CINXE.COM
Search results for: shelf life
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shelf life</title> <meta name="description" content="Search results for: shelf life"> <meta name="keywords" content="shelf life"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shelf life" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shelf life"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7472</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shelf life</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7472</span> Removal of Deposits and Improvement of Shelf Life in CO₂-Rich Mineral Water by Ozone-Microbubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un%20Hwa%20Choe">Un Hwa Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hyon%20Choe"> Jong Hyon Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Jun%20Kim"> Yong Jun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a new mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82-rich%20mineral%20water" title="CO₂-rich mineral water">CO₂-rich mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone-micro%20bubble" title=" ozone-micro bubble"> ozone-micro bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=bottled%20mineral%20water" title=" bottled mineral water"> bottled mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/178817/removal-of-deposits-and-improvement-of-shelf-life-in-co2-rich-mineral-water-by-ozone-microbubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7471</span> Shelf Life of Frozen Processed Foods for Extended Durability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manfreda%20Gerardo">Manfreda Gerardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquali%20Frederique"> Pasquali Frederique</a>, <a href="https://publications.waset.org/abstracts/search?q=Pepe%20Tiziana"> Pepe Tiziana</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasio%20Aniello"> Anastasio Aniello</a>, <a href="https://publications.waset.org/abstracts/search?q=Ianieri%20Adriana"> Ianieri Adriana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research was to evaluate the shelf life of a REPFED’s product (lasagna alla bolognese), developed as a product to be marketed fresh after defrosting. Three different samples were prepared: A, B and C, which presented differences in relation to the recipe, pasteurization technique and packaging on which the trend of the shelf-life indicator parameters was evaluated during a period of prolonged shelf life. The analytical plan involved the measurement of microbiological, chemical-physical and organoleptic parameters over 7 moments of storage selected in a period of 33 days. CBT, LAB, enterobacteria, E. coli, yeasts, molds, S. coagulase positive, B. cereus, Salmonella spp and L. monocytogenes, pH, Aw, Kreiss test, peroxides, atmosphere inside the packages, and organoleptic characteristics were determined. The results demonstrated the effect of post-packaging pasteurization on the shelf life of fresh from frozen products. However, the products pasteurized at 95°C in the absence of steam showed microbiological parameters that were not appropriate for an extended shelf life of up to 60 days. On the contrary, the samples pasteurized at 98°C with steam saturation and counterpressure showed values compatible with an extended shelf life. The results of the chemical-physical analyses highlighted how recipe and packaging affect the chemical-physical and organoleptic parameters. In conclusion, this preliminary study confirmed the effectiveness of post-packaging pasteurization treatments aimed at extending the shelf life of the product, helping the food company to occupy market niches even very distant from the production sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title="shelf life">shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=REPFED%E2%80%99s%20product" title=" REPFED’s product"> REPFED’s product</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20durability" title=" extended durability"> extended durability</a>, <a href="https://publications.waset.org/abstracts/search?q=pasteurization" title=" pasteurization"> pasteurization</a> </p> <a href="https://publications.waset.org/abstracts/188933/shelf-life-of-frozen-processed-foods-for-extended-durability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7470</span> Modified Atmosphere Packaging (MAP) and the Effect of Chemical Preservative to Enhance Shelf Life of Khoa </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanima%20Chowdhury">Tanima Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Chattopadhaya"> Sanjay Chattopadhaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Ch.%20Saha"> Narayan Ch. Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Khoa is an indigenous heat desiccated milk product having very poor shelf life. At ambient condition, shelf-life of khoa is normally only 2 days. The aim of present study was to determine the effect of benzoic acid as preservative as well as modified atmosphere packaging (MAP) technology to enhance shelf life of khoa at 27±2°C and 65% RH. During storage, analysis of chemical, sensory as well as microbiological characteristics were taken into consideration to mark distinguishable changes between the package of modified atmosphere technology (MAP) and ordinarily packed khoa (with and without preservative) samples. The results indicated a significant decrease of moisture content, pH and sensory scores and increase in titratable acidity, standard plate count and yeast and mould count during storage, irrespective of the type of packaging conditions. However, the rate of changes in characteristics of product packed in modified atmosphere was found to be slow. The storage study indicated that the khoa packed in ordinary packaging, with and without preservative, was acceptable for 4 and 8 days, respectively, whereas for modified atmosphere packed samples, it was consumable up to 8 and 12 days, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzoic%20acid" title="benzoic acid">benzoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=khoa" title=" khoa"> khoa</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20atmosphere%20packaging" title=" modified atmosphere packaging"> modified atmosphere packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/52712/modified-atmosphere-packaging-map-and-the-effect-of-chemical-preservative-to-enhance-shelf-life-of-khoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7469</span> Setting the Acceleration Test Conditions for Establishing the Expiration Date of Probiotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myoyeon%20Kim">Myoyeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of probiotics is various from product to product. The product must contain as many bacteria as the number of bacteria that claim because it greatly affects consumers' choices. It is very difficult to determine the number of viable bacteria with tests that proceed during the product development stage because the shelf life of lactic acid bacteria is mostly 18 to 24 months, and product development proceeds much faster than this. To predict the shelf life, a method of checking the number of viable bacteria was studied by shortening the time. The experiment was conducted with a total of 7 products including our products. The ongoing test stored at room temperature, the acceleration test stored at 30°C and 40°C were performed, and the number of bacteria was measured every two weeks. The number of viable bacteria stored at 30°C for 12 weeks was similar to the ongoing test when the shelf life was imminent. If it took more than 12 weeks, the product development schedule was postponed, so acceleration had no meaning. It was found that products stored at 40°C were unsuitable as acceleration test temperatures because the bacteria were almost killed within 4 to 8 weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotics" title="probiotics">probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title=" shelf-life"> shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=acceleration%20test" title=" acceleration test"> acceleration test</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus" title=" lactobacillus"> lactobacillus</a> </p> <a