CINXE.COM
Search results for: intertidal sediment
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: intertidal sediment</title> <meta name="description" content="Search results for: intertidal sediment"> <meta name="keywords" content="intertidal sediment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="intertidal sediment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="intertidal sediment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 436</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: intertidal sediment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Environmental Controls on the Distribution of Intertidal Foraminifers in Sabkha Al-Kharrar, Saudi Arabia: Implications for Sea-Level Changes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talha%20A.%20Al-Dubai">Talha A. Al-Dubai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashad%20A.%20Bantan"> Rashad A. Bantan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramadan%20H.%20Abu-Zied"> Ramadan H. Abu-Zied</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20G.%20Jones"> Brian G. Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaid%20G.%20Al-Zubieri"> Aaid G. Al-Zubieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contemporary foraminiferal samples sediments were collected from the intertidal sabkha of Al-Kharrar Lagoon, Saudi Arabia, to study the vertical distribution of Foraminifera and, based on a modern training set, their potential to develop a predictor of former sea-level changes in the area. Based on hierarchical cluster analysis, the intertidal sabkha is divided into three vertical zones (A, B & C) represented by three foraminiferal assemblages, where agglutinated species occupied Zone A and calcareous species occupied the other two zones. In Zone A (high intertidal), Agglutinella compressa, Clavulina angularis and C. multicamerata are dominant species with a minor presence of Peneroplis planatus, Coscinospira hemprichii, Sorites orbiculus, Quinqueloculina lamarckiana, Q. seminula, Ammonia convexa and A. tepida. In contrast, in Zone B (middle intertidal) the most abundant species are P. planatus, C. hemprichii, S. orbiculus, Q. lamarckiana, Q. seminula and Q. laevigata, while Zone C (low intertidal) is characterised by C. hemprichii, Q. costata, S. orbiculus, P. planatus, A. convexa, A. tepida, Spiroloculina communis and S. costigera. A transfer function for sea-level reconstruction was developed using a modern dataset of 75 contemporary sediment samples and 99 species collected from several transects across the sabkha. The model provided an error of 0.12m, suggesting that intertidal foraminifers are able to predict the past sea-level changes with high precision in Al-Kharrar Lagoon, and thus the future prediction of those changes in the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lagoonal%20foraminifers" title="Lagoonal foraminifers">Lagoonal foraminifers</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal%20sabkha" title=" intertidal sabkha"> intertidal sabkha</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20zonation" title=" vertical zonation"> vertical zonation</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level" title=" sea level"> sea level</a> </p> <a href="https://publications.waset.org/abstracts/141718/environmental-controls-on-the-distribution-of-intertidal-foraminifers-in-sabkha-al-kharrar-saudi-arabia-implications-for-sea-level-changes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Algal Mat Shift to Marsh Domain in Sandy and Muddy Tidal Flat: Examples the Gulf of Gabes, SE Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maher%20Gzam">Maher Gzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Elmejdoub"> Noureddine Elmejdoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Younes%20Jedoui"> Younes Jedoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical parameters involved in the depositional process on stromatolites, which grow in salt marsh domain, are elucidated in this study. Stromatolites start to grow where surface altimetry of the intertidal flat is high enough to reduce water cover (above mean high tide) and to guarantee a lamellar stream flow. Stromatolite aggrades as a thick laminated layer (stromatolite package) allowing pioneer vascular plants (Salicornia Arabica) to colonize this elevated area (6 cm a.m.s.l). In turn halophytic plant, regularly flooded on spring tide, reduce hydrodynamics velocities causing deposition of sediment, as a result, intertidal zone shift on the flat surface with an expanded marsh domain. This positive feedback invokes self organization between stromatolite growth, vegetation proliferation and deposition of sediment and may be applicable to ancient progradational sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stromatolites" title="stromatolites">stromatolites</a>, <a href="https://publications.waset.org/abstracts/search?q=marsh" title=" marsh"> marsh</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition%20of%20sediment" title=" deposition of sediment"> deposition of sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=aggradation" title=" aggradation"> aggradation</a>, <a href="https://publications.waset.org/abstracts/search?q=progradation" title=" progradation"> progradation</a>, <a href="https://publications.waset.org/abstracts/search?q=gulf%20of%20Gabes" title=" gulf of Gabes"> gulf of Gabes</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/37199/algal-mat-shift-to-marsh-domain-in-sandy-and-muddy-tidal-flat-examples-the-gulf-of-gabes-se-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Castillo-L%C3%B3pez">Elena Castillo-López</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20Pereda"> Raúl Pereda</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Manuel%20de%20Luis"> Julio Manuel de Luis</a>, <a href="https://publications.waset.org/abstracts/search?q=Rub%C3%A9n%20P%C3%A9rez"> Rubén Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Pi%C3%B1a"> Felipe Piña</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment" title=" intertidal sediment"> intertidal sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=airborne%20sensors" title=" airborne sensors"> airborne sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=eTOCoxicity" title=" eTOCoxicity"> eTOCoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20statistic" title=" robust statistic"> robust statistic</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a> </p> <a href="https://publications.waset.org/abstracts/69080/heavy-metals-estimation-in-coastal-areas-using-remote-sensing-field-sampling-and-classical-and-robust-statistic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Intertidal Fixed Stake Net Trap (Hadrah) Fishery in Kuwait, Distribution, Catch Rate, and Species Composition </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20F.%20Al-Baz">Ali F. Al-Baz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20M.%20Al-Husaini"> Mohsen M. Al-Husaini</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20M.