CINXE.COM
Mona Diab | The George Washington University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Mona Diab | The George Washington University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="MZ+moHEfh9u2iR59EhXoUqpa6VcoOiFm8KNjmDUjeqFw7YqB3QNormdBKiEpSYH/4pXAJvN50TcZUbj1JZm//g==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="mona diab" /> <meta name="description" content="Mona Diab, The George Washington University: 41 Followers, 3 Following, 244 Research papers. Research interests: Salafism, Muslim Minorities, and Biography of…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277206025,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732494706000); window.Aedu.timeDifference = new Date().getTime() - 1732494706000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://gwu.academia.edu/MDiab" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":19264,"name":"Department of Computer Science","url":"https://gwu.academia.edu/Departments/Department_of_Computer_Science/Documents","university":{"id":1419,"name":"The George Washington University","url":"https://gwu.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":88513,"name":"Salafism","url":"https://www.academia.edu/Documents/in/Salafism"},{"id":12978,"name":"Muslim Minorities","url":"https://www.academia.edu/Documents/in/Muslim_Minorities"},{"id":250021,"name":"Biography of the Prophet Muhammad","url":"https://www.academia.edu/Documents/in/Biography_of_the_Prophet_Muhammad"},{"id":767,"name":"Anthropology","url":"https://www.academia.edu/Documents/in/Anthropology"},{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":17097,"name":"Philosophy of Computer Science","url":"https://www.academia.edu/Documents/in/Philosophy_of_Computer_Science"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://gwu.academia.edu/MDiab","location":"/MDiab","scheme":"https","host":"gwu.academia.edu","port":null,"pathname":"/MDiab","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f30680f3-a50a-49a7-b65c-3fae8d76d796"></div> <div id="ProfileCheckPaperUpdate-react-component-f30680f3-a50a-49a7-b65c-3fae8d76d796"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Mona Diab</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://gwu.academia.edu/">The George Washington University</a>, <a class="u-tcGrayDarker" href="https://gwu.academia.edu/Departments/Department_of_Computer_Science/Documents">Department of Computer Science</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Mona" data-follow-user-id="32411980" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32411980"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">41</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="32411980">View All (6)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32411980" href="https://www.academia.edu/Documents/in/Salafism"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://gwu.academia.edu/MDiab","location":"/MDiab","scheme":"https","host":"gwu.academia.edu","port":null,"pathname":"/MDiab","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Salafism"]}" data-trace="false" data-dom-id="Pill-react-component-754a1484-b2bc-4618-9e40-d10ae86a118a"></div> <div id="Pill-react-component-754a1484-b2bc-4618-9e40-d10ae86a118a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32411980" href="https://www.academia.edu/Documents/in/Muslim_Minorities"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Muslim Minorities"]}" data-trace="false" data-dom-id="Pill-react-component-85b20d68-6b09-4fb2-8d72-7677921ed668"></div> <div id="Pill-react-component-85b20d68-6b09-4fb2-8d72-7677921ed668"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32411980" href="https://www.academia.edu/Documents/in/Biography_of_the_Prophet_Muhammad"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Biography of the Prophet Muhammad"]}" data-trace="false" data-dom-id="Pill-react-component-49683dfd-e8b4-4285-8a2f-ff56069fc69b"></div> <div id="Pill-react-component-49683dfd-e8b4-4285-8a2f-ff56069fc69b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32411980" href="https://www.academia.edu/Documents/in/Anthropology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Anthropology"]}" data-trace="false" data-dom-id="Pill-react-component-543092bd-2428-4f64-88d4-3ade0790d5cf"></div> <div id="Pill-react-component-543092bd-2428-4f64-88d4-3ade0790d5cf"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32411980" href="https://www.academia.edu/Documents/in/History"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["History"]}" data-trace="false" data-dom-id="Pill-react-component-e5a6a371-c658-47fa-8ca6-7a353dc18812"></div> <div id="Pill-react-component-e5a6a371-c658-47fa-8ca6-7a353dc18812"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Mona Diab</h3></div><div class="js-work-strip profile--work_container" data-work-id="118332122"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332122/Proceedings_of_the_4th_Workshop_on_Computational_Approaches_to_Discourse_CODI_2023_"><img alt="Research paper thumbnail of Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)" class="work-thumbnail" src="https://attachments.academia-assets.com/113984368/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332122/Proceedings_of_the_4th_Workshop_on_Computational_Approaches_to_Discourse_CODI_2023_">Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ba2ed721c6144490417eba6af2352550" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984368,"asset_id":118332122,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984368/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332122"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332122"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332122; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332122]").text(description); $(".js-view-count[data-work-id=118332122]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332122; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332122']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332122, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ba2ed721c6144490417eba6af2352550" } } $('.js-work-strip[data-work-id=118332122]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332122,"title":"Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332122/Proceedings_of_the_4th_Workshop_on_Computational_Approaches_to_Discourse_CODI_2023_","translated_internal_url":"","created_at":"2024-04-30T07:31:07.699-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984368,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984368/thumbnails/1.jpg","file_name":"2020.calcs-1.0.pdf","download_url":"https://www.academia.edu/attachments/113984368/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proceedings_of_the_4th_Workshop_on_Compu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984368/2020.calcs-1.0-libre.pdf?1714487639=\u0026response-content-disposition=attachment%3B+filename%3DProceedings_of_the_4th_Workshop_on_Compu.pdf\u0026Expires=1732498305\u0026Signature=DN~75nKpxtTU9Z3uOhEcJiFjSrShTOXRg8h4xUVhGoRs-wBxFzYdPbp49oIIBiaYFh-yaMMTR8Wkw0EHM5-DYSpS04LrUQCHUI-Y8NMNoDE7dwv68R7gU1jgqTKVFOym3COj2IsGawcJkKMAL1~e89FvSy-cW16QM-QFea4rzVOdU5Xwh2KP0a9unssFixNQMdFn4Aqv5K~cbKeicJBUkAhJ5xD4c~FOLyGAMDusKoSzbk~xl2O7NBYmw6RKzsjE1x5rbBL9KwU9HjdtxVXiqkYAHOZZBlBlCaBDh24skjleP7FhjnUAM0vpsrRaC9WvDCpSKbff7yGQjRuZclU1rw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Proceedings_of_the_4th_Workshop_on_Computational_Approaches_to_Discourse_CODI_2023_","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984368,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984368/thumbnails/1.jpg","file_name":"2020.calcs-1.0.pdf","download_url":"https://www.academia.edu/attachments/113984368/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proceedings_of_the_4th_Workshop_on_Compu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984368/2020.calcs-1.0-libre.pdf?1714487639=\u0026response-content-disposition=attachment%3B+filename%3DProceedings_of_the_4th_Workshop_on_Compu.pdf\u0026Expires=1732498305\u0026Signature=DN~75nKpxtTU9Z3uOhEcJiFjSrShTOXRg8h4xUVhGoRs-wBxFzYdPbp49oIIBiaYFh-yaMMTR8Wkw0EHM5-DYSpS04LrUQCHUI-Y8NMNoDE7dwv68R7gU1jgqTKVFOym3COj2IsGawcJkKMAL1~e89FvSy-cW16QM-QFea4rzVOdU5Xwh2KP0a9unssFixNQMdFn4Aqv5K~cbKeicJBUkAhJ5xD4c~FOLyGAMDusKoSzbk~xl2O7NBYmw6RKzsjE1x5rbBL9KwU9HjdtxVXiqkYAHOZZBlBlCaBDh24skjleP7FhjnUAM0vpsrRaC9WvDCpSKbff7yGQjRuZclU1rw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1489478,"name":"Programming language","url":"https://www.academia.edu/Documents/in/Programming_language"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332121"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332121/Care4Lang_at_MEDIQA_Chat_2023_Fine_tuning_Language_Models_for_Classifying_and_Summarizing_Clinical_Dialogues"><img alt="Research paper thumbnail of Care4Lang at MEDIQA-Chat 2023: Fine-tuning Language Models for Classifying and Summarizing Clinical Dialogues" class="work-thumbnail" src="https://attachments.academia-assets.com/113984367/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332121/Care4Lang_at_MEDIQA_Chat_2023_Fine_tuning_Language_Models_for_Classifying_and_Summarizing_Clinical_Dialogues">Care4Lang at MEDIQA-Chat 2023: Fine-tuning Language Models for Classifying and Summarizing Clinical Dialogues</a></div><div class="wp-workCard_item"><span>Proceedings of the 5th Clinical Natural Language Processing Workshop</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="183363c02cb23295483f8f5d5f97934d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984367,"asset_id":118332121,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984367/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332121"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332121"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332121; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332121]").text(description); $(".js-view-count[data-work-id=118332121]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332121; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332121']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332121, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "183363c02cb23295483f8f5d5f97934d" } } $('.js-work-strip[data-work-id=118332121]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332121,"title":"Care4Lang at MEDIQA-Chat 2023: Fine-tuning Language Models for Classifying and Summarizing Clinical Dialogues","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","publication_name":"Proceedings of the 5th Clinical Natural Language Processing Workshop"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332121/Care4Lang_at_MEDIQA_Chat_2023_Fine_tuning_Language_Models_for_Classifying_and_Summarizing_Clinical_Dialogues","translated_internal_url":"","created_at":"2024-04-30T07:31:07.547-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984367,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984367/thumbnails/1.jpg","file_name":"2023.clinicalnlp-1.55.pdf","download_url":"https://www.academia.edu/attachments/113984367/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Care4Lang_at_MEDIQA_Chat_2023_Fine_tunin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984367/2023.clinicalnlp-1.55-libre.pdf?1714487641=\u0026response-content-disposition=attachment%3B+filename%3DCare4Lang_at_MEDIQA_Chat_2023_Fine_tunin.pdf\u0026Expires=1732498305\u0026Signature=QUNw5x8VkS9oruZbzgK2XKOVg7lloKWatJQDsqtP-GqzCc4xJ-hows6CSFBeMgmQg3T2ddhPRQfuAMxeiO8h-pufKhXpgV~M~p0xEU3JWS8PSKQh7WyqVFcmD3fawUCElJnyrGGf0tkxnWDaBRc-FZtJpV76T~alWhQ8qR4mzcszf-c5pv7jXVtTwLa53kjDnwMf2HYgRj2~2bWHSxzhHSLVKM1Xl5m9GOP3GEvqQyYHAz2N6lXgVdcmFFwuaTLaq8tbfs-7TBmwv8e7I0DjehRHQqjU2QoQDfpXE8xkIOfKh7xgqLGkFDjb5vQq7IsFvOdlFsuh5J36fT~-GkAJ7w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Care4Lang_at_MEDIQA_Chat_2023_Fine_tuning_Language_Models_for_Classifying_and_Summarizing_Clinical_Dialogues","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984367,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984367/thumbnails/1.jpg","file_name":"2023.clinicalnlp-1.55.pdf","download_url":"https://www.academia.edu/attachments/113984367/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Care4Lang_at_MEDIQA_Chat_2023_Fine_tunin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984367/2023.clinicalnlp-1.55-libre.pdf?1714487641=\u0026response-content-disposition=attachment%3B+filename%3DCare4Lang_at_MEDIQA_Chat_2023_Fine_tunin.pdf\u0026Expires=1732498305\u0026Signature=QUNw5x8VkS9oruZbzgK2XKOVg7lloKWatJQDsqtP-GqzCc4xJ-hows6CSFBeMgmQg3T2ddhPRQfuAMxeiO8h-pufKhXpgV~M~p0xEU3JWS8PSKQh7WyqVFcmD3fawUCElJnyrGGf0tkxnWDaBRc-FZtJpV76T~alWhQ8qR4mzcszf-c5pv7jXVtTwLa53kjDnwMf2HYgRj2~2bWHSxzhHSLVKM1Xl5m9GOP3GEvqQyYHAz2N6lXgVdcmFFwuaTLaq8tbfs-7TBmwv8e7I0DjehRHQqjU2QoQDfpXE8xkIOfKh7xgqLGkFDjb5vQq7IsFvOdlFsuh5J36fT~-GkAJ7w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":520672,"name":"Language Model","url":"https://www.academia.edu/Documents/in/Language_Model"},{"id":1725616,"name":"Automatic