href="https://publications.waset.org/abstracts/188379/setting-the-acceleration-test-conditions-for-establishing-the-expiration-date-of-probiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7468</span> Monitoring of Sustainability of Decorated Confectionary Product 'Moskva Cake' in Order to Define the Expiration Date</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radovan%20Cobanovic">Radovan Cobanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20Rankov-Sicar"> Milica Rankov-Sicar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fresh cake is in the group of perishable food which cannot be kept a long period of time. The study of sustainability has been done in order to extend the shelf-life of the product which was 10 days. According to the plan of sustainability, it was defined that 5 samples had to be stored for 20 days at max +8°C and analyzed every 5th day from the day of reception until the 20th day. The shelf life of cake has expired during the study of sustainability in the period between 10th and 20th day of analyses. Cake samples were subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analysis (Listeria monocytogenes, Salmonella spp. and Enterobacteriaceae) according to Serbian state regulation. All analysis were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11290-1, Salmonella spp ISO 6579, and Enterobacteriaceae ISO 21258-2. Analyses showed that after ten days of storage at a temperature defined by the manufacturers and within the product's shelf life, the cake did not have any noticeable changes in sensory characteristics. Smell and taste are unaffected there was no presence of strange smell or taste. As far as microbiological analyses are concerned, neither one pathogen was detected and number of Enterobacteriaceae was at level less than 102 cfu/g. After expiry of shelf life in a period of 15th and 20th day of storage, the sensory analysis showed the presence of strange sour-milky smell and rancid taste. Concerning microbiological analyses, there still were not positive results for pathogen microorganisms but the number of Enterobacteriaceae was at level more than 103cfu/g. Reviewing the results of sensory analysis indicates that it is not recommended to extend the shelf-life of the product comparing to the already defined shelf-life because occurred changes may adversely affect the consumer desire for the choice of this product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=confectionary%20product" title="confectionary product">confectionary product</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20of%20shelf%20life" title=" extension of shelf life"> extension of shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20and%20microbiological%20analyses" title=" sensory and microbiological analyses"> sensory and microbiological analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/64618/monitoring-of-sustainability-of-decorated-confectionary-product-moskva-cake-in-order-to-define-the-expiration-date" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7467</span> Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phakamani%20Xaba">Phakamani Xaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Huberts"> Robert Huberts</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilainu%20Oboirien"> Bilainu Oboirien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=margarine%20shelf-life" title="margarine shelf-life">margarine shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20modelling" title=" predictive modelling"> predictive modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20oxidation" title=" oil oxidation"> oil oxidation</a> </p> <a href="https://publications.waset.org/abstracts/138687/comparison-of-two-neural-networks-to-model-margarine-age-and-predict-shelf-life-using-matlab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7466</span> Control of the Sustainability of Fresh Cheese in Order to Extend the Shelf-Life of the Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radovan%20%C4%8Cobanovi%C4%87">Radovan Čobanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20Rankov%20%C5%A0icar"> Milica Rankov Šicar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fresh cheese is in the group of perishable food which cannot be kept a long period of time. The study of sustainability have been done in order to extend the shelf-life of the product which was 15 days. According to the plan of sustainability it was defined that 35 samples had to be stored for 30 days at 2°C−6°C and analyzed every 7th day from the day of reception until 30th day. Shelf life of the cheese has expired during the study of sustainability in the period between 15th and 30th day of analyses. Cheese samples were subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp., Bacillus cereus, Staphylococcus aureus and total plate count) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579, Bacillus cereus ISO 7932, Staphylococcus aureus ISO 6888-1, and total plate count ISO 4833. Analyses showed that after fifteen days of storage at a temperature defined by the manufacturers and within the product's shelf life, the cheese did not have any noticeable changes in sensory characteristics. Smell and taste are unaffected there was no separation of whey and there was not presence of strange smell or taste. As far as microbiological analyses are concerned neither one pathogen was detected and total plate count was at level of 103 cfu/g. After expiry of shelf life in a period of 15th and 30th day of storage, the analysis showed that there was a separation of whey on the surface. Along the edge of the container was present a dried part of cheese and sour-milky smell and taste were very weakly expressed. Concerning the microbiological analyses there still were not positive results for pathogen microorganisms but the total plate count was at a level of 106cfu/g. Based on the obtained results it can be concluded that this product cannot have longer shelf life than shelf life which is already defined because there are a sensory changes that would certainly have influence on decision of customers when purchase of this product is concerned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20cheese" title=" fresh cheese"> fresh cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title=" shelf-life"> shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=product" title=" product"> product</a> </p> <a href="https://publications.waset.org/abstracts/17987/control-of-the-sustainability-of-fresh-cheese-in-order-to-extend-the-shelf-life-of-the-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7465</span> Application of Active Chitosan Coating Incorporated with Spirulina Extract as a Potential Food Packaging Material for Enhancing Quality and Shelf Life of Shrimp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Balti">Rafik Balti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nourhene%20Zayoud"> Nourhene Zayoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Mansour"> Mohamed Ben Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Arhaliass"> Abdellah Arhaliass</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Masse"> Anthony Masse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of edible films and coatings with natural active compounds for enhancing storage stability of food products is a promising active packaging approach. Shrimp are generally known as valuable seafood products around the world because of their delicacy and good nutritional. However, shrimp is highly vulnerable to quality deterioration associated with biochemical, microbiological or physical changes during postmortem storage, which results in the limited shelf life of the product. Chitosan is considered as a functional packaging component for maintaining the quality and increasing the shelf life of perishable foods. The present study was conducted to evaluate edible coating of crab chitosan containing variable levels of ethanolic extract of Spirulina on microbiological (mesophilic aerobic, psychrotrophic, lactic acid bacteria, and enterobacteriacea), chemical (pH, TVB-N, TMA-N, PV, TBARS) and sensory (odor, color, texture, taste, and overall acceptance) properties of shrimp during refrigerated