%20Bishop"> James M. Bishop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intertidal fixed stake net trap (hadrah) is one of the oldest fishing gears used throughout the Arabian Gulf countries since 1800s and also one of most efficient methods of capturing fish from the intertidal area. This study described the hadrah fishery in Kuwait. From October 2001 to December 2002, more than 37,372 specimens representing 95 species (89 fish, 2 mollusks, 4 crustaceans) were measured from hadrah located in three different areas along Kuwait's coast. In Kuwait Bay, catch rates averaged 62 kg/sir day (range 14 kg/sir-day in February to 160 kg/sir-day in October 2002). Commercial species accounted for 41% of the catches. Catches from Failakah Island averaged 96 kg/sir-day from June through September, with 61% of the catch being commercial species. In the southern area, catches averaged only 32 kg/sir-day, and only 34% were commercially important. Forty percent of the hadrah catches were juveniles which shows that the shallow intertidal waters are prime nursery habitat, particularly in Kuwait Bay. To maintain ecosystem biodiversity and recruitment success of the fishes, we recommended that all hadrah should be removed from Kuwait Bay. In the future, removal of hadrah in other locations should be considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catch%20and%20effort" title="catch and effort">catch and effort</a>, <a href="https://publications.waset.org/abstracts/search?q=hadrah" title=" hadrah"> hadrah</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal%20fixed%20stake%20net" title=" intertidal fixed stake net"> intertidal fixed stake net</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait" title=" Kuwait"> Kuwait</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20composition" title=" species composition"> species composition</a> </p> <a href="https://publications.waset.org/abstracts/1582/intertidal-fixed-stake-net-trap-hadrah-fishery-in-kuwait-distribution-catch-rate-and-species-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Mapping Intertidal Changes Using Polarimetry and Interferometry Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Omari">Khalid Omari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Chenier"> Rene Chenier</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Blondel"> Enrique Blondel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Ahola"> Ryan Ahola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Northern Canadian coasts have vulnerable and very dynamic intertidal zones with very high tides occurring in several areas. The impact of climate change presents challenges not only for maintaining this biodiversity but also for navigation safety adaptation due to the high sediment mobility in these coastal areas. Thus, frequent mapping of shorelines and intertidal changes is of high importance. To help in quantifying the changes in these fragile ecosystems, remote sensing provides practical monitoring tools at local and regional scales. Traditional methods based on high-resolution optical sensors are often used to map intertidal areas by benefiting of the spectral response contrast of intertidal classes in visible, near and mid-infrared bands. Tidal areas are highly reflective in visible bands mainly because of the presence of fine sand deposits. However, getting a cloud-free optical data that coincide with low tides in intertidal zones in northern regions is very difficult. Alternatively, the all-weather capability and daylight-independence of the microwave remote sensing using synthetic aperture radar (SAR) can offer valuable geophysical parameters with a high frequency revisit over intertidal zones. Multi-polarization SAR parameters have been used successfully in mapping intertidal zones using incoherence target decomposition. Moreover, the crustal displacements caused by ocean tide loading may reach several centimeters that can be detected and quantified across differential interferometric synthetic aperture radar (DInSAR). Soil moisture change has a significant impact on both the coherence and the backscatter. For instance, increases in the backscatter intensity associated with low coherence is an indicator for abrupt surface changes. In this research, we present primary results obtained following our investigation of the potential of the fully polarimetric Radarsat-2 data for mapping an inter-tidal zone located on Tasiujaq on the south-west shore of Ungava Bay, Quebec. Using the repeat pass cycle of Radarsat-2, multiple seasonal fine quad (FQ14W) images are acquired over the site between 2016 and 2018. Only 8 images corresponding to low tide conditions are selected and used to build an interferometric stack of data. The observed displacements along the line of sight generated using HH and VV polarization are compared with the changes noticed using the Freeman Durden polarimetric decomposition and Touzi degree of polarization extrema. Results show the consistency of both approaches in their ability to monitor the changes in intertidal zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAR" title="SAR">SAR</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20polarization" title=" degree of polarization"> degree of polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=DInSAR" title=" DInSAR"> DInSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=Freeman-Durden" title=" Freeman-Durden"> Freeman-Durden</a>, <a href="https://publications.waset.org/abstracts/search?q=polarimetry" title=" polarimetry"> polarimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Radarsat-2" title=" Radarsat-2"> Radarsat-2</a> </p> <a href="https://publications.waset.org/abstracts/106191/mapping-intertidal-changes-using-polarimetry-and-interferometry-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Characteristics of Meiofaunal Communities in Intertidal Habitats Along Albanian Adriatic Sea Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fundime%20Miri">Fundime Miri</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuela%20Sulaj"> Emanuela Sulaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benthic ecosystems constitute important ecological habitats, providing fundamental services for spawning, foraging, and sheltering aquatic organisms. Benthic faunal communities are characterized by a large biological diversity, supported by a great physical variety of benthic habitats. Until late, the study of meiobenthic communities in Albania has been neglectedthus excluding an important component of benthos. The present study aims to bring characteristics of distribution pattern of meiofaunal communities with further focus on nematode genus-based diversity from different intertidal habitats along Albanian Adriatic Sea Coast. The investigation area is extended from Shkodra to Vlora District, including six sandy sampling sites in beaches and areas near river estuaries. Sediment samples were collected manually in low intertidal zone by using a cylindrical corer, with an internal diameter of 5 cm. The richness onmeiofaunalmajor taxon level did not show any significant change between different sampling sites compare to significant changes in nematode diversity at genus level, with distinct nematode assemblages per sampling sites and presence of exclusive genera. All meiofaunal communities under study were dominated by nematodes. Further assessment of functional diversity on nematode assemblages exhibited changes as well on trophic groups and life strategies due to diverse feeding behaviors and c-p values of nematode genera. This study emphasize the need for lower level taxonomic identification of meiofaunal organisms and extending of ecological assessments on trophic diversity and life strategies to understanding functional consequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benthos" title="benthos">benthos</a>, <a href="https://publications.waset.org/abstracts/search?q=meiofauna" title=" meiofauna"> meiofauna</a>, <a href="https://publications.waset.org/abstracts/search?q=nematode%20genus-based%20diversity" title=" nematode genus-based diversity"> nematode genus-based diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20diversity" title=" functional diversity"> functional diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal" title=" intertidal"> intertidal</a>, <a href="https://publications.waset.org/abstracts/search?q=albanian%20adriatic%20coast" title=" albanian adriatic coast"> albanian adriatic coast</a> </p> <a href="https://publications.waset.org/abstracts/144773/characteristics-of-meiofaunal-communities-in-intertidal-habitats-along-albanian-adriatic-sea-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Potential Impact of Climate Change on Suspended Sediment Changes in Mekong River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuliziana%20Suif">Zuliziana Suif</a>, <a href="https://publications.waset.org/abstracts/search?q=Nordila%20Ahmad"> Nordila Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sengheng%20Hul"> Sengheng Hul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates the impact of climate change on suspended sediment changes in the Mekong River Basin. In this study, the distributed process-based sediment transport model is used to examine the potential impact of future climate on suspended sediment dynamic changes in the Mekong River Basin. To this end, climate scenarios from two General Circulation Model (GCMs) were considered in the scenario analysis. The simulation results show that the sediment load and concentration shows 0.64% to 69% increase in the near future (2041-2050) and 2.5% to 95% in the far future (2090- 2099). As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in sediment management. Overall, the changes in sediment load and concentration can have a great implication for related sediment management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20sediment" title=" suspended sediment"> suspended sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekong%20River%20Basin" title=" Mekong River Basin"> Mekong River Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=GCMs" title=" GCMs"> GCMs</a> </p> <a href="https://publications.waset.org/abstracts/67271/potential-impact-of-climate-change-on-suspended-sediment-changes-in-mekong-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ali">A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Strezov"> V. Strezov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Davies"> P. Davies</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Wright"> I. Wright</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kan"> T. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20mine" title="coal mine">coal mine</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20quality%20guidelines%20value%20%28SQGV%29" title=" sediment quality guidelines value (SQGV)"> sediment quality guidelines value (SQGV)</a> </p> <a href="https://publications.waset.org/abstracts/67573/impact-of-coal-mining-on-river-sediment-quality-in-the-sydney-basin-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Modeling Sediment Yield of Jido River in the Rift Vally</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawit%20%20Hailekrios%20Hailu">Dawit Hailekrios Hailu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to predict the sediment yield of the Jido River Watershed. Jido River is the largest tributary and covers around 50% of the total catchment area of Lake Shala. This research is undertaken to analyze the sediment yield of the catchments, transport capacity of the streams and sediment deposition rates of Jido River, which is located in the Sub-basin of Shala Lake, Rift Valley Basin of Ethiopia. The input data were Meteorological, Hydrological, land use/land cover maps and soil maps collected from concerned government offices. The sediment yield of Jido River and sediment change of the streams discharging into the Shala Lake were modeled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title="sediment yield">sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=calibration" title=" calibration"> calibration</a> </p> <a href="https://publications.waset.org/abstracts/183200/modeling-sediment-yield-of-jido-river-in-the-rift-vally" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Estimation of Sediment Transport into a Reservoir Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiyoumars%20Roushangar">Kiyoumars Roushangar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Sadaghian"> Saeid Sadaghian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20transport" title="sediment transport">sediment transport</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20reservoir" title=" dam reservoir"> dam reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF" title=" RBF"> RBF</a>, <a href="https://publications.waset.org/abstracts/search?q=GRNN" title=" GRNN"> GRNN</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/10168/estimation-of-sediment-transport-into-a-reservoir-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Microbial and Meiofaunal Dynamics in the Intertidal Sediments of the Northern Red Sea </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20A.%20El-Serehy">Hamed A. El-Serehy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20Al-Rasheid"> Khaled A. Al-Rasheid</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20A%20Al-Misned"> Fahad A Al-Misned</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The meiofaunal population fluctuation, microbial dynamic and the composition of the sedimentary organic matter were investigated seasonally in the Egyptian shores along the northern part of Red Sea. Total meiofaunal population densities were extremely low with an annual average of 109 ±26 ind./10 cm2 and largely dominated by nematodes (on annual average from 52% to 94% of total meiofaunal density). The benthic microbial population densities ranged from 0.26±0.02 x 108 to 102.67±18.62 x 108/g dry sediment. Total sedimentary organic matter concentrations varied between 5.8 and 11.6 mg/g and the organic carbon, which was measured as summation of the carbohydrates, proteins and lipids, accounted for only a small fraction of being 32 % of the total organic matter. Chlorophyll a attained very low values and fluctuated between 2 and 11 µg/g. The very low chlorophyll a concentration in the Egyptian coasts along the Red Sea can suggest that the sedimentary organic matter along the Egyptian coasts is dominated by organic detrital and heterotrophic bacteria on one hand, and do not promote carbon transfer towards the higher trophic level on the other hand. However, the present study indicates that the existing of well diversified meiofaunal group, with a total of ten meiofaunal taxa, can serve as food for higher trophic levels in the Red Sea marine ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=meiofauna" title=" meiofauna"> meiofauna</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal%20sediments" title=" intertidal sediments"> intertidal sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Red%20Sea" title=" Red Sea"> Red Sea</a> </p> <a href="https://publications.waset.org/abstracts/28432/microbial-and-meiofaunal-dynamics-in-the-intertidal-sediments-of-the-northern-red-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Intertidal Fauna of Kuwait's Coral Islands and Failaka Island</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Alkandari">Manal Alkandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeriy%20Skryabin"> Valeriy Skryabin</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Bishop"> James Bishop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intertidal transects of four of Kuwait’s eight islands were sampled qualitatively