Summarization","url":"https://www.academia.edu/Documents/in/Automatic_Summarization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332119"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332119/Text_Characterization_Toolkit"><img alt="Research paper thumbnail of Text Characterization Toolkit" class="work-thumbnail" src="https://attachments.academia-assets.com/113984331/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332119/Text_Characterization_Toolkit">Text Characterization Toolkit</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Oct 4, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a129bf443b45aeb99280aadf8cf5d402" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984331,"asset_id":118332119,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984331/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332119"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332119"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332119; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332119]").text(description); $(".js-view-count[data-work-id=118332119]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332119; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332119']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332119, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a129bf443b45aeb99280aadf8cf5d402" } } $('.js-work-strip[data-work-id=118332119]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332119,"title":"Text Characterization Toolkit","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":4,"month":10,"year":2022,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332119/Text_Characterization_Toolkit","translated_internal_url":"","created_at":"2024-04-30T07:31:07.190-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984331,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984331/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/113984331/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Text_Characterization_Toolkit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984331/2210-libre.pdf?1714487656=\u0026response-content-disposition=attachment%3B+filename%3DText_Characterization_Toolkit.pdf\u0026Expires=1732498305\u0026Signature=OtdnMP9yvRj0JkhLl1ty1nGhREZzoMO7F24AABwFhq-BXvW2yTi5GivTuZ2QNhEJ9ELvluBMn7I0Gd50HeruiCV1zZjJTfHl7xWghC-0kLg~xnsoFfJMMQjDwRrhEl2m5nJ3ZUGJVXIl807sYFWX1qeaDtmZW7xlBH-236FTkFZ1Hg~C6sh3DyiMlTPjRE1-oLnBvSS2-UoJK01610mWOQWsScruC4MdJvhArkUWvNT6Wv2bKtE-v20yNIXa7G~sRD7B~r1xns55Z-6cVtQVgAI5MW4ztY2euw525hYGSy5ycVPVAmFpT~tA5ihvaMEqPMqaDdNHU3gpzM7L2j-hkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Text_Characterization_Toolkit","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984331,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984331/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/113984331/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Text_Characterization_Toolkit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984331/2210-libre.pdf?1714487656=\u0026response-content-disposition=attachment%3B+filename%3DText_Characterization_Toolkit.pdf\u0026Expires=1732498305\u0026Signature=OtdnMP9yvRj0JkhLl1ty1nGhREZzoMO7F24AABwFhq-BXvW2yTi5GivTuZ2QNhEJ9ELvluBMn7I0Gd50HeruiCV1zZjJTfHl7xWghC-0kLg~xnsoFfJMMQjDwRrhEl2m5nJ3ZUGJVXIl807sYFWX1qeaDtmZW7xlBH-236FTkFZ1Hg~C6sh3DyiMlTPjRE1-oLnBvSS2-UoJK01610mWOQWsScruC4MdJvhArkUWvNT6Wv2bKtE-v20yNIXa7G~sRD7B~r1xns55Z-6cVtQVgAI5MW4ztY2euw525hYGSy5ycVPVAmFpT~tA5ihvaMEqPMqaDdNHU3gpzM7L2j-hkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113984330,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984330/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/113984330/download_file","bulk_download_file_name":"Text_Characterization_Toolkit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984330/2210-libre.pdf?1714487651=\u0026response-content-disposition=attachment%3B+filename%3DText_Characterization_Toolkit.pdf\u0026Expires=1732498305\u0026Signature=Eo1gLuDzGBAgY9JyR3Riw1QwCJdkUYu35D1qzu8lSLAo-zAB6HgiSryU1yl5jJapgzpcATvXMJDtCCLYoCqjm~lnHTERAG-Nzc5NFyuUClhyGQQgMyVUvRv2tquuMgufj4GYk6jdFsjDOo~iKbKEvSUulpQfJigtZRS0So9knJnxTwbJcazIwU4Vya4trGr9RB4x8RsE~MpkemXEKSUM3HHuDlzVuJobJBFRL-~GYYYTCaO1Fvr9qSjgF80RFR-cOM1j05fm0Ut3CgNJP~H69W8eMYu02Ywogy9xZDtkVTCp-0ljXg~K~QIrPwMdCJdRoSlfhU6H7GPcKOTWs~D46g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2537,"name":"Heuristics","url":"https://www.academia.edu/Documents/in/Heuristics"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":212702,"name":"Scripting Language","url":"https://www.academia.edu/Documents/in/Scripting_Language"}],"urls":[{"id":41528935,"url":"http://arxiv.org/pdf/2210.01734"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332118"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332118/Information_propagation_in_an_era_of_Infodemics_The_role_of_language_content"><img alt="Research paper thumbnail of Information propagation in an era of Infodemics: The role of language content" class="work-thumbnail" src="https://attachments.academia-assets.com/113984365/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332118/Information_propagation_in_an_era_of_Infodemics_The_role_of_language_content">Information propagation in an era of Infodemics: The role of language content</a></div><div class="wp-workCard_item"><span>2020 Seventh International Conference on Social Networks Analysis, Management and Security (SNAMS)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="29b2f5e6e338cde67c4f48cdd83261ec" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984365,"asset_id":118332118,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984365/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332118"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332118"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332118; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332118]").text(description); $(".js-view-count[data-work-id=118332118]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332118; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332118']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332118, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "29b2f5e6e338cde67c4f48cdd83261ec" } } $('.js-work-strip[data-work-id=118332118]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332118,"title":"Information propagation in an era of Infodemics: The role of language content","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2020 Seventh International Conference on Social Networks Analysis, Management and Security (SNAMS)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332118/Information_propagation_in_an_era_of_Infodemics_The_role_of_language_content","translated_internal_url":"","created_at":"2024-04-30T07:31:06.031-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984365/thumbnails/1.jpg","file_name":"09336539.pdf","download_url":"https://www.academia.edu/attachments/113984365/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_propagation_in_an_era_of_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984365/09336539-libre.pdf?1714487639=\u0026response-content-disposition=attachment%3B+filename%3DInformation_propagation_in_an_era_of_Inf.pdf\u0026Expires=1732498305\u0026Signature=aSy8PsKQ4Q98iZnUjvAAwI2kbv7f7ppPWayLpFBf5zAXvj3MBRvrib5qNbfYXdF8U-pEuzgvsWymDKuBHcJmbircBxUkW6fD7Dt9nuYF0KwquDOLq61w~N8f9jrAnfvawiUVxhiRRKKATCfjcO0YZBu4T3T1~6Xb~LH0gteQx8h7JGQXcziaFIFSq2hylJcRsrW~CkOPsxa0kRtO1JD1O-7HK03v23JaGzcMqnGZnlLd8XhXR5P00Y5FH9ZeIBR6yXXUyqSQkpcjzMK0dzduE9eorbTrxcCt6zj-gjxafikLIJgbOVLTHUaPB1tTIHXCmqY2jV2SO9C17Q5Gq-bqpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Information_propagation_in_an_era_of_Infodemics_The_role_of_language_content","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984365/thumbnails/1.jpg","file_name":"09336539.pdf","download_url":"https://www.academia.edu/attachments/113984365/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_propagation_in_an_era_of_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984365/09336539-libre.pdf?1714487639=\u0026response-content-disposition=attachment%3B+filename%3DInformation_propagation_in_an_era_of_Inf.pdf\u0026Expires=1732498305\u0026Signature=aSy8PsKQ4Q98iZnUjvAAwI2kbv7f7ppPWayLpFBf5zAXvj3MBRvrib5qNbfYXdF8U-pEuzgvsWymDKuBHcJmbircBxUkW6fD7Dt9nuYF0KwquDOLq61w~N8f9jrAnfvawiUVxhiRRKKATCfjcO0YZBu4T3T1~6Xb~LH0gteQx8h7JGQXcziaFIFSq2hylJcRsrW~CkOPsxa0kRtO1JD1O-7HK03v23JaGzcMqnGZnlLd8XhXR5P00Y5FH9ZeIBR6yXXUyqSQkpcjzMK0dzduE9eorbTrxcCt6zj-gjxafikLIJgbOVLTHUaPB1tTIHXCmqY2jV2SO9C17Q5Gq-bqpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":276623,"name":"Misinformation","url":"https://www.academia.edu/Documents/in/Misinformation"},{"id":663814,"name":"Offensive Realism","url":"https://www.academia.edu/Documents/in/Offensive_Realism"}],"urls":[{"id":41528934,"url":"http://xplorestaging.ieee.org/ielx7/9336519/9336528/09336539.pdf?arnumber=9336539"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332117"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332117/Knowledge_Augmented_Language_Models_for_Cause_Effect_Relation_Classification"><img alt="Research paper thumbnail of Knowledge-Augmented Language Models for Cause-Effect Relation Classification" class="work-thumbnail" src="https://attachments.academia-assets.com/113984366/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332117/Knowledge_Augmented_Language_Models_for_Cause_Effect_Relation_Classification">Knowledge-Augmented Language Models for Cause-Effect Relation Classification</a></div><div class="wp-workCard_item"><span>Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6055365462a849ad0ac68c849accc988" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984366,"asset_id":118332117,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984366/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332117"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332117"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332117; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332117]").text(description); $(".js-view-count[data-work-id=118332117]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332117; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332117']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332117, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6055365462a849ad0ac68c849accc988" } } $('.js-work-strip[data-work-id=118332117]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332117,"title":"Knowledge-Augmented Language Models for Cause-Effect Relation Classification","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","publication_name":"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332117/Knowledge_Augmented_Language_Models_for_Cause_Effect_Relation_Classification","translated_internal_url":"","created_at":"2024-04-30T07:31:05.784-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984366/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113984366/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Knowledge_Augmented_Language_Models_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984366/pdf-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DKnowledge_Augmented_Language_Models_for.pdf\u0026Expires=1732498305\u0026Signature=Rx1Cr1oGDTqbfHWqVlBoFMH0cdXjCMBc5wVAWzmviRyf3iby4-kWmyBzJ3aUBeSWDe~qbwE6x-Yt4t0UT68E9xrKFuyPlJ8Hue2uuwncb4cwwaqbT5cZRe7TmI0vg8ReicotlHnBRvCFLd6WJEkrAZ58-8uDklxE-AgVMG2kts-AxTA~7GZOXijOjw-3mLvn~TNwtAINWjUNDyb8BX0hSL362Nzj~E0E2dqT0b1JLOgwk8XaMDlYFXJAMWaxsujbAuOXoc83VCX9yWoIy7beqKgQ9BlCDp4dKvXdJXAdgRqXVv9VwrzqKFeqH4Q8lrPiyyrd1sUWLcLHly~ahFcVqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Knowledge_Augmented_Language_Models_for_Cause_Effect_Relation_Classification","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984366/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113984366/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Knowledge_Augmented_Language_Models_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984366/pdf-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DKnowledge_Augmented_Language_Models_for.pdf\u0026Expires=1732498305\u0026Signature=Rx1Cr1oGDTqbfHWqVlBoFMH0cdXjCMBc5wVAWzmviRyf3iby4-kWmyBzJ3aUBeSWDe~qbwE6x-Yt4t0UT68E9xrKFuyPlJ8Hue2uuwncb4cwwaqbT5cZRe7TmI0vg8ReicotlHnBRvCFLd6WJEkrAZ58-8uDklxE-AgVMG2kts-AxTA~7GZOXijOjw-3mLvn~TNwtAINWjUNDyb8BX0hSL362Nzj~E0E2dqT0b1JLOgwk8XaMDlYFXJAMWaxsujbAuOXoc83VCX9yWoIy7beqKgQ9BlCDp4dKvXdJXAdgRqXVv9VwrzqKFeqH4Q8lrPiyyrd1sUWLcLHly~ahFcVqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":6059,"name":"Causal reasoning","url":"https://www.academia.edu/Documents/in/Causal_reasoning"},{"id":56486,"name":"Commonsense Reasoning","url":"https://www.academia.edu/Documents/in/Commonsense_Reasoning"},{"id":184950,"name":"Question Answering","url":"https://www.academia.edu/Documents/in/Question_Answering"},{"id":266831,"name":"Graph","url":"https://www.academia.edu/Documents/in/Graph"},{"id":520672,"name":"Language