storage. Also, textural and color characteristics of coated shrimp were performed. According to the obtained results, crab chitosan in combination with Spirulina extract was very effective in order to extend the shelf life of shrimp during storage in refrigerated condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20packaging" title="food packaging">food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=spirulina%20extract" title=" spirulina extract"> spirulina extract</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20shrimp" title=" white shrimp"> white shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/108039/application-of-active-chitosan-coating-incorporated-with-spirulina-extract-as-a-potential-food-packaging-material-for-enhancing-quality-and-shelf-life-of-shrimp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7464</span> The Effectivity of Lime Juice on the Cooked Rice's Shelf-Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Novriyanti%20Lubis">Novriyanti Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Riska%20Prasetiawati"> Riska Prasetiawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuriani%20Rahayu"> Nuriani Rahayu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectivity of lime juice on the cooked rice’s shelf-life was investigated. This research was proposed to get the optimal condition, such as concentration lime juice as the preservatives, and shelf-life cooked rice’s container to store using rice warmer. The effectivity was analysed total colony bacteriology, and physically. The variation of lime juice’s concentration that have been used were 0%, 0,46%, 0,93%, 1,40%, and 1,87%. The observation of cooked rice’s quality was done every 12 hours, including colour, smell, flavour, and total colony every 24 hours. Based on the result of the research considered from the cooked rice’s quality through observing the total of the colony bacteriology and physically, it showed the optimum concentrate which is effective preserve the cooked rise’s level concentrate was 0.93%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriology" title="bacteriology">bacteriology</a>, <a href="https://publications.waset.org/abstracts/search?q=cooked%20rice%27s" title=" cooked rice's"> cooked rice's</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20juice" title=" lime juice"> lime juice</a>, <a href="https://publications.waset.org/abstracts/search?q=preservative" title=" preservative"> preservative</a> </p> <a href="https://publications.waset.org/abstracts/56368/the-effectivity-of-lime-juice-on-the-cooked-rices-shelf-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7463</span> Response of Post-harvest Treatments on Shelf Life, Biochemical and Microbial Quality of Banana Variety Red Banana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karishma%20Sebastian">Karishma Sebastian</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavethra%20A."> Pavethra A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjula%20B.%20S."> Manjula B. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Satheeshan"> K. N. Satheeshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenita%20Thinakaran"> Jenita Thinakaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red Banana is a popular variety of banana with strong market demand. Its ripe fruits are less resistant to transportation, complicating logistics. Moreover, as it is a climacteric fruit, its post-harvest shelf life is limited. The current study aimed to increase the postharvest shelf life of Red Banana fruits by adopting different postharvest treatments. Fruit bunches of Red Banana were harvested at the mature green stage, separated into hands, precooled, subjected to 12 treatments, and stored in Corrugated Fibre Board boxes till the end of shelf life under ambient conditions. Fruits coated with 10% bee wax + 0.5% clove oil (T₄), fruits subjected to coating with 10% bee wax and packaging with potassium permanganate (T₉), and fruits dipped in hot water at 50°C for 10 minutes and packaging with potassium permanganate (T₁₁) registered the highest shelf life of 18.67 days. The highest TSS of 26.33°Brix was noticed in fruits stored with potassium permanganate (T₈) after 12.67 days of storage, and lowest titratable acidity of 0.19%, and the highest sugar-acid ratio of 79.76 was noticed in control (T₁₂) after 11.33 days of storage. Moreover, the highest vitamin C content (7.74 mg 100 g⁻¹), total sugar content (18.47%), reducing sugar content (15.49%), total carotenoid content (24.13 µg 100 g-¹) was noticed in treatments T₇ (hot water dipping at 50 °C for 10 minutes) after 17.67 days, T₁₀ (coating with 40% aloe vera extract and packaged with potassium permanganate) after 13.33 days, T₄ (coating with 10% bee wax + 0.5% clove oil) after 18.67 days and T₉ (coating with 10% bee wax + potassium permanganate) after 18.67 days of storage respectively. Furthermore, the lowest fungal and bacterial counts were observed in treatments T₂ (dipping in 30ppm sodium hypochlorite solution), T₇ (hot water dipping at 50 °C for 10 minutes), T₉ (coating with 10% bee wax + potassium permanganate), and T₁₀ (coating with 40% aloe vera extract + potassium permanganate). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bee%20wax" title="bee wax">bee wax</a>, <a href="https://publications.waset.org/abstracts/search?q=post-harvest%20treatments" title=" post-harvest treatments"> post-harvest treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20permanganate" title=" potassium permanganate"> potassium permanganate</a>, <a href="https://publications.waset.org/abstracts/search?q=Red%20Banana" title=" Red Banana"> Red Banana</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/183227/response-of-post-harvest-treatments-on-shelf-life-biochemical-and-microbial-quality-of-banana-variety-red-banana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7462</span> Effect of Chitosan and Ascorbic Acid Coating on the Refrigerated Tilapia Fish Fillet (Oreochromis niliticus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jau-Shya%20Lee">Jau-Shya Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rossita%20Shapawi"> Rossita Shapawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vin%20Cent%20Pua"> Vin Cent Pua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tilapia is a popular cultured fresh-water fish in Malaysia. The highly perishable nature of the fish and increasing demand for high-quality ready-to-cook fish has intensified the search for better fish preservation method. Chitosan edible coating has been evident to extend the shelf life of fish fillet. This work was attempted to explore the potential of ascorbic acid in enhancing the shelf life extension ability of chitosan coated Tilapia fillet under refrigeration condition (4 ± 1oC). A 3 2 Factorial Design which comprising of three concentrations of chitosan (1, 1.5 and 2%) and two concentrations of ascorbic acids (2.5 and 5%) was used. The fish fillets were analyzed for total viable count, thiobarbituric acid (TBA) value, pH, aw and colour changes at 3-day interval over 15-day storage. The shelf life of chitosan coated (1.5% and 2%) fillet was increased to 15 days as compared to uncoated fish fillet which can only last for nine days. The inhibition of microbial growth of fish fillet was enhanced with the addition of 5% of ascorbic acids in 2% of chitosan. The TBA value, pH and aw for chitosan coated samples were found lower than that of uncoated sample (p<0.05). The colour stability of the fish fillet was also improved by the composite coating. Overall, 2% of chitosan and 5% of ascorbic acid formed the most effective coating to enhance the quality and to lengthen the shelf life of refrigerated Tilapia fillet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title="ascorbic acid">ascorbic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20coating" title=" edible coating"> edible coating</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20fillet" title=" fish fillet"> fish fillet</a> </p> <a href="https://publications.waset.org/abstracts/74929/effect-of-chitosan-and-ascorbic-acid-coating-on-the-refrigerated-tilapia-fish-fillet-oreochromis-niliticus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7461</span> Preservation