and quantitative fauna. In total, 11 transects were sampled during spring tide lows (0 chart datum) as follows: Kubber, two transects; Qaurh, two transects; Umm Al-Maradem, three transects; and Failaka, four trasects. Qualitative and quantitative samples were collected at high, mid 1, mid 2, and low tides. In total, 270 invertebrate taxa and 15 vertebrate (fishes) taxa were identified. Failaka Island with 224 taxa was the most diverse. Second was Umm Al-Maradim with 84 taxa, followed by Kubbar with 47, and finally Qaruh with 38. Polychaetes were the most diverse group accounting for 31% of the taxa; decapods accounted for 17 %; gastropods,14 %; bivalves, 12 %; and amphipods 11%. Fishes and echinoderms contributed on 5 and 3.5 %, respectively. Three Families of polychaetes are reported for the first time in the Arabian Gulf: Protodrilidae, Nerillidae, and Saccocirridae. Island sediments consisted mostly of sand, but a few transects contained up to 40% gravel. Total organic carbon was less than 1% at all transects, but total petroleum hydrocarbons (TPH) ranged up to 100 ppm on Qaru. This is expected because of natural seeps in the area constantly supplying the intertidal zone with oil globules. TPH on Umm Al-Maradim was less than 10 ppm, except at high tide on one transect where concentrations reached 40 ppm. In general, TPHs were less than 10 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intertidal" title="intertidal">intertidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwaits%20waters" title=" Kuwaits waters"> Kuwaits waters</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=invertebrates" title=" invertebrates"> invertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a> </p> <a href="https://publications.waset.org/abstracts/36070/intertidal-fauna-of-kuwaits-coral-islands-and-failaka-island" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Behera">Sanjay Kumar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanhu%20Charan%20Patra"> Kanhu Charan Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio" title=" sediment delivery ratio"> sediment delivery ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/21590/estimation-of-soil-erosion-and-sediment-yield-for-ong-river-using-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Assessment of Sediment Control Characteristics of Notches in Different Sediment Transport Regimes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih%20Ming%20Tseng">Chih Ming Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landslides during typhoons that generate substantial amounts of sediment and subsequent rainfall can trigger various types of sediment transport regimes, such as debris flows, high-concentration sediment-laden flows, and typical river sediment transport. This study aims to investigate the sediment control characteristics of natural notches within different sediment transport regimes. High-resolution digital terrain models were used to establish the relationship between slope gradients and catchment areas, which were then used to delineate distinct sediment transport regimes and analyze the sediment control characteristics of notches within these regimes. The research results indicate that the catchment areas of Aiyuzi Creek, Hossa Creek, and Chushui Creek in the study region can be clearly categorized into three sediment transport regimes based on the slope-area relationship curves: frequent collapse headwater areas, debris flow zones, and high-concentration sediment-laden flow zones. The threshold for transitioning from the collapse zone to the debris flow zone in the Aiyuzi Creek catchment is lower compared to Hossa Creek and Chushui Creek, suggesting that the active collapse processes in the upper reaches of Aiyuzi Creek continuously supply a significant sediment source, making it more susceptible to subsequent debris flow events. Moreover, the analysis of sediment trapping efficiency at notches within different sediment transport regimes reveals that as the notch constriction ratio increases, the sediment accumulation per unit area also increases. The accumulation thickness per unit area in high-concentration sediment-laden flow zones is greater than in debris flow zones, indicating differences in sediment deposition characteristics among various sediment transport regimes. Regarding sediment control rates at notches, there is a generally positive correlation with the notch constriction ratio. During the 2009 Morakot Typhoon, the substantial sediment supply from slope failures in the upstream catchment led to an oversupplied sediment transport condition in the river channel. Consequently, sediment control rates were more pronounced during medium and small sediment transport events between 2010 and 2015. However, there were no significant differences in sediment control rates among the different sediment transport regimes at notches. Overall, this research provides valuable insights into the sediment control characteristics of notches under various sediment transport conditions, which can aid in the development of improved sediment management strategies in watersheds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landslide" title="landslide">landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title=" debris flow"> debris flow</a>, <a href="https://publications.waset.org/abstracts/search?q=notch" title=" notch"> notch</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20control" title=" sediment control"> sediment control</a>, <a href="https://publications.waset.org/abstracts/search?q=DTM" title=" DTM"> DTM</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%E2%80%93area%20relation" title=" slope–area relation"> slope–area relation</a> </p> <a href="https://publications.waset.org/abstracts/191167/assessment-of-sediment-control-characteristics-of-notches-in-different-sediment-transport-regimes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> NEOM Coast from Intertidal to Sabkha Systems: A Geological Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abouelresh">Mohamed Abouelresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhajit%20Kumar"> Subhajit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamidi%20Babalola"> Lamidi Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=Septriandi%20Chan"> Septriandi Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al%20Musabeh%20A."> Ali Al Musabeh A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Thadickal%20V.