CINXE.COM

Search results for: flow focusing device

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flow focusing device</title> <meta name="description" content="Search results for: flow focusing device"> <meta name="keywords" content="flow focusing device"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flow focusing device" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flow focusing device"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8024</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flow focusing device</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8024</span> Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Shi">Xin Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Tan"> Wei Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Guorui%20Zhu"> Guorui Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title="microfluidic">microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20focusing" title=" inertial focusing"> inertial focusing</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20separation" title=" particle separation"> particle separation</a>, <a href="https://publications.waset.org/abstracts/search?q=Dean%20flow" title=" Dean flow"> Dean flow</a> </p> <a href="https://publications.waset.org/abstracts/144908/structural-parameter-induced-focusing-pattern-transformation-in-cea-microfluidic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8023</span> Geometrical Based Unequal Droplet Splitting Using Microfluidic Y-Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Talebjedi">Bahram Talebjedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirmohammad%20Sattari"> Amirmohammad Sattari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Zoher%20Sihorwala"> Ahmed Zoher Sihorwala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Hoorfar"> Mina Hoorfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among different droplet manipulations, controlled droplet-splitting is of great significance due to its ability to increase throughput and operational capability. Furthermore, unequal droplet-splitting can provide greater flexibility and a wider range of dilution factors. In this study, we developed two-dimensional, time-dependent complex fluid dynamics simulations to model droplet formation in a flow focusing device, followed by splitting in a Y-shaped junction with sub-channels of unequal widths. From the results obtained from the numerical study, we correlated the diameters of the droplets in the sub-channels to the Weber number, thereby demarcating the droplet splitting and non-splitting regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=unequal%20droplet%20splitting" title=" unequal droplet splitting"> unequal droplet splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device" title=" flow focusing device"> flow focusing device</a> </p> <a href="https://publications.waset.org/abstracts/133469/geometrical-based-unequal-droplet-splitting-using-microfluidic-y-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8022</span> Open Channel Flow Measurement of Water by Using Width Contraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Goel">Arun Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20S.%20Verma"> D. V. S. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Sangwan"> Sanjeev Sangwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was aimed to develop a discharge measuring device for irrigation and laboratory channels. Experiments were conducted on a sharp edged constricted flow meters having four types of width constrictions namely 2:1, 1.5:1, 1:1, and 90o in the direction of flow. These devices were made of MS sheets and installed separately in a rectangular flume. All these four devices were tested under free and submerged flow conditions. Eight different discharges varying from 2 lit/sec to 30 lit/sec were passed through each device. In total around 500 observations of upstream and downstream depths were taken in the present work. For each discharge, free submerged and critical submergence under different flow conditions were noted and plotted. Once the upstream and downstream depths of flow over any of the device are known, the discharge can be easily calculated with the help of the curves developed for free and submerged flow conditions. The device having contraction 2:1 is the most efficient one as it allows maximum critical submergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowrate" title="flowrate">flowrate</a>, <a href="https://publications.waset.org/abstracts/search?q=flowmeter" title=" flowmeter"> flowmeter</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channels" title=" open channels"> open channels</a>, <a href="https://publications.waset.org/abstracts/search?q=submergence" title=" submergence"> submergence</a> </p> <a href="https://publications.waset.org/abstracts/22464/open-channel-flow-measurement-of-water-by-using-width-contraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8021</span> Analysis of Gas Disturbance Characteristics in Lunar Sample Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng">Lv Shizeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao"> Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yi"> Zhang Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding%20Wenjing"> Ding Wenjing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth&#39;s environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lunar%20samples" title="lunar samples">lunar samples</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20disturbance" title=" gas disturbance"> gas disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20device" title=" storage device"> storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20analysis" title=" characteristic analysis"> characteristic analysis</a> </p> <a href="https://publications.waset.org/abstracts/69595/analysis-of-gas-disturbance-characteristics-in-lunar-sample-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8020</span> Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanat%20K.