and Packaging Techniques for Extending the Shelf Life of Cucumbers: A Review of Methods and Factors Affecting Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Umaro%20Tholley">Abdul Umaro Tholley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preservation and packaging of cucumbers are essential to maintain their shelf life and quality. Cucumbers are a perishable food item that is highly susceptible to spoilage due to their high-water content and delicate nature. Therefore, proper preservation and packaging techniques are crucial to extend their shelf life and prevent economic loss. There are several methods of preserving cucumbers, including refrigeration, canning, pickling, and dehydration. Refrigeration is the most used preservation method, as it slows down the rate of deterioration and maintains the freshness and quality of the cucumbers. Canning and pickling are also popular preservation methods that use heat treatment and acidic solutions, respectively, to prevent microbial growth and increase shelf life. Dehydration involves removing the water content from cucumbers to increase their shelf life, but it may affect their texture and taste. Packaging also plays a vital role in preserving cucumbers. The packaging materials should be selected based on their ability to maintain the quality and freshness of the cucumbers. The most used packaging materials for cucumbers are polyethylene bags, which prevent moisture loss and protect the cucumbers from physical damage. Other packaging materials, such as corrugated boxes and wooden crates, may also be used, but they offer less protection against moisture loss and damage. The quality of cucumbers is affected by several factors, including storage temperature, humidity, and exposure to light. Cucumbers should be stored at temperatures between 7 and 10 °C, with a relative humidity of 90-95%, to maintain their freshness and quality. Exposure to light should also be minimized to prevent the formation of yellowing and decay. In conclusion, the preservation and packaging of cucumbers are essential to maintain their quality and extend their shelf life. Refrigeration, canning, pickling, and dehydration are common preservation methods that can be used to preserve cucumbers. The packaging materials used should be carefully selected to prevent moisture loss and physical damage. Proper storage conditions, such as temperature, humidity, and light exposure, should also be maintained to ensure the quality and freshness of cucumbers. Overall, proper preservation and packaging techniques can help reduce economic loss and provide consumers with high-quality cucumbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cucumbers" title="cucumbers">cucumbers</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation" title=" preservation"> preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/166087/preservation-and-packaging-techniques-for-extending-the-shelf-life-of-cucumbers-a-review-of-methods-and-factors-affecting-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7460</span> Use of Predictive Food Microbiology to Determine the Shelf-Life of Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Tarlak">Fatih Tarlak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predictive microbiology can be considered as an important field in food microbiology in which it uses predictive models to describe the microbial growth in different food products. Predictive models estimate the growth of microorganisms quickly, efficiently, and in a cost-effective way as compared to traditional methods of enumeration, which are long-lasting, expensive, and time-consuming. The mathematical models used in predictive microbiology are mainly categorised as primary and secondary models. The primary models are the mathematical equations that define the growth data as a function of time under a constant environmental condition. The secondary models describe the effects of environmental factors, such as temperature, pH, and water activity (aw) on the parameters of the primary models, including the maximum specific growth rate and lag phase duration, which are the most critical growth kinetic parameters. The combination of primary and secondary models provides valuable information to set limits for the quantitative detection of the microbial spoilage and assess product shelf-life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title="shelf-life">shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20model" title=" growth model"> growth model</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20microbiology" title=" predictive microbiology"> predictive microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/133723/use-of-predictive-food-microbiology-to-determine-the-shelf-life-of-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7459</span> Extended Shelf Life of Chicken Meat Using Carboxymethyl Cellulose Coated Polypropylene Films Containing Zataria multiflora Essential Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Honarvar">Z. Honarvar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farhoodi"> M. Farhoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khani"> M. R. Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shojaee-Aliabadi"> S. Shojaee-Aliabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to evaluate carboxymethyl cellulose (CMC) coated polypropylene (PP) films containing <em>Zataria multiflora</em> (ZEO) essential oils (4%) as an antimicrobial packaging for chicken breast stored at 4 °C. To increase PP film hydrophilicity, it was treated by atmospheric cold plasma prior to coating by CMC. Then, different films including PP, PP/CMC, PP/CMC containing 4% of ZEO were used for the chicken meat packaging in vapor phase. Total viable count and pseudomonads population and oxidative (TBA) changes of the chicken breast were analyzed during shelf life. Results showed that the shelf life of chicken meat kept in films containing ZEO improved from three to nine days compared to the control sample without any direct contact with the film. Study of oxygen barrier properties of bilayer film without essential oils (0.096 cm<sup>3 </sup>μm/m<sup>2</sup> d kPa) in comparison with PP film (416 cm<sup>3 </sup>μm/m<sup>2</sup> d kPa) shows that coating of PP with CMC significantly reduces oxygen permeation of the obtained packaging (P<0.05), which reduced aerobic bacteria growth. Chemical composition of ZEO was also evaluated by gas chromatography–mass spectrometry (GC–MS), and this shows that thymol was the main antimicrobial and antioxidant component of the essential oil. The results revealed that PP/CMC containing ZEO has good potential for application as active food packaging in indirect contact which would also improve sensory properties of product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title="shelf life">shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken%20breast" title=" chicken breast"> chicken breast</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose" title=" carboxymethyl cellulose"> carboxymethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/73868/extended-shelf-life-of-chicken-meat-using-carboxymethyl-cellulose-coated-polypropylene-films-containing-zataria-multiflora-essential-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7458</span> Comparative Effects of Convective Drying on the Qualities of Some Leafy Vegetables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyiola%20Olusola%20Oluwaleye">Iyiola Olusola Oluwaleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20A.