%20Joydas"> Thadickal V. Joydas</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Pulido"> Bruno Pulido</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neom has a relatively long coastline on the Red Sea and the Gulf of Aqaba, which is about 300 kilometres long, in addition to many naturally formed bays along the Red Sea coast. Undoubtedly, these coasts provide an excellent opportunity for tourism and other activities; however, these coastal areas host a wide range of salinity-dependent ecosystems that need to be protected. The main objective of the study was to identify the coastal features, including tidal flats and salt flats, along the NEOM coast. A base map of the study area generated from the satellite images contained the main landform features and, in particular, the boundaries of the inland and coastal sabkhas. A field survey was conducted to map and characterize the intertidal and sabkha landforms. The coastal and inner coastal areas of NEOM are mainly covered by the quaternary sediments, which include gravel sheets, terraces, raised reef limestone, evaporite successions, eolian dunes, and undifferentiated sand/gravel deposits (alluvium, alluvial outwash, wind-blown sand beach). There are different landforms that characterizes the NEOM coast, including rocky coast, tidal zone, and sabkha. Sabkha area ranges between a few to tens of square kilometers. Coastal sabkha extended across the shoreline of NEOM, specifically at Gayal and Sharma areas, while the continental sabkha only existed at Gayal Town. The inland Sabkha at Gayal is mainly composed of a thin (15-25 cm) evaporite crust composed of a dark brown, cavernous, rugged, pitted, colloidal salty sand layer with salt-tolerant vegetation. The inland Sabkha is considered a groundwater-driven sedimentary system as indicated by syndepositional intra-sediment capillary evaporites, which precipitate in both marine and continental salt flats. Gayal coastal Sabkha is made up of tidal inlets, tidal creeks, and lagoons followed in a landward direction with well-developed sabkha layers. The surface sediments of the coastal Sabkha are composed of unlithified calcareous, gypsiferous, coarse to medium sands, and silt with bioclastic fragments underlain by several organic-rich layers. The coastal flat is graded landward into widespread, flat vegetated Sabkhas dissected by tributaries of the fluvial system, which debouches to the Red Sea. The coast from Gayal to Magna through Ras El-Sheikh Humaid is continuously subjected to tidal flows, which create an intertidal depositional system. The intertidal flats at NEOM are extensive, nearly horizontal land forming a very dynamic system in which several physical, chemical, geomorphological, and biological processes are acting simultaneously. The current work provides a field-based identification of the coastal sabkha and intertidal sites at NEOM. However, the mutual interaction between tidal flows and sabkha development, particularly at Gayal, needs to be well understood through comprehensive field and lab analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coast" title="coast">coast</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal" title=" intertidal"> intertidal</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=sabkha" title=" sabkha"> sabkha</a> </p> <a href="https://publications.waset.org/abstracts/178823/neom-coast-from-intertidal-to-sabkha-systems-a-geological-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Experimental Study of the Modifications of the Bed of a River under Extreme Flow Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghenaim">A. Ghenaim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Terfous"> A. Terfous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, degradation phenomena in fluvial beds having uniform sediments are explored experimentally under extreme flow conditions. Laboratory experiments were conducted in a rectangular cross-section channel for different flow conditions, channel characteristics, and sediment properties at the National Institute of Applied Sciences (Strasbourg, France). Tests were carried out in two conditions: (1) equilibrium condition, where, once the steady and uniform flow conditions were achieved for a given slope and discharge, the channel was fed with variable sediment discharges until the bed-load sediment transport achieved an equilibrium condition; and (2) nonequilibrium condition, where the sediment feeding was instantaneously stopped, and the bed levels were measured over time. Experimental results enabled assessing the erosion rates and determining the empirical mathematical model to predict the bed level changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluvial%20beds" title="fluvial beds">fluvial beds</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20flow%20conditions" title=" uniform flow conditions"> uniform flow conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=nonequilibrium%20condition" title=" nonequilibrium condition"> nonequilibrium condition</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20disposition" title=" sediment disposition"> sediment disposition</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a> </p> <a href="https://publications.waset.org/abstracts/156505/experimental-study-of-the-modifications-of-the-bed-of-a-river-under-extreme-flow-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Modeling Sediment Yield Using the SWAT Model: A Case Study of Upper Ankara River Basin, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umit%20Duru">Umit Duru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Soil and Water Assessment Tool (SWAT) was tested for prediction of water balance and sediment yield in the Ankara gauged basin, Turkey. The overall objective of this study was to evaluate the performance and applicability of the SWAT in this region of Turkey. Thirteen years of monthly stream flow, and suspended sediment, data were used for calibration and validation. This research assessed model performance based on differences between observed and predicted suspended sediment yield during calibration (1987-1996) and validation (1982-1984) periods. Statistical comparisons of suspended sediment produced values for NSE (Nash Sutcliffe efficiency), RE (relative error), and R² (coefficient of determination), of 0.81, -1.55, and 0.93, respectively, during the calibration period, and NSE, RE (%), and R² of 0.77, -2.61, and 0.87, respectively, during the validation period. Based on the analyses, SWAT satisfactorily simulated observed hydrology and sediment yields and can be used as a tool in decision making for water resources planning and management in the basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/55249/modeling-sediment-yield-using-the-swat-model-a-case-study-of-upper-ankara-river-basin-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Hydrological Modelling to Identify Critical Erosion Areas in Gheshlagh Dam Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golaleh%20Ghaffari">Golaleh Ghaffari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A basin sediment yield refers to the amount of sediment exported by a basin over a period of time, which will enter a reservoir located at the downstream limit of the basin. The Soil and Water Assessment Tool (SWAT, 2008) was used to hydrology and sediment transport modeling at daily and monthly time steps within the Gheshlagh dam basin in north-west of Iran. The SWAT model and Geographic Information System (GIS) techniques were applied to evaluate basin hydrology and sediment yield using historical flow and sediment data and to identify and prioritize critical sub-basins based on sediment transport. The results of this study indicated that simulated daily discharge and sediment values matched the observed values satisfactorily. The model predicted that mean annual basin precipitation for the total study period (413 mm) was partitioned in to evapotranspiration (36%), percolation/groundwater recharge (21%) and stream water (25%), yielding 18% surface runoff. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 103 t/ha according to the slope and land use at the basin scale. Also the fifteen sub basins create the 60% of the total sediment yield between the all (102) sub basins. The results of the study indicated that SWAT can be a useful tool for assessing hydrology and sediment yield response of the watersheds in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheshlagh%20dam" title=" Gheshlagh dam"> Gheshlagh dam</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT "> SWAT </a> </p> <a href="https://publications.waset.org/abstracts/33372/hydrological-modelling-to-identify-critical-erosion-areas-in-gheshlagh-dam-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Macrobenthic Fauna in the Intertidal Zone of Carmen, Agusan Del Norte</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maricris%20I.