Model","url":"https://www.academia.edu/Documents/in/Language_Model"},{"id":2892975,"name":"Commonsense Knowledge","url":"https://www.academia.edu/Documents/in/Commonsense_Knowledge"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332116"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332116/Understanding_Cohesion_in_Writings_and_Speech_of_Schizophrenia_Patients"><img alt="Research paper thumbnail of Understanding Cohesion in Writings and Speech of Schizophrenia Patients" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332116/Understanding_Cohesion_in_Writings_and_Speech_of_Schizophrenia_Patients">Understanding Cohesion in Writings and Speech of Schizophrenia Patients</a></div><div class="wp-workCard_item"><span>2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Schizophrenia is one of the mental disorders that impacts a person&#39;s thinking, speech, and ac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Schizophrenia is one of the mental disorders that impacts a person&#39;s thinking, speech, and actions. It can reduce a person’s ability to process auditory information and make decisions. Analyzing this disorder correctly is important because it might help with different ways of reducing its negative effects on its patients. Linguists and psychiatrists have been investigating language impairments and speech disorder in people with schizophrenia disorder which can be challenging. In this study, we attempt to address this issue by analyzing linguistic features i.e. cohesion in the writings and speech scripts of schizophrenia patients. Our results show that using referential cohesion with text easability or situation model features provides the best performance for speech whereas for writing dataset, readability or a combination of situation model and readability yield the best performance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332116"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332116"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332116; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332116]").text(description); $(".js-view-count[data-work-id=118332116]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332116; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332116']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332116, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332116]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332116,"title":"Understanding Cohesion in Writings and Speech of Schizophrenia Patients","translated_title":"","metadata":{"abstract":"Schizophrenia is one of the mental disorders that impacts a person\u0026#39;s thinking, speech, and actions. It can reduce a person’s ability to process auditory information and make decisions. Analyzing this disorder correctly is important because it might help with different ways of reducing its negative effects on its patients. Linguists and psychiatrists have been investigating language impairments and speech disorder in people with schizophrenia disorder which can be challenging. In this study, we attempt to address this issue by analyzing linguistic features i.e. cohesion in the writings and speech scripts of schizophrenia patients. Our results show that using referential cohesion with text easability or situation model features provides the best performance for speech whereas for writing dataset, readability or a combination of situation model and readability yield the best performance.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)"},"translated_abstract":"Schizophrenia is one of the mental disorders that impacts a person\u0026#39;s thinking, speech, and actions. It can reduce a person’s ability to process auditory information and make decisions. Analyzing this disorder correctly is important because it might help with different ways of reducing its negative effects on its patients. Linguists and psychiatrists have been investigating language impairments and speech disorder in people with schizophrenia disorder which can be challenging. In this study, we attempt to address this issue by analyzing linguistic features i.e. cohesion in the writings and speech scripts of schizophrenia patients. Our results show that using referential cohesion with text easability or situation model features provides the best performance for speech whereas for writing dataset, readability or a combination of situation model and readability yield the best performance.","internal_url":"https://www.academia.edu/118332116/Understanding_Cohesion_in_Writings_and_Speech_of_Schizophrenia_Patients","translated_internal_url":"","created_at":"2024-04-30T07:31:05.460-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Understanding_Cohesion_in_Writings_and_Speech_of_Schizophrenia_Patients","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":134386,"name":"Readability","url":"https://www.academia.edu/Documents/in/Readability"},{"id":212702,"name":"Scripting Language","url":"https://www.academia.edu/Documents/in/Scripting_Language"}],"urls":[{"id":41528933,"url":"http://xplorestaging.ieee.org/ielx7/8974348/8998966/08999111.pdf?arnumber=8999111"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332114"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332114/The_Columbia_GWU_System_at_the_2017_TAC_KBP_BeSt_Evaluation"><img alt="Research paper thumbnail of The Columbia-GWU System at the 2017 TAC KBP BeSt Evaluation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332114/The_Columbia_GWU_System_at_the_2017_TAC_KBP_BeSt_Evaluation">The Columbia-GWU System at the 2017 TAC KBP BeSt Evaluation</a></div><div class="wp-workCard_item"><span>Text Analysis Conference</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332114"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332114"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332114; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332114]").text(description); $(".js-view-count[data-work-id=118332114]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332114; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332114']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332114, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332114]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332114,"title":"The Columbia-GWU System at the 2017 TAC KBP BeSt Evaluation","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Text Analysis Conference"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332114/The_Columbia_GWU_System_at_the_2017_TAC_KBP_BeSt_Evaluation","translated_internal_url":"","created_at":"2024-04-30T07:31:05.280-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Columbia_GWU_System_at_the_2017_TAC_KBP_BeSt_Evaluation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332113"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332113/Computational_Approaches_to_Linguistic_Code_Switching"><img alt="Research paper thumbnail of Computational Approaches to Linguistic Code Switching" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332113/Computational_Approaches_to_Linguistic_Code_Switching">Computational Approaches to Linguistic Code Switching</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332113"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332113"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332113; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332113]").text(description); $(".js-view-count[data-work-id=118332113]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332113; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332113']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332113, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332113]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332113,"title":"Computational Approaches to Linguistic Code Switching","translated_title":"","metadata":{"publisher":"INTERSPEECH","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332113/Computational_Approaches_to_Linguistic_Code_Switching","translated_internal_url":"","created_at":"2024-04-30T07:31:05.038-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Computational_Approaches_to_Linguistic_Code_Switching","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":131779,"name":"Code Switching","url":"https://www.academia.edu/Documents/in/Code_Switching"}],"urls":[{"id":41528932,"url":"http://www.isca-speech.org/archive/Interspeech_2016/abstracts/abs16.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332112/Semantic_parsing_of_modern_standard_Arabic"><img alt="Research paper thumbnail of Semantic parsing of modern standard Arabic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332112/Semantic_parsing_of_modern_standard_Arabic">Semantic parsing of modern standard Arabic</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332112]").text(description); $(".js-view-count[data-work-id=118332112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332112, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332112,"title":"Semantic parsing of modern standard Arabic","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332112/Semantic_parsing_of_modern_standard_Arabic","translated_internal_url":"","created_at":"2024-04-30T07:31:04.860-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semantic_parsing_of_modern_standard_Arabic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":14493,"name":"Parsing","url":"https://www.academia.edu/Documents/in/Parsing"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332111"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332111/Transferring_Semantic_Roles_Using_Translation_and_Syntactic_Information"><img alt="Research paper thumbnail of Transferring Semantic Roles Using Translation and Syntactic Information" class="work-thumbnail" src="https://attachments.academia-assets.com/113984329/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332111/Transferring_Semantic_Roles_Using_Translation_and_Syntactic_Information">Transferring Semantic Roles Using Translation and Syntactic Information</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Our paper addresses the problem of annotation projection for semantic role labeling for resource-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Our paper addresses the problem of annotation projection for semantic role labeling for resource-poor languages using supervised annotations from a resource-rich language through parallel data. We propose a transfer method that employs information from source and target syntactic dependencies as well as word alignment density to improve the quality of an iterative bootstrapping method. Our experiments yield a 3.5 absolute labeled F-score improvement over a standard annotation projection method.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eba0042cadd3d5a47ea63bc76715c1d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984329,"asset_id":118332111,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984329/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332111"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332111"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332111; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332111]").text(description); $(".js-view-count[data-work-id=118332111]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332111; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332111']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332111, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eba0042cadd3d5a47ea63bc76715c1d0" } } $('.js-work-strip[data-work-id=118332111]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332111,"title":"Transferring Semantic Roles Using Translation and Syntactic Information","translated_title":"","metadata":{"abstract":"Our paper addresses the problem of annotation projection for semantic role labeling for resource-poor languages using supervised annotations from a resource-rich language through parallel data. We propose a transfer method that employs information from source and target syntactic dependencies as well as word alignment density to improve the quality of an iterative bootstrapping method. Our experiments yield a 3.5 absolute labeled F-score improvement over a standard annotation projection method.","publisher":"IJCNLP","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"Our paper addresses the problem of annotation projection for semantic role labeling for resource-poor languages using supervised annotations from a resource-rich language through parallel data. We propose a transfer method that employs information from source and target syntactic dependencies as well as word alignment density to improve the quality of an iterative bootstrapping method. Our experiments yield a 3.5 absolute labeled F-score improvement over a standard annotation projection