CINXE.COM
{"title":"Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells","authors":"Andrea Tundis, Carlos Garc\u00eda Cordero, Rolf Egert, Alfredo Garro, Max M\u00fchlh\u00e4user","volume":121,"journal":"International Journal of Computer and Information Engineering","pagesStart":125,"pagesEnd":137,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10007151","abstract":"Resilience is an important system property that relies<br \/>\r\non the ability of a system to automatically recover from a degraded<br \/>\r\nstate so as to continue providing its services. Resilient systems have<br \/>\r\nthe means of detecting faults and failures with the added capability of<br \/>\r\nautomatically restoring their normal operations. Mastering resilience<br \/>\r\nin the domain of Cyber-Physical Systems is challenging due to the<br \/>\r\ninterdependence of hybrid hardware and software components, along<br \/>\r\nwith physical limitations, laws, regulations and standards, among<br \/>\r\nothers. In order to overcome these challenges, this paper presents a<br \/>\r\nmodeling approach, based on the concept of Dynamic Cells, tailored<br \/>\r\nto the management of Smart Grids. Additionally, a heuristic algorithm<br \/>\r\nthat works on top of the proposed modeling approach, to find resilient<br \/>\r\nconfigurations, has been defined and implemented. More specifically,<br \/>\r\nthe model supports a flexible representation of Smart Grids and<br \/>\r\nthe algorithm is able to manage, at different abstraction levels, the<br \/>\r\nresource consumption of individual grid elements on the presence of<br \/>\r\nfailures and faults. Finally, the proposal is evaluated in a test scenario<br \/>\r\nwhere the effectiveness of such approach, when dealing with complex<br \/>\r\nscenarios where adequate solutions are difficult to find, is shown.","references":"1] D. Wachholder and C. Stary, \u201cEnabling emergent behavior in\r\nsystems-of-systems through bigraph-based modeling,\u201d in System of\r\nSystems Engineering Conference (SoSE), 2015 10th, may 2015, pp.\r\n334\u2013339.\r\n[2] I. S. Danda B. Rawat Joel J.P.C. Rodrigues, Cyber-Physical Systems:\r\nFrom Theory to Practice. CRC Press, 2015.\r\n[3] J. Shi, J. Wan, H. Yan, and H. Suo, \u201cA survey of Cyber-Physical\r\nSystems,\u201d 2011 International Conference on Wireless Communications\r\nand Signal Processing, WCSP 2011, 2011.\r\n[4] K. G. S. L. M. P. Gaddadevara Matt Siddesh Ganesh Chandra Deka,\r\nCyber-Physical Systems: A Computational Perspective. Chapman and\r\nHall\/CRC, 2015.\r\n[5] N. B. M. Isa, T. C. Wei, A.Yatim, and A. H. M. Yatim,\r\n\u201cSmart grid technology: Communications, power electronics and\r\ncontrol system,\u201d in International Conference on Sustainable Energy\r\nEngineering and Application (ICSEEA). IEEE, oct 2015, pp.\r\n10\u201314. [Online]. Available: http:\/\/ieeexplore.ieee.org\/lpdocs\/epic03\/\r\nwrapper.htm?arnumber=7380737\r\n[6] K. Sampigethaya, R. Poovendran, and T. Br, \u201cCyber-physical integration\r\nin future aviation information systems,\u201d in 2012 IEEE\/AIAA 31st Digital\r\nAvionics Systems Conference (DASC). IEEE, 2012, pp. 7C2\u2014-1.\r\n[7] J. Plourde, D. Arney, and J. M. Goldman, \u201cOpenICE: An open,\r\ninteroperable platform for medical cyber-physical systems,\u201d 2014\r\nACM\/IEEE International Conference on Cyber-Physical Systems, ICCPS\r\n2014, p. 221, 2014.\r\n[8] S. Karnouskos, \u201cCyber-physical systems in the SmartGrid,\u201d IEEE\r\nInternational Conference on Industrial Informatics (INDIN), pp. 20\u201323,\r\n2011.