%20Abuan">Maricris I. Abuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This assessment of macrobenthic fauna found in the intertidal zone of Brgy. Poblacion, Carmen Agusan del Norte was conducted during the lowest tides of the month of June 2008. Transect-quadrat method was employed during the sampling. Twenty-transect lines were established in the area with lengths depending on the topography of the intertidal zone and were laid perpendicular to the shore, at intervals of fifty meters. Twenty-six (26) macrobenthic species with a total of seventy (70) individuals were identified in the study area. These species belong to the four Phyla -Arthropoda, Mollusca, Echinodermata and Annelida. The three most abundant macrobenthos were hermit crabs (Phylum Arthropoda) , Archaster typicus (Phylum Echinodermata), and Nassarius pullus (Phylum Mollusca). The diversity index value was 2.36. Most species exhibited random distribution And only few species had regular and clumped distribution. The pH, salinity, and sea water temperature readings were within the normal range. Results showed a very scarce macrobenthic species present in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity%20index" title="diversity index">diversity index</a>, <a href="https://publications.waset.org/abstracts/search?q=macrobenthic%20fauna" title=" macrobenthic fauna"> macrobenthic fauna</a>, <a href="https://publications.waset.org/abstracts/search?q=macrobenthos" title=" macrobenthos"> macrobenthos</a>, <a href="https://publications.waset.org/abstracts/search?q=phyla" title=" phyla"> phyla</a> </p> <a href="https://publications.waset.org/abstracts/31006/macrobenthic-fauna-in-the-intertidal-zone-of-carmen-agusan-del-norte" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razak%20Zakariya">Razak Zakariya</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazliana%20Mustajap"> Fazliana Mustajap</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenny%20Sharinee%20Sakai"> Lenny Sharinee Sakai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20type" title="sediment type">sediment type</a>, <a href="https://publications.waset.org/abstracts/search?q=MBES%20echo%20sounder" title=" MBES echo sounder"> MBES echo sounder</a>, <a href="https://publications.waset.org/abstracts/search?q=backscatter" title=" backscatter"> backscatter</a>, <a href="https://publications.waset.org/abstracts/search?q=ArcGIS" title=" ArcGIS"> ArcGIS</a> </p> <a href="https://publications.waset.org/abstracts/160228/analysis-of-sediment-distribution-around-karang-sela-coral-reef-using-multibeam-backscatter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Kamel%20Mihoubi">Mustapha Kamel Mihoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Dahmani"> Hocine Dahmani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swell" title="swell">swell</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=mike21" title=" mike21"> mike21</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/16069/numerical-modeling-of-waves-and-currents-by-using-a-hydro-sedimentary-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Ecological Effects of Oil Spill on Water and Sediment from Two Riverine Communities in Warri</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doris%20Fovwe%20Ogeleka">Doris Fovwe Ogeleka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Tudararo-Aherobo"> L. E. Tudararo-Aherobo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20E.%20Okieimen"> F. E. Okieimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ecological effects of oil spill in the environment were studied in Warri riverine areas of Ubeji and Jeddo, Delta State. In the two communities, water and sediment samples were analysed for organics (polyaromatic hydrocarbon; total petroleum hydrocarbon (TPH)) and heavy metals (lead, copper, zinc, iron and chromium). The American Public Health Association (APHA) and the American Society for Testing and Materials (ASTM) methods were employed for the laboratory test. The results indicated that after a long period of oil spill (above one year), there were still significant concentrations (p<0.05) of organics indicating hydrocarbon pollution. Mean concentrations recorded for TPH in Ubeji and Jeddo waters were 23.60 ± 1.18 mg/L and 29.96 ± 0.14 mg/L respectively while total PAHs was 0.009 ± 0.002 mg/L and 0.008 ± 0.001 mg/L. Mean concentrations of TPH in the sediment was 48.83 ± 1.49 ppm and 1093 ± 74 ppm in the above order while total PAHs was 0.012 ± 0.002 ppm and 0.026 ± 0.004 ppm. Low concentrations were recorded for most of the heavy metals in the water and sediment. The observed concentrations of hydrocarbons in the study areas should provide the impetus for regulatory surveillance of oil discharged intentionally/unintentionally into the Warri riverine waters and sediment since hydrocarbon released into the environment sorb to the sediment particles where they cause harm to organisms in the sediment and overlying waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH" title=" TPH"> TPH</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spillage" title=" oil spillage"> oil spillage</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/15552/ecological-effects-of-oil-spill-on-water-and-sediment-from-two-riverine-communities-in-warri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Analysis of Bed Load Sediment Transport Mataram-Babarsari Irrigation Canal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agatha%20Padma%20Laksitaningtyas">Agatha Padma Laksitaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumiyati%20Gunawan"> Sumiyati Gunawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mataram Irrigation Canal has 31,2 km length, is the main irrigation canal in Special Region Province of Yogyakarta, connecting Progo River on the west side and Opak River on the east side. It has an important role as the main water carrier distribution for various purposes such as agriculture, fishery, and plantation which should be free from sediment material. Bed Load Sediment is the basic sediment that will make the sediment process on the irrigation canal. Sediment process is a simultaneous event that can make deposition sediment at the base of irrigation canal and can make the height of elevation water change, it will affect the availability of water to be used for irrigation functions. To predict the amount of drowning sediments in the irrigation canal using two methods: Meyer-Peter and Muller’s Method which is an energy approach method and Einstein Method which is a probabilistic approach. Speed measurement using floating method and using current meters. The channel geometry is measured directly in the field. The basic sediment of the channel is taken in the field by taking three samples from three different points. The result of the research shows that by using the formula Meyer -Peter Muller get the result of 60,75799 kg/s, whereas with Einsten’s Method get result of 13,06461 kg/s. the results may serve as a reference for dredging the sediments on the channel so as not to disrupt the flow of water in irrigation canal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20load" title="bed load">bed load</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Mataram%20canal" title=" Mataram canal"> Mataram canal</a> </p> <a