method.","internal_url":"https://www.academia.edu/118332111/Transferring_Semantic_Roles_Using_Translation_and_Syntactic_Information","translated_internal_url":"","created_at":"2024-04-30T07:31:04.589-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984329,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984329/thumbnails/1.jpg","file_name":"1710.01411v1.pdf","download_url":"https://www.academia.edu/attachments/113984329/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transferring_Semantic_Roles_Using_Transl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984329/1710.01411v1-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DTransferring_Semantic_Roles_Using_Transl.pdf\u0026Expires=1732498305\u0026Signature=EVgidnYeFqseEm8y~G-11kVqdseI93UpxnO3hk9S1rbkIMn82Avfh0rzVfov8DOzhQWWAMdqqk0sDkFOaHi26pywQUrN8a07gBFiSctCkZglFh13GVzU3L-skyrsDXifPAt5XuVAZVGf4Fjab~WVXLdHsMSlmPJkjU~wBBeuYUIpYLzVupClZMDyaggn0oqWrfv0UqdBpUFOv7mYoeKcD53t5HJj7vG9hbq7Xbs3U63Ee~0-VKN3T3zfLoZ-YPZziFcB9jCTDowN1ErEUYg4pC9-FUI9Xhl2M8HAubZBdY9QLBg-VbPC9BfrjOsooSMULhcchNTmNednkBhTQ~68Eg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Transferring_Semantic_Roles_Using_Translation_and_Syntactic_Information","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984329,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984329/thumbnails/1.jpg","file_name":"1710.01411v1.pdf","download_url":"https://www.academia.edu/attachments/113984329/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transferring_Semantic_Roles_Using_Transl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984329/1710.01411v1-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DTransferring_Semantic_Roles_Using_Transl.pdf\u0026Expires=1732498305\u0026Signature=EVgidnYeFqseEm8y~G-11kVqdseI93UpxnO3hk9S1rbkIMn82Avfh0rzVfov8DOzhQWWAMdqqk0sDkFOaHi26pywQUrN8a07gBFiSctCkZglFh13GVzU3L-skyrsDXifPAt5XuVAZVGf4Fjab~WVXLdHsMSlmPJkjU~wBBeuYUIpYLzVupClZMDyaggn0oqWrfv0UqdBpUFOv7mYoeKcD53t5HJj7vG9hbq7Xbs3U63Ee~0-VKN3T3zfLoZ-YPZziFcB9jCTDowN1ErEUYg4pC9-FUI9Xhl2M8HAubZBdY9QLBg-VbPC9BfrjOsooSMULhcchNTmNednkBhTQ~68Eg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113984328,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984328/thumbnails/1.jpg","file_name":"1710.01411v1.pdf","download_url":"https://www.academia.edu/attachments/113984328/download_file","bulk_download_file_name":"Transferring_Semantic_Roles_Using_Transl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984328/1710.01411v1-libre.pdf?1714487644=\u0026response-content-disposition=attachment%3B+filename%3DTransferring_Semantic_Roles_Using_Transl.pdf\u0026Expires=1732498305\u0026Signature=OWE8bzw6zTZft3IGGVX92orAAif26dbYW~FKKKfKaA5QrEsGmHoB-R8qSeLTI-Khmno0pSpF~bSMCjQk9rOWyIS~3-PsB4SK4U8BAV7NBy-I50C9lmpGlUctodDzzrScJBTsZMFdfFPVyIe3486B0vhKAcTtUHOmUyNToOW6GYypfn6U59hTxh5YIMohUqUKulcJnS1fT0pkVnreV~1LiblcYBbu4DsBGVvhTBXepqmH3Sxfpfv8FJmWlCWP7oC52qO8H6iTWM1r3dkGPbaBWMrwrslHG07pwnADFxlVFyVS6DjC5QEiDafKX3-w0SMYc1mjb4varVr8W3NVb1chQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":4696,"name":"Machine Translation","url":"https://www.academia.edu/Documents/in/Machine_Translation"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":1534202,"name":"Bootstrapping Finance","url":"https://www.academia.edu/Documents/in/Bootstrapping_Finance"}],"urls":[{"id":41528931,"url":"https://arxiv.org/pdf/1710.01411v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332110/Annotated_corpora_and_tools_of_the_PARSEME_Shared_Task_on_Automatic_Identification_of_Verbal_Multiword_Expressions_edition_1_1_"><img alt="Research paper thumbnail of Annotated corpora and tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions (edition 1.1)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332110/Annotated_corpora_and_tools_of_the_PARSEME_Shared_Task_on_Automatic_Identification_of_Verbal_Multiword_Expressions_edition_1_1_">Annotated corpora and tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions (edition 1.1)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VM...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). VMWEs were annotated according to the universal guidelines in 19 languages. The corpora are provided in the cupt format, inspired by the CONLL-U format. The corpora were used in the 1.1 edition of the PARSEME Shared Task (2018). For most languages, morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe). This item contains training, development and test data, as well as the evaluation tools us...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332110]").text(description); $(".js-view-count[data-work-id=118332110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332110, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332110,"title":"Annotated corpora and tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions (edition 1.1)","translated_title":"","metadata":{"abstract":"This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). VMWEs were annotated according to the universal guidelines in 19 languages. The corpora are provided in the cupt format, inspired by the CONLL-U format. The corpora were used in the 1.1 edition of the PARSEME Shared Task (2018). For most languages, morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe). This item contains training, development and test data, as well as the evaluation tools us...","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). VMWEs were annotated according to the universal guidelines in 19 languages. The corpora are provided in the cupt format, inspired by the CONLL-U format. The corpora were used in the 1.1 edition of the PARSEME Shared Task (2018). For most languages, morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe). This item contains training, development and test data, as well as the evaluation tools us...","internal_url":"https://www.academia.edu/118332110/Annotated_corpora_and_tools_of_the_PARSEME_Shared_Task_on_Automatic_Identification_of_Verbal_Multiword_Expressions_edition_1_1_","translated_internal_url":"","created_at":"2024-04-30T07:31:03.570-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Annotated_corpora_and_tools_of_the_PARSEME_Shared_Task_on_Automatic_Identification_of_Verbal_Multiword_Expressions_edition_1_1_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":14493,"name":"Parsing","url":"https://www.academia.edu/Documents/in/Parsing"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":153799,"name":"Verb","url":"https://www.academia.edu/Documents/in/Verb"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332109"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332109/COLEPL_and_COLSLM_An_Unsupervised_WSD_Approach_to_Multilingual_Lexical_Substitution_Tasks_2_and_3_SemEval_2010"><img alt="Research paper thumbnail of COLEPL and COLSLM: An Unsupervised WSD Approach to Multilingual Lexical Substitution, Tasks 2 and 3 SemEval 2010" class="work-thumbnail" src="https://attachments.academia-assets.com/113984325/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332109/COLEPL_and_COLSLM_An_Unsupervised_WSD_Approach_to_Multilingual_Lexical_Substitution_Tasks_2_and_3_SemEval_2010">COLEPL and COLSLM: An Unsupervised WSD Approach to Multilingual Lexical Substitution, Tasks 2 and 3 SemEval 2010</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we present a word sense disambiguation (WSD) based system for multilingual lexical...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we present a word sense disambiguation (WSD) based system for multilingual lexical substitution. Our method depends on having a WSD system for English and an automatic word alignment method. Crucially the approach relies on having parallel corpora. For Task 2 (Sinha et al., 2009) we apply a supervised WSD system to derive the English word senses. For Task 3 (Lefever & Hoste, 2009), we apply an unsupervised approach to the training and test data. Both of our systems that participated in Task 2 achieve a decent ranking among the participating systems. For Task 3 we achieve the highest ranking on several of the language pairs: French, German and Italian.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5357dfaf20545153da6885319d14c913" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984325,"asset_id":118332109,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984325/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332109"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332109"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332109; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332109]").text(description); $(".js-view-count[data-work-id=118332109]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332109; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332109']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332109, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5357dfaf20545153da6885319d14c913" } } $('.js-work-strip[data-work-id=118332109]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332109,"title":"COLEPL and COLSLM: An Unsupervised WSD Approach to Multilingual Lexical Substitution, Tasks 2 and 3 SemEval 2010","translated_title":"","metadata":{"abstract":"In this paper, we present a word sense disambiguation (WSD) based system for multilingual lexical substitution. Our method depends on having a WSD system for English and an automatic word alignment method. Crucially the approach relies on having parallel corpora. For Task 2 (Sinha et al., 2009) we apply a supervised WSD system to derive the English word senses. For Task 3 (Lefever \u0026 Hoste, 2009), we apply an unsupervised approach to the training and test data. Both of our systems that participated in Task 2 achieve a decent ranking among the participating systems. For Task 3 we achieve the highest ranking on several of the language pairs: French, German and Italian.","publisher":"*SEMEVAL","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"In this paper, we present a word sense disambiguation (WSD) based system for multilingual lexical substitution. Our method depends on having a WSD system for English and an automatic word alignment method. Crucially the approach relies on having parallel corpora. For Task 2 (Sinha et al., 2009) we apply a supervised WSD system to derive the English word senses. For Task 3 (Lefever \u0026 Hoste, 2009), we apply an unsupervised approach to the training and test data. Both of our systems that participated in Task 2 achieve a decent ranking among the participating systems. For Task 3 we achieve the highest ranking on several of the language pairs: French, German and Italian.","internal_url":"https://www.academia.edu/118332109/COLEPL_and_COLSLM_An_Unsupervised_WSD_Approach_to_Multilingual_Lexical_Substitution_Tasks_2_and_3_SemEval_2010","translated_internal_url":"","created_at":"2024-04-30T07:31:03.309-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984325,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984325/thumbnails/1.jpg","file_name":"S10-1026.pdf","download_url":"https://www.academia.edu/attachments/113984325/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984325/S10-1026-libre.pdf?1714487641=\u0026response-content-disposition=attachment%3B+filename%3DCOLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf\u0026Expires=1732498305\u0026Signature=IT-IQ~pYrgu8QPicr~BNF~A7NBt9Pkz1kTv9KcDkESKMQfcp1M8xhQG6Wpx9k6E1NzrdhizA~4beLKQDZ~udLx9hxS7SrSt341zguDzNGVd-VbsbPm0T9gRtwPfM9X8WKvb0zHWFHWfOSdYIsmQR-im2OQaT1lQQQZNPsV5KUwDX2wlfNcqFutCLzw0qXjELryJQEB4gfs1R1XAi4dT-Ap4DD1Wnfp7J5A35DecWAfTWwBujUvsMJiLBcQlhZezltlNFFgqAf0A8H5LsS4JTB8yFvNP9ZE9asBru8HHtBxgT50LwEGvctg5~Q~FQfoc2LCLhsi97oAYw6tjHwO~ClA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"COLEPL_and_COLSLM_An_Unsupervised_WSD_Approach_to_Multilingual_Lexical_Substitution_Tasks_2_and_3_SemEval_2010","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984325,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984325/thumbnails/1.jpg","file_name":"S10-1026.pdf","download_url":"https://www.academia.edu/attachments/113984325/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984325/S10-1026-libre.pdf?1714487641=\u0026response-content-disposition=attachment%3B+filename%3DCOLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf\u0026Expires=1732498305\u0026Signature=IT-IQ~pYrgu8QPicr~BNF~A7NBt9Pkz1kTv9KcDkESKMQfcp1M8xhQG6Wpx9k6E1NzrdhizA~4beLKQDZ~udLx9hxS7SrSt341zguDzNGVd-VbsbPm0T9gRtwPfM9X8WKvb0zHWFHWfOSdYIsmQR-im2OQaT1lQQQZNPsV5KUwDX2wlfNcqFutCLzw0qXjELryJQEB4gfs1R1XAi4dT-Ap4DD1Wnfp7J5A35DecWAfTWwBujUvsMJiLBcQlhZezltlNFFgqAf0A8H5LsS4JTB8yFvNP9ZE9asBru8HHtBxgT50LwEGvctg5~Q~FQfoc2LCLhsi97oAYw6tjHwO~ClA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113984326,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984326/thumbnails/1.jpg","file_name":"S10-1026.pdf","download_url":"https://www.academia.edu/attachments/113984326/download_file","bulk_download_file_name":"COLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984326/S10-1026-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DCOLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf\u0026Expires=1732498305\u0026Signature=CS7i4YgDHzVFiK9nE0j3dWpvU2JlIMi6SszNZcg5SSYihPTNQq9MU5Y09t5Axe7vv0QkkknlgmljzMSxfpv9C4bgeaAFCXeWXJfnTjqssWG7u6D~eDx8ldVurSq8jzjBv4z8wcSFUZqNn0NA8mqtmdzIER9OEkAg84LFqw3Ab2KrbTask586NDq5KbDlXGzzmX8WsTDLwfGDvnDhE9TqFMPPvF7Kc~f0DEF9iXGovP1ghD~boC3~DDQHxKDp0ihFIwGtSATp8n8SzKB7Rl6Cghs80QbZjgo34QgOC-cXN-MatmJJyezlfz2UiVyrN6QFd7VGypiwGYALYfXBzlUyNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":2934618,"name":"substitution (logic)","url":"https://www.academia.edu/Documents/in/substitution_logic_"}],"urls":[{"id":41528930,"url":"http://www.aclweb.org/anthology/S/S10/S10-1026.