a></b>, <b><a href="/wiki/Direct_sum_of_groups" title="Direct sum of groups">direct sum</a></b>, and <b><a href="/wiki/Semidirect_product" title="Semidirect product">semidirect product</a></b> of groups. These are ways of combining groups to construct new groups; please refer to the corresponding links for explanation. </p> <div class="mw-heading mw-heading2"><h2 id="Types_of_groups">Types of groups</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=18" title="Edit section: Types of groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b><a href="/wiki/Finitely_generated_group" title="Finitely generated group">Finitely generated group</a></b>. If there exists a finite set <span class="texhtml"><i>S</i></span> such that <span class="texhtml"><span class="nowrap">&#x27e8;<i>S</i>&#x27e9;</span> = <i>G</i></span>, then <span class="texhtml"><i>G</i></span> is said to be <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">finitely generated</a>. If <span class="texhtml"><i>S</i></span> can be taken to have just one element, <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> of finite order, an <a href="/wiki/Infinite_cyclic_group" class="mw-redirect" title="Infinite cyclic group">infinite cyclic group</a>, or possibly a group <span class="texhtml">{<i>e</i>}</span> with just one element. </p><p><b><a href="/wiki/Simple_group" title="Simple group">Simple group</a></b>. Simple groups are those groups having only <span class="texhtml"><i>e</i></span> and themselves as <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroups</a>. The name is misleading because a simple group can in fact be very complex. An example is the <a href="/wiki/Monster_group" title="Monster group">monster group</a>, whose <a href="/wiki/Order_(group_theory)" title="Order (group theory)">order</a> is about 10<sup>54</sup>. Every finite group is built up from simple groups via <a href="/wiki/Extension_problem" class="mw-redirect" title="Extension problem">group extensions</a>, so the study of finite simple groups is central to the study of all finite groups. The finite simple groups are known and <a href="/wiki/Classification_of_finite_simple_groups" title="Classification of finite simple groups">classified</a>. </p><p>The structure of any finite abelian group is relatively simple; every finite abelian group is the direct sum of <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic</a> p-groups. This can be extended to a complete classification of all <a href="/wiki/Finitely_generated_abelian_group" title="Finitely generated abelian group">finitely generated abelian groups</a>, that is all abelian groups that are <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generated</a> by a finite set. </p><p>The situation is much more complicated for the non-abelian groups. </p><p><b><a href="/wiki/Free_group" title="Free group">Free group</a></b>. Given any set <span class="texhtml"><i>A</i></span>, one can define a group as the smallest group containing the <a href="/wiki/Free_semigroup" class="mw-redirect" title="Free semigroup">free semigroup</a> of <span class="texhtml"><i>A</i></span>. The group consists of the finite strings (words) that can be composed by elements from <span class="texhtml"><i>A</i></span>, together with other elements that are necessary to form a group. Multiplication of strings is defined by concatenation, for instance <span class="texhtml">(<i>abb</i>) • (<i>bca</i>) = <i>abbbca</i></span>. </p><p>Every group <span class="texhtml">(<i>G</i>, •)</span> is basically a factor group of a free group generated by <span class="texhtml"><i>G</i></span>. Refer to <i><a href="/wiki/Presentation_of_a_group" title="Presentation of a group">Presentation of a group</a></i> for more explanation. One can then ask <a href="/wiki/Algorithm" title="Algorithm">algorithmic</a> questions about these presentations, such as: </p> <ul><li>Do these two presentations specify isomorphic groups?; or</li> <li>Does this presentation specify the trivial group?