href="https://publications.waset.org/abstracts/82951/analysis-of-bed-load-sediment-transport-mataram-babarsari-irrigation-canal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Investigating Reservior Sedimentation Control in the Conservation of Water </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosupi%20Ratshaa">Mosupi Ratshaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite years of diligent study, sedimentation is still undoubtedly the most severe technical problem faced by the dam industry. The problem of sedimentation build-up and its removal should be the focus as an approach to remedy this. The world's reservoirs lose about 1% of their storage capacity yearly to sedimentation, what this means is that 1% of water that could be stored is lost the world-over. The increase in population means that the need for water also increases and, therefore, the loss due to sedimentation is of great concern especially to the conservation of water. When it comes to reservoir sedimentation, the thought of water conservation comes with soil conservation since this increasing sediment that takes the volume meant for water is being lost from dry land. For this reason, reservoir sediment control is focused on reducing sediment entering the reservoir and reducing sediment within the reservoir. There are many problems with sediment control such as the difficulty to predict settling patterns, inability to greatly reduce the sediment volume entering the river flow which increases the reservoirs trap efficiency just to mention a few. Notably reservoirs are habitats for flora and fauna, the process of removing sediment from these reservoirs damages this ecosystem so there is an ethical point to be considered in this section. This paper looks at the methods used to control the sedimentation of reservoirs and their effects to the ecosystem in the aim of reducing water losses due to sedimentation. Various control measures which reduce sediment entering the reservoir such as Sabo dams or Check dams along with measures which emphasize the reduction in built-up settled sediment such as flushing will be reviewed all with the prospect of conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title="sedimentation">sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing" title=" flushing "> flushing </a> </p> <a href="https://publications.waset.org/abstracts/35796/investigating-reservior-sedimentation-control-in-the-conservation-of-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sisuwan%20Kaseamsawat">Sisuwan Kaseamsawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivapan%20Choo-In"> Sivapan Choo-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=orchard" title=" orchard"> orchard</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20and%20monitoring" title=" pollution and monitoring"> pollution and monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/8591/heavy-metal-concentration-in-orchard-area-amphawa-district-samut-songkram-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Biodiversity Indices for Macrobenthic Community structures of Mangrove Forests, Khamir Port, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousa%20Keshavarz">Mousa Keshavarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul-Reza%20Dabbagh"> Abdul-Reza Dabbagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Soyuf%20Jahromi"> Maryam Soyuf Jahromi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diversity of mangrove macrobenthos assemblages at mudflat and mangrove ecosystems of Port Khamir, Iran were investigated for one year. During this period, we measured physicochemical properties of water temperature, salinity, pH, DO and the density and distribution of the macrobenthos. We sampled a total of 9 transects, at three different topographic levels along the intertidal zone at three stations. Assemblages at class level were compared. The five most diverse and abundant classes were Foraminifers (54%), Gastropods (23%), Polychaetes (10%), Bivalves (8%) & Crustaceans (5%), respectively. Overall densities were 1869 ± 424 ind/m2 (26%) in spring, 2544 ± 383 ind/m2(36%) in summer, 1482 ± 323 ind/m2 (21%) in autumn and 1207 ± 80 ind/m2 (17%) in winter. Along the intertidal zone, the overall relative density of individuals at high, intermediate, and low topographic levels was 40, 30, and 30% respectively. Biodiversity indices were used to compare different classes: Gastropoda (Shannon index: 0.33) and Foraminifera (Simpson index: 0.28) calculated the highest scores. It was also calculated other bio-indices. With the exception of bivalves, filter feeders were associated with coarser sediments at higher intertidal levels, while deposit feeders were associated with finer sediments at lower levels. Salinity was the most important factor acting on community structure, while DO and pH had little influence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=macrobenthos" title="macrobenthos">macrobenthos</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20forest" title=" mangrove forest"> mangrove forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Khamir%20Port" title=" Khamir Port"> Khamir Port</a> </p> <a href="https://publications.waset.org/abstracts/43387/biodiversity-indices-for-macrobenthic-community-structures-of-mangrove-forests-khamir-port-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Determination of Acid Volatile Sulfides–Simultaneously Extracted Metal Relationship and Toxicity in Contaminated Sediment Layer in Mid-Black Sea Coasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arife%20Simsek">Arife Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulfem%20Bakan"> Gulfem Bakan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediment refers to the accumulation of varying amounts of sediment material in natural waters and the formation of bottom sludge. Sediments are the most important sources of pollutants as well as important future sources and carriers of pollutants. The accumulation of pollutants in sediments can cause serious environmental problems for the surrounding areas. Heavy metals (such as Cr, Cd, Al, Pb, Cu, Al, Zn) disrupt the water quality, affect the useful use of sediment, affect the ecosystem and have a toxic effect on the life of the sediment layer. This effect, which accumulates in the aquatic organisms, can enter the human body with the food chain and affect health seriously. Potential metal toxicity can be determined by comparing acid volatile sulfides (AVS) – simultaneously extracted metal (SEM) ratio in anoxic sediments to determine the effect of metals. Determination of the concentration of SEM and AVS is useful in screening sediments for potential toxicity due to the high metal concentration. In the case of SEM/AVS < 0 (anoxic sediment); in terms of AVS biomass production, its toxicity can be controlled. No toxic effects may be observed when SEM / AVS < 0. SEM / AVS > 0 (in the case of oxic sediment); metals with sensitive fraction such as Cu, As, Ag, Zn are stored. In this study, AVS and SEM measurements of sediment samples collected from five different points in the district of Tekkeköy in Samsun province were performed. The SEM - AVS ratio was greater than 0 in all samples. Therefore, it is necessary to test the toxicity against the risks that may occur in the ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AVS-SEM" title="AVS-SEM">AVS-SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Black%20Sea" title=" Black Sea"> Black Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/107175/determination-of-acid-volatile-sulfides-simultaneously-extracted-metal-relationship-and-toxicity-in-contaminated-sediment-layer-in-mid-black-sea-coasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Durability