CINXE.COM

Search results for: Iain Chapple

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Iain Chapple</title> <meta name="description" content="Search results for: Iain Chapple"> <meta name="keywords" content="Iain Chapple"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Iain Chapple" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Iain Chapple"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Iain Chapple</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Rheumatoid Arthritis, Periodontitis and the Subgingival Microbiome: A Circular Relationship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Lopez-Oliva">Isabel Lopez-Oliva</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshay%20Paropkari"> Akshay Paropkari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Saraswat"> Shweta Saraswat</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Serban"> Stefan Serban</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20de%20Pablo"> Paola de Pablo</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Raza"> Karim Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Filer"> Andrew Filer</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20Chapple"> Iain Chapple</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Dietrich"> Thomas Dietrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Grant"> Melissa Grant</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnima%20Kumar"> Purnima Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: We aimed to explicate the role of the subgingival microbiome in the causal link between rheumatoid arthritis (RA) and periodontitis (PD). Methods: Subjects with/without RA and with/without PD were randomized for treatment with scaling and root planing (SRP) or oral hygiene instructions. Subgingival biofilm, gingival crevicular fluid, and serum were collected at baseline and at 3- and 6-months post-operatively. Correlations were generated between 72 million 16S rDNA sequences, immuno-inflammatory mediators, circulating antibodies to oral microbial antigens, serum inflammatory molecules, and clinical metrics of RA. The dynamics of inter-microbial and host-microbial interactions were modeled using differential network analysis. Results: RA superseded periodontitis as a determinant of microbial composition, and DAS28 score superseded the severity of periodontitis as a driver of microbial assemblages (p=0.001, ANOSIM). RA subjects evidenced higher serum anti-PPAD (p=0.0013), anti-Pg-enolase (p=0.0031), anti-RPP3, anti- Pg-OMP and anti- Pi-OMP (p=0.001) antibodies than non-RA controls (with and without periodontitis). Following SRP, bacterial networks anchored by IL-1b, IL-4, IL-6, IL-10, IL-13, MIP-1b, and PDGF-b underwent ≥5-fold higher rewiring; and serum antibodies to microbial antigens decreased significantly. Conclusions: Our data suggest a circular relationship between RA and PD, beginning with an RA-influenced dysbiosis within the healthy subgingival microbiome that leads to exaggerated local inflammation in periodontitis and circulating antibodies to periodontal pathogens and positive correlation between severity of periodontitis and RA activity. Periodontal therapy restores host-microbial homeostasis, reduces local inflammation, and decreases circulating microbial antigens. Our data highlights the importance of integrating periodontal care into the management of RA patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title="rheumatoid arthritis">rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal" title=" periodontal"> periodontal</a>, <a href="https://publications.waset.org/abstracts/search?q=subgingival" title=" subgingival"> subgingival</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20sequence%20analysis" title=" DNA sequence analysis"> DNA sequence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20microbiome" title=" oral microbiome"> oral microbiome</a> </p> <a href="https://publications.waset.org/abstracts/158914/rheumatoid-arthritis-periodontitis-and-the-subgingival-microbiome-a-circular-relationship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Environment-Specific Political Risk Discourse, Environmental Reputation, and Stock Price Crash Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sohanur%20Rahman">Sohanur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabeth%20Sinnewe"> Elisabeth Sinnewe</a>, <a href="https://publications.waset.org/abstracts/search?q=Larelle%20%28Ellie%29%E2%80%AFChapple"> Larelle (Ellie) Chapple</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Osborne"> Sarah Osborne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greater political attention to global climate change exposes firms to a higher level of political uncertainty, which can lead to adverse capital market consequences. However, a higher level of discourse on environment-specific political risk (EPR) between management and investors can mitigate information asymmetry, followed by less stock price crash risk. This study examines whether EPR discourse in discourse in the earnings conference calls (ECC) reduces firm-level stock price crash risk in the US market. This research also explores if adverse disclosures via media channels further moderates the association between EPR on crash risk. Employing a dataset of 28,933 firm-year observations from 2002 to 2020, the empirical analysis reveals that EPR discourse in ECC reduces future stock price crash risk. However, adverse disclosures via media channels can offset the favourable effect of EPR discourse on crash risk. The results are robust to the potential endogeneity concern in a quasi-natural experiment setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earnings%20conference%20calls" title="earnings