%20Adeleye"> Samson A. Adeleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Omojola%20Awogbemi"> Omojola Awogbemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an investigation of the comparative effects of drying on the quality of some leafy vegetables at three different temperatures namely: 50ᵒC, 60ᵒC and 70ᵒC. The vegetables investigated are spinach (Amaranthus cruentus); water leaf (Talinum triangulare); lettuce (Lactuca satuva); and fluted pumpkin (Telfaria occidentalis). These vegetables are available in abundance during raining season and are commonly consumed by average Nigerians. A convective dryer was used for the drying process at the stipulated temperatures which were maintained with the aid of a thermostat. The vegetable samples after washing was cut into smaller sizes of 0.4 cm-0.5 cm and loaded into the drying cage of the convective dryer. The daily duration of the drying is six hours from 9:00 am to 3:00 pm. The dried samples were thereafter subjected to microbial and proximate analyses. The result of the tests shows that the microbial load decreases as the drying temperature increases. As temperature increases, the moisture content and carbohydrate of all the samples decreases while the crude fiber, ash and protein increases. Percentage fat content decreases as drying temperature increases with the exception of fluted pumpkin. The shelf life of the vegetable samples increase with drying temperature, Spinach has the lowest shelf life followed by Fluted Pumpkin, followed by lettuce while Water Leaf has the highest shelf life at the three drying temperatures of 50ᵒC, 60ᵒC and 70ᵒC respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20drying" title="convective drying">convective drying</a>, <a href="https://publications.waset.org/abstracts/search?q=leafy%20vegetables" title=" leafy vegetables"> leafy vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/59995/comparative-effects-of-convective-drying-on-the-qualities-of-some-leafy-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7457</span> Genetic Dissection of QTLs in Intraspecific Hybrids Derived from Muskmelon (Cucumis Melo L.) and Mangalore Melon (Cucumis Melo Var Acidulus) for Shelflife and Fruit Quality Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virupakshi%20Hiremata">Virupakshi Hiremata</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnakar%20M.%20Shet"> Ratnakar M. Shet</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghavendra%20Gunnaiah"> Raghavendra Gunnaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashantha%20A."> Prashantha A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Muskmelon is a health-beneficial and refreshing dessert vegetable with a low shelf life. Mangalore melon, a genetic homeologue of muskmelon, has a shelf life of more than six months and is mostly used for culinary purposes. Understanding the genetics of shelf life, yield and yield-related traits and identification of markers linked to such traits is helpful in transfer of extended shelf life from Mangalore melon to the muskmelon through intra-specific hybridization. For QTL mapping, 276 F2 mapping population derived from the cross Arka Siri × SS-17 was genotyped with 40 polymorphic markers distributed across 12 chromosomes. The same population was also phenotyped for yield, shelf life and fruit quality traits. One major QTL (R2 >10) and fourteen minor QTLs (R2 <10) localized on four linkage groups, governing different traits were mapped in F2 mapping population developed from the intraspecific cross with a LOD > 5.5. The phenotypic varience explained by each locus varied from 3.63 to 10.97 %. One QTL was linked to shelf-life (qSHL-3-1), five QTLs were linked to TSS (qTSS-1-1, qTSS-3-3, qTSS-3-1, qTSS-3-2 and qTSS-1-2), two QTLs for flesh thickness (qFT-3-1, and qFT-3-2) and seven QTLs for fruit yield per vine (qFYV-3-1, qFYV-1-1, qFYV-3-1, qFYV1-1, qFYV-1-3, qFYV2-1 and qFYV6-1). QTL flanking markers may be used for marker assisted introgression of shelf life into muskmelon. Important QTL will be further fine-mapped for identifying candidate genes by QTLseq and RNAseq analysis. Fine-mapping of Important Quantitative Trait Loci (QTL) holds immense promise in elucidating the genetic basis of complex traits. Leveraging advanced techniques like QTLseq and RNA sequencing (RNA seq) is crucial for this endeavor. QTLseq combines next-generation sequencing with traditional QTL mapping, enabling precise identification of genomic regions associated with traits of interest. Through high-throughput sequencing, QTLseq provides a detailed map of genetic variations linked to phenotypic variations, facilitating targeted investigations. Moreover, RNA seq analysis offers a comprehensive view of gene expression patterns in response to specific traits or conditions. By comparing transcriptomes between contrasting phenotypes, RNA seq aids in pinpointing candidate genes underlying QTL regions. Integrating QTLseq with RNA seq allows for a multi-dimensional approach, coupling genetic variation with gene expression dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QTL" title="QTL">QTL</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS" title=" TSS"> TSS</a>, <a href="https://publications.waset.org/abstracts/search?q=muskmelon%20and%20Mangalore%20melon" title=" muskmelon and Mangalore melon"> muskmelon and Mangalore melon</a> </p> <a href="https://publications.waset.org/abstracts/183389/genetic-dissection-of-qtls-in-intraspecific-hybrids-derived-from-muskmelon-cucumis-melo-l-and-mangalore-melon-cucumis-melo-var-acidulus-for-shelflife-and-fruit-quality-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7456</span> Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matar%20Celine">Matar Celine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaucel%20Sebastien"> Gaucel Sebastien</a>, <a href="https://publications.waset.org/abstracts/search?q=Gontard%20Nathalie"> Gontard Nathalie</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilbert%20Stephane"> Guilbert Stephane</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillard%20Valerie"> Guillard Valerie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20losses%20and%20wastes" title="food losses and wastes">food losses and wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20atmosphere%20packaging" title=" modified atmosphere packaging"> modified atmosphere packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life%20prediction" title=" shelf life prediction"> shelf life prediction</a> </p> <a href="https://publications.waset.org/abstracts/82966/predicting-food-waste-and-losses-reduction-for-fresh-products-in-modified-atmosphere-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7455</span> Evaluation of Oxidative Changes in Soybean Oil During Shelf-Life by Physico-Chemical Methods and Headspace-Liquid Phase Microextraction (HS-LPME) Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Enteshari">Maryam Enteshari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kooshan%20Nayebzadeh"> Kooshan Nayebzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdorreza%20Mohammadi"> Abdorreza Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV), and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4˚C between p-AV and TBA (r2=0.99). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=headspace-liquid%20phase%20microextraction" title="headspace-liquid phase microextraction">headspace-liquid phase microextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title=" shelf-life"> shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/33686/evaluation-of-oxidative-changes-in-soybean-oil-during-shelf-life-by-physico-chemical-methods-and-headspace-liquid-phase-microextraction-hs-lpme-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7454</span> Occurence And Management Of Coliform Bacteria On Tomatoes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cho%20Achidi">Cho Achidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato is a crucial food crop significantly contributes to global food and nutrition security. However, postharvest losses severely limit its role. Therefore, it is necessary to develop sustainable strategies to minimize these losses and improve the shelf-life of tomato fruits. One of the major concerns is bacterial infections, particularly by faecal coliform bacteria, which can cause food poisoning and illnesses like diarrhoea and dysentery. This study seeks to identify the presence of coliform bacteria on tomato fruits in fields and markets in Muea, Buea Municipality. The study also evaluated different management strategies to reduce the bacterial incidence and load on tomato fruits. A total of 200 fruits were sampled for both the coliform survey and shelf-life analysis. Ten farmers and traders provided samples, including asymptomatic and symptomatic tomato