CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;32 of 32 results for author: <span class="mathjax">Marques, G E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Marques, G E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Marques%2C+G+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Marques, G E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07042">arXiv:2410.07042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07042">pdf</a>, <a href="https://arxiv.org/format/2410.07042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Optical memory in a MoSe$_2$/Clinochlore device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ames%2C+A">Alessandra Ames</a>, <a href="/search/?searchtype=author&amp;query=Sousa%2C+F+B">Frederico B. Sousa</a>, <a href="/search/?searchtype=author&amp;query=Souza%2C+G+A+D">Gabriel A. D. Souza</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+R">Raphaela de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Silva%2C+I+R+F">Igor R. F. Silva</a>, <a href="/search/?searchtype=author&amp;query=Rodrigues%2C+G+L">Gabriel L. Rodrigues</a>, <a href="/search/?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">Gilmar E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Barcelos%2C+I+D">Ingrid D. Barcelos</a>, <a href="/search/?searchtype=author&amp;query=Cadore%2C+A+R">Alisson R. Cadore</a>, <a href="/search/?searchtype=author&amp;query=L%C3%B3pez-Richard%2C+V">Victor L贸pez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">Marcio D. Teodoro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07042v1-abstract-short" style="display: inline;"> Two-dimensional heterostructures have been crucial in advancing optoelectronic devices utilizing van der Waals materials. Semiconducting transition metal dichalcogenide monolayers, known for their unique optical properties, offer extensive possibilities for light-emitting devices. Recently, a memory-driven optical device, termed a Mem-emitter, was proposed using these monolayers atop dielectric su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07042v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07042v1-abstract-full" style="display: none;"> Two-dimensional heterostructures have been crucial in advancing optoelectronic devices utilizing van der Waals materials. Semiconducting transition metal dichalcogenide monolayers, known for their unique optical properties, offer extensive possibilities for light-emitting devices. Recently, a memory-driven optical device, termed a Mem-emitter, was proposed using these monolayers atop dielectric substrates. The successful realization of such devices heavily depends on selecting the optimal substrate. Here, we report a pronounced memory effect in a MoSe$_2$/clinochlore device, evidenced by electric hysteresis in the intensity and energy of MoSe$_2$ monolayer emissions. This demonstrates both population-driven and transition-rate-driven Mem-emitter abilities. Our theoretical approach correlates these memory effects with internal state variables of the substrate, emphasizing that clinochlore layered structure is crucial for a robust and rich memory response. This work introduces a novel two-dimensional device with promising applications in memory functionalities, highlighting the importance of alternative insulators in fabricating van der Waals heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07042v1-abstract-full').style.display = 'none'; document.getElementById('2410.07042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00597">arXiv:2307.00597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00597">pdf</a>, <a href="https://arxiv.org/format/2307.00597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Lingering Times at Resonance: The Case of Sb-based Tunneling Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Castro%2C+E+D+G">Edgar David Guarin Castro</a>, <a href="/search/?searchtype=author&amp;query=Pfenning%2C+A">Andreas Pfenning</a>, <a href="/search/?searchtype=author&amp;query=Hartmann%2C+F">Fabian Hartmann</a>, <a href="/search/?searchtype=author&amp;query=Naranjo%2C+A">Andrea Naranjo</a>, <a href="/search/?searchtype=author&amp;query=Knebl%2C+G">Georg Knebl</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">Marcio Daldin Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">Gilmar Eugenio Marques</a>, <a href="/search/?searchtype=author&amp;query=H%C3%B6fling%2C+S">Sven H枚fling</a>, <a href="/search/?searchtype=author&amp;query=Bastard%2C+G">Gerald Bastard</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">Victor Lopez-Richard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00597v1-abstract-short" style="display: inline;"> Concurrent natural time scales related to relaxation, recombination, trapping, and drifting processes rule the semiconductor heterostructures&#39; response to external drives when charge carrier fluxes are induced. This paper highlights the role of stoichiometry not only for the quantitative tuning of the electron-hole dynamics but also for significant qualitative contrasts of time-resolved optical re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00597v1-abstract-full').style.display = 'inline'; document.getElementById('2307.00597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00597v1-abstract-full" style="display: none;"> Concurrent natural time scales related to relaxation, recombination, trapping, and drifting processes rule the semiconductor heterostructures&#39; response to external drives when charge carrier fluxes are induced. This paper highlights the role of stoichiometry not only for the quantitative tuning of the electron-hole dynamics but also for significant qualitative contrasts of time-resolved optical responses during the operation of resonant tunneling devices. Therefore, similar device architectures and different compositions have been compared to elucidate the correlation among structural parameters, radiative recombination processes, and electron-hole pair and minority carrier relaxation mechanisms. When these ingredients intermix with the electronic structure in Sb-based tunneling devices, it is proven possible to assess various time scales according to the intensity of the current flux, contrary to what has been observed in As-based tunneling devices with similar design and transport characteristics. These time scales are strongly affected not only by the filling process in the $螕$ and L states in Sb-based double-barrier quantum wells but also by the small separation between these states, compared to similar heterostructures based on As. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00597v1-abstract-full').style.display = 'none'; document.getElementById('2307.00597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, submitted to the Physical Review Applied journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03506">arXiv:2303.03506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03506">pdf</a>, <a href="https://arxiv.org/ps/2303.03506">ps</a>, <a href="https://arxiv.org/format/2303.03506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.1c02173">10.1021/acs.jpcc.1c02173 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical mapping of non-equilibrium charge carriers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Castro%2C+E+D+G">E. David Guarin Castro</a>, <a href="/search/?searchtype=author&amp;query=Pfenning%2C+A">A. Pfenning</a>, <a href="/search/?searchtype=author&amp;query=Hartmann%2C+F">F. Hartmann</a>, <a href="/search/?searchtype=author&amp;query=Knebl%2C+G">G. Knebl</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">M. Daldin Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">Gilmar E. Marques</a>, <a href="/search/?searchtype=author&amp;query=H%C3%B6fling%2C+S">S. H枚fling</a>, <a href="/search/?searchtype=author&amp;query=Bastard%2C+G">G. Bastard</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03506v1-abstract-short" style="display: inline;"> We investigate the energy relaxation segmentation in a resonant tunneling heterostructures by assessing the optical and transport dynamics of non-equilibrium charge carriers. The electrical and optical properties are analyzed using electronic transport measurements combined with electro- and photoluminescence spectroscopies in continuous-wave mode. The radiative recombination is mainly governed by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03506v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03506v1-abstract-full" style="display: none;"> We investigate the energy relaxation segmentation in a resonant tunneling heterostructures by assessing the optical and transport dynamics of non-equilibrium charge carriers. The electrical and optical properties are analyzed using electronic transport measurements combined with electro- and photoluminescence spectroscopies in continuous-wave mode. The radiative recombination is mainly governed by the creation of heavy holes \textit{via} impact ionization processes. Our results suggest hot electrons and holes populations form independent non-equilibrium systems that do not thermalize among them and with the lattice. Consequently, the carriers effective temperature changes independently at different regions of the heterostructure, with a population distribution for holes colder than for electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03506v1-abstract-full').style.display = 'none'; document.getElementById('2303.03506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version of the manuscript was submitted to the Journal of the Physical Chemistry C. The revised published version can be found at https://pubs.acs.org/doi/10.1021/acs.jpcc.1c02173</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. C 2021, 125, 27, 14741-14750 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.02129">arXiv:2107.02129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.02129">pdf</a>, <a href="https://arxiv.org/ps/2107.02129">ps</a>, <a href="https://arxiv.org/format/2107.02129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.045414">10.1103/PhysRevB.105.045414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dependent analysis of homogeneous and inhomogeneous exciton decoherence in magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Laurindo%2C+V">V. Laurindo Jr.