%20Dash">Sanat K. Dash</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20S.%20Verma"> Rama S. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarit%20K.%20Das"> Sarit K. Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanotransduction" title=" mechanotransduction"> mechanotransduction</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20shear%20stress" title=" fluid shear stress"> fluid shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20shear" title=" physiological shear"> physiological shear</a> </p> <a href="https://publications.waset.org/abstracts/103189/microfluidic-fluid-shear-mechanotransduction-device-using-linear-optimization-of-hydraulic-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8019</span> The Flotation Device Designed to Treat Phosphate Rock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Q.%20Zhang">Z. Q. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Li"> D. L. Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers&rsquo; speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P<sub>2</sub>O<sub>5</sub> and 1% MgO with a P<sub>2</sub>O<sub>5</sub> recovery of about 81% was obtained from a Yuan&#39;an phosphate ore sample containing about 22.30% P<sub>2</sub>O<sub>5</sub> and 3.2% MgO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collophanite%20flotation" title="collophanite flotation">collophanite flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20columns" title=" flotation columns"> flotation columns</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20machines" title=" flotation machines"> flotation machines</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-impeller%20pump" title=" multi-impeller pump"> multi-impeller pump</a> </p> <a href="https://publications.waset.org/abstracts/76296/the-flotation-device-designed-to-treat-phosphate-rock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8018</span> Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roisul%20H.%20Galib">Roisul H. Galib</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhakar%20R.%20Bandaru"> Prabhakar R. Bandaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20material" title="2D material">2D material</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductance" title=" thermal conductance"> thermal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a> </p> <a href="https://publications.waset.org/abstracts/150149/total-thermal-resistance-of-graphene-oxide-substrate-stack-role-of-interfacial-thermal-resistance-in-heat-flow-of-2d-material-based-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8017</span> Numerical and Experimental Studies on the Characteristic of the Air Distribution in the Wind-Box of a Circulating Fluidized Bed Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaozhou%20Liu">Xiaozhou Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangyu%20Zhu"> Guangyu Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhang"> Yu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwei%20Wu"> Hongwei Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wind-box is one of the important components of a Circulating Fluidized Bed (CFB) boiler. The uniformity of air flow in the wind-box of is very important for highly efficient operation of the CFB boiler. Non-uniform air flow distribution within the wind-box can reduce the boiler's thermal efficiency, leading to higher energy consumptions. An effective measure to solve this problem is to install an air flow distributing device in the wind-box. In order to validate the effectiveness of the air flow distributing device, visual and velocity distribution uniformity experiments have been carried out under five different test conditions by using a 1:64 scale model of a 220t/hr CFB boiler. It has been shown that the z component of flow velocity remains almost the same at control cross-sections of the wind-box, with a maximum variation of less than 10%. Moreover, the same methodology has been carried out to a full-scale 220t/hr CFB boiler. The hot test results depict that the thermal efficiency of the boiler has increased from 85.71% to 88.34% when tested with an air flow distributing device in place, which is equivalent to a saving of 5,000 tons of coal per year. The economic benefits of this energy-saving technology have been shown to be very significant, which clearly demonstrates that the technology is worth applying and popularizing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circulating%20fluidized%20bed" title="circulating fluidized bed">circulating fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=CFB" title=" CFB"> CFB</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-box" title=" wind-box"> wind-box</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20distributing%20device" title=" air flow distributing device"> air flow distributing device</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20experiment" title=" visual experiment"> visual experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution%20uniformity%20experiment" title=" velocity distribution uniformity experiment"> velocity distribution uniformity experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20test" title=" hot test"> hot test</a> </p> <a href="https://publications.waset.org/abstracts/100840/numerical-and-experimental-studies-on-the-characteristic-of-the-air-distribution-in-the-wind-box-of-a-circulating-fluidized-bed-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8016</span> Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Min%20Kim">Sung-Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyuk%20Choi"> Hyuk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-splash%20device" title="anti-splash device">anti-splash device</a>, <a href="https://publications.waset.org/abstracts/search?q=P%2FV%20valve" title=" P/V valve"> P/V