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332108/Multi_Domain_Goal_Oriented_Dialogues_MultiDoGO_Strategies_toward_Curating_and_Annotating_Large_Scale_Dialogue_Data"><img alt="Research paper thumbnail of Multi-Domain Goal-Oriented Dialogues (MultiDoGO): Strategies toward Curating and Annotating Large Scale Dialogue Data" class="work-thumbnail" src="https://attachments.academia-assets.com/113984363/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332108/Multi_Domain_Goal_Oriented_Dialogues_MultiDoGO_Strategies_toward_Curating_and_Annotating_Large_Scale_Dialogue_Data">Multi-Domain Goal-Oriented Dialogues (MultiDoGO): Strategies toward Curating and Annotating Large Scale Dialogue Data</a></div><div class="wp-workCard_item"><span>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1739c1ec6de1072dc907c07950dff73b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984363,"asset_id":118332108,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984363/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332108]").text(description); $(".js-view-count[data-work-id=118332108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1739c1ec6de1072dc907c07950dff73b" } } $('.js-work-strip[data-work-id=118332108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332108,"title":"Multi-Domain Goal-Oriented Dialogues (MultiDoGO): Strategies toward Curating and Annotating Large Scale Dialogue Data","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332108/Multi_Domain_Goal_Oriented_Dialogues_MultiDoGO_Strategies_toward_Curating_and_Annotating_Large_Scale_Dialogue_Data","translated_internal_url":"","created_at":"2024-04-30T07:31:03.125-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984363/thumbnails/1.jpg","file_name":"D19-1460.pdf","download_url":"https://www.academia.edu/attachments/113984363/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Domain_Goal_Oriented_Dialogues_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984363/D19-1460-libre.pdf?1714487643=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Domain_Goal_Oriented_Dialogues_Mul.pdf\u0026Expires=1732498305\u0026Signature=J2XR3n1GwfJMKj5D2o2uhCSdKfzeY~cCJUEaxL51~7WG0iVhmEErPYnHbdbaGkOSYFNxlhWCCHOnAgq0Vt8aNlFK7p2a~zzDacKWwOki68Pw9hm80v7fExCFTCtO9Z84dWeEc-zmMODqTnOFMUBh7bhlFIKgQ-m8v1af6xtXRGBy4eikh-ZzIJiZFOFSlVZGbUFtomVuuqB4grHSoKnFvl6gSRc~v~58mNrjh6U3GNT9OFs-1cNuH50BaM~PurLLAVHsWJF4bZmd4iTqkTKG3CkZESfIPARk1YBKdDeR6~3P06XGKmOB-syWVfWVbGan~F0do14OYn~wKhAaxgDPUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_Domain_Goal_Oriented_Dialogues_MultiDoGO_Strategies_toward_Curating_and_Annotating_Large_Scale_Dialogue_Data","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984363/thumbnails/1.jpg","file_name":"D19-1460.pdf","download_url":"https://www.academia.edu/attachments/113984363/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Domain_Goal_Oriented_Dialogues_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984363/D19-1460-libre.pdf?1714487643=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Domain_Goal_Oriented_Dialogues_Mul.pdf\u0026Expires=1732498305\u0026Signature=J2XR3n1GwfJMKj5D2o2uhCSdKfzeY~cCJUEaxL51~7WG0iVhmEErPYnHbdbaGkOSYFNxlhWCCHOnAgq0Vt8aNlFK7p2a~zzDacKWwOki68Pw9hm80v7fExCFTCtO9Z84dWeEc-zmMODqTnOFMUBh7bhlFIKgQ-m8v1af6xtXRGBy4eikh-ZzIJiZFOFSlVZGbUFtomVuuqB4grHSoKnFvl6gSRc~v~58mNrjh6U3GNT9OFs-1cNuH50BaM~PurLLAVHsWJF4bZmd4iTqkTKG3CkZESfIPARk1YBKdDeR6~3P06XGKmOB-syWVfWVbGan~F0do14OYn~wKhAaxgDPUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":1350274,"name":"Archaeology of Natural Places","url":"https://www.academia.edu/Documents/in/Archaeology_of_Natural_Places"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332107/On_Arabic_Multi_Genre_Corpus_Diacritization"><img alt="Research paper thumbnail of On Arabic Multi-Genre Corpus Diacritization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332107/On_Arabic_Multi_Genre_Corpus_Diacritization">On Arabic Multi-Genre Corpus Diacritization</a></div><div class="wp-workCard_item"><span>Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the characteristics of writing in Modern Standard Arabic (MSA) is that the commonly used o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the characteristics of writing in Modern Standard Arabic (MSA) is that the commonly used orthography is mostly consonantal and does not provide full vocalization of the text. It sometimes includes optional diacritical marks (henceforth, diacritics or vowels).Arabic script consists of two classes of symbols: letters and diacritics. Letters comprise long vowels such as A, y, w as well as consonants. Diacritics on the other hand comprise short vowels, gemination markers, nunation markers, as well as other markers (such as hamza, the glottal stop which appears in conjunction with a small number of letters, dots on letters, elongation and emphatic markers) which in all, if present, render a more or less exact precise reading of a word. In this study, we are mostly addressing three types of diacritical marks: short vowels, nunation, and shadda (gemination).Diacritics are extremely useful for text readability and understanding. Their absence in Arabic text adds another layer of lexi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332107]").text(description); $(".js-view-count[data-work-id=118332107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332107, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332107,"title":"On Arabic Multi-Genre Corpus Diacritization","translated_title":"","metadata":{"abstract":"One of the characteristics of writing in Modern Standard Arabic (MSA) is that the commonly used orthography is mostly consonantal and does not provide full vocalization of the text. It sometimes includes optional diacritical marks (henceforth, diacritics or vowels).Arabic script consists of two classes of symbols: letters and diacritics. Letters comprise long vowels such as A, y, w as well as consonants. Diacritics on the other hand comprise short vowels, gemination markers, nunation markers, as well as other markers (such as hamza, the glottal stop which appears in conjunction with a small number of letters, dots on letters, elongation and emphatic markers) which in all, if present, render a more or less exact precise reading of a word. In this study, we are mostly addressing three types of diacritical marks: short vowels, nunation, and shadda (gemination).Diacritics are extremely useful for text readability and understanding. Their absence in Arabic text adds another layer of lexi...","publisher":"Hamad bin Khalifa University Press (HBKU Press)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1"},"translated_abstract":"One of the characteristics of writing in Modern Standard Arabic (MSA) is that the commonly used orthography is mostly consonantal and does not provide full vocalization of the text. It sometimes includes optional diacritical marks (henceforth, diacritics or vowels).Arabic script consists of two classes of symbols: letters and diacritics. Letters comprise long vowels such as A, y, w as well as consonants. Diacritics on the other hand comprise short vowels, gemination markers, nunation markers, as well as other markers (such as hamza, the glottal stop which appears in conjunction with a small number of letters, dots on letters, elongation and emphatic markers) which in all, if present, render a more or less exact precise reading of a word. In this study, we are mostly addressing three types of diacritical marks: short vowels, nunation, and shadda (gemination).Diacritics are extremely useful for text readability and understanding. Their absence in Arabic text adds another layer of lexi...","internal_url":"https://www.academia.edu/118332107/On_Arabic_Multi_Genre_Corpus_Diacritization","translated_internal_url":"","created_at":"2024-04-30T07:31:02.938-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Arabic_Multi_Genre_Corpus_Diacritization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":15674,"name":"Linguistics","url":"https://www.academia.edu/Documents/in/Linguistics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332106"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332106/Building_a_Rich_Lexical_Resource_for_Standard_Arabic"><img alt="Research paper thumbnail of Building a Rich Lexical Resource for Standard Arabic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332106/Building_a_Rich_Lexical_Resource_for_Standard_Arabic">Building a Rich Lexical Resource for Standard Arabic</a></div><div class="wp-workCard_item"><span>Qatar Foundation Annual Research Conference Proceedings Volume 2018 Issue 4</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Language ambiguity is an inherent characteristic of natural languages. It refers to the phenomeno...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Language ambiguity is an inherent characteristic of natural languages. It refers to the phenomenon where an instance can be interpreted in multiple ways. Ambiguity is at the core of the problems faced by natural language processing applications (Obeid et al. 2013). Although humans have the ability to resolve such ambiguity based on their prior knowledge and context, there are instances (sentences, words,... etc) that require multiple readings to resolve it within a context (Hawwari et al. 2013; Diab et al. 2008). The problem of natural language ambiguity is further exacerbated by conventional orthographic decisions where not all phonemes are explicitly represented (Maamouri et al. 2010; Maamouri et al. 2012). Arabic standard orthography is one of these languages that is underspecified for some of the characters such as short vowels, gemination, glottal stops, etc which are collectively represented as diacritics (Zaghouani et al. 2012; Zaghouani et al. 2016). Most typical text in Ara...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332106"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332106"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332106; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332106]").text(description); $(".js-view-count[data-work-id=118332106]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332106; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332106']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332106, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332106]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332106,"title":"Building a Rich Lexical Resource for Standard Arabic","translated_title":"","metadata":{"abstract":"Language ambiguity is an inherent characteristic of natural languages. It refers to the phenomenon where an instance can be interpreted in multiple ways. Ambiguity is at the core of the problems faced by natural language processing applications (Obeid et al. 2013). Although humans have the ability to resolve such ambiguity based on their prior knowledge and context, there are instances (sentences, words,... etc) that require multiple readings to resolve it within a context (Hawwari et al. 2013; Diab et al. 2008). The problem of natural language ambiguity is further exacerbated by conventional orthographic decisions where not all phonemes are explicitly represented (Maamouri et al. 2010; Maamouri et al. 2012). Arabic standard orthography is one of these languages that is underspecified for some of the characters such as short vowels, gemination, glottal stops, etc which are collectively represented as diacritics (Zaghouani et al. 2012; Zaghouani et al. 2016). Most typical text in Ara...","publisher":"Hamad bin Khalifa University Press (HBKU Press)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Qatar Foundation Annual Research Conference Proceedings Volume 2018 Issue 4"},"translated_abstract":"Language ambiguity is an inherent characteristic of natural languages. It refers to the phenomenon where an instance can be interpreted in multiple ways. Ambiguity is at the core of the problems faced by natural language processing applications (Obeid et al. 2013). Although humans have the ability to resolve such ambiguity based on their prior knowledge and context, there are instances (sentences, words,... etc) that require multiple readings to resolve it within a context (Hawwari et al. 2013; Diab et al. 2008). The problem of natural language ambiguity is further exacerbated by conventional orthographic decisions where not all phonemes are explicitly represented (Maamouri et al. 2010; Maamouri et al. 2012). Arabic standard orthography is one of these languages that is underspecified for some of the characters such as short vowels, gemination, glottal stops, etc which are collectively represented as diacritics (Zaghouani et al. 2012; Zaghouani et al. 2016). Most typical text in Ara...","internal_url":"https://www.academia.edu/118332106/Building_a_Rich_Lexical_Resource_for_Standard_Arabic","translated_internal_url":"","created_at":"2024-04-30T07:31:02.714-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Building_a_Rich_Lexical_Resource_for_Standard_Arabic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332105"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332105/Unsupervised_Word_Mapping_Using_Structural_Similarities_in_Monolingual_Embeddings"><img alt="Research paper thumbnail of Unsupervised Word Mapping Using Structural Similarities in Monolingual Embeddings" class="work-thumbnail" src="https://attachments.academia-assets.com/113984324/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332105/Unsupervised_Word_Mapping_Using_Structural_Similarities_in_Monolingual_Embeddings">Unsupervised Word Mapping Using Structural Similarities in Monolingual Embeddings</a></div><div class="wp-workCard_item"><span>Transactions of the Association for Computational Linguistics</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Most existing methods for automatic bilingual dictionary induction rely on prior alignments betwe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monolingual word embeddings. The proposed method exploits local and global structures in monolingual vector spaces to align them such that similar words are mapped to each other. We show empirically that the performance of bilingual correspondents that are learned using our proposed unsupervised method is comparable to that of using supervised bilingual correspondents from a seed dictionary.