conference calls">earnings conference calls</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=environment-specific%20political%20risk%20discourse" title=" environment-specific political risk discourse"> environment-specific political risk discourse</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20disclosures" title=" environmental disclosures"> environmental disclosures</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20asymmetry" title=" information asymmetry"> information asymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=reputation%20risk" title=" reputation risk"> reputation risk</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20price%20crash%20risk" title=" stock price crash risk"> stock price crash risk</a> </p> <a href="https://publications.waset.org/abstracts/152590/environment-specific-political-risk-discourse-environmental-reputation-and-stock-price-crash-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Twelfth Rib as a Landmark for Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jake%20Tempo">Jake Tempo</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgina%20Williams"> Georgina Williams</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20Robertson"> Iain Robertson</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Pascoe"> Claire Pascoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Darren%20Rama"> Darren Rama</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Cetti"> Richard Cetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The twelfth rib is commonly used as a landmark for surgery; however, its variability in length has not been formally studied. The highly variable rib length provides a challenge for urologists seeking a consistent landmark for percutaneous nephrolithotomy and retroperitoneoscopic surgery. Methods and materials: We analysed CT scans of 100 adults who had imaging between 23rd March and twelfth April 2020 at an Australian Hospital. We measured the distance from the mid-sagittal line to the twelfth rib tip in the axial plane as a surrogate for true rib length. We also measured the distance from the twelfth rib tip to the kidney, spleen, and liver. Results: Length from the mid-sagittal line to the right twelfth rib tip varied from 46 (percentile 95%CI 40 to 57) to 136mm (percentile 95%CI 133 to 138). On the left, the distances varied from 55 (percentile 95%CI 50 to 64) to 134mm (percentile 95%CI 131 to 135). Twenty-three percent of people had an organ lying between the tip of the twelfth rib and the kidney on the right, and 11% of people had the same finding on the left. Conclusion: The twelfth rib is highly variable in its length. Similar variability was recorded in the distance from the tip to intra-abdominal organs. Due to the frequency of organs lying between the tip of the rib and the kidney, it should not be used as a landmark for accessing the kidney without prior knowledge of an individual patient’s anatomy, as seen on imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCNL" title="PCNL">PCNL</a>, <a href="https://publications.waset.org/abstracts/search?q=rib" title=" rib"> rib</a>, <a href="https://publications.waset.org/abstracts/search?q=anatomy" title=" anatomy"> anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrolithotomy" title=" nephrolithotomy"> nephrolithotomy</a> </p> <a href="https://publications.waset.org/abstracts/145162/the-twelfth-rib-as-a-landmark-for-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Survey and Theory of the Effects of Various Hamlet Videos on Viewers’ Brains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Pizzato">Mark Pizzato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> How do ideas, images, and emotions in stage-plays and videos affect us? Do they evoke a greater awareness (or cognitive reappraisal of emotions) through possible shifts between left-cortical, right-cortical, and subcortical networks? To address these questions, this presentation summarizes the research of various neuroscientists, especially Bernard Baars and others involved in Global Workspace Theory, Matthew Lieberman in social neuroscience, Iain McGilchrist on left and right cortical functions, and Jaak Panksepp on the subcortical circuits of primal emotions. Through such research, this presentation offers an ‘inner theatre’ model of the brain, regarding major hubs of neural networks and our animal ancestry. It also considers recent experiments, by Mario Beauregard, on the cognitive reappraisal of sad, erotic, and aversive film clips. Finally, it applies the inner-theatre model and related research to survey results of theatre students who read and then watched the ‘To be or not to be’ speech in 8 different video versions (from stage and screen productions) of William Shakespeare’s Hamlet. Findings show that students become aware of left-cortical, right-cortical, and subcortical brain functions—and shifts between them—through staging and movie-making choices in each of the different videos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20reappraisal" title="cognitive reappraisal">cognitive reappraisal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamlet" title=" Hamlet"> Hamlet</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroscience" title=" neuroscience"> neuroscience</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakespeare" title=" Shakespeare"> Shakespeare</a>, <a href="https://publications.waset.org/abstracts/search?q=theatre" title=" theatre"> theatre</a> </p> <a href="https://publications.waset.org/abstracts/81105/a-survey-and-theory-of-the-effects-of-various-hamlet-videos-on-viewers-brains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Quantifying the Methods of Monitoring Timers in Electric Water Heater for Grid Balancing on Demand-Side Management: A Systematic Mapping Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yamamah%20Abdulrazaq">Yamamah Abdulrazaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahieb%20A.