valve</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/15181/improvement-of-performance-of-anti-splash-device-for-cargo-oil-tank-vent-pipe-using-cfd-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8015</span> Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Chen">Shuang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongqian%20Shi"> Zongqian Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Sun"> Jiajia Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingjia%20Li"> Mingjia Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamagnetic%20particle" title="diamagnetic particle">diamagnetic particle</a>, <a href="https://publications.waset.org/abstracts/search?q=focusing" title=" focusing"> focusing</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title=" permanent magnet"> permanent magnet</a> </p> <a href="https://publications.waset.org/abstracts/105340/simulation-of-focusing-of-diamagnetic-particles-in-ferrofluid-microflows-with-a-single-set-of-overhead-permanent-magnets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8014</span> Numerical Analysis of Flow in the Gap between a Simplified Tractor-Trailer Model and Cross Vortex Trap Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terrance%20Charles">Terrance Charles</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyin%20Yang"> Zhiyin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiling%20Lu"> Yiling Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy trucks are aerodynamically inefficient due to their un-streamlined body shapes, leading to more than of 60% engine power being required to overcome the aerodynamics drag at 60 m/hr. There are many aerodynamics drag reduction devices developed and this paper presents a study on a drag reduction device called Cross Vortex Trap Device (CVTD) deployed in the gap between the tractor and the trailer of a simplified tractor-trailer model. Numerical simulations have been carried out at Reynolds number 0.51&times;10<sup>6</sup> based on inlet flow velocity and height of the trailer using the Reynolds-Averaged Navier-Stokes (RANS) approach. Three different configurations of CVTD have been studied, ranging from single to three slabs, equally spaced on the front face of the trailer. Flow field around three different configurations of trap device have been analysed and presented. The results show that a maximum of 12.25% drag reduction can be achieved when a triple vortex trap device is used. Detailed flow field analysis along with pressure contours are presented to elucidate the drag reduction mechanisms of CVTD and why the triple vortex trap configuration produces the maximum drag reduction among the three configurations tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20drag" title="aerodynamic drag">aerodynamic drag</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20vortex%20trap%20device" title=" cross vortex trap device"> cross vortex trap device</a>, <a href="https://publications.waset.org/abstracts/search?q=truck" title=" truck"> truck</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds-Averaged%20Navier-Stokes" title=" Reynolds-Averaged Navier-Stokes"> Reynolds-Averaged Navier-Stokes</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a> </p> <a href="https://publications.waset.org/abstracts/113731/numerical-analysis-of-flow-in-the-gap-between-a-simplified-tractor-trailer-model-and-cross-vortex-trap-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8013</span> Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Jezek">Jan Jezek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdenek%20Pilat"> Zdenek Pilat</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20Smatlo"> Filip Smatlo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Zemanek"> Pavel Zemanek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectrophoretic%20sorting" title="dielectrophoretic sorting">dielectrophoretic sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20optics" title=" fiber optics"> fiber optics</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20chips" title=" microfluidic chips"> microfluidic chips</a>, <a href="https://publications.waset.org/abstracts/search?q=microdroplets" title=" microdroplets"> microdroplets</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/68849/experimental-device-for-fluorescence-measurement-by-optical-fiber-combined-with-dielectrophoretic-sorting-in-microfluidic-chips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">719</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8012</span> Plasma Actuator Application to Control Surfaces of a Model Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Moriyama">Yuta Moriyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita"> Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma actuator is very effective to recover stall flows over an upper airfoil surface. We first manufacture the actuator, test the stability of the device by trial and error basis and find the conditions for steady operations. We visualize the flow around an airfoil in the smoke tunnel and observe the stall recovery. The plasma actuator is stationary device and has no moving parts, and it might be an ideal device to control a model aircraft. We can use the actuator not only as a stall recovery device but also as a spoiler. We put the actuator near the leading edge of an elevator of a model aircraft as a spoiler, and measure the aerodynamic forces by a three-component balance. We observe the effect of the plasma actuator on the aerodynamic forces and the device effectiveness changes depending on the angle of attack whether it is positive or negative. We also visualize the flow caused by the plasma actuator by a desk-top Schlieren photography which is otherwise very difficult in a low-speed wind tunnel experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20actuator" title=" plasma actuator"> plasma actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20aircraft" title=" model aircraft"> model aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/84276/plasma-actuator-application-to-control-surfaces-of-a-model-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8011</span> A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Woo%20Kim">Min-Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ok-Kyun%20Na"> Ok-Kyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Ho%20Byun"> Jun-Ho Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Hwan%20Park"> Jong-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Hwa%20Yang"> Seung-Hwa Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chul%20Park"> Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-splash%20device" title="anti-splash device">anti-splash device</a>, <a href="https://publications.waset.org/abstracts/search?q=P%2FV%20valve" title=" P/V valve"> P/V valve</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/5073/a-study-on-improvement-of-performance-of-anti-splash-device-for-cargo-oil-tank-vent-pipe-using-cfd-simulation-and-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8010</span> Viscoelastic Separation and Concentration of Candida Using a Low Aspect Ratio Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seonggil%20Kim">Seonggil Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeonghun%20Nam"> Jeonghun Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae%20Seung%20Lim"> Chae Seung Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid diagnosis of fungal infections is critical for rapid antifungal therapy. However, it is difficult to detect extremely low concentration fungi in blood sample. To address the limitation, separation and concentration of fungi in blood sample are required to enhance the sensitivity of PCR analysis. In this study, we demonstrated a sheathless separation and concentration of fungi, candida cells using a viscoelastic fluid. To validate the performance of the device, microparticle mixture (2 and 13 μm) was used, and those particles were successfully separated based on the size difference at high flow rate of 100 μl/min. For the final application, successful separation of the Candida cells from the white blood cells (WBCs) was achieved. Based on the viscoelastic lateral migration toward the equilibrium position, Candida cells were separated and concentrated by center focusing, while WBCs were removed by patterning into two streams between the channel center and the sidewalls. By flow cytometric analysis, the separation efficiency and the purity were evaluated as ~99% and ~ 97%, respectively. From the results, the device can be the powerful tool for detecting extremely rare disease-related cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=candida%20cells" title="candida cells">candida cells</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20fluid" title=" viscoelastic fluid"> viscoelastic fluid</a> </p> <a href="https://publications.waset.org/abstracts/90895/viscoelastic-separation-and-concentration-of-candida-using-a-low-aspect-ratio-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8009</span> Direct Visualization of Shear Induced Structures in Wormlike Micellar Solutions by Microfluidics and Advanced Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carla%20Caiazza">Carla Caiazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Preziosi"> Valentina Preziosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanna%20Tomaiuolo"> Giovanna Tomaiuolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20O%27Sullivan"> Denis O&#039;Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Guida"> Vincenzo Guida</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Guido"> Stefano Guido</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, wormlike micellar solutions have been extensively used to tune the rheological behavior of home care and personal care products. This and other successful applications underlie the growing attention that both basic and applied research are devoting to these systems, and to their unique rheological and flow properties. One of the key research topics is the occurrence of flow instabilities at high shear rates (such as shear banding), with the possibility of appearance of flow induced structures. In this scenario, microfluidics is a powerful tool to get a deeper insight into the flow behavior of a wormlike micellar solution, as the high confinement of a microfluidic device facilitates the onset of the flow instabilities; furthermore, thanks to its small dimensions, it can be coupled with optical microscopy, allowing a direct visualization of flow structuring phenomena. Here, the flow of a widely used wormlike micellar solution through a glass capillary has been studied, by coupling the microfluidic device with μPIV techniques. The direct visualization of flow-induced structures and the flow visualization analysis highlight a relationship between solution structuring and the onset of discontinuities in the velocity profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20instabilities" title="flow instabilities">flow instabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-induced%20structures" title=" flow-induced structures"> flow-induced structures</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BCPIV" title=" μPIV"> μPIV</a>, <a href="https://publications.waset.org/abstracts/search?q=wormlike%20micelles" title=" wormlike micelles "> wormlike micelles </a> </p> <a href="https://publications.waset.org/abstracts/68641/direct-visualization-of-shear-induced-structures-in-wormlike-micellar-solutions-by-microfluidics-and-advanced-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8008</span> Modeling and Validation of Microspheres Generation in the Modified T-Junction Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Lei">Lei Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongbo%20Zhang"> Hongbo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Donald%20J.%20Bergstrom"> Donald J. Bergstrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Zhang"> Bing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Song"> K. Y. Song</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Zhang"> W. J. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=microsphere%20generation" title=" microsphere generation"> microsphere generation</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20T-junction" title=" modified T-junction"> modified T-junction</a> </p> <a href="https://publications.waset.org/abstracts/20156/modeling-and-validation-of-microspheres-generation-in-the-modified-t-junction-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">707</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8007</span> Blood Flow Estimator of the Left Ventricular Assist Device Based in Look-Up-Table: In vitro Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarcisio%20F.%20Leao">Tarcisio F. Leao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Utiyama"> Bruno Utiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeison%20Fonseca"> Jeison Fonseca</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Bock"> Eduardo Bock</a>, <a href="https://publications.waset.org/abstracts/search?q=Aron%20Andrade"> Aron Andrade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a blood flow estimator based in Look-Up-Table (LUT) for control of Left Ventricular Assist Device (LVAD). This device has been used as bridge to transplantation or as destination therapy to treat patients with heart failure (HF). Destination Therapy application requires a high performance LVAD; thus, a stable control is important to keep adequate interaction between heart and device. LVAD control provides an adequate cardiac output while sustaining an appropriate flow and pressure blood perfusion, also described as physiologic control. Because thrombus formation and system reliability reduction, sensors are not desirable to measure these variables (flow and pressure blood). To achieve this, control systems have been researched to estimate blood flow. LVAD used in the study is composed by blood centrifugal pump, control, and power supply. This technique used pump and actuator (motor) parameters of LVAD, such as speed and electric current. Estimator relates electromechanical torque (motor or actuator) and hydraulic power (blood pump) via LUT. An in vitro Mock Loop was used to evaluate deviations between blood flow estimated and actual. A solution with glycerin (50%) and water was used to simulate the blood viscosity with hematocrit 45%. Tests were carried out with variation hematocrit: 25%, 45% and 58% of hematocrit, or 40%, 50% and 60% of glycerin in water solution, respectively. Test with bovine blood was carried out (42% hematocrit). Mock Loop is composed: reservoir, tubes, pressure and flow sensors, and fluid (or blood), beyond LVAD. Estimator based in LUT is patented, number BR1020160068363, in Brazil. Mean deviation is 0.23 ± 0.07 L/min for mean flow estimated. Larger mean deviation was 0.5 L/min considering hematocrit variation. This estimator achieved deviation adequate for physiologic control implementation. Future works will evaluate flow estimation performance in control system of LVAD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pump" title="blood pump">blood pump</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20estimator" title=" flow estimator"> flow estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20ventricular%20assist%20device" title=" left ventricular assist device"> left ventricular assist device</a>, <a href="https://publications.waset.org/abstracts/search?q=look-up-table" title=" look-up-table"> look-up-table</a> </p> <a href="https://publications.waset.org/abstracts/85150/blood-flow-estimator-of-the-left-ventricular-assist-device-based-in-look-up-table-in-vitro-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8006</span> Development of Intake System for Improvement of Performance of Compressed Natural Gas Spark Ignition Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardani%20Ali%20Serah">Mardani Ali Serah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuriadi%20Kusuma"> Yuriadi Kusuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrasa%20Soekardi"> Chandrasa Soekardi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The improvement of flow strategy was implemented in the intake system of the engine to produce better Compressed Natural Gas engine performance. Three components were studied, designed, simulated, developed,tested and validated in this research. The components are: the mixer, swirl device and fuel cooler device. The three components were installed to produce pressurised turbulent flow with higher fuel volume in the intake system, which is ideal condition for Compressed Natural Gas (CNG) fuelled engine. A combination of experimental work with simulation technique were carried out. The work included design and fabrication of the engine test rig; the CNG fuel cooling system; fitting of instrumentation and measurement system for the performance testing of both gasoline and CNG modes. The simulation work was utilised to design appropriate mixer and swirl device. The flow test rig, known as the steady state flow rig (SSFR) was constructed to validate the simulation results. Then the investigation of the effect of these components on the CNG engine performance was carried out. A venturi-inlet holes mixer with three variables: number of inlet hole (8, 12, and 16); the inlet angles (300, 400, 500, and 600) and the outlet angles (200, 300, 400, and 500) were studied. The swirl-device with number of revolution and the plane angle variables were also studied. The CNG fuel cooling system with the ability to control water flow rate and the coolant temperature was installed. In this study it was found that the mixer and swirl-device improved the swirl ratio and pressure condition inside the intake manifold. The installation of the mixer, swirl device and CNG fuel cooling system had successfully increased 5.5%, 5%, and 3% of CNG engine performance respectively compared to that of existing operating condition. The overall results proved that there is a high potential of this mixer and swirl device method in increasing the CNG engine performance. The overall improvement on engine performance of power and torque was about 11% and 13% compared to the original mixer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intake%20system" title="intake system">intake system</a>, <a