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ad11e7a413311d938d3a6e332ff0ba02" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984324,"asset_id":118332105,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984324/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332105"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332105"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332105; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332105]").text(description); $(".js-view-count[data-work-id=118332105]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332105; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332105']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332105, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ad11e7a413311d938d3a6e332ff0ba02" } } $('.js-work-strip[data-work-id=118332105]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332105,"title":"Unsupervised Word Mapping Using Structural Similarities in Monolingual Embeddings","translated_title":"","metadata":{"abstract":"Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monolingual word embeddings. The proposed method exploits local and global structures in monolingual vector spaces to align them such that similar words are mapped to each other. We show empirically that the performance of bilingual correspondents that are learned using our proposed unsupervised method is comparable to that of using supervised bilingual correspondents from a seed dictionary.","publisher":"MIT Press - Journals","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Transactions of the Association for Computational Linguistics"},"translated_abstract":"Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monolingual word embeddings. The proposed method exploits local and global structures in monolingual vector spaces to align them such that similar words are mapped to each other. We show empirically that the performance of bilingual correspondents that are learned using our proposed unsupervised method is comparable to that of using supervised bilingual correspondents from a seed dictionary.","internal_url":"https://www.academia.edu/118332105/Unsupervised_Word_Mapping_Using_Structural_Similarities_in_Monolingual_Embeddings","translated_internal_url":"","created_at":"2024-04-30T07:31:02.329-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984324,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984324/thumbnails/1.jpg","file_name":"tacl_a_00014.pdf","download_url":"https://www.academia.edu/attachments/113984324/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unsupervised_Word_Mapping_Using_Structur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984324/tacl_a_00014-libre.pdf?1714487671=\u0026response-content-disposition=attachment%3B+filename%3DUnsupervised_Word_Mapping_Using_Structur.pdf\u0026Expires=1732498305\u0026Signature=CZup9u5zcNYROrI3cUajpIRXz~ftpxOnWPFzuNO09aVpqlAeTv25d~I9IYZS4pZ2cDkfWLODGj3qwGNRwIbNRyP4VgboE6zSg1dF3QLWdrg3-XMLrYaJx~PdklYfzgQiwYE2CpJh9~63zkhBQrE~3hc-pKDVI5lEH9I19TkmIZSwYavb7CaX-e~9aZtsjXwRpCFKKLWIcNfiF2ZGCLqlMrQx5W3MjMyXc0BRMVm6mU4Du9txX~wu2r3LHi2OfChzzWPZ01JYP7zdIcb-uUpWGYoCdIkzz5Jc27CwGt6u5Yw93l27vr2EYdLWVb85gdnmNWqdr02VjBcdWnixd96q1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Unsupervised_Word_Mapping_Using_Structural_Similarities_in_Monolingual_Embeddings","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984324,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984324/thumbnails/1.jpg","file_name":"tacl_a_00014.pdf","download_url":"https://www.academia.edu/attachments/113984324/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unsupervised_Word_Mapping_Using_Structur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984324/tacl_a_00014-libre.pdf?1714487671=\u0026response-content-disposition=attachment%3B+filename%3DUnsupervised_Word_Mapping_Using_Structur.pdf\u0026Expires=1732498305\u0026Signature=CZup9u5zcNYROrI3cUajpIRXz~ftpxOnWPFzuNO09aVpqlAeTv25d~I9IYZS4pZ2cDkfWLODGj3qwGNRwIbNRyP4VgboE6zSg1dF3QLWdrg3-XMLrYaJx~PdklYfzgQiwYE2CpJh9~63zkhBQrE~3hc-pKDVI5lEH9I19TkmIZSwYavb7CaX-e~9aZtsjXwRpCFKKLWIcNfiF2ZGCLqlMrQx5W3MjMyXc0BRMVm6mU4Du9txX~wu2r3LHi2OfChzzWPZ01JYP7zdIcb-uUpWGYoCdIkzz5Jc27CwGt6u5Yw93l27vr2EYdLWVb85gdnmNWqdr02VjBcdWnixd96q1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113984323,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984323/thumbnails/1.jpg","file_name":"tacl_a_00014.pdf","download_url":"https://www.academia.edu/attachments/113984323/download_file","bulk_download_file_name":"Unsupervised_Word_Mapping_Using_Structur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984323/tacl_a_00014-libre.pdf?1714487670=\u0026response-content-disposition=attachment%3B+filename%3DUnsupervised_Word_Mapping_Using_Structur.pdf\u0026Expires=1732498305\u0026Signature=CWInopNWwHdLIOmyqFkQL8QIfCsa7hZmQBOJrFkBffG4o6K3wTwVsGLRE6Ex8fPglEoozOq0pSQzo7Bou6EVs73J8Scdbg80f0NuGU4OaP6B4ncbMm3K5x9QAZhLdbgiqeOKWV3NzgezaRrbqX6SAmJWnma7~AuGao8h6u0gz6eSItIulTWYBapP8FEV-MIzT55BrGLIwhDOH0Fndw9NwLmtDKh5bOJH15okLAkUocqk4Y3~2HFsb1GaEktXIaQVzbQrtUPtnHjHYHRTXdAAEluXcmWxRkrE5N35LDlGTI7W9jQNdskFE~n0GpM6nTE5BnbFntYWkF4Ytzr9foFkPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":693977,"name":"Exploit","url":"https://www.academia.edu/Documents/in/Exploit"},{"id":704843,"name":"Bilingual Dictionary","url":"https://www.academia.edu/Documents/in/Bilingual_Dictionary"}],"urls":[{"id":41528929,"url":"https://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00014"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332104"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332104/HLT_and_NLP_within_the_Arabic_world_Arabic_Language_and_local_languages_processing_Status_Updates_and_Prospects"><img alt="Research paper thumbnail of HLT & NLP within the Arabic world: Arabic Language and local languages processing Status Updates and Prospects" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332104/HLT_and_NLP_within_the_Arabic_world_Arabic_Language_and_local_languages_processing_Status_Updates_and_Prospects">HLT & NLP within the Arabic world: Arabic Language and local languages processing Status Updates and Prospects</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332104"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332104"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332104; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332104]").text(description); $(".js-view-count[data-work-id=118332104]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332104; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332104']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332104, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332104]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332104,"title":"HLT \u0026 NLP within the Arabic world: Arabic Language and local languages processing Status Updates and Prospects","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332104/HLT_and_NLP_within_the_Arabic_world_Arabic_Language_and_local_languages_processing_Status_Updates_and_Prospects","translated_internal_url":"","created_at":"2024-04-30T07:31:02.158-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"HLT_and_NLP_within_the_Arabic_world_Arabic_Language_and_local_languages_processing_Status_Updates_and_Prospects","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332103"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332103/Simplified_guidelines_for_the_creation_of_Large_Scale_Dialectal_Arabic_Annotations"><img alt="Research paper thumbnail of Simplified guidelines for the creation of Large Scale Dialectal Arabic Annotations" class="work-thumbnail" src="https://attachments.academia-assets.com/113984361/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332103/Simplified_guidelines_for_the_creation_of_Large_Scale_Dialectal_Arabic_Annotations">Simplified guidelines for the creation of Large Scale Dialectal Arabic Annotations</a></div><div class="wp-workCard_item"><span>lrec-conf.org</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7fe8f6532e5a1d894a66a808cbc3e60f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984361,"asset_id":118332103,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984361/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332103"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332103"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332103; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332103]").text(description); $(".js-view-count[data-work-id=118332103]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332103; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332103']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332103, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7fe8f6532e5a1d894a66a808cbc3e60f" } } $('.js-work-strip[data-work-id=118332103]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332103,"title":"Simplified guidelines for the creation of Large Scale Dialectal Arabic Annotations","translated_title":"","metadata":{"publication_name":"lrec-conf.org"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332103/Simplified_guidelines_for_the_creation_of_Large_Scale_Dialectal_Arabic_Annotations","translated_internal_url":"","created_at":"2024-04-30T07:31:01.884-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984361,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984361/thumbnails/1.jpg","file_name":"815_Paper.pdf","download_url":"https://www.academia.edu/attachments/113984361/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simplified_guidelines_for_the_creation_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984361/815_Paper-libre.pdf?1714487640=\u0026response-content-disposition=attachment%3B+filename%3DSimplified_guidelines_for_the_creation_o.pdf\u0026Expires=1732498305\u0026Signature=KToearISFx3iFuaTss0NZDKvnECG7qrIr8eZPdIOI3hBoW9c8s8e~rmghRhLOuG8dqwsPNrbMdKN9s3r9ZqwUyLWZnlybTg~7MfkUgzEv32m8Ih7Jurz1ARxtoHz9ycVrYJc5vlDEi4jZHwAQtEbVJ25yxUp-LJS-0tsC8jU1pByOEdSXZ0Mlq7h0Mt4GA1bOPTQv1Yog6hkFrwsI5igoanY2GIH3ZidWAqxU60TQkVVMOD6Xi2YhfZNiOvEQnxhLZBf9EU-VN3ahSh2EVvN6bDN2s103Itjc09zN3yhlxf6K91X5lDwfKM6BVrY3njQ0zJSPL7-Ej2ebHkiUnDG3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Simplified_guidelines_for_the_creation_of_Large_Scale_Dialectal_Arabic_Annotations","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984361,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984361/thumbnails/1.jpg","file_name":"815_Paper.pdf","download_url":"https://www.academia.edu/attachments/113984361/download_file?st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simplified_guidelines_for_the_creation_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984361/815_Paper-libre.pdf?1714487640=\u0026response-content-disposition=attachment%3B+filename%3DSimplified_guidelines_for_the_creation_o.pdf\u0026Expires=1732498305\u0026Signature=KToearISFx3iFuaTss0NZDKvnECG7qrIr8eZPdIOI3hBoW9c8s8e~rmghRhLOuG8dqwsPNrbMdKN9s3r9ZqwUyLWZnlybTg~7MfkUgzEv32m8Ih7Jurz1ARxtoHz9ycVrYJc5vlDEi4jZHwAQtEbVJ25yxUp-LJS-0tsC8jU1pByOEdSXZ0Mlq7h0Mt4GA1bOPTQv1Yog6hkFrwsI5igoanY2GIH3ZidWAqxU60TQkVVMOD6Xi2YhfZNiOvEQnxhLZBf9EU-VN3ahSh2EVvN6bDN2s103Itjc09zN3yhlxf6K91X5lDwfKM6BVrY3njQ0zJSPL7-Ej2ebHkiUnDG3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":131779,"name":"Code