%20Abrahim"> Lahieb A. Abrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20E.%20Davies"> Samuel E. Davies</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20Shewring"> Iain Shewring</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electric water heater (EWH) is a powerful appliance that uses electricity in residential, commercial, and industrial settings, and the ability to control them properly will result in cost savings and the prevention of blackouts on the national grid. This article discusses the usage of timers in EWH control strategies for demand-side management (DSM). Up to the authors' knowledge, there is no systematic mapping review focusing on the utilisation of EWH control strategies in DSM has yet been conducted. Consequently, the purpose of this research is to identify and examine main papers exploring EWH procedures in DSM by quantifying and categorising information with regard to publication year and source, kind of methods, and source of data for monitoring control techniques. In order to answer the research questions, a total of 31 publications published between 1999 and 2023 were selected depending on specific inclusion and exclusion criteria. The data indicate that direct load control (DLC) has been somewhat more prevalent than indirect load control (ILC). Additionally, the mixing method is much lower than the other techniques, and the proportion of Real-time data (RTD) to non-real-time data (NRTD) is about equal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20side%20management" title="demand side management">demand side management</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20load%20control" title=" direct load control"> direct load control</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20water%20heater" title=" electric water heater"> electric water heater</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20load%20control" title=" indirect load control"> indirect load control</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20real-time%20data" title=" non real-time data"> non real-time data</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20data" title=" real-time data"> real-time data</a> </p> <a href="https://publications.waset.org/abstracts/166279/quantifying-the-methods-of-monitoring-timers-in-electric-water-heater-for-grid-balancing-on-demand-side-management-a-systematic-mapping-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Holland">Matthew Holland</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Everett"> Jason Everett</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Cox"> Martin Cox</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20Suthers"> Iain Suthers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20reef" title="artificial reef">artificial reef</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=forage%20fish" title=" forage fish"> forage fish</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-beam" title=" multi-beam"> multi-beam</a>, <a href="https://publications.waset.org/abstracts/search?q=planktivorous%20fish" title=" planktivorous fish"> planktivorous fish</a>, <a href="https://publications.waset.org/abstracts/search?q=reef%20fish" title=" reef fish"> reef fish</a>, <a href="https://publications.waset.org/abstracts/search?q=schooling" title=" schooling"> schooling</a> </p> <a href="https://publications.waset.org/abstracts/110547/planktivorous-fish-schooling-responses-to-current-at-natural-and-artificial-reefs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayson%20Cheyne">Jayson Cheyne</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Butler"> David Butler</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20Bomphray"> Iain Bomphray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20safety" title="battery safety">battery safety</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20runaway" title=" thermal runaway"> thermal runaway</a> </p> <a href="https://publications.waset.org/abstracts/162329/mitigation-of-lithium-ion-battery-thermal-runaway-propagation-through-the-use-of-phase-change-materials-containing-expanded-graphite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Measuring the Resilience of e-Governments Using an Ontology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onyekachi%20Onwudike">Onyekachi Onwudike</a>, <a href="https://publications.waset.org/abstracts/search?q=Russell%20Lock"> Russell Lock</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20Phillips"> Iain Phillips</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variability that exists across governments, her departments and the provisioning of services has been areas of concern in the E-Government domain. There is a need for reuse and integration across government departments which are accompanied by varying degrees of risks and threats. There is also the need for assessment, prevention, preparation, response and recovery when dealing with these risks or threats. The ability of a government to cope with the emerging changes that occur within it is known as resilience. In order to forge ahead with concerted efforts to manage reuse and integration induced risks or threats to governments, the ambiguities contained within resilience must be addressed. Enhancing resilience in the E-Government domain is synonymous with reducing risks governments face with provisioning of services as well as reuse of components across departments. Therefore, it can