</li></ul> <p>The general case of this is the <a href="/wiki/Word_problem_for_groups" title="Word problem for groups">word problem</a>, and several of these questions are in fact unsolvable by any general algorithm. </p><p><b><a href="/wiki/General_linear_group" title="General linear group">General linear group</a></b>, denoted by <span class="texhtml">GL(<i>n</i>, <i>F</i>)</span>, is the group of <span class="texhtml"><i>n</i></span>-by-<span class="texhtml"><i>n</i></span> <a href="/wiki/Invertible_matrix" title="Invertible matrix">invertible matrices</a>, where the elements of the matrices are taken from a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml"><i>F</i></span> such as the real numbers or the complex numbers. </p><p><b><a href="/wiki/Group_representation" title="Group representation">Group representation</a></b> (not to be confused with the <i>presentation</i> of a group). A <i>group representation</i> is a homomorphism from a group to a general linear group. One basically tries to "represent" a given abstract group as a concrete group of invertible <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>, which is much easier to study. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_group_theory&amp;action=edit&amp;section=19" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Glossary_of_Lie_groups_and_Lie_algebras" title="Glossary of Lie groups and Lie algebras">Glossary of Lie groups and Lie algebras</a></li> <li><a href="/wiki/Glossary_of_ring_theory" title="Glossary of ring theory">Glossary of ring theory</a></li> <li><a href="/wiki/Composition_series" title="Composition series">Composition series</a></li> <li><a href="/wiki/Normal_series" class="mw-redirect" title="Normal series">Normal series</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐cc877b49b‐xmh5g Cached time: 20241127124943 Cache expiry: 2592000 Reduced expiry: false Complications: [no‐toc] CPU time usage: 0.744 seconds Real time usage: 0.899 seconds Preprocessor visited node count: 19358/1000000 Post‐expand include size: 149674/2097152 bytes Template argument size: 63756/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 46999/5000000 bytes Lua time usage: 0.308/10.000 seconds Lua memory usage: 2537075/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 714.420 1 -total 50.29% 359.300 62 Template:Defn 38.58% 275.651 265 Template:Math 16.08% 114.851 1 Template:Group_theory_sidebar 15.99% 114.246 62 Template:Term 15.61% 111.555 1 Template:Sidebar_with_collapsible_lists 10.00% 71.468 74 Template:Gli 6.21% 44.394 74 Template:Plain_text 5.68% 40.564 265 Template:Main_other 5.51% 39.329 1 Template:For --> <!-- Saved in parser cache with key enwiki:pcache:249268:|#|:idhash:canonical and timestamp 20241127124943 and revision id 1237475250. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Glossary_of_group_theory&amp;oldid=1237475250">https://en.wikipedia.org/w/index.php?title=Glossary_of_group_theory&amp;oldid=1237475250</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Group_theory" title="Category:Group theory">Group theory</a></li><li><a href="/wiki/Category:Glossaries_of_mathematics" title="Category:Glossaries of mathematics">Glossaries of mathematics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden category: <ul><li><a href="/wiki/Category:Wikipedia_glossaries_using_description_lists" title="Category:Wikipedia glossaries using description lists">Wikipedia glossaries using description lists</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 30 July 2024, at 00:05<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Glossary_of_group_theory&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-cc877b49b-65j9b","wgBackendResponseTime":163,"wgPageParseReport":{"limitreport":{"cputime":"0.744","walltime":"0.899","ppvisitednodes":{"value":19358,"limit":1000000},"postexpandincludesize":{"value":149674,"limit":2097152},"templateargumentsize":{"value":63756,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":46999,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 714.420 1 -total"," 50.29% 359.300 62 Template:Defn"," 38.58% 275.651 265 Template:Math"," 16.08% 114.851 1 Template:Group_theory_sidebar"," 15.99% 114.246 62 Template:Term"," 15.61% 111.555 1 Template:Sidebar_with_collapsible_lists"," 10.00% 71.468 74 Template:Gli"," 6.21% 44.394 74 Template:Plain_text"," 5.68% 40.564 265 Template:Main_other"," 5.51% 39.329 1 Template:For"]},"scribunto":{"limitreport-timeusage":{"value":"0.308","limit":"10.000"},"limitreport-memusage":{"value":2537075,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-cc877b49b-xmh5g","timestamp":"20241127124943","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Glossary of group theory","url":"https:\/\/en.wikipedia.org\/wiki\/Glossary_of_group_theory","sameAs":"http:\/\/www.wikidata.org\/entity\/Q104813495","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q104813495","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-06-19T03:34:22Z","dateModified":"2024-07-30T00:05:25Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/5f\/Cyclic_group.svg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10