Switching","url":"https://www.academia.edu/Documents/in/Code_Switching"},{"id":154257,"name":"Modern Standard Arabic","url":"https://www.academia.edu/Documents/in/Modern_Standard_Arabic"},{"id":4074395,"name":"dialectal Arabic","url":"https://www.academia.edu/Documents/in/dialectal_Arabic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332102"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332102/Semantic_parsing_for_modern_standard_Arabic"><img alt="Research paper thumbnail of Semantic parsing for modern standard Arabic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332102/Semantic_parsing_for_modern_standard_Arabic">Semantic parsing for modern standard Arabic</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332102"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332102]").text(description); $(".js-view-count[data-work-id=118332102]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332102']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332102, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332102]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332102,"title":"Semantic parsing for modern standard Arabic","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332102/Semantic_parsing_for_modern_standard_Arabic","translated_internal_url":"","created_at":"2024-04-30T07:31:01.397-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semantic_parsing_for_modern_standard_Arabic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332009"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332009/Measuring_Verb_Similarity_eScholarship"><img alt="Research paper thumbnail of Measuring Verb Similarity - eScholarship" class="work-thumbnail" src="https://attachments.academia-assets.com/113984307/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332009/Measuring_Verb_Similarity_eScholarship">Measuring Verb Similarity - eScholarship</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Measuring Verb Similarity Philip Resnik and Mona Diab Department of Linguistics and Institute for...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Measuring Verb Similarity Philip Resnik and Mona Diab Department of Linguistics and Institute for Advanced Computer Studies University of Maryland College Park, MD USA f resnik,mdiab g @umiacs.umd.edu Abstract The way we model semantic similarity is closely tied to our understanding of linguistic representations. We present several models of semantic similarity, based on diering representational assumptions, and investigate their properties via comparison with human ratings of verb similarity. The results oer insight into the bases for human similarity judgments and provide a testbed for further investigation of the interactions among syn- tactic properties, semantic structure, and semantic con- tent. Introduction The way we model semantic similarity is closely tied to our understanding of how linguistic representations are acquired and used. Some models of similarity, such as Tversky&#39;s (1977), assume an explicit set of features over which a similarity measure can be computed, a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5cb511f45119da671ee1d58c24e4cb5e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984307,"asset_id":118332009,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984307/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332009"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332009"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332009; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332009]").text(description); $(".js-view-count[data-work-id=118332009]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332009; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332009']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332009, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5cb511f45119da671ee1d58c24e4cb5e" } } $('.js-work-strip[data-work-id=118332009]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332009,"title":"Measuring Verb Similarity - eScholarship","translated_title":"","metadata":{"abstract":"Measuring Verb Similarity Philip Resnik and Mona Diab Department of Linguistics and Institute for Advanced Computer Studies University of Maryland College Park, MD USA f resnik,mdiab g @umiacs.umd.edu Abstract The way we model semantic similarity is closely tied to our understanding of linguistic representations. We present several models of semantic similarity, based on diering representational assumptions, and investigate their properties via comparison with human ratings of verb similarity. The results oer insight into the bases for human similarity judgments and provide a testbed for further investigation of the interactions among syn- tactic properties, semantic structure, and semantic con- tent. Introduction The way we model semantic similarity is closely tied to our understanding of how linguistic representations are acquired and used. Some models of similarity, such as Tversky\u0026#39;s (1977), assume an explicit set of features over which a similarity measure can be computed, a...","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"Measuring Verb Similarity Philip Resnik and Mona Diab Department of Linguistics and Institute for Advanced Computer Studies University of Maryland College Park, MD USA f resnik,mdiab g @umiacs.umd.edu Abstract The way we model semantic similarity is closely tied to our understanding of linguistic representations. We present several models of semantic similarity, based on diering representational assumptions, and investigate their properties via comparison with human ratings of verb similarity. The results oer insight into the bases for human similarity judgments and provide a testbed for further investigation of the interactions among syn- tactic properties, semantic structure, and semantic con- tent. Introduction The way we model semantic similarity is closely tied to our understanding of how linguistic representations are acquired and used. Some models of similarity, such as Tversky\u0026#39;s (1977), assume an explicit set of features over which a similarity measure can be computed, a...","internal_url":"https://www.academia.edu/118332009/Measuring_Verb_Similarity_eScholarship","translated_internal_url":"","created_at":"2024-04-30T07:29:29.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984307/thumbnails/1.jpg","file_name":"qt9bw0t5sb.pdf","download_url":"https://www.academia.edu/attachments/113984307/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measuring_Verb_Similarity_eScholarship.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984307/qt9bw0t5sb-libre.pdf?1714487645=\u0026response-content-disposition=attachment%3B+filename%3DMeasuring_Verb_Similarity_eScholarship.pdf\u0026Expires=1732498305\u0026Signature=byS9W7tWSD0aiqPqk274IGnxNnCZfzlVnhx~-YhD04-rphlGzz7~Y8TbGOGebbYykIjPxk940DAQkwVoGP7JQVh5DN4TaCsVyVGhaiC0nJ1iC6kS5xu7tQqW~99AhXJh2cY-r2PHHK2PMrYiiXsCB1VbhYalF1SPeE5MkEB8tvyk48kYLWDaeqHwnHvRvR6sJG6VmjrkjYWEd4jLSp2lJ~9ccu1ilErQwdZewb7lai4AKcG44z80JGc5K0KYGFSkHiR9zkCogBnyDPyp~9MUClk-Yus1KfXvInOYsmdOwB8TFM8~sOR2VFV~ehqNvcA~TB4Qbm6hy97PJomnsFYIYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Measuring_Verb_Similarity_eScholarship","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984307/thumbnails/1.jpg","file_name":"qt9bw0t5sb.pdf","download_url":"https://www.academia.edu/attachments/113984307/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measuring_Verb_Similarity_eScholarship.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984307/qt9bw0t5sb-libre.pdf?1714487645=\u0026response-content-disposition=attachment%3B+filename%3DMeasuring_Verb_Similarity_eScholarship.pdf\u0026Expires=1732498305\u0026Signature=byS9W7tWSD0aiqPqk274IGnxNnCZfzlVnhx~-YhD04-rphlGzz7~Y8TbGOGebbYykIjPxk940DAQkwVoGP7JQVh5DN4TaCsVyVGhaiC0nJ1iC6kS5xu7tQqW~99AhXJh2cY-r2PHHK2PMrYiiXsCB1VbhYalF1SPeE5MkEB8tvyk48kYLWDaeqHwnHvRvR6sJG6VmjrkjYWEd4jLSp2lJ~9ccu1ilErQwdZewb7lai4AKcG44z80JGc5K0KYGFSkHiR9zkCogBnyDPyp~9MUClk-Yus1KfXvInOYsmdOwB8TFM8~sOR2VFV~ehqNvcA~TB4Qbm6hy97PJomnsFYIYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":11120,"name":"Semantic similarity","url":"https://www.academia.edu/Documents/in/Semantic_similarity"},{"id":153799,"name":"Verb","url":"https://www.academia.edu/Documents/in/Verb"},{"id":3847659,"name":"Similarity Geometry","url":"https://www.academia.edu/Documents/in/Similarity_Geometry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3069940" id="papers"><div class="js-work-strip profile--work_container" data-work-id="118332122"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332122/Proceedings_of_the_4th_Workshop_on_Computational_Approaches_to_Discourse_CODI_2023_"><img alt="Research paper thumbnail of Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)" class="work-thumbnail" src="https://attachments.academia-assets.com/113984368/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332122/Proceedings_of_the_4th_Workshop_on_Computational_Approaches_to_Discourse_CODI_2023_">Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ba2ed721c6144490417eba6af2352550" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984368,"asset_id":118332122,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984368/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332122"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332122"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332122; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332122]").text(description); $(".js-view-count[data-work-id=118332122]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332122; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332122']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332122, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ba2ed721c6144490417eba6af2352550" } } $('.js-work-strip[data-work-id=118332122]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332122,"title":"Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332122/Proceedings_of_the_4th_Workshop_on_Computational_Approaches_to_Discourse_CODI_2023_","translated_internal_url":"","created_at":"2024-04-30T07:31:07.699-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984368,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984368/thumbnails/1.jpg","file_name":"2020.calcs-1.0.pdf","download_url":"https://www.academia.edu/attachments/113984368/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proceedings_of_the_4th_Workshop_on_Compu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984368/2020.calcs-1.0-libre.pdf?1714487639=\u0026response-content-disposition=attachment%3B+filename%3DProceedings_of_the_4th_Workshop_on_Compu.pdf\u0026Expires=1732498305\u0026Signature=DN~75nKpxtTU9Z3uOhEcJiFjSrShTOXRg8h4xUVhGoRs-wBxFzYdPbp49oIIBiaYFh-yaMMTR8Wkw0EHM5-DYSpS04LrUQCHUI-Y8NMNoDE7dwv68R7gU1jgqTKVFOym3COj2IsGawcJkKMAL1~e89FvSy-cW16QM-QFea4rzVOdU5Xwh2KP0a9unssFixNQMdFn4Aqv5K~cbKeicJBUkAhJ5xD4c~FOLyGAMDusKoSzbk~xl2O7NBYmw6RKzsjE1x5rbBL9KwU9HjdtxVXiqkYAHOZZBlBlCaBDh24skjleP7FhjnUAM0vpsrRaC9WvDCpSKbff7yGQjRuZclU1rw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Proceedings_of_the_4th_Workshop_on_Computational_Approaches_to_Discourse_CODI_2023_","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984368,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984368/thumbnails/1.jpg","file_name":"2020.calcs-1.0.pdf","download_url":"https://www.academia.edu/attachments/113984368/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proceedings_of_the_4th_Workshop_on_Compu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984368/2020.calcs-1.0-libre.pdf?1714487639=\u0026response-content-disposition=attachment%3B+filename%3DProceedings_of_the_4th_Workshop_on_Compu.pdf\u0026Expires=1732498305\u0026Signature=DN~75nKpxtTU9Z3uOhEcJiFjSrShTOXRg8h4xUVhGoRs-wBxFzYdPbp49oIIBiaYFh-yaMMTR8Wkw0EHM5-DYSpS04LrUQCHUI-Y8NMNoDE7dwv68R7gU1jgqTKVFOym3COj2IsGawcJkKMAL1~e89FvSy-cW16QM-QFea4rzVOdU5Xwh2KP0a9unssFixNQMdFn4Aqv5K~cbKeicJBUkAhJ5xD4c~FOLyGAMDusKoSzbk~xl2O7NBYmw6RKzsjE1x5rbBL9KwU9HjdtxVXiqkYAHOZZBlBlCaBDh24skjleP7FhjnUAM0vpsrRaC9WvDCpSKbff7yGQjRuZclU1rw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1489478,"name":"Programming language","url":"https://www.academia.edu/Documents/in/Programming_language"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332121"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332121/Care4Lang_at_MEDIQA_Chat_2023_Fine_tuning_Language_Models_for_Classifying_and_Summarizing_Clinical_Dialogues"><img alt="Research paper thumbnail of Care4Lang at MEDIQA-Chat 2023: Fine-tuning Language Models for Classifying and Summarizing Clinical Dialogues" class="work-thumbnail" src="https://attachments.academia-assets.com/113984367/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332121/Care4Lang_at_MEDIQA_Chat_2023_Fine_tuning_Language_Models_for_Classifying_and_Summarizing_Clinical_Dialogues">Care4Lang