href="https://publications.waset.org/abstracts/search?q=Compressed%20Natural%20Gas" title=" Compressed Natural Gas"> Compressed Natural Gas</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20efficiency" title=" volumetric efficiency"> volumetric efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20performance" title=" engine performance "> engine performance </a> </p> <a href="https://publications.waset.org/abstracts/42728/development-of-intake-system-for-improvement-of-performance-of-compressed-natural-gas-spark-ignition-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8005</span> Numerical Investigation of Flow Behaviour Across a Trapezoidal Bluff Body at Low Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaaraoui%20Abdelkader">Zaaraoui Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerfah%20Rabeh"> Kerfah Rabeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Noura%20Belkheir"> Noura Belkheir</a>, <a href="https://publications.waset.org/abstracts/search?q=Matene%20Elhacene"> Matene Elhacene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trapezoidal bluff body is a typical configuration of vortex shedding bodies. The aim of this work is to study flow behaviour over a trapezoidal cylinder at low Reynolds number. The geometry was constructed from a prototype device for measuring the volumetric flow-rate by counting vortices. Simulations were run for this geometry under steady and unsteady flow conditions using finite volume discretization. Laminar flow was investigated in this model with rigid walls and homogeneous incompressible Newtonian fluid. Calculations were performed for Reynolds number range 5 ≤ Re ≤ 180 and several flow parameters were documented. The present computations are in good agreement with the experimental observations and the numerical calculations by several investigators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title="bluff body">bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=confined%20flow" title=" confined flow"> confined flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20calculations" title=" numerical calculations"> numerical calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20and%20unsteady%20flow" title=" steady and unsteady flow"> steady and unsteady flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding%20flow%20meter" title=" vortex shedding flow meter"> vortex shedding flow meter</a> </p> <a href="https://publications.waset.org/abstracts/54144/numerical-investigation-of-flow-behaviour-across-a-trapezoidal-bluff-body-at-low-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8004</span> Screening of Thyroid Stimulating Hormone Using Paper-Based Lateral Flow Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pattarachaya%20Preechakasedkit">Pattarachaya Preechakasedkit</a>, <a href="https://publications.waset.org/abstracts/search?q=Kota%20Osada"> Kota Osada</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Suzuki"> Koji Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Citterio"> Daniel Citterio</a>, <a href="https://publications.waset.org/abstracts/search?q=Orawon%20Chailapakul"> Orawon Chailapakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A paper-based lateral flow device for screening thyroid stimulating hormone (TSH) is reported. A sandwich immunoassay was performed using two mouse monoclonal TSH antibodies (anti-hTSH 5403 and 5404) as immobilized and labeled antibodies for capturing TSH samples. Test (anti-hTSH 5403) and control (goat anti-Mouse IgG) lines were fabricated on nitrocellulose membrane (NCM) using ballpoint pen printed with a speed of 3 cm/s and thickness setting of 1. The novel gold nanoparticles europium complex (AuNPs@Eu) was used as fluorescence label compared to conventional AuNPs label. The results obtained with this device can be visually assessed by the naked eyes and under UV hand lamps, and quantitative analysis can be performed using the ImageJ program. The limit of detection (LOD) under UV hand lamps (0.1 µIU/mL) provided 50-fold greater sensitivity than AuNPs (5 µIU/mL), which is suitable for both hypothyroidism and hyperthyroidism screening within 30 min. A linear relationship between the red intensity and the logarithmic concentrations of TSH was observed with a good correlation (R²=0.992). Furthermore, the device can be effectively applied for screening TSH in the spiked human serum with recovery range of 96.80-104.45% and RSD of 2.18-3.63%. Therefore, the developed device is an alternative method for TSH screening which provides a lot of advantages including low cost, short time analysis, ease of use, disposability, portability, and on-site measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thyroid%20stimulating%20hormone" title="thyroid stimulating hormone">thyroid stimulating hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=paper-based%20lateral%20flow" title=" paper-based lateral flow"> paper-based lateral flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hypothyroidism" title=" hypothyroidism"> hypothyroidism</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthyroidism" title=" hyperthyroidism"> hyperthyroidism</a> </p> <a href="https://publications.waset.org/abstracts/67545/screening-of-thyroid-stimulating-hormone-using-paper-based-lateral-flow-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8003</span> Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djilani%20Kobibi%20Youcef%20Islam">Djilani Kobibi Youcef Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjeri%20Samir"> Hadjeri Samir</a>, <a href="https://publications.waset.org/abstracts/search?q=Djehaf%20Mohamed%20Abdeldjalil"> Djehaf Mohamed Abdeldjalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FACTS" title="FACTS">FACTS</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20flow" title=" load flow"> load flow</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=UPFC" title=" UPFC"> UPFC</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20stability" title=" voltage stability"> voltage stability</a> </p> <a