</a>, <a href="/search/?searchtype=author&amp;query=Castro%2C+E+D+G">E. D. Guarin Castro</a>, <a href="/search/?searchtype=author&amp;query=Jacobsen%2C+G+M">G. M. Jacobsen</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+E+R+C">E. R. C. de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Domenegueti%2C+J+F+M">J. F. M. Domenegueti</a>, <a href="/search/?searchtype=author&amp;query=Al%C3%A9n%2C+B">B. Al茅n</a>, <a href="/search/?searchtype=author&amp;query=Mazur%2C+Y+I">Yu. I. Mazur</a>, <a href="/search/?searchtype=author&amp;query=Salamo%2C+G+J">G. J. Salamo</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Marega%2C+E">E. Marega Jr.</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">M. D. Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.02129v2-abstract-short" style="display: inline;"> This paper discusses the combined effects of optical excitation power, interface roughness, lattice temperature, and applied magnetic fields on the spin-coherence of excitonic states in GaAs/AlGaAs multiple quantum wells. For low optical powers, at lattice temperatures between 4 K and 50 K, the scattering with acoustic phonons and short-range interactions appear as the main decoherence mechanisms.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02129v2-abstract-full').style.display = 'inline'; document.getElementById('2107.02129v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.02129v2-abstract-full" style="display: none;"> This paper discusses the combined effects of optical excitation power, interface roughness, lattice temperature, and applied magnetic fields on the spin-coherence of excitonic states in GaAs/AlGaAs multiple quantum wells. For low optical powers, at lattice temperatures between 4 K and 50 K, the scattering with acoustic phonons and short-range interactions appear as the main decoherence mechanisms. Statistical fluctuations of the band-gap however become also relevant in this regime and we were able to deconvolute them from the decoherence contributions. The circularly polarized magneto-photoluminescence unveils a non-monotonic tuning of the coherence for one of the spin components at low magnetic fields. This effect has been ascribed to the competition between short-range interactions and spin-flip scattering, modulated by the momentum relaxation time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02129v2-abstract-full').style.display = 'none'; document.getElementById('2107.02129v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.11736">arXiv:2007.11736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.11736">pdf</a>, <a href="https://arxiv.org/format/2007.11736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.014042">10.1103/PhysRevApplied.15.014042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of carrier density and dynamics via magneto-electroluminescence spectroscopy in resonant tunneling diodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+E+R+C">E. R. Cardozo de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Naranjo%2C+A">A. Naranjo</a>, <a href="/search/?searchtype=author&amp;query=Pfenning%2C+A">A. Pfenning</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Worschech%2C+L">L. Worschech</a>, <a href="/search/?searchtype=author&amp;query=Hartmann%2C+F">F. Hartmann</a>, <a href="/search/?searchtype=author&amp;query=H%C3%B6fling%2C+S">S. H枚fling</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">M. D. Teodoro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.11736v2-abstract-short" style="display: inline;"> We study the magneto-transport and magneto-electroluminescence properties of purely n-doped GaAs/Al$_{0.6}$Ga$_{0.4}$As resonant tunneling diodes with an In$_{0.15}$Ga$_{0.85}$As quantum well and emitter prewell. Before the resonant current condition, magneto-transport measurements reveal charge carrier densities comparable for diodes with and without the emitter prewell. The Landau level splittin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11736v2-abstract-full').style.display = 'inline'; document.getElementById('2007.11736v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.11736v2-abstract-full" style="display: none;"> We study the magneto-transport and magneto-electroluminescence properties of purely n-doped GaAs/Al$_{0.6}$Ga$_{0.4}$As resonant tunneling diodes with an In$_{0.15}$Ga$_{0.85}$As quantum well and emitter prewell. Before the resonant current condition, magneto-transport measurements reveal charge carrier densities comparable for diodes with and without the emitter prewell. The Landau level splitting is observed in the electroluminescence emission from the emitter prewell, enabling the determination of the charge carrier build-up. Our findings show that magneto-electroluminescence spectroscopy techniques provide useful insights on the charge carrier dynamics in resonant tunneling diodes and is a versatile tool to complement magneto-transport techniques. This approach will drive the way for developing potentially more efficient opto-electronic resonant tunneling devices, by e.g., monitoring voltage dependent charge accumulation for improving built-in fields and hence to maximize photodetector efficiency and/or minimize optical losses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11736v2-abstract-full').style.display = 'none'; document.getElementById('2007.11736v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 014042 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05812">arXiv:1902.05812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05812">pdf</a>, <a href="https://arxiv.org/format/1902.05812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.035309">10.1103/PhysRevB.100.035309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetically controlled exciton transfer in hybrid quantum dot-quantum well nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Laurindo%2C+V">V. Laurindo Jr.</a>, <a href="/search/?searchtype=author&amp;query=Mazur%2C+Y+I">Yu. I. Mazur</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+E+R+C">E. R. Cardozo de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Al%C3%A9n%2C+B">B. Al茅n</a>, <a href="/search/?searchtype=author&amp;query=Ware%2C+M+E">M. E. Ware</a>, <a href="/search/?searchtype=author&amp;query=Marega%2C+E">E. Marega Jr.</a>, <a href="/search/?searchtype=author&amp;query=Zhuchenko%2C+Z+Y">Z. Ya. Zhuchenko</a>, <a href="/search/?searchtype=author&amp;query=Tarasov%2C+G+G">G. G. Tarasov</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">M. D. Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Salamo%2C+G+J">G. J. Salamo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05812v1-abstract-short" style="display: inline;"> A magnetophotoluminescence study of the carrier transfer with hybrid InAs/GaAs quantum dot(QD)-InGaAs quantum well (QW) structures is carried out where we observe an unsual dependence of the photoluminescence (PL) on the GaAs barrier thickness at strong magnetic field and excitation density. For the case of a thin barrier the QW PL intensity is observed to increase at the expense of a decrease in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05812v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05812v1-abstract-full" style="display: none;"> A magnetophotoluminescence study of the carrier transfer with hybrid InAs/GaAs quantum dot(QD)-InGaAs quantum well (QW) structures is carried out where we observe an unsual dependence of the photoluminescence (PL) on the GaAs barrier thickness at strong magnetic field and excitation density. For the case of a thin barrier the QW PL intensity is observed to increase at the expense of a decrease in the QD PL intensity. This is attributed to changes in the interplane carrier dynamics in the QW and the wetting layer (WL) resulting from increasing the magnetic field along with changes in the coupling between QD excited states and exciton states in the QW and the WL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05812v1-abstract-full').style.display = 'none'; document.getElementById('1902.05812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 035309 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.06757">arXiv:1806.06757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.06757">pdf</a>, <a href="https://arxiv.org/format/1806.06757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.075302">10.1103/PhysRevB.98.075302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electroluminescence on-off ratio control of n-i-n GaAs/AlGaAs-based resonant tunneling structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+E+R+C">E. R. Cardozo de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Pfenning%2C+A">A. Pfenning</a>, <a href="/search/?searchtype=author&amp;query=Guarin%2C+E+D">E. D. Guarin</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">M. D. Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Santos%2C+E+C">E. C. Santos</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Worschech%2C+L">L. Worschech</a>, <a href="/search/?searchtype=author&amp;query=Hartmann%2C+F">F. Hartmann</a>, <a href="/search/?searchtype=author&amp;query=H%C3%B6fling%2C+S">Sven H枚fling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.06757v1-abstract-short" style="display: inline;"> We explore the nature of the electroluminescence (EL) emission of purely n-doped GaAs/AlGaAs resonant tunneling diodes (RTDs) and the EL evolution with voltage. A singular feature of such a device is unveiled when the electrical output current changes from high to low and the EL on-off ratio is enhanced by 2 orders of magnitude compared to the current on-off ratio. By combining the EL and current&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06757v1-abstract-full').style.display = 'inline'; document.getElementById('1806.06757v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.06757v1-abstract-full" style="display: none;"> We explore the nature of the electroluminescence (EL) emission of purely n-doped GaAs/AlGaAs resonant tunneling diodes (RTDs) and the EL evolution with voltage. A singular feature of such a device is unveiled when the electrical output current changes from high to low and the EL on-off ratio is enhanced by 2 orders of magnitude compared to the current on-off ratio. By combining the EL and current properties, we are able to identify two independent impact ionization channels associated with the coherent resonant tunneling current and the incoherent valley current. We also perform the same investigation with an associated series resistance, which induces a bistable electrical output in the system. By simulating a resistance variation for the current-voltage and the EL, we are able to tune the EL on-off ratio by up to 6 orders of magnitude. We further observe that the EL on and off states can be either direct or inverted compared to the tunneling current on and off states. This electroluminescence, combined with the unique RTD properties such as the negative differential resistance (NDR) and high frequency operation, enables the development of high speed functional opto-electronic devices and optical switches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06757v1-abstract-full').style.display = 'none'; document.getElementById('1806.06757v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 075302 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08828">arXiv:1710.08828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.08828">pdf</a>, <a href="https://arxiv.org/format/1710.08828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.044011">10.1103/PhysRevApplied.11.044011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topology driven g-factor tuning in type-II quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Llorens%2C+J+M">J. M. Llorens</a>, <a href="/search/?searchtype=author&amp;query=Lopes-Oliveira%2C+V">V. Lopes-Oliveira</a>, <a href="/search/?searchtype=author&amp;query=L%C3%B3pez-Richard%2C+V">V. L贸pez-Richard</a>, <a href="/search/?searchtype=author&amp;query=de+Oliveira%2C+E+R+C">E. R. Cardozo de Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Wevior%2C+L">L. Wevior</a>, <a href="/search/?searchtype=author&amp;query=Ulloa%2C+J+M">J. M. Ulloa</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">M. D. Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Crist%C3%B3bal%2C+A">A. Garc铆a-Crist贸bal</a>, <a href="/search/?searchtype=author&amp;query=Quiang-Hai%2C+G">G. Quiang-Hai</a>, <a href="/search/?searchtype=author&amp;query=Al%C3%A9n%2C+B">B. Al茅n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08828v6-abstract-short" style="display: inline;"> We investigate how the voltage control of the exciton lateral dipole moment induces a transition from singly to doubly connected topology in type II InAs/GaAsSb quantum dots. The latter causes visible Aharonov-Bohm oscillations and a change of the exciton g-factor which are modulated by the applied bias. The results are explained in the frame of realistic $\mathbf{k}\cdot\mathbf{p}$ and effective&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08828v6-abstract-full').style.display = 'inline'; document.getElementById('1710.08828v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08828v6-abstract-full" style="display: none;"> We investigate how the voltage control of the exciton lateral dipole moment induces a transition from singly to doubly connected topology in type II InAs/GaAsSb quantum dots. The latter causes visible Aharonov-Bohm oscillations and a change of the exciton g-factor which are modulated by the applied bias. The results are explained in the frame of realistic $\mathbf{k}\cdot\mathbf{p}$ and effective Hamiltonian models and could open a venue for new spin quantum memories beyond the InAs/GaAs realm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08828v6-abstract-full').style.display = 'none'; document.getElementById('1710.08828v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final Version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 044011 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01020">arXiv:1608.01020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01020">pdf</a>, <a href="https://arxiv.org/format/1608.01020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/aa8b3f">10.1088/1361-6455/aa8b3f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective modes of trapped spinor Bose condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Trallero-Giner%2C+C">C. Trallero-Giner</a>, <a href="/search/?searchtype=author&amp;query=Santiago-P%C3%A9rez%2C+D+G">Dar铆o G. Santiago-P茅rez</a>, <a href="/search/?searchtype=author&amp;query=Romero-Rochin%2C+V">V. Romero-Rochin</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01020v1-abstract-short" style="display: inline;"> We study the richer structures of quasi-one-dimensional Bogoliubov-de Genes collective excitations of F = 1 spinor Bose-Einstein condensate in a harmonic trap potential loaded in an optical lattice. Employing a perturbative method we report general analytical expressions for the confined collective polar and ferromagnetic Goldstone modes. In both cases the excited eigenfrequencies are given as fun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01020v1-abstract-full').style.display = 'inline'; document.getElementById('1608.01020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01020v1-abstract-full" style="display: none;"> We study the richer structures of quasi-one-dimensional Bogoliubov-de Genes collective excitations of F = 1 spinor Bose-Einstein condensate in a harmonic trap potential loaded in an optical lattice. Employing a perturbative method we report general analytical expressions for the confined collective polar and ferromagnetic Goldstone modes. In both cases the excited eigenfrequencies are given as function of the 1D effective coupling constants, trap frequency and optical lattice parameters. It is shown that the main contribution of the optical lattice laser intensity is to shift the confined phonon frequencies. Moreover, for high intensities, the excitation spectrum becomes independent of the self-interaction parameters. We reveal some features of the evolution for the Goldstone modes as well as the condensate densities from the ferromagnetic to the polar phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01020v1-abstract-full').style.display = 'none'; document.getElementById('1608.01020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.01332">arXiv:1607.01332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.01332">pdf</a>, <a href="https://arxiv.org/format/1607.01332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.155317">10.1103/PhysRevB.95.155317 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-acoustic-phonon interaction in core/shell Ge/Si and Si/Ge nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Santiago-P%C3%A9rez%2C+D+G">Dar铆o G. Santiago-P茅rez</a>, <a href="/search/?searchtype=author&amp;query=Trallero-Giner%2C+C">C. Trallero-Giner</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.01332v4-abstract-short" style="display: inline;"> General expressions for the electron- and hole-acoustical-phonon deformation potential Hamiltonian (H_{E-DP}) are derived for the case of Ge/Si and Si/Ge core/shell nanowire structures (NWs) with circular cross section. Based on the short-range elastic continuum approach and on derived analytical results, the spatial confined effects on the vector phonon displacement, the phonon dispersion relatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.01332v4-abstract-full').style.display = 'inline'; document.getElementById('1607.01332v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.01332v4-abstract-full" style="display: none;"> General expressions for the electron- and hole-acoustical-phonon deformation potential Hamiltonian (H_{E-DP}) are derived for the case of Ge/Si and Si/Ge core/shell nanowire structures (NWs) with circular cross section. Based on the short-range elastic continuum approach and on derived analytical results, the spatial confined effects on the vector phonon displacement, the phonon dispersion relation and the electron- and hole-phonon scattering amplitudes are analyzed. It is shown that the acoustical vector displacement, phonon frequencies and H_{E-DP} present mixed torsional, axial, and radial components depending on the angular momentum quantum number and phonon wavector under consideration. The treatment shows that bulk group velocities of the constituent materials are renormalized due to the spatial confinement and intrinsic strain at the interface. The role of insulating shell on the phonon dispersion and electron-phonon coupling in Ge/Si and Si/Ge NWs are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.01332v4-abstract-full').style.display = 'none'; document.getElementById('1607.01332v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 155317 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.03650">arXiv:1504.03650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.03650">pdf</a>, <a href="https://arxiv.org/ps/1504.03650">ps</a>, <a href="https://arxiv.org/format/1504.03650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.035441">10.1103/PhysRevB.92.035441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Berry phase and Rashba fields in quantum rings in tilted magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lopes-Oliveira%2C+V">V. Lopes-Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Castelano%2C+L+K">L. K. Castelano</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Ulloa%2C+S+E">S. E. Ulloa</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.03650v1-abstract-short" style="display: inline;"> We study the role of different orientations of an applied magnetic field as well as the interplay of structural asymmetries on the characteristics of eigenstates in a quantum ring system. We use a nearly analytical model description of the quantum ring, which allows for a thorough study of elliptical deformations and their influence on the spin content and Berry phase of different quantum states.