of a Cementitious Matrix Based on Treated Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Benzerzour">Mahfoud Benzerzour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamadou%20Amar"> Mouhamadou Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Safhi"> Amine Safhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor-Edine%20Abriak"> Nor-Edine Abriak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Significant volumes of sediment are annually dredged in France and all over the world. These materials may, in fact, be used beneficially as supplementary cementitious material. This paper studies the durability of a new cement matrix based on marine dredged sediment of Dunkirk-Harbor (north of France). Several techniques are used to characterize the raw sediment such as physical properties, chemical analyses, and mineralogy. The XRD analysis revealed quartz, calcite, kaolinite as main mineral phases. In order to eliminate organic matter and activate some of those minerals, the sediment is calcined at a temperature of 850°C for 1h. Moreover, four blended mortars were formulated by mixing a portland cement (CEM I 52,5 N) and the calcined sediment as partial cement substitute (0%, 10%, 20% and 30%). Reference mortars, based on the blended cement, were then prepared. This re-use cannot be substantiating and efficient without a durability study. In this purpose, the following tests, mercury porosity, accessible water porosity, chloride permeability, freezing and thawing, external sulfate attack, alkali aggregates reaction, compressive and bending strength tests were conducted on those mortars. The results of most of those tests evidenced the fact that the mortar that contains 10% of the treated sediment is efficient and durable as the reference mortar itself. That would infer that the presence of these calcined sediment improves mortar general behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment" title="sediment">sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=substitution" title=" substitution"> substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/62380/durability-of-a-cementitious-matrix-based-on-treated-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> The Effects of Climate Change and Upstream Dam Development on Sediment Distribution in the Vietnamese Mekong Delta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trieu%20Anh%20Ngoc">Trieu Anh Ngoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Kim"> Nguyen Quang Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Located at the downstream of the Mekong Delta, the Vietnamese Mekong Delta is well-known as 'rice bowl' of Vietnam. The Vietnamese Mekong Delta experiences widespread flooding annually where is habitat for about 17 million people. The economy of this region mainly depends on the agricultural productivities. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In many past decades, flooding and suspended sediment were considered as indispensable factors in agricultural cultivations. Although flooding in the wet season caused serious inundation in paddy field and affected livelihoods, it is an effective facility for flushing acid and saline to this area - alluvial soil heavily contaminated with acid and salt intrusion. In addition, sediment delivery to this delta contained rich-nutrients distributed and deposited on the fields through flooding process. In recent decades, the changing of flow and sediment transport have been strongly and clearly occurring due to upstream dam development and climate change. However, effects of sediment delivery on agricultural cultivations were less attention. This study investigated the impacts of upstream flow on sediment distribution in the Vietnamese Mekong Delta. Flow fluctuation and sediment distribution were simulated by the Mike 11 model, including hydrodynamics model and advection-dispersion model. Various scenarios were simulated based on anticipated upstream discharges. Our findings indicated that sediment delivery into the Vietnamese Mekong Delta come from not only Tien River but also border of Cambodia floodplains. Sediment distribution in the Vietnamese Mekong Delta is dramatically changed by the distance from the main rivers and the secondary channels. The dam development in the upstream is one of the major factors leading a decrease in sediment discharge as well as sediment deposition. Moreover, sea level rise partially contributed to decrease in sediment transport and change of sediment distribution between upstream and downstream of the Vietnamese Mekong Delta. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20transport" title="sediment transport">sediment transport</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20rise" title=" sea level rise"> sea level rise</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Model" title=" Mike Model"> Mike Model</a> </p> <a href="https://publications.waset.org/abstracts/87140/the-effects-of-climate-change-and-upstream-dam-development-on-sediment-distribution-in-the-vietnamese-mekong-delta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Formulation of Aggregates Based on Dredged Sand and Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor-Edine%20Abriak">Nor-Edine Abriak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilyas%20Ennahal"> Ilyas Ennahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeljalil%20Zri"> Abdeljalil Zri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Benzerzour"> Mahfoud Benzerzour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nord Pas de Calais is one of the French regions that records a large volume of dredged sediment in harbors and waterways. To ensure navigation within ports and waterways, harbor and river managers are forced to find solutions to remove sediment that contamination levels exceed levels established by regulations. Therefore, this non- submersible sediment must be managed on land and will be subject to the waste regulation. In this paper, some examples of concrete achievements and experiments of reusing dredged sediment in civil engineering and sector will be illustrated. These achievements are alternative solutions to sediment landfilling and guarantee the reuse of this material in a logic of circular economy and ecological transition. It permits to preserve the natural resources increasingly scarce and resolve issues related to the accumulation of sediments in the harbor basins, rivers, dams, and lakes, etc. Examples of beneficial use of dredged material illustrated in this paper are the result of different projects reusing harbor and waterways sediments in several applications. These projects were funded under the national SEDIMATERIAUX approach. Thus the technical and environmental feasibility of the reuse of dredged sediment is demonstrated and verified; the dredged sediment reusing would meet multiple challenges of sustainable development in relation to environmental, economic, social and societal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title="circular economy">circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=SEDIMATERIAUX" title=" SEDIMATERIAUX"> SEDIMATERIAUX</a>, <a href="https://publications.waset.org/abstracts/search?q=waterways" title=" waterways"> waterways</a> </p> <a href="https://publications.waset.org/abstracts/77256/formulation-of-aggregates-based-on-dredged-sand-and-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intertidal%20sediment&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>