href="https://publications.waset.org/abstracts/41037/power-flow-and-modal-analysis-of-a-power-system-including-unified-power-flow-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8002</span> A Measurement Device of Condensing Flow Rate, an Order of MilliGrams per Second</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Joon%20Lee">Hee Joon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many difficulties in measuring a small flow rate of an order of milli grams per minute (LPM) or less using a conventional flowmeter. Therefore, a flow meter with minimal loss and based on a new concept was designed as part of this paper. A chamber was manufactured with a level transmitter and an on-off control valve. When the level of the collected condensed water reaches the top of the chamber, the valve opens to allow the collected water to drain back into the tank. To allow the water to continue to drain when the signal is lost, the valve is held open for a few seconds by a time delay switch and then closed. After an examination, the condensing flow rate was successfully measured with the uncertainty of ±5.7% of the full scale for the chamber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chamber" title="chamber">chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20meter" title=" flow meter"> flow meter</a>, <a href="https://publications.waset.org/abstracts/search?q=milli-grams" title=" milli-grams"> milli-grams</a> </p> <a href="https://publications.waset.org/abstracts/48842/a-measurement-device-of-condensing-flow-rate-an-order-of-milligrams-per-second" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8001</span> Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengke%20Zhan">Mengke Zhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Gang%20Xie"> Cheng-Gang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Jun%20Shu"> Jian-Jun Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20flow" title=" gas-liquid flow"> gas-liquid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modelling" title=" turbulence modelling"> turbulence modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=venturi" title=" venturi"> venturi</a> </p> <a href="https://publications.waset.org/abstracts/129246/evaluation-of-turbulence-modelling-of-gas-liquid-two-phase-flow-in-a-venturi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8000</span> Use of a Novel Intermittent Compression Shoe in Reducing Lower Limb Venous Stasis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hansraj%20Riteesh%20Bookun">Hansraj Riteesh Bookun</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassandra%20Monique%20Hidajat"> Cassandra Monique Hidajat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This pilot study investigated the efficacy of a newly designed shoe which will act as an intermittent pneumatic compression device to augment venous flow in the lower limb. The aim was to assess the degree with which a wearable intermittent compression device can increase the venous flow in the popliteal vein. Background: Deep venous thrombosis and chronic venous insufficiency are relatively common problems with significant morbidity and mortality. While mechanical and chemical thromboprophylaxis measures are in place in hospital environments (in the form of TED stockings, intermittent pneumatic compression devices, analgesia, antiplatelet and anticoagulant agents), there are limited options in a community setting. Additionally, many individuals are poorly tolerant of graduated compression stockings due to the difficulty in putting them on, their constant tightness and increased associated discomfort in warm weather. These factors may hinder the management of their chronic venous insufficiency. Method: The device is lightweight, easy to wear and comfortable, with a self-contained power source. It features a Bluetooth transmitter and can be controlled with a smartphone. It is externally almost indistinguishable from a normal shoe. During activation, two bladders are inflated -one overlying the metatarsal heads and the second at the pedal arch. The resulting cyclical increase in pressure squeezes blood into the deep venous system. This will decrease periods of stasis and potentially reduce the risk of deep venous thrombosis. The shoe was fitted to 2 healthy participants and the peak systolic velocity of flow in the popliteal vein was measured during and prior to intermittent compression phases. Assessments of total flow volume were also performed. All haemodynamic assessments were performed with ultrasound by a licensed sonographer. Results: Mean peak systolic velocity of 3.5 cm/s with standard deviation of 1.3 cm/s were obtained. There was a three fold increase in mean peak systolic velocity and five fold increase in total flow volume. Conclusion: The device augments venous flow in the leg significantly. This may contribute to lowered thromboembolic risk during periods of prolonged travel or immobility. This device may also serve as an adjunct in the treatment of chronic venous insufficiency. The study will be replicated on a larger scale in a multi—centre trial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=venous" title="venous">venous</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent%20compression" title=" intermittent compression"> intermittent compression</a>, <a href="https://publications.waset.org/abstracts/search?q=shoe" title=" shoe"> shoe</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title=" wearable device"> wearable device</a> </p> <a href="https://publications.waset.org/abstracts/77649/use-of-a-novel-intermittent-compression-shoe-in-reducing-lower-limb-venous-stasis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7999</span> Highly-Efficient Photoreaction Using Microfluidic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigenori%20Togashi">Shigenori Togashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukako%20Asano"> Yukako Asano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20device" title="microfluidic device">microfluidic device</a>, <a href="https://publications.waset.org/abstracts/search?q=photoreaction" title=" photoreaction"> photoreaction</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20aluminum%20oxide" title=" black aluminum oxide"> black aluminum oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=benzophenone" title=" benzophenone"> benzophenone</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20improvement" title=" yield improvement"> yield improvement</a> </p> <a href="https://publications.waset.org/abstracts/7922/highly-efficient-photoreaction-using-microfluidic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7998</span> Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Boualem">K. Boualem</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yahiaoui"> T. Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azzi"> A. Azzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-&omega; SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20control" title="active control">active control</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20jet" title=" synthetic jet"> synthetic jet</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%20airfoil" title=" NACA airfoil"> NACA airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/58346/numerical-investigation-of-improved-aerodynamic-performance-of-a-naca-0015-airfoil-using-synthetic-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7997</span> Evaluation of Particle Settling in Flow Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Alenezi">Abdulrahman Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Stefan"> B. Stefan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20experiment" title="flow experiment">flow experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Particle%20Settling" title=" Particle Settling"> Particle Settling</a>, <a href="https://publications.waset.org/abstracts/search?q=Flow%20Chamber" title=" Flow Chamber"> Flow Chamber</a> </p> <a href="https://publications.waset.org/abstracts/123455/evaluation-of-particle-settling-in-flow-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7996</span> Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liang%20Chang">Wen Liang Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=second-hand%20device" title="second-hand device">second-hand device</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20time" title=" replacement time"> replacement time</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20failure" title=" device failure"> device failure</a> </p> <a href="https://publications.waset.org/abstracts/9223/replacement-time-and-number-of-preventive-maintenance-actions-for-second-hand-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7995</span> Effect of Halo Protection Device on the Aerodynamic Performance of Formula Racecar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Lin">Mark Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Periklis%20Papadopoulos"> Periklis Papadopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the aerodynamics of the formula racecar when a &lsquo;halo&rsquo; driver-protection device is added to the chassis. The halo protection device was introduced at the start of the 2018 racing season as a safety measure against foreign object impacts that a driver may encounter when driving an open-wheel racecar. In the one-year since its introduction, the device has received wide acclaim for protecting the driver on two separate occasions. The benefit of such a safety device certainly cannot be disputed. However, by adding the halo device to a car, it changes the airflow around the vehicle, and most notably, to the engine air-intake and the rear wing. These negative effects in the air supply to the engine, and equally to the downforce created by the rear wing are studied in this paper using numerical technique, and the resulting CFD outputs are presented and discussed. Comparing racecar design prior to and after the introduction of the halo device, it is shown that the design of the air intake and the rear wing has not followed suit since the addition of the halo device. The reduction of engine intake mass flow due to the halo device is computed and presented for various speeds the car may be going. Because of the location of the halo device in relation to the air intake, airflow is directed away from the engine, making the engine perform less than optimal. The reduction is quantified in this paper to show the correspondence to reduce the engine output when compared to a similar car without the halo device. This paper shows that through aerodynamic arguments, the engine in a halo car will not receive unobstructed, clean airflow that a non-halo car does. Another negative effect is on the downforce created by the rear wing. Because the amount of downforce created by the rear wing is influenced by every component that comes before it, when a halo device is added upstream to the rear wing, airflow is obstructed, and less is available for making downforce. This reduction in downforce is especially dramatic as the speed is increased. This paper presents a graph of downforce over a range of speeds for a car with and without the halo device. Acknowledging that although driver safety is paramount, the negative effect of this safety device on the performance of the car should still be well understood so that any possible redesign to mitigate these negative effects can be taken into account in next year&rsquo;s rules regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20aerodynamics" title="automotive aerodynamics">automotive aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=halo%20device" title=" halo device"> halo device</a>, <a href="https://publications.waset.org/abstracts/search?q=downforce.%20engine%20intake" title=" downforce. engine intake"> downforce. engine intake</a> </p> <a href="https://publications.waset.org/abstracts/116953/effect-of-halo-protection-device-on-the-aerodynamic-performance-of-formula-racecar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=267">267</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=268">268</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10