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03650v1-abstract-full').style.display = 'inline'; document.getElementById('1504.03650v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.03650v1-abstract-full" style="display: none;"> We study the role of different orientations of an applied magnetic field as well as the interplay of structural asymmetries on the characteristics of eigenstates in a quantum ring system. We use a nearly analytical model description of the quantum ring, which allows for a thorough study of elliptical deformations and their influence on the spin content and Berry phase of different quantum states. The diamagnetic shift and Zeeman interaction compete with the Rashba spin-orbit interaction, induced by confinement asymmetries and external electric fields, to change spin textures of the different states. Smooth variations in the Berry phase are observed for symmetric quantum rings as function of applied magnetic fields. Interestingly, we find that asymmetries induce nontrivial Berry phases, suggesting that defects in realistic structures would facilitate the observation of geometric phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03650v1-abstract-full').style.display = 'none'; document.getElementById('1504.03650v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 035441 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08884">arXiv:1503.08884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.08884">pdf</a>, <a href="https://arxiv.org/format/1503.08884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.92.042502">10.1103/PhysRevA.92.042502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Damping of Confined Excitations Modes of 1D Condensates in an Optical Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Trallero-Giner%2C+C">C. Trallero-Giner</a>, <a href="/search/?searchtype=author&amp;query=Santiago-P%C3%A9rez%2C+D+G">Dar铆o G. Santiago-P茅rez</a>, <a href="/search/?searchtype=author&amp;query=Chung%2C+M">Ming-Chiang Chung</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Cipolatti%2C+R">R. Cipolatti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08884v2-abstract-short" style="display: inline;"> We study the damping of the collective excitations of Bose-Einstein condensates in a harmonic trap potential loaded in an optical lattice. In the presence of a confining potential the system is non-homogeneous and the collective excitations are characterized by a set of discrete confined phonon-like excitations. We derive a general convenient analytical description for the damping rate, which take&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08884v2-abstract-full').style.display = 'inline'; document.getElementById('1503.08884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08884v2-abstract-full" style="display: none;"> We study the damping of the collective excitations of Bose-Einstein condensates in a harmonic trap potential loaded in an optical lattice. In the presence of a confining potential the system is non-homogeneous and the collective excitations are characterized by a set of discrete confined phonon-like excitations. We derive a general convenient analytical description for the damping rate, which takes into account, the trapping potential and the optical lattice, for the Landau and Beliaev processes at any temperature, $T$. At high temperature or weak spatial confinement, we show that both mechanisms display linear dependence on $T$. In the quantum limit, we found that the Landau damping is exponentially suppressed at low temperatures and the total damping is independent of $T$. Our theoretical predictions for the damping rate under thermal regime is in completely correspondence with the experimental values reported for 1D condensate of sodium atoms. We show that the laser intensity can tune the collision process, allowing a \textit{resonant effect} for the condensate lifetime. Also, we study the influence of the attractive or repulsive non-linear terms on the decay rate of the collective excitations. A general expression of the renormalized Goldstone frequency has been obtained as a function of the 1D non-linear self-interaction parameter, laser intensity and temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08884v2-abstract-full').style.display = 'none'; document.getElementById('1503.08884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 92, 042502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.05223">arXiv:1503.05223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.05223">pdf</a>, <a href="https://arxiv.org/ps/1503.05223">ps</a>, <a href="https://arxiv.org/format/1503.05223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Exploring the transport properties of polytypic and twin-plane nanowires: from tunneling phase-time to spin-orbit interaction effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dias%2C+M+R+S">M. Rebello Sousa Dias</a>, <a href="/search/?searchtype=author&amp;query=Villegas-Lelovsky%2C+L">L. Villegas-Lelovsky</a>, <a href="/search/?searchtype=author&amp;query=Diago-Cisneros%2C+L">L. Diago-Cisneros</a>, <a href="/search/?searchtype=author&amp;query=Castelano%2C+L+K">L. K. Castelano</a>, <a href="/search/?searchtype=author&amp;query=Cesar%2C+D+F">D. F. Cesar</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.05223v1-abstract-short" style="display: inline;"> The variety of nanowire crystal structures gave rise to unique and novel transport phenomena. In particular, we have explored the superlattice profile generated by strain field modulation in twinplane nanowires for the tuning of transport channels and the built-in spin-orbit potential profile of polytypic nanowires, in order to realize a spin filter. The Multicomponent Scattering Approach has been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05223v1-abstract-full').style.display = 'inline'; document.getElementById('1503.05223v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.05223v1-abstract-full" style="display: none;"> The variety of nanowire crystal structures gave rise to unique and novel transport phenomena. In particular, we have explored the superlattice profile generated by strain field modulation in twinplane nanowires for the tuning of transport channels and the built-in spin-orbit potential profile of polytypic nanowires, in order to realize a spin filter. The Multicomponent Scattering Approach has been used in terms of the Transfer Matrix Method to describe the phase-time of charge carriers. This system showed advantages for attaining conditions for the propagation of wave packets with negative group velocity. Moreover, the spin transport effect of a potential profile with volumetric spin-orbit bulk inversion asymmetry, as present on polytypic nanowires, was described through the Reverse Runge-Kutta Method. Using the peculiar symmetry of the excited states we have characterized a dominant spin dependence on structural parameters that results in effective spin filtering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05223v1-abstract-full').style.display = 'none'; document.getElementById('1503.05223v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.7314">arXiv:1409.7314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.7314">pdf</a>, <a href="https://arxiv.org/format/1409.7314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.075312">10.1103/PhysRevB.91.075312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-phonon deformation potential interaction in core-shell Ge-Si and Si-Ge nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Santiago-P%C3%A9rez%2C+D+G">Dar铆o G. Santiago-P茅rez</a>, <a href="/search/?searchtype=author&amp;query=Trallero-Giner%2C+C">C. Trallero-Giner</a>, <a href="/search/?searchtype=author&amp;query=P%C3%A9rez-%C3%81lvarez%2C+R">R. P茅rez-脕lvarez</a>, <a href="/search/?searchtype=author&amp;query=Chico%2C+L">Leonor Chico</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.7314v2-abstract-short" style="display: inline;"> We settle a general expression for the Hamiltonian of the electron-phonon deformation potential (DP) interaction in the case of non-polar core-shell cylindrical nanowires (NWs). On the basis of long range phenomenological continuum model for the optical modes and by taking into account the bulk phonon dispersions, we study the size dependence and strain-induced shift of the electron-phonon couplin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.7314v2-abstract-full').style.display = 'inline'; document.getElementById('1409.7314v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.7314v2-abstract-full" style="display: none;"> We settle a general expression for the Hamiltonian of the electron-phonon deformation potential (DP) interaction in the case of non-polar core-shell cylindrical nanowires (NWs). On the basis of long range phenomenological continuum model for the optical modes and by taking into account the bulk phonon dispersions, we study the size dependence and strain-induced shift of the electron-phonon coupling strengths for Ge-Si and Si-Ge NWs. We derive analytically the DP electron-phonon Hamiltonian and report some numerical results for the frequency core modes and vibrational amplitudes. Our approach allows for the unambiguous identification of the strain and confinement effects. We explore the dependence of mode frequencies and hole-DP scattering rates on the structural parameters of these core-shell structures, which constitute a basic tool for the characterization and device