fruits. The samples designated for shelf-life analysis were treated with Aquatab, warm water, lemon, and onion. The results indicated that out of the 80 symptomatic samples collected, 12.5% contained faecal and total coliform species. Among the ten farms sampled, 14% were infected with coliform bacteria, with the highest infestation rate of 60% recorded in field 4. Furthermore, 15% of the asymptomatic tomato fruits were found to be infected by coliform bacteria. Regarding the management strategies, Aquatabs exhibited the highest efficacy in reducing the incidence of coliform bacteria on tomato fruits, followed by onion and lemon extracts. Although hot water treatment effectively removed bacteria from the fruits, damaging the cell wall negatively affected their shelf-life. Overall, this study emphasizes the severity of coliform bacterial pathogens in the Muea area, particularly their occurrence on asymptomatic tomatoes, which poses a significant concern for plant quarantine services. It also demonstrates potential options for mitigating this bacterial challenge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf-life%20analysis" title=" shelf-life analysis"> shelf-life analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20and%20nutrition%20security" title=" food and nutrition security"> food and nutrition security</a>, <a href="https://publications.waset.org/abstracts/search?q=coliform%20bbacteria" title=" coliform bbacteria"> coliform bbacteria</a> </p> <a href="https://publications.waset.org/abstracts/168238/occurence-and-management-of-coliform-bacteria-on-tomatoes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7453</span> Properties of Rhizophora Charcoal for Product Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanutpong%20Phriwanrat">Tanutpong Phriwanrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigated the properties of Rhizophora charcoal for product design on 3 aspects: electrical conductor, impurity absorption, and fresh fruit shelf life. After the study, the properties of Rhizophora charcoal were applied to produce local product model at Ban Yisarn, Ampawa District, Samudsongkram Province which can add value to the Rhizophora charcoal as one of the OTOP (One-Tambon-One product). The results showed that the Rhizophora charcoal is not an electrical conductor but good liquid impurity absorber and it can extend fresh fruit shelf life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20design" title=" product design"> product design</a>, <a href="https://publications.waset.org/abstracts/search?q=properties%20of%20rhizophora" title=" properties of rhizophora"> properties of rhizophora</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizophora%20charcoal" title=" rhizophora charcoal"> rhizophora charcoal</a> </p> <a href="https://publications.waset.org/abstracts/6689/properties-of-rhizophora-charcoal-for-product-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7452</span> Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20B.%20Gon%C3%A7alves">R. F. B. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20N.%20Iwama"> E. N. Iwama</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20F.%20F.%20Rocco"> J. A. F. F. Rocco</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Iha"> K. Iha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title="shelf-life">shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozawa%20method" title=" Ozawa method"> Ozawa method</a>, <a href="https://publications.waset.org/abstracts/search?q=Kissinger%20method" title=" Kissinger method"> Kissinger method</a>, <a href="https://publications.waset.org/abstracts/search?q=LAMMPS%20software" title=" LAMMPS software"> LAMMPS software</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a> </p> <a href="https://publications.waset.org/abstracts/99235/aging-evaluation-of-ammonium-perchloratehydroxyl-terminated-polybutadiene-based-solid-rocket-engine-by-reactive-molecular-dynamics-simulation-and-thermal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7451</span> Combined Effects of Thymol, Carvacrol and Packaging on the Shelf-Life of Marinated Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Layal%20Karam">Layal Karam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayan%20Roustom"> Rayan Roustom</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20G.%20%20Abiad"> Mohamad G. Abiad</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahra%20El-Obeid"> Tahra El-Obeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20N.%20%20Savvaidis"> Ioannis N. Savvaidis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for marinated chicken worldwide, is continuously growing. To date, limited data on addition of active components of Essential Oils (EOs) to marinades for chicken preservation are available. The antimicrobial effect of carvacrol and thymol, added at 0.4 and 0.8% v/w to marinated fresh chicken, stored in air and under vacuum packaging (VP), for 21 days at 4°C, was examined. The samples were monitored for microbiological (total viable count (TVC), lactic acid bacteria (LAB), Brochothrix thermosphacta, Pseudomonas spp., total coliforms, Escherichia coli, yeasts and molds) and sensory attributes (odor characteristics). Our data supports that among the tested microorganisms, Pseudomonas spp., LAB and B. thermosphacta were the most dominant microbiota in the marinated chicken samples. Additionally, the use of active EOs components, especially the higher concentration (0.8% v/w) in combination with VP, retarded the growth of spoilage microbiota and resulted in a significant reduction of about 2.9-3.1 log cfu/g and a microbiological shelf-life extension of marinated chicken by > 6 days, as judged by TVC data. Interestingly, the combination of active components of EOs at the lower concentration (0.4% v/w) and packaging (air or vacuum) resulted in a significant sensorial shelf-life extension of 15 and >21 days, as compared to the controls’ shelf-life of 9 days. The results of our study demonstrated the potential of the active components, carvacrol and thymol, as natural effective antimicrobial hurdles to control the growth of spoilage microorganisms in marinated chicken meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken" title="chicken">chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils%20compounds" title=" essential oils compounds"> essential oils compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=marination" title=" marination"> marination</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20spoilage" title=" meat spoilage"> meat spoilage</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation" title=" preservation"> preservation</a> </p> <a href="https://publications.waset.org/abstracts/97038/combined-effects-of-thymol-carvacrol-and-packaging-on-the-shelf-life-of-marinated-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7450</span> Effects of Ethylene Scavengering Packaging on the Shelf Life of Edible Mushroom </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Javanmard">Majid Javanmard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible mushrooms are those agricultural products which contain high quantity of protein and can have special role in human diet. So search for methods to increase their shelf life is important. One of these strategies can be use of active packaging for absorb the ethylene which has been studied in present study. In this study, initially, production of impregnating zeolite with potassium permanganate has been studied with zeolite clinoptiolite available in iran. After that, these ethylene scavengers were placed in the package of edible mushrooms and then transferred to the refrigerator with temperature 4c for a period of 20 days. Each 5 days, several experiments accomplished on edible mushrooms such as weight loss, moisture content, color, texture, bacterial experiments and sensory evaluation. After production of impregnating zeolite with potassium permanganate (with a concentration of %2.5, %5, %7.5, %10 and %12.5) by zeolite type clinoptiolite (with mesh 35 and 60), samples have been analyzed with gas chromatography and titration with sodium oxalate. The results showed that zeolite by concentration of %5, %7.5 