\r\n[9] L. Rogovchenko-Buffoni, A. Tundis, M. Z. Hossain, M. Nyberg,\r\nand P. Fritzson, \u201cAn Integrated Toolchain For Model Based\r\nFunctional Safety Analysis,\u201d Journal of Computational Science,\r\nvol. 5, no. 3, pp. 408\u2013414, 2014. [Online]. Available: http:\r\n\/\/dx.doi.org\/10.1016\/j.jocs.2013.08.009\r\n[10] Y. Strengers, \u201cSmart Energy in Everyday Life: Are You Designing\r\nfor Resource Man?\u201d interactions, vol. 21, no. 4, pp. 24\u201331, jul 2014.\r\n[Online]. Available: http:\/\/doi.acm.org\/10.1145\/2621931\r\n[11] H. H. Yan, J. F. Wan, and H. Suo, \u201cAdaptive Resource Management for\r\nCyber-Physical Systems,\u201d in Mechatronics and Applied Mechanics, ser.\r\nApplied Mechanics and Materials, vol. 157. Trans Tech Publications,\r\n2012, pp. 747\u2013751.\r\n[12] P. Smith, D. Hutchison, J. P. G. Sterbenz, M. Sch\u00a8oller, A. Fessi,\r\nM. Karaliopoulos, C. Lac, and B. Plattner, \u201cNetwork resilience: A\r\nsystematic approach,\u201d IEEE Communications Magazine, vol. 49, no. 7,\r\npp. 88\u201397, 2011.\r\n[13] G. Denker, N. Dutt, S. Mehrotra, M.-O. Stehr, C. Talcott,\r\nand N. Venkatasubramanian, \u201cResilient dependable cyber-physical\r\nsystems: a middleware perspective,\u201d Journal of Internet Services and\r\nApplications, vol. 3, no. 1, pp. 41\u201349, 2012. [Online]. Available:\r\nhttp:\/\/dx.doi.org\/10.1007\/s13174-011-0057-4\r\n[14] M. Amin, \u201cChallenges in reliability, security, efficiency, and resilience of\r\nenergy infrastructure: Toward smart self-healing electric power grid,\u201d in\r\nPower and Energy Society General Meeting - Conversion and Delivery\r\nof Electrical Energy in the 21st Century, 2008 IEEE, jul 2008, pp. 1\u20135.\r\n[15] N. A. S. Abdullah, N. L. M. Noor, and E. N. M. Ibrahim, \u201cResilient\r\norganization: Modelling the capacity for resilience,\u201d International\r\nConference on Research and Innovation in Information Systems, ICRIIS,\r\nvol. 2013, pp. 319\u2013324, 2013.[16] X. Zhao, Z. Zhou, Z. Li, and Z. Qin, \u201cRedundancy deployment\r\nstrategy based on energy balance for wireless sensor networks,\u201d\r\nin Communications and Information Technologies (ISCIT), 2012\r\nInternational Symposium on, oct 2012, pp. 702\u2013706.\r\n[17] E. Rodriguez-Diaz, J. C. Vasquez, and J. M. Guerrero, \u201cIntelligent\r\nDC Homes in Future Sustainable Energy Systems: When efficiency\r\nand intelligence work together.\u201d IEEE Consumer Electronics Magazine,\r\nvol. 5, no. 1, pp. 74\u201380, jan 2016.\r\n[18] P. Smith and A. Schaeffer-Filho, \u201cManagement Patterns for Smart Grid\r\nResilience,\u201d in Service Oriented System Engineering (SOSE), 2014 IEEE\r\n8th International Symposium on, apr 2014, pp. 415\u2013416.\r\n[19] D. Seo, H. Lee, and A. Perrig, \u201cSecure and Efficient Capability-Based\r\nPower Management in the Smart Grid,\u201d in Parallel and Distributed\r\nProcessing with Applications Workshops (ISPAW), 2011 Ninth IEEE\r\nInternational Symposium on, may 2011, pp. 119\u2013126.\r\n[20] A. Pahwa, S. A. DeLoach, B. Natarajan, S. Das, A. R. Malekpour, S. M.\r\nShafiul Alam, and D. M. Case, \u201cGoal-Based Holonic Multiagent System\r\nfor Operation of Power Distribution Systems,\u201d IEEE Transactions on\r\nSmart Grid, vol. 6, no. 5, pp. 2510\u20132518, 2015.\r\n[21] C. M. Colson, M. H. Nehrir, and R. W. Gunderson, \u201cDistributed\r\nmulti-agent microgrids: A decentralized approach to resilient power\r\nsystem self-healing,\u201d Proceedings - ISRCS 2011: 4th International\r\nSymposium on Resilient Control Systems, pp. 83\u201388, 2011.\r\n[22] A. Berns and S. Ghosh, \u201cDissecting Self- * Properties,\u201d 2009 Third IEEE\r\nInternational Conference on Self-Adaptive and Self-Organizing Systems,\r\npp. 10\u201319, 2009.\r\n[23] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Ca\u02dcnizares,\r\nR. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt,\r\nM. Saeedifard, R. Palma-Behnke, G. A. Jim\u00b4enez-Est\u00b4evez, and N. D.\r\nHatziargyriou, \u201cTrends in Microgrid Control,\u201d IEEE Transactions on\r\nSmart Grid, vol. 5, no. 4, pp. 1905\u20131919, 2014.\r\n[24] A. Koestler, The Ghost in the Machine. Macmillan, 1967.\r\n[25] M. Calabrese, A. Amato, V. di Lecce, and V. Piuri,\r\n\u201cHierarchical-granularity holonic modelling,\u201d Journal of Ambient\r\nIntelligence and Humanized Computing, vol. 1, no. 3, pp. 199\u2013209,\r\n2010.\r\n[26] P. Legato and R. Mazza, \u201cA Simulation Optimization based Approach\r\nfor Team Building in Cyber Security,\u201d Journal of Simulation and Process\r\nModelling, 2015.\r\n[27] M. Erol-Kantarci and H. T. Mouftah, \u201cEnergy-Efficient Information\r\nand Communication Infrastructures in the Smart Grid: A Survey on\r\nInteractions and Open Issues,\u201d IEEE Communications Surveys and\r\nTutorials, vol. 17, no. 1, pp. 179\u2013197, 2015.\r\n[28] A. Hahn and M. Govindarasu, \u201cCyber attack exposure evaluation\r\nframework for the smart grid,\u201d IEEE Transactions on Smart Grid, vol. 2,\r\nno. 4, pp. 835\u2013843, 2011.\r\n[29] C. Cecati, C. Citro, A. Piccolo, and P. Siano, \u201cSmart operation of wind\r\nturbines and diesel generators according to economic criteria,\u201d IEEE\r\nTransactions on Industrial Electronics, vol. 58, no. 10, pp. 4514\u20134525,\r\n2011.\r\n[30] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and\r\nG. P. Hancke, \u201cSmart Grid Technologies: Communication Technologies\r\nand Standards,\u201d IEEE Transactions on Industrial Informatics, vol. 7,\r\nno. 4, pp. 529\u2013539, nov 2011. [Online]. Available: http:\/\/ieeexplore.\r\nieee.org\/lpdocs\/epic03\/wrapper.htm?arnumber=6011696\r\n[31] R. M. Oviedo, F. Ramos, S. Gormus, P. Kulkarni, and\r\nM. Sooriyabandara, \u201cA comparison of centralized and distributed\r\nmonitoring architectures in the smart grid,\u201d IEEE Systems Journal,\r\nvol. 7, no. 4, pp. 832\u2013844, 2013.\r\n[32] S. Ramchurn, P. Vytelingum, A. Rogers, and N. Jennings, \u201cAgent-Based\r\nControl for Decentralised Demand Side Management in the Smart\r\nGrid,\u201d AAMAS \u201811, Taipei,, pp. 5\u201312, 2011. [Online]. Available:\r\nhttp:\/\/eprints.soton.ac.uk\/271985\/\r\n[33] A. Vaccaro, V. Loia, G. Formato, P. Wall, and V. Terzija, \u201cA\r\nSelf-Organizing Architecture for Decentralized Smart Microgrids\r\nSynchronization, Control, and Monitoring,\u201d IEEE Transactions on\r\nIndustrial Informatics, vol. 11, no. 1, pp. 289\u2013298, feb 2015.\r\n[Online]. Available: http:\/\/ieeexplore.ieee.org\/lpdocs\/epic03\/wrapper.\r\nhtm?arnumber=6863653\r\n[34] S. Chouhan, J. Ghorbani, H. Inan, A. Feliachi, and M. A. Choudhry,\r\n\u201cSmart MAS restoration for distribution system with Microgrids,\u201d IEEE\r\nPower and Energy Society General Meeting, 2013.\r\n[35] A. Felix, H. S. V. S. K. Nunna, S. Doolla, and A. Shukla, \u201cMulti agent\r\nbased restoration for smart distribution system with microgrids,\u201d 2015\r\nIEEE Energy Conversion Congress and Exposition, ECCE 2015, pp.\r\n2341\u20132347, 2015.\r\n[36] A. Barbato, A. Capone, L. Chen, F. Martignon, and S. Paris,\r\n\u201cA distributed demand-side management framework for the smart\r\ngrid,\u201d Computer Communications, vol. 57, pp. 13\u201324, 2015. [Online].\r\nAvailable: http:\/\/dx.doi.org\/10.1016\/j.comcom.2014.11.001\r\n[37] R. Deng, Z. Yang, F. Hou, M.-Y. Chow, and J. Chen, \u201cDistributed\r\nReal-Time Demand Response in Multiseller\u2013Multibuyer Smart\r\nDistribution Grid,\u201d IEEE Transactions on Power Systems, vol. 30, no. 5,\r\npp. 2364\u20132374, 2015.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 121, 2017"}