applications of these novel nanosystems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.7314v2-abstract-full').style.display = 'none'; document.getElementById('1409.7314v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 075312 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.1882">arXiv:1308.1882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.1882">pdf</a>, <a href="https://arxiv.org/ps/1308.1882">ps</a>, <a href="https://arxiv.org/format/1308.1882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/106/17002">10.1209/0295-5075/106/17002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin filtering in nanowire directional coupler </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dias%2C+M+R+S">M. Rebello Sousa Dias</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Ulloa%2C+S+E">S. E. Ulloa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.1882v1-abstract-short" style="display: inline;"> The spin transport characteristics of a nanowire directional electronic coupler have been evaluated theoretically via a transfer matrix approach. The application of a gate field in the region of mixing allows for control of spin current through the different leads of the coupler via the Rashba spin-orbit interaction. The combination of spin-orbit interaction and applied gate voltages on different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.1882v1-abstract-full').style.display = 'inline'; document.getElementById('1308.1882v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.1882v1-abstract-full" style="display: none;"> The spin transport characteristics of a nanowire directional electronic coupler have been evaluated theoretically via a transfer matrix approach. The application of a gate field in the region of mixing allows for control of spin current through the different leads of the coupler via the Rashba spin-orbit interaction. The combination of spin-orbit interaction and applied gate voltages on different legs of the coupler give rise to a controllable modulation of the spin polarization. Both structural factors and field strength tuning lead to a rich phenomenology that could be exploited in spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.1882v1-abstract-full').style.display = 'none'; document.getElementById('1308.1882v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.1283">arXiv:1206.1283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.1283">pdf</a>, <a href="https://arxiv.org/ps/1206.1283">ps</a>, <a href="https://arxiv.org/format/1206.1283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4764902">10.1063/1.4764902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning hole mobility in InP nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dias%2C+M+R+S">M. Rebello Sousa Dias</a>, <a href="/search/?searchtype=author&amp;query=Picinin%2C+A">A. Picinin</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Ulloa%2C+S+E">S. E. Ulloa</a>, <a href="/search/?searchtype=author&amp;query=Castelano%2C+L+K">L. K. Castelano</a>, <a href="/search/?searchtype=author&amp;query=Rino%2C+J+P">J. P. Rino</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.1283v1-abstract-short" style="display: inline;"> Transport properties of holes in InP nanowires were calculated considering electron-phonon interaction via deformation potentials, the effect of temperature and strain fields. Using molecular dynamics, we simulate nanowire structures, LO-phonon energy renormalization and lifetime. The valence band ground state changes between light- and heavy-hole character, as the strain fields and the nanowire s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1283v1-abstract-full').style.display = 'inline'; document.getElementById('1206.1283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.1283v1-abstract-full" style="display: none;"> Transport properties of holes in InP nanowires were calculated considering electron-phonon interaction via deformation potentials, the effect of temperature and strain fields. Using molecular dynamics, we simulate nanowire structures, LO-phonon energy renormalization and lifetime. The valence band ground state changes between light- and heavy-hole character, as the strain fields and the nanowire size are changed. Drastic changes in the mobility arise with the onset of resonance between the LO-phonons and the separation between valence subbands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1283v1-abstract-full').style.display = 'none'; document.getElementById('1206.1283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.0288">arXiv:0908.0288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0908.0288">pdf</a>, <a href="https://arxiv.org/ps/0908.0288">ps</a>, <a href="https://arxiv.org/format/0908.0288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.104.086401">10.1103/PhysRevLett.104.086401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Aharonov-Bohm interference in quantum ring exciton: effects of built-in electric fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M+D">M. D. Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Campo%2C+V+L">V. L. Campo Jr.</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Marega%2C+E">E. Marega Jr.</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Galvao-Gobato%2C+Y">Y. Galvao-Gobato</a>, <a href="/search/?searchtype=author&amp;query=Iikawa%2C+F">F. Iikawa</a>, <a href="/search/?searchtype=author&amp;query=Brasil%2C+M+J+S+P">M. J. S. P. Brasil</a>, <a href="/search/?searchtype=author&amp;query=AbuWaar%2C+Z+Y">Z. Y. AbuWaar</a>, <a href="/search/?searchtype=author&amp;query=Dorogan%2C+V+G">V. G. Dorogan</a>, <a href="/search/?searchtype=author&amp;query=Mazur%2C+Y+I">Yu. I. Mazur</a>, <a href="/search/?searchtype=author&amp;query=Benamara%2C+M">M. Benamara</a>, <a href="/search/?searchtype=author&amp;query=Salamo%2C+G+J">G. J. Salamo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.0288v1-abstract-short" style="display: inline;"> We report a comprehensive discussion of quantum interference effects due to the finite structure of excitons in quantum rings and their first experimental corroboration observed in the optical recombinations. Anomalous features that appear in the experiments are analyzed according to theoretical models that describe the modulation of the interference pattern by temperature and built-in electric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.0288v1-abstract-full').style.display = 'inline'; document.getElementById('0908.0288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.0288v1-abstract-full" style="display: none;"> We report a comprehensive discussion of quantum interference effects due to the finite structure of excitons in quantum rings and their first experimental corroboration observed in the optical recombinations. Anomalous features that appear in the experiments are analyzed according to theoretical models that describe the modulation of the interference pattern by temperature and built-in electric fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.0288v1-abstract-full').style.display = 'none'; document.getElementById('0908.0288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0801.1952">arXiv:0801.1952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0801.1952">pdf</a>, <a href="https://arxiv.org/ps/0801.1952">ps</a>, <a href="https://arxiv.org/format/0801.1952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alcalde%2C+A+M">A. M. Alcalde</a>, <a href="/search/?searchtype=author&amp;query=Romano%2C+C+L">C. L. Romano</a>, <a href="/search/?searchtype=author&amp;query=Sanz%2C+L">L. Sanz</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0801.1952v1-abstract-short" style="display: inline;"> We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.1952v1-abstract-full').style.display = 'inline'; document.getElementById('0801.1952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0801.1952v1-abstract-full" style="display: none;"> We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practically suppressed. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.1952v1-abstract-full').style.display = 'none'; document.getElementById('0801.1952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 page, 2 figures, accepted in Phonons 2007 proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0801.1699">arXiv:0801.1699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0801.1699">pdf</a>, <a href="https://arxiv.org/ps/0801.1699">ps</a>, <a href="https://arxiv.org/format/0801.1699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.77.033301">10.1103/PhysRevB.77.033301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Romano%2C+C+L">C. L. Romano</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Sanz%2C+L">L. Sanz</a>, <a href="/search/?searchtype=author&amp;query=Alcalde%2C+A+M">A. M. Alcalde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0801.1699v1-abstract-short" style="display: inline;"> We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.1699v1-abstract-full').style.display = 'inline'; document.getElementById('0801.1699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0801.1699v1-abstract-full" style="display: none;"> We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practically suppressed. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.1699v1-abstract-full').style.display = 'none'; document.getElementById('0801.1699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2008. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0706.0177">arXiv:0706.0177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0706.0177">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Spin Effect on the Resonant Tunneling Characteristics of a Double-Barrier Heterostructures Under Longitudinal Stresses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gut%C3%ADerrez%2C+H+P">H. Paredes Gut铆errez</a>, <a href="/search/?searchtype=author&amp;query=P%C3%A9rez-Merchancano%2C+S+T">S. T. P茅rez-Merchancano</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0706.0177v1-abstract-short" style="display: inline;"> Theoretical research on electronic properties in mesoscopic condensed matter systems has focused primarily on the electron charge freedom degrees, while its corresponding spin freedom degrees have not yet received the same attention. Nevertheless nowadays there has been an increment in the number of electron spin-related experiments showing unique possibilities for finding novel mechanisms of in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.0177v1-abstract-full').style.display = 'inline'; document.getElementById('0706.0177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0706.0177v1-abstract-full" style="display: none;"> Theoretical research on electronic properties in mesoscopic condensed matter systems has focused primarily on the electron charge freedom degrees, while its corresponding spin freedom degrees have not yet received the same attention. Nevertheless nowadays there has been an increment in the number of electron spin-related experiments showing unique possibilities for finding novel mechanisms of information processing and transmission, opening ample fields of opportunities in the theoretical developed of new models. In this spirit we have calculated the resonant tunneling characteristics curves in double-barrier heterostructures of GaAs-Ga1-x AlxAs under external stress and considering two charges with spin half. The resonant tunneling study has been carried out by means of the diagrammatic techniques for non equilibrium processes following the model proposed by Keldysh also a simple one-band tight-binding Hamiltonian is adopted in the theoretical framework. We have compared our results of the spin-tunneling with previous ones reported in literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.0177v1-abstract-full').style.display = 'none'; document.getElementById('0706.0177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0704.3965">arXiv:0704.3965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0704.3965">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Optical Transitions in New Trends Organic Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Perez-Merchancano%2C+S+T">S. T. Perez-Merchancano</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Bolivar-Marinez%2C+L+E">L. E. Bolivar-Marinez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0704.3965v1-abstract-short" style="display: inline;"> The PTCDA (3,4,9,10-Perylene-tetracarboxylic dianhydride) and the NTCDA (1,4,5,8-Naphtalenetetracarboxylic dianhydride) are aromatic, stable, planar and highly symmetric with unusual electrical properties. The PTCDA is a semiconductor organic crystalline of particular interest due to its excellent properties and electronic potential that are used in optoelectronic devices and the NTCDA it is mon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0704.3965v1-abstract-full').style.display = 'inline'; document.getElementById('0704.3965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0704.3965v1-abstract-full" style="display: none;"> The PTCDA (3,4,9,10-Perylene-tetracarboxylic dianhydride) and the NTCDA (1,4,5,8-Naphtalenetetracarboxylic dianhydride) are aromatic, stable, planar and highly symmetric with unusual electrical properties. The PTCDA is a semiconductor organic crystalline of particular interest due to its excellent properties and electronic potential that are used in optoelectronic devices and the NTCDA it is monoclinic and its space group is similar to that of the PTCDA. Recently, alternate layers of PTCDA and NTCDA were growth forming multiple structures of quantum wells showing a new class of materials with new optic lineal properties. Some have assured that their big utilities would be centered in the construction of diodes and of possible guides of waves. We have carried out calculations semi-empirical of the electronic structures and of optic properties of the PTCDA and of the NTCDA that show us that they are structures highly orderly polymeric, semiconductors in a negative load state (charge state= -2) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0704.3965v1-abstract-full').style.display = 'none'; document.getElementById('0704.3965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures, references. Submitted to the Microelectronic Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0602390">arXiv:cond-mat/0602390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0602390">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0602390">ps</a>, <a href="https://arxiv.org/format/cond-mat/0602390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dispersion of confined optical phonons in semiconductor nanowires in the framework of acontinuum approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Camps%2C+F+C+I">F. Comas. I. Camps</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Studart%2C+N">Nelson Studart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0602390v1-abstract-short" style="display: inline;"> Confined optical phonons are discussed for a semiconductor nanowire of the Ge (Si)prototype on the basis of a theory developed some years ago. In the present work this theory is adapted to a non polar material and generalized to the case when the phonon dispersion law involves both linear and quadratic terms in the wave vector. The treatment is considered along the lines of a continuous medium m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0602390v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0602390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0602390v1-abstract-full" style="display: none;"> Confined optical phonons are discussed for a semiconductor nanowire of the Ge (Si)prototype on the basis of a theory developed some years ago. In the present work this theory is adapted to a non polar material and generalized to the case when the phonon dispersion law involves both linear and quadratic terms in the wave vector. The treatment is considered along the lines of a continuous medium model and leads to a system of coupled differential equations describing oscillations of mixed nature. The nanowire is modelled in the form of an infinite circular cylinder and the solutions of the fundamental equations are found. We are thus led to a description of long wavelength optical phonons, which should show a closer agreement with experimental data and with calculations along atomistic models. The presented theory is applied to the calculation of optical phonons in a Ge nanowire. We have found the dispersion curves for various optical phonon modes. We also normalize the modes and discuss the electron-phonon interaction within the deformation potential approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0602390v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0602390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0601421">arXiv:cond-mat/0601421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0601421">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0601421">ps</a>, <a href="https://arxiv.org/format/cond-mat/0601421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.74.041305">10.1103/PhysRevB.74.041305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric field inversion asymmetry: Rashba and Stark effects for holes in resonant tunneling devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=de+Carvalho%2C+H+B">H. B. de Carvalho</a>, <a href="/search/?searchtype=author&amp;query=Brasil%2C+M+J+S+P">M. J. S. P. Brasil</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Richard%2C+V">V. Lopez-Richard</a>, <a href="/search/?searchtype=author&amp;query=Camps%2C+I">I. Camps</a>, <a href="/search/?searchtype=author&amp;query=Gobato%2C+Y+G">Y. Galvao Gobato</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Dacal%2C+L+C+O">L. C. O. Dacal</a>, <a href="/search/?searchtype=author&amp;query=Henini%2C+M">M. Henini</a>, <a href="/search/?searchtype=author&amp;query=Eaves%2C+L">L. Eaves</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+G">G. Hill</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0601421v1-abstract-short" style="display: inline;"> We report experimental evidence of excitonic spin-splitting, in addition to the conventional Zeeman effect, produced by a combination of the Rashba spin-orbit interaction, Stark shift and charge screening. The electric-field-induced modulation of the spin-splitting are studied during the charging and discharging processes of p-type GaAs/AlAs double barrier resonant tunneling diodes (RTD) under a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0601421v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0601421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0601421v1-abstract-full" style="display: none;"> We report experimental evidence of excitonic spin-splitting, in addition to the conventional Zeeman effect, produced by a combination of the Rashba spin-orbit interaction, Stark shift and charge screening. The electric-field-induced modulation of the spin-splitting are studied during the charging and discharging processes of p-type GaAs/AlAs double barrier resonant tunneling diodes (RTD) under applied bias and magnetic field. The abrupt changes in the photoluminescence, with the applied bias, provide information of the charge accumulation effects on the device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0601421v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0601421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0510839">arXiv:cond-mat/0510839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0510839">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0510839">ps</a>, <a href="https://arxiv.org/format/cond-mat/0510839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Confined polar optical phonons in semiconductor double heterostructures: an improved continuum approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Comas%2C+F">F. Comas</a>, <a