and %10 potassium permanganate and mesh 60 have a higher efficiency. Results from the experiments on edible mushrooms proved that impregnated zeolite with potassium permanganate have a meaningful influence in prevent the weight loss, decrease of moisture content and L-value, increase of a-value and overall color change (ΔE) and decrease of firmness texture of mushrooms. In addition, these absorbents can influence on decrease microbial load (mesophilic bacteria) rather than control. Generally, concluded that the impregnated zeolite with 10% permanganate potassium has a high efficiency on increase the shelf life of fresh edible mushrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20packaging" title="active packaging">active packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20scavenger" title=" ethylene scavenger"> ethylene scavenger</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite%20clinoptiolite" title=" zeolite clinoptiolite"> zeolite clinoptiolite</a>, <a href="https://publications.waset.org/abstracts/search?q=permanganate%20potassium" title=" permanganate potassium"> permanganate potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/20262/effects-of-ethylene-scavengering-packaging-on-the-shelf-life-of-edible-mushroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7449</span> Control of the Sustainability of Decorative Topping for Bakery in Order to Extend the Shelf-Life of the Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radovan%20%C4%8Cobanovi%C4%87">Radovan Čobanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20Rankov%20%C5%A0icar"> Milica Rankov Šicar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern bakery various supplements are used to attract more customers. Analyzed sample decorative toppings are consisted of flax seeds, corn grits, oatmeal, wheat flakes, sesame seeds, sunflower seeds, soybean sprouts are used as decoration for the bread. Our goal was to extend the product shelf life based on the analysis. According to the plan of sustainability it was defined that sample which already had expired shelf life had to be stored for 5 months at 25°C and analyzed every month from the day of reception until spoilage occurs. Samples were subjected to sensory analysis (appearance, odor, taste, color, and consistency), microbiological analysis (Salmonella spp., Bacillus cereus, Enterobacteriaceae and moulds) and chemistry analysis (free fatty acids (as oleic), peroxide number, water content and degree of acidity). All analyses were tested according: sensory analysis ISO 6658, Salmonella spp ISO 6579, Bacillus cereus ISO 7932, Enterobacteriaceae ISO 21528-2 and moulds ISO 21527-1, free fatty acids (as oleic) ISO 660, peroxide number ISO 3960, water content and degree of acidity Serbian ordinance on the methods of chemical analysis. After five months of storage, there had been the first changes concerning of sensory properties of the product. In the sample were visible worms and creations which look like spider nets linking seeds and cereal. The sample had smell on rancid and pungent. The results of microbiological analysis showed that Salmonella spp was not detected, Enterobacteriaceae were < 10 cfu/g during all 5 months but in fifth month Bacillus cereus and moulds occurred 700 cfu/g and 1500 cfu/g respectively. Chemical analyzes showed that the water content did not exceed a maximum of 14%. The content of free fatty acids ranged from 3.06 to 3.26%, degree of acidity from 3.69 to 4.9. With increasing degree of acidity the degradation of the sample and the activity of microorganisms was increased which led to the formation of acid reaction which is accompanied by the appearance of unpleasant odor and taste. Based on the obtained results it can be concluded that this product can have longer shelf life for four months than shelf life which is already defined because there are no changes that could have influence on decision of customers when purchase of this product is concerned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bakery%20products" title="bakery products">bakery products</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20of%20shelf%20life" title=" extension of shelf life"> extension of shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20and%20chemical%20and%20microbiological%20analyses" title=" sensory and chemical and microbiological analyses"> sensory and chemical and microbiological analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/35280/control-of-the-sustainability-of-decorative-topping-for-bakery-in-order-to-extend-the-shelf-life-of-the-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7448</span> Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-Cut Papaya (Carica papaya)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basharat%20Yousuf">Basharat Yousuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhaya%20K.%20Srivastava"> Abhaya K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Psyllium gum alone and in combination with sunflower oil was investigated as a possible alternative edible coating for improvement of quality and shelf life of fresh-cut papaya. Different concentrations including 0.5, 1 and 1.5 percent of psyllium gum were used for coating of fresh-cut papaya. In some samples, refined sunflower oil was used as a lipid component to increase the effectiveness of coating in terms of water barrier properties. Soya lecithin was used as an emulsifier in coatings containing oil. Pretreatment with 1% calcium chloride was given to maintain the firmness of fresh-cut papaya cubes. 1% psyllium gum coating was found to yield better results. Further, addition of oil helped to maintain the quality and acted as a barrier to water vapour, therefore, minimizing the weight loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh-cut" title=" fresh-cut"> fresh-cut</a>, <a href="https://publications.waset.org/abstracts/search?q=gum" title=" gum"> gum</a>, <a href="https://publications.waset.org/abstracts/search?q=papaya" title=" papaya"> papaya</a>, <a href="https://publications.waset.org/abstracts/search?q=psylllium" title=" psylllium"> psylllium</a> </p> <a href="https://publications.waset.org/abstracts/26199/psyllium-plantago-gum-as-an-effective-edible-coating-to-improve-quality-and-shelf-life-of-fresh-cut-papaya-carica-papaya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7447</span> Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee">In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park"> Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyu%20Park"> Dae-Gyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20and%20insulation" title="sound absorption and insulation">sound absorption and insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator%20covering%20shelf%20trim" title=" insulator covering shelf trim"> insulator covering shelf trim</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20fabric" title=" nonwoven fabric"> nonwoven fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title=" honeycomb"> honeycomb</a> </p> <a href="https://publications.waset.org/abstracts/59886/development-and-sound-absorption-and-insulation-performance-evaluation-of-nonwoven-fabric-material-including-paper-honeycomb-structure-for-insulator-covering-shelf-trim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7446</span> Application of Chitosan as a Natural Antimicrobial Compound in Stirred Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Hesari">Javad Hesari</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Donyatalab"> Tahereh Donyatalab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sodeif%20Azadmard%20Damirchi"> Sodeif Azadmard Damirchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rezaii%20Mokaram"> Reza Rezaii Mokaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Rafat"> Abbas Rafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research was to increase shelf life of stirred yoghurt by adding chitosan as a naturally antimicrobial compound. Chitosan were added at different concentrations (0.1, 0.3 and 0.6%) to the stirred yoghurt. Samples were stored at refrigerator and room temperature for 3 weeks and tested with respect of microbial properties (counts of starter bacteria, mold