be said that resilience is responsible for the reduction in government’s vulnerability to changes. In this paper, we present the use of the ontology to measure the resilience of governments. This ontology is made up of a well-defined construct for the taxonomy of resilience. A specific class known as ‘Resilience Requirements’ is added to the ontology. This class embraces the concept of resilience into the E-Government domain ontology. Considering that the E-Government domain is a highly complex one made up of different departments offering different services, the reliability and resilience of the E-Government domain have become more complex and critical to understand. We present questions that can help a government access how prepared they are in the face of risks and what steps can be taken to recover from them. These questions can be asked with the use of queries. The ontology focuses on developing a case study section that is used to explore ways in which government departments can become resilient to the different kinds of risks and threats they may face. A collection of resilience tools and resources have been developed in our ontology to encourage governments to take steps to prepare for emergencies and risks that a government may face with the integration of departments and reuse of components across government departments. To achieve this, the ontology has been extended by rules. We present two tools for understanding resilience in the E-Government domain as a risk analysis target and the output of these tools when applied to resilience in the E-Government domain. We introduce the classification of resilience using the defined taxonomy and modelling of existent relationships based on the defined taxonomy. The ontology is constructed on formal theory and it provides a semantic reference framework for the concept of resilience. Key terms which fall under the purview of resilience with respect to E-Governments are defined. Terms are made explicit and the relationships that exist between risks and resilience are made explicit. The overall aim of the ontology is to use it within standards that would be followed by all governments for government-based resilience measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E-Government" title="E-Government">E-Government</a>, <a href="https://publications.waset.org/abstracts/search?q=Ontology" title=" Ontology"> Ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=Relationships" title=" Relationships"> Relationships</a>, <a href="https://publications.waset.org/abstracts/search?q=Resilience" title=" Resilience"> Resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=Risks" title=" Risks"> Risks</a>, <a href="https://publications.waset.org/abstracts/search?q=Threats" title=" Threats"> Threats</a> </p> <a href="https://publications.waset.org/abstracts/34229/measuring-the-resilience-of-e-governments-using-an-ontology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Healthcare Learning From Near Misses in Aviation Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nick%20Woodier">Nick Woodier</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Sampson"> Paul Sampson</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20Moppett"> Iain Moppett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: For years, healthcare across the world has recognised that patients are coming to harm from the very processes meant to help them. In response, healthcare tells itself that it needs to ‘be more like aviation.’ Aviation safety is highly regarded by those in healthcare and is seen as an exemplar. Specifically, healthcare is keen to learn from how aviation uses near misses to make their industry safer. Healthcare is rife with near misses; however, there has been little progress addressing them, with most research having focused on reporting. Addressing the factors that contribute to near misses will potentially help reduce the number of significant, harm patientsafety incidents. While the healthcare literature states the need to learn from aviation’s use of near misses, there is nothing that describes how best to do this. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from aviation to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how aviation, amongst other safety-critical industries, manages near misses. Results: Twelve aviation interviews contributed to the GT across passenger airlines, air traffic control, and bodies involved in policy, regulation, and investigation. The scoping review identified 83 articles across a range of safety-critical industries, but only seven focused on aviation. The GT identified that aviation interprets the term ‘near miss’ in different ways, commonly using it to specifically refer to near-miss air collisions, also known as Airproxes. Other types of near misses exist, such as health and safety, but the reporting of these and the safety climate associated with them is not as mature. Safety culture in aviation was regularly discussed, with evidence that culture varies depending on which part of the industry is being considered (e.g., civil vs. business aviation). Near misses are seen as just one part of an extensive safety management system, but processes to support their reporting and their analysis are not consistent. Their value alone is also questionable, with the challenge to long-held beliefs originating from the ‘common cause hypothesis.’ Conclusions: There is learning that healthcare can take from how parts of aviation manage and learn from near misses. For example, healthcare would benefit from a formal safety management system that currently does not exist. However, it may not be as simple as ‘healthcare should learn from aviation’ due to variation in safety maturity across the industry. Healthcare needs to clarify how to incorporate near misses into learning and whether allocating resources to them is of value; it was heard that catastrophes have led to greater improvements in safety in aviation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation%20safety" title="aviation safety">aviation safety</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title=" patient safety"> patient safety</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20miss" title=" near miss"> near miss</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20management%20systems" title=" safety management systems"> safety management systems</a> </p> <a href="https://publications.waset.org/abstracts/151185/healthcare-learning-from-near-misses-in-aviation-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Nuclear Near Misses and Their Learning for Healthcare</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nick%20Woodier">Nick Woodier</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20Moppett"> Iain Moppett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culture" title="culture">culture</a>, <a href="https://publications.waset.org/abstracts/search?q=definitions" title=" definitions"> definitions</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20miss" title=" near miss"> near miss</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20safety" title=" nuclear safety"> nuclear safety</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title=" patient safety"> patient safety</a> </p> <a href="https://publications.waset.org/abstracts/151235/nuclear-near-misses-and-their-learning-for-healthcare" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Upgrading of Bio-Oil by Bio-Pd Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20Derakhshan%20Deilami">Sam Derakhshan Deilami</a>, <a href="https://publications.waset.org/abstracts/search?q=Iain%20N.%20Kings"> Iain N. Kings</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynne%20E.%20Macaskie"> Lynne E. Macaskie</a>, <a href="https://publications.waset.org/abstracts/search?q=Brajendra%20K.%20Sharma"> Brajendra K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20V.%20Bridgwater"> Anthony V. Bridgwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Wood"> Joseph Wood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the application of a bacteria-supported palladium catalyst to the hydrodeoxygenation (HDO) of pyrolysis bio-oil, towards producing an upgraded transport fuel. Biofuels are key to the timely replacement of fossil fuels in order to mitigate the emissions of greenhouse gases and depletion of non-renewable resources. The process is an essential step in the upgrading of bio-oils derived from industrial by-products such as agricultural and forestry wastes, the crude oil from pyrolysis containing a large amount of oxygen that requires to be removed in order to create a fuel resembling fossil-derived hydrocarbons. The bacteria supported catalyst manufacture is a means of utilizing recycled metals and second life bacteria, and the metal can also be easily recovered from the spent catalysts after use. Comparisons are made between bio-Pd, and a conventional activated carbon supported Pd/C catalyst. Bio-oil was produced by fast pyrolysis of beechwood at 500 C at a residence time below 2 seconds, provided by Aston University. 5 wt % BioPd/C was prepared under reducing conditions, exposing cells of E. coli MC4100 to a solution of sodium tetrachloropalladate (Na2PdCl4), followed by rinsing, drying and grinding to form a powder. Pd/C was procured from Sigma-Aldrich. The HDO experiments were carried out in a 100 mL Parr batch autoclave using ~20g bio-crude oil and 0.6 g bio-Pd/C catalyst. Experimental variables investigated for optimization included temperature (160-350C) and reaction times (up to 5 h) at a hydrogen pressure of 100 bar. Most of the experiments resulted in an aqueous phase (~40%) and an organic phase (~50-60%) as well as gas phase (<5%) and coke (<2%). Study of the temperature and time upon the process showed that the degree of deoxygenation increased (from ~20 % up to 60 %) at higher temperatures in the region of 350 C and longer residence times up to 5 h. However minimum viscosity (~0.035 Pa.s) occurred at 250 C and 3 h residence time, indicating that some polymerization of the oil product occurs at the higher temperatures. Bio-Pd showed a similar degree of deoxygenation (~20 %) to Pd/C at lower temperatures of 160 C, but did not rise as steeply with temperature. More coke was formed over bio-Pd/C than Pd/C at temperatures above 250 C, suggesting that bio-Pd/C may be more susceptible to coke formation than Pd/C. Reactions occurring during bio-oil upgrading include catalytic cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation and hydrogenation. In conclusion, it was shown that bio-Pd/C displays an acceptable rate of HDO, which increases with residence time and temperature. However some undesirable reactions also occur, leading to a deleterious increase in viscosity at higher temperatures. Comparisons are also drawn with earlier work on the HDO of Chlorella derived bio-oil manufactured from micro-algae via hydrothermal liquefaction. Future work will analyze the kinetics of the reaction and investigate the effect of bi-metallic catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-oil" title="bio-oil">bio-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=palladium" title=" palladium"> palladium</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a> </p> <a href="https://publications.waset.org/abstracts/74206/upgrading-of-bio-oil-by-bio-pd-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10