href="/search/?searchtype=author&amp;query=Camps%2C+I">I. Camps</a>, <a href="/search/?searchtype=author&amp;query=Studart%2C+N">N. Studart</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0510839v1-abstract-short" style="display: inline;"> Confined polar optical phonons are studied in a semiconductor double heterostructure (SDH) by means of a generalization of a theory developed some years ago and based on a continuous medium model. The treatment considers the coupling of electro-mechanical oscillations and involves dispersive phonons. This approach has provided results beyond the usually applied dielectric continuum models, where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0510839v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0510839v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0510839v1-abstract-full" style="display: none;"> Confined polar optical phonons are studied in a semiconductor double heterostructure (SDH) by means of a generalization of a theory developed some years ago and based on a continuous medium model. The treatment considers the coupling of electro-mechanical oscillations and involves dispersive phonons. This approach has provided results beyond the usually applied dielectric continuum models, where just the electric aspect of the oscillations is analyzed. In the previous works on the subject the theory included phonon dispersion within a quadratic (parabolic) approximation, while presently linear contributions were added by a straightforward extension of the fundamental equations. The generalized version of the mentioned theoretical treatment leads to a description of long wavelength polar optical phonons showing a closer agreement with experimental data and with calculations along atomistic models. This is particularly important for systems where the linear contribution to dispersion becomes predominant. We present a systematic derivation of the underlying equations, their solutions for the bulk and SDH cases, providing us a complete description of the dispersive modes and the associated electron-phonon Hamiltonian. The results obtained are applied to the case of a EuS/PbS/EuS quantum-well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0510839v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0510839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0405418">arXiv:cond-mat/0405418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0405418">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0405418">ps</a>, <a href="https://arxiv.org/format/cond-mat/0405418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Multichannel field-effect spin barrier selector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a>, <a href="/search/?searchtype=author&amp;query=Bittencourt%2C+A+C+R">A. C. R. Bittencourt</a>, <a href="/search/?searchtype=author&amp;query=Destefani%2C+C+F">C. F. Destefani</a>, <a href="/search/?searchtype=author&amp;query=Ulloa%2C+S+E">Sergio E. Ulloa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0405418v1-abstract-short" style="display: inline;"> We have studied spin carrier dynamics under full spin-orbit coupling. The anisotropy of dispersions for independent circular spinor polarizations is explored as a possible vertical multichannel voltage controlled spin-filter. Small voltage variations are found to select the current polarizations in a resonant tunneling geometry. </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0405418v1-abstract-full" style="display: none;"> We have studied spin carrier dynamics under full spin-orbit coupling. The anisotropy of dispersions for independent circular spinor polarizations is explored as a possible vertical multichannel voltage controlled spin-filter. Small voltage variations are found to select the current polarizations in a resonant tunneling geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0405418v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0405418v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0404017">arXiv:physics/0404017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0404017">pdf</a>, <a href="https://arxiv.org/ps/physics/0404017">ps</a>, <a href="https://arxiv.org/format/physics/0404017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbit coupling and magnetic spin states in cylindrical quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Destefani%2C+C+F">C. F. Destefani</a>, <a href="/search/?searchtype=author&amp;query=Ulloa%2C+S+E">S. E. Ulloa</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0404017v1-abstract-short" style="display: inline;"> We make detailed analysis of each possible spin-orbit coupling of zincblende narrow-gap cylindrical quantum dots built in two-dimensional electron gas. These couplings are related to both bulk (Dresselhaus) and structure (Rashba) inversion asymmetries. We study the competition between electron-electron and spin-orbit interactions on electronic properties of 2-electron quantum dots. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0404017v1-abstract-full" style="display: none;"> We make detailed analysis of each possible spin-orbit coupling of zincblende narrow-gap cylindrical quantum dots built in two-dimensional electron gas. These couplings are related to both bulk (Dresselhaus) and structure (Rashba) inversion asymmetries. We study the competition between electron-electron and spin-orbit interactions on electronic properties of 2-electron quantum dots. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0404017v1-abstract-full').style.display = 'none'; document.getElementById('physics/0404017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, submitted to MRS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mat. Res. Soc. Symp. Proc. Vol. 825E, G4.6, 2004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0404007">arXiv:physics/0404007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0404007">pdf</a>, <a href="https://arxiv.org/ps/physics/0404007">ps</a>, <a href="https://arxiv.org/format/physics/0404007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Restricted and unrestricted Hartree-Fock approaches for addition spectrum and Hund&#39;s rule of spherical quantum dots in a magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Destefani%2C+C+F">C. F. Destefani</a>, <a href="/search/?searchtype=author&amp;query=Vianna%2C+J+D+M">J. D. M. Vianna</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0404007v1-abstract-short" style="display: inline;"> The Roothaan and Pople-Nesbet approaches for real atoms are adapted to quantum dots in the presence of a magnetic field. Single-particle Gaussian basis sets are constructed, for each dot radius, under the condition of maximum overlap with the exact functions. The chemical potential, the charging energy and the total spin expected values have been calculated, and we have verified the validity of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0404007v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0404007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0404007v1-abstract-full" style="display: none;"> The Roothaan and Pople-Nesbet approaches for real atoms are adapted to quantum dots in the presence of a magnetic field. Single-particle Gaussian basis sets are constructed, for each dot radius, under the condition of maximum overlap with the exact functions. The chemical potential, the charging energy and the total spin expected values have been calculated, and we have verified the validity of the quantum dot energy shell structure as well as the Hund rule for electronic occupation at zero magnetic field. For finite field, we have observed the violation of Hund&#39;s rule and studied the influence of magnetic field on the closed and open energy shell configurations. We have also compared the present results with those obtained with LS-coupling scheme for low electronic occupation numbers. We focus only on ground state properties and consider quantum dots populated up to forty electrons, constructed by GaAs or InSb semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0404007v1-abstract-full').style.display = 'none'; document.getElementById('physics/0404007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, submitted to J. Phys. B: At. Mol. Opt. Phys</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0404030">arXiv:cond-mat/0404030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0404030">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0404030">ps</a>, <a href="https://arxiv.org/format/cond-mat/0404030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0268-1242/19/8/L03">10.1088/0268-1242/19/8/L03 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The violation of the Hund&#39;s rule in semiconductor artificial atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Destefani%2C+C+F">C. F. Destefani</a>, <a href="/search/?searchtype=author&amp;query=Vianna%2C+J+D+M">J. D. M. Vianna</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0404030v2-abstract-short" style="display: inline;"> The unrestricted Pople-Nesbet approach for real atoms is adapted to quantum dots, the man-made artificial atoms, under applied magnetic field. Gaussian basis sets are used instead of the exact single-particle orbitals in the construction of the appropriated Slater determinants. Both system chemical potential and charging energy are calculated, as also the expected values for total and z-componen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0404030v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0404030v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0404030v2-abstract-full" style="display: none;"> The unrestricted Pople-Nesbet approach for real atoms is adapted to quantum dots, the man-made artificial atoms, under applied magnetic field. Gaussian basis sets are used instead of the exact single-particle orbitals in the construction of the appropriated Slater determinants. Both system chemical potential and charging energy are calculated, as also the expected values for total and z-component in spin states. We have verified the validity of the energy shell structure as well as the Hund&#39;s rule state population at zero magnetic field. Above given fields, we have observed a violation of the Hund&#39;s rule by the suppression of triplets and quartets states at the 1p energy shell, taken as an example. We also compare our present results with those obtained using the LS-coupling scheme for low electronic occupations. We have focused our attention to ground-state properties for GaAs quantum dots populated up to forty electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0404030v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0404030v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, submitted to Semic. Sci. Technol</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Semicond. Sci. Technol. 