and yeast, coliforms and E. coli). Starter bacteria and yeast counts in samples containing chitosan was significantly (p<0.05) lower than those in control samples and its antibacterial and anti-yeast effects increased with increasing concentration of chitosan. The lowest counts of starter bacteria and yeast were observed at samples whit 0.6% of chitosan. The Results showed Chitosan had a positive effect on increasing shelf life and controlling of yeasts and therefore can be used as a natural preservative in stirred yogurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20preservative" title=" natural preservative"> natural preservative</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred%20yoghurt" title=" stirred yoghurt"> stirred yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=self-life" title=" self-life"> self-life</a> </p> <a href="https://publications.waset.org/abstracts/32001/application-of-chitosan-as-a-natural-antimicrobial-compound-in-stirred-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7445</span> Investigating the Demand of Short-Shelf Life Food Products for SME Wholesalers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yamini%20Raju">Yamini Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Parminder%20S.%20Kang"> Parminder S. Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Moroz"> Adam Moroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ross%20Clement"> Ross Clement</a>, <a href="https://publications.waset.org/abstracts/search?q=Alistair%20Duffy"> Alistair Duffy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashley%20Hopwell"> Ashley Hopwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate prediction of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. Current research in this area focused on limited number of factors specific to a single product or a business type. This paper gives an overview of the current literature on the variability factors used to predict demand and the existing forecasting techniques of short shelf life products. It then extends it by adding new factors and investigating if there is a time lag and possibility of noise in the orders. It also identifies the most important factors using correlation and Principal Component Analysis (PCA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20forecasting" title="demand forecasting">demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=deteriorating%20products" title=" deteriorating products"> deteriorating products</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20wholesalers" title=" food wholesalers"> food wholesalers</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=variability%20factors" title=" variability factors"> variability factors</a> </p> <a href="https://publications.waset.org/abstracts/23878/investigating-the-demand-of-short-shelf-life-food-products-for-sme-wholesalers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7444</span> Increase in the Shelf Life Anchovy (Engraulis ringens) from Flaying then Bleeding in a Sodium Citrate Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santos%20Maza">Santos Maza</a>, <a href="https://publications.waset.org/abstracts/search?q=Enzo%20Aldoradin"> Enzo Aldoradin</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Pariona"> Carlos Pariona</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliud%20Arpi"> Eliud Arpi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Rosales"> Maria Rosales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to investigate the effect of flaying then bleeding anchovy (Engraulis ringens) immersed within a sodium citrate solution. Anchovy is a pelagic fish that readily deteriorates due to its high content of polyunsaturated fatty acids. As such, within the Peruvian food industry, the shelf life of frozen anchovy is explicitly 6 months, this short duration imparts a barrier to use for direct consumption human. Thus, almost all capture of anchovy by the fishing industry is eventually used in the production of fishmeal. We offer this an alternative to its typical production process in order to increase shelf life. In the present study, 100 kg of anchovies were captured and immediately mixed with ice on ship, maintaining a high quality sensory metric (e.g., with color blue in back) while still arriving for processing less than 2 h after capture. Anchovies with fat content of 3% were immediately flayed (i.e., reducing subcutaneous fat), beheaded, gutted and bled (i.e., removing hemoglobin) by immersion in water (Control) or in a solution of 2.5% sodium citrate (treatment), then subsequently frozen at -30 °C for 8 h in 2 kg batches. Subsequent glazing and storage at -25 °C for 14 months completed the experiments parameters. The peroxide value (PV), acidity (A), fatty acid profile (FAP), thiobarbituric acid reactive substances (TBARS), heme iron (HI), pH and sensory attributes of the samples were evaluated monthly. The results of the PV, TBARS, A, pH and sensory analyses displayed significant differences (p<0.05) between treatment and control sample; where the sodium citrate treated samples showed increased preservation features. Specifically, at the beginning of the study, flayed, beheaded, gutted and bled anchovies displayed low content of fat (1.5%) with moderate amount of PV, A and TBARS, and were not rejected by sensory analysis. HI values and FAP displayed varying behavior, however, results of HI did not reveal a decreasing trend. This result is indicative of the fact that levels of iron were maintained as HI and did not convert into no heme iron, which is known to be the primary catalyst of lipid oxidation in fish. According to the FAP results, the major quantity of fatty acid was of polyunsaturated fatty acid (PFA) followed by saturated fatty acid (SFA) and then monounsaturated fatty acid (MFA). According to sensory analysis, the shelf life of flayed, beheaded and gutted anchovy (control and treatment) was 14 months. This shelf life was reached at laboratory level because high quality anchovies were used and immediately flayed, beheaded, gutted, bled and frozen. Therefore, it is possible to maintain the shelf life of anchovies for a long time. Overall, this method displayed a large increase in shelf life relative to that commonly seen for anchovies in this industry. However, these results should be extrapolated at industrial scales to propose better processing conditions and improve the quality of anchovy for direct human consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citrate%20sodium%20solution" title="citrate sodium solution">citrate sodium solution</a>, <a href="https://publications.waset.org/abstracts/search?q=heme%20iron" title=" heme iron"> heme iron</a>, <a href="https://publications.waset.org/abstracts/search?q=polyunsaturated%20fatty%20acids" title=" polyunsaturated fatty acids"> polyunsaturated fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life%20of%20frozen%20anchovy" title=" shelf life of frozen anchovy"> shelf life of frozen anchovy</a> </p> <a href="https://publications.waset.org/abstracts/55671/increase-in-the-shelf-life-anchovy-engraulis-ringens-from-flaying-then-bleeding-in-a-sodium-citrate-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7443</span> Damage to Strawberries Caused by Simulated Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20La%20Scalia">G. La Scalia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Enea"> M. Enea</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Micale"> R. Micale</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Corona"> O. Corona</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Settanni"> L. Settanni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbiological%20analysis" title="microbiological analysis">microbiological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20damage" title=" transport damage"> transport damage</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/20284/damage-to-strawberries-caused-by-simulated-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=249">249</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=250">250</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shelf%20life&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>