19 (2004), L90-L94 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0310146">arXiv:cond-mat/0310146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0310146">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0310146">ps</a>, <a href="https://arxiv.org/format/cond-mat/0310146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physe.2003.08.009">10.1016/j.physe.2003.08.009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-phonon induced spin relaxation in InAs quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alcalde%2C+A+M">A. M. Alcalde</a>, <a href="/search/?searchtype=author&amp;query=Fanyao%2C+Q">Qu Fanyao</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0310146v1-abstract-short" style="display: inline;"> We have calculated spin relaxation rates in parabolic quantum dots due to the phonon modulation of the spin-orbit interaction in presence of an external magnetic field. Both, deformation potential and piezoelectric electron-phonon coupling mechanisms are included within the Pavlov-Firsov spin-phonon Hamiltonian. Our results have demonstrated that, in narrow gap materials, the electron-phonon def&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0310146v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0310146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0310146v1-abstract-full" style="display: none;"> We have calculated spin relaxation rates in parabolic quantum dots due to the phonon modulation of the spin-orbit interaction in presence of an external magnetic field. Both, deformation potential and piezoelectric electron-phonon coupling mechanisms are included within the Pavlov-Firsov spin-phonon Hamiltonian. Our results have demonstrated that, in narrow gap materials, the electron-phonon deformation potential and piezoelectric coupling give comparable contributions as spin relaxation processes. For large dots, the deformation potential interaction becomes dominant. This behavior is not observed in wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the spin relaxation processes. We also have demonstrated that spin relaxation rates are particularly sensitive to the Land茅 $g$-factor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0310146v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0310146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, to be appear in Physica E: Proceedings of the 11 International Conference on Narrow Gap Semiconductors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0308191">arXiv:cond-mat/0308191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0308191">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0308191">ps</a>, <a href="https://arxiv.org/format/cond-mat/0308191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.68.165304">10.1103/PhysRevB.68.165304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunneling effects on impurity spectral function in coupled asymmetric quantum wires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tavares%2C+M+R+S">Marcos R. S. Tavares</a>, <a href="/search/?searchtype=author&amp;query=Hai%2C+G+-">G. -Q. Hai</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0308191v1-abstract-short" style="display: inline;"> The impurity spectral function is studied in coupled double quantum wires at finite temperatures. Simple anisotropy in the confinement direction of the wires leads to finite non-diagonal elements of the impurity spectral function matrix. These non-diagonal elements are responsible for tunneling effects and result in pronounced extra peak in the impurity spectral function up to temperatures as hi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0308191v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0308191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0308191v1-abstract-full" style="display: none;"> The impurity spectral function is studied in coupled double quantum wires at finite temperatures. Simple anisotropy in the confinement direction of the wires leads to finite non-diagonal elements of the impurity spectral function matrix. These non-diagonal elements are responsible for tunneling effects and result in pronounced extra peak in the impurity spectral function up to temperatures as high as 20 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0308191v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0308191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0307027">arXiv:cond-mat/0307027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0307027">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0307027">ps</a>, <a href="https://arxiv.org/format/cond-mat/0307027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.69.125302">10.1103/PhysRevB.69.125302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit coupling and intrinsic spin mixing in quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Destefani%2C+C+F">C. F. Destefani</a>, <a href="/search/?searchtype=author&amp;query=Ulloa%2C+S+E">S. E. Ulloa</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0307027v1-abstract-short" style="display: inline;"> Spin-orbit coupling effects are studied in quantum dots in InSb, a narrow-gap material. Competition between different Rashba and Dresselhaus terms is shown to produce wholesale changes in the spectrum. The large (and negative) $g$-factor and the Rashba field produce states where spin is no longer a good quantum number and intrinsic flips occur at moderate magnetic fields. For dots with two elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0307027v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0307027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0307027v1-abstract-full" style="display: none;"> Spin-orbit coupling effects are studied in quantum dots in InSb, a narrow-gap material. Competition between different Rashba and Dresselhaus terms is shown to produce wholesale changes in the spectrum. The large (and negative) $g$-factor and the Rashba field produce states where spin is no longer a good quantum number and intrinsic flips occur at moderate magnetic fields. For dots with two electrons, a singlet-triplet mixing occurs in the ground state, with observable signatures in intraband FIR absorption, and possible importance in quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0307027v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0307027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">REVTEX4 text with 3 figures (high resolution figs available by request). Submitted to PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 69, 125302 (2004) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0110465">arXiv:cond-mat/0110465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0110465">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0110465">ps</a>, <a href="https://arxiv.org/format/cond-mat/0110465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.65.073303">10.1103/PhysRevB.65.073303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interface optical phonons in spheroidal dots: Raman selection rules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Comas%2C+F">F. Comas</a>, <a href="/search/?searchtype=author&amp;query=Trallero-Giner%2C+C">C. Trallero-Giner</a>, <a href="/search/?searchtype=author&amp;query=Studart%2C+N">Nelson Studart</a>, <a href="/search/?searchtype=author&amp;query=Marques%2C+G+E">G. E. Marques</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0110465v1-abstract-short" style="display: inline;"> The contribution of interface phonons to the first order Raman scattering in nanocrystals with non spherical geometry is analyzed. Interface optical phonons in the spheroidal geometry are discussed and the corresponding Frohlich-like electron-phonon interaction is reported in the framework of the dielectric continuum approach. It is shown that the interface phonon modes are strongly dependent on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0110465v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0110465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0110465v1-abstract-full" style="display: none;"> The contribution of interface phonons to the first order Raman scattering in nanocrystals with non spherical geometry is analyzed. Interface optical phonons in the spheroidal geometry are discussed and the corresponding Frohlich-like electron-phonon interaction is reported in the framework of the dielectric continuum approach. It is shown that the interface phonon modes are strongly dependent on the nanocrystal geometry, particularly on the ellipsoid&#39;s semi-axis ratio. The new Raman selection rules have revealed that solely interface phonon modes with even angular momentum are allowed to contribute to the first order phonon-assisted scattering of light. On this basis we are able to give an explanation for the observed low frequency shoulders present in the Raman cross-section of several II-VI semiconductor nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0110465v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0110465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10