at MEDIQA-Chat 2023: Fine-tuning Language Models for Classifying and Summarizing Clinical Dialogues</a></div><div class="wp-workCard_item"><span>Proceedings of the 5th Clinical Natural Language Processing Workshop</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="183363c02cb23295483f8f5d5f97934d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984367,"asset_id":118332121,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984367/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332121"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332121"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332121; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332121]").text(description); $(".js-view-count[data-work-id=118332121]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332121; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332121']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332121, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "183363c02cb23295483f8f5d5f97934d" } } $('.js-work-strip[data-work-id=118332121]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332121,"title":"Care4Lang at MEDIQA-Chat 2023: Fine-tuning Language Models for Classifying and Summarizing Clinical Dialogues","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","publication_name":"Proceedings of the 5th Clinical Natural Language Processing Workshop"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332121/Care4Lang_at_MEDIQA_Chat_2023_Fine_tuning_Language_Models_for_Classifying_and_Summarizing_Clinical_Dialogues","translated_internal_url":"","created_at":"2024-04-30T07:31:07.547-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984367,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984367/thumbnails/1.jpg","file_name":"2023.clinicalnlp-1.55.pdf","download_url":"https://www.academia.edu/attachments/113984367/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Care4Lang_at_MEDIQA_Chat_2023_Fine_tunin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984367/2023.clinicalnlp-1.55-libre.pdf?1714487641=\u0026response-content-disposition=attachment%3B+filename%3DCare4Lang_at_MEDIQA_Chat_2023_Fine_tunin.pdf\u0026Expires=1732498305\u0026Signature=QUNw5x8VkS9oruZbzgK2XKOVg7lloKWatJQDsqtP-GqzCc4xJ-hows6CSFBeMgmQg3T2ddhPRQfuAMxeiO8h-pufKhXpgV~M~p0xEU3JWS8PSKQh7WyqVFcmD3fawUCElJnyrGGf0tkxnWDaBRc-FZtJpV76T~alWhQ8qR4mzcszf-c5pv7jXVtTwLa53kjDnwMf2HYgRj2~2bWHSxzhHSLVKM1Xl5m9GOP3GEvqQyYHAz2N6lXgVdcmFFwuaTLaq8tbfs-7TBmwv8e7I0DjehRHQqjU2QoQDfpXE8xkIOfKh7xgqLGkFDjb5vQq7IsFvOdlFsuh5J36fT~-GkAJ7w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Care4Lang_at_MEDIQA_Chat_2023_Fine_tuning_Language_Models_for_Classifying_and_Summarizing_Clinical_Dialogues","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984367,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984367/thumbnails/1.jpg","file_name":"2023.clinicalnlp-1.55.pdf","download_url":"https://www.academia.edu/attachments/113984367/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Care4Lang_at_MEDIQA_Chat_2023_Fine_tunin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984367/2023.clinicalnlp-1.55-libre.pdf?1714487641=\u0026response-content-disposition=attachment%3B+filename%3DCare4Lang_at_MEDIQA_Chat_2023_Fine_tunin.pdf\u0026Expires=1732498305\u0026Signature=QUNw5x8VkS9oruZbzgK2XKOVg7lloKWatJQDsqtP-GqzCc4xJ-hows6CSFBeMgmQg3T2ddhPRQfuAMxeiO8h-pufKhXpgV~M~p0xEU3JWS8PSKQh7WyqVFcmD3fawUCElJnyrGGf0tkxnWDaBRc-FZtJpV76T~alWhQ8qR4mzcszf-c5pv7jXVtTwLa53kjDnwMf2HYgRj2~2bWHSxzhHSLVKM1Xl5m9GOP3GEvqQyYHAz2N6lXgVdcmFFwuaTLaq8tbfs-7TBmwv8e7I0DjehRHQqjU2QoQDfpXE8xkIOfKh7xgqLGkFDjb5vQq7IsFvOdlFsuh5J36fT~-GkAJ7w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":520672,"name":"Language Model","url":"https://www.academia.edu/Documents/in/Language_Model"},{"id":1725616,"name":"Automatic Summarization","url":"https://www.academia.edu/Documents/in/Automatic_Summarization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332119"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332119/Text_Characterization_Toolkit"><img alt="Research paper thumbnail of Text Characterization Toolkit" class="work-thumbnail" src="https://attachments.academia-assets.com/113984331/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332119/Text_Characterization_Toolkit">Text Characterization Toolkit</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Oct 4, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a129bf443b45aeb99280aadf8cf5d402" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984331,"asset_id":118332119,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984331/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332119"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332119"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332119; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332119]").text(description); $(".js-view-count[data-work-id=118332119]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332119; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332119']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332119, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a129bf443b45aeb99280aadf8cf5d402" } } $('.js-work-strip[data-work-id=118332119]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332119,"title":"Text Characterization Toolkit","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":4,"month":10,"year":2022,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332119/Text_Characterization_Toolkit","translated_internal_url":"","created_at":"2024-04-30T07:31:07.190-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984331,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984331/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/113984331/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Text_Characterization_Toolkit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984331/2210-libre.pdf?1714487656=\u0026response-content-disposition=attachment%3B+filename%3DText_Characterization_Toolkit.pdf\u0026Expires=1732498305\u0026Signature=OtdnMP9yvRj0JkhLl1ty1nGhREZzoMO7F24AABwFhq-BXvW2yTi5GivTuZ2QNhEJ9ELvluBMn7I0Gd50HeruiCV1zZjJTfHl7xWghC-0kLg~xnsoFfJMMQjDwRrhEl2m5nJ3ZUGJVXIl807sYFWX1qeaDtmZW7xlBH-236FTkFZ1Hg~C6sh3DyiMlTPjRE1-oLnBvSS2-UoJK01610mWOQWsScruC4MdJvhArkUWvNT6Wv2bKtE-v20yNIXa7G~sRD7B~r1xns55Z-6cVtQVgAI5MW4ztY2euw525hYGSy5ycVPVAmFpT~tA5ihvaMEqPMqaDdNHU3gpzM7L2j-hkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Text_Characterization_Toolkit","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984331,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984331/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/113984331/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Text_Characterization_Toolkit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984331/2210-libre.pdf?1714487656=\u0026response-content-disposition=attachment%3B+filename%3DText_Characterization_Toolkit.pdf\u0026Expires=1732498305\u0026Signature=OtdnMP9yvRj0JkhLl1ty1nGhREZzoMO7F24AABwFhq-BXvW2yTi5GivTuZ2QNhEJ9ELvluBMn7I0Gd50HeruiCV1zZjJTfHl7xWghC-0kLg~xnsoFfJMMQjDwRrhEl2m5nJ3ZUGJVXIl807sYFWX1qeaDtmZW7xlBH-236FTkFZ1Hg~C6sh3DyiMlTPjRE1-oLnBvSS2-UoJK01610mWOQWsScruC4MdJvhArkUWvNT6Wv2bKtE-v20yNIXa7G~sRD7B~r1xns55Z-6cVtQVgAI5MW4ztY2euw525hYGSy5ycVPVAmFpT~tA5ihvaMEqPMqaDdNHU3gpzM7L2j-hkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113984330,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984330/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/113984330/download_file","bulk_download_file_name":"Text_Characterization_Toolkit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984330/2210-libre.pdf?1714487651=\u0026response-content-disposition=attachment%3B+filename%3DText_Characterization_Toolkit.pdf\u0026Expires=1732498305\u0026Signature=Eo1gLuDzGBAgY9JyR3Riw1QwCJdkUYu35D1qzu8lSLAo-zAB6HgiSryU1yl5jJapgzpcATvXMJDtCCLYoCqjm~lnHTERAG-Nzc5NFyuUClhyGQQgMyVUvRv2tquuMgufj4GYk6jdFsjDOo~iKbKEvSUulpQfJigtZRS0So9knJnxTwbJcazIwU4Vya4trGr9RB4x8RsE~MpkemXEKSUM3HHuDlzVuJobJBFRL-~GYYYTCaO1Fvr9qSjgF80RFR-cOM1j05fm0Ut3CgNJP~H69W8eMYu02Ywogy9xZDtkVTCp-0ljXg~K~QIrPwMdCJdRoSlfhU6H7GPcKOTWs~D46g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2537,"name":"Heuristics","url":"https://www.academia.edu/Documents/in/Heuristics"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":212702,"name":"Scripting Language","url":"https://www.academia.edu/Documents/in/Scripting_Language"}],"urls":[{"id":41528935,"url":"http://arxiv.org/pdf/2210.01734"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332118"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332118/Information_propagation_in_an_era_of_Infodemics_The_role_of_language_content"><img alt="Research paper thumbnail of Information propagation in an era of Infodemics: The role of language content" class="work-thumbnail" src="https://attachments.academia-assets.com/113984365/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332118/Information_propagation_in_an_era_of_Infodemics_The_role_of_language_content">Information propagation in an era of Infodemics: The role of language content</a></div><div class="wp-workCard_item"><span>2020 Seventh International Conference on Social Networks Analysis, Management and Security (SNAMS)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="29b2f5e6e338cde67c4f48cdd83261ec" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984365,"asset_id":118332118,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984365/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332118"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332118"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332118; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332118]").text(description); $(".js-view-count[data-work-id=118332118]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332118; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332118']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332118, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "29b2f5e6e338cde67c4f48cdd83261ec" } } $('.js-work-strip[data-work-id=118332118]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332118,"title":"Information propagation in an era of Infodemics: The role of language content","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2020 Seventh International Conference on Social Networks Analysis, Management and Security (SNAMS)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332118/Information_propagation_in_an_era_of_Infodemics_The_role_of_language_content","translated_internal_url":"","created_at":"2024-04-30T07:31:06.031-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984365/thumbnails/1.jpg","file_name":"09336539.pdf","download_url":"https://www.academia.edu/attachments/113984365/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_propagation_in_an_era_of_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984365/09336539-libre.pdf?1714487639=\u0026response-content-disposition=attachment%3B+filename%3DInformation_propagation_in_an_era_of_Inf.pdf\u0026Expires=1732498305\u0026Signature=aSy8PsKQ4Q98iZnUjvAAwI2kbv7f7ppPWayLpFBf5zAXvj3MBRvrib5qNbfYXdF8U-pEuzgvsWymDKuBHcJmbircBxUkW6fD7Dt9nuYF0KwquDOLq61w~N8f9jrAnfvawiUVxhiRRKKATCfjcO0YZBu4T3T1~6Xb~LH0gteQx8h7JGQXcziaFIFSq2hylJcRsrW~CkOPsxa0kRtO1JD1O-7HK03v23JaGzcMqnGZnlLd8XhXR5P00Y5FH9ZeIBR6yXXUyqSQkpcjzMK0dzduE9eorbTrxcCt6zj-gjxafikLIJgbOVLTHUaPB1tTIHXCmqY2jV2SO9C17Q5Gq-bqpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Information_propagation_in_an_era_of_Infodemics_The_role_of_language_content","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984365/thumbnails/1.jpg","file_name":"09336539.pdf","download_url":"https://www.academia.edu/attachments/113984365/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_propagation_in_an_era_of_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984365/09336539-libre.pdf?1714487639=\u0026response-content-disposition=attachment%3B+filename%3DInformation_propagation_in_an_era_of_Inf.pdf\u0026Expires=1732498305\u0026Signature=aSy8PsKQ4Q98iZnUjvAAwI2kbv7f7ppPWayLpFBf5zAXvj3MBRvrib5qNbfYXdF8U-pEuzgvsWymDKuBHcJmbircBxUkW6fD7Dt9nuYF0KwquDOLq61w~N8f9jrAnfvawiUVxhiRRKKATCfjcO0YZBu4T3T1~6Xb~LH0gteQx8h7JGQXcziaFIFSq2hylJcRsrW~CkOPsxa0kRtO1JD1O-7HK03v23JaGzcMqnGZnlLd8XhXR5P00Y5FH9ZeIBR6yXXUyqSQkpcjzMK0dzduE9eorbTrxcCt6zj-gjxafikLIJgbOVLTHUaPB1tTIHXCmqY2jV2SO9C17Q5Gq-bqpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":276623,"name":"Misinformation","url":"https://www.academia.edu/Documents/in/Misinformation"},{"id":663814,"name":"Offensive Realism","url":"https://www.academia.edu/Documents/in/Offensive_Realism"}],"urls":[{"id":41528934,"url":"http://xplorestaging.ieee.org/ielx7/9336519/9336528/09336539.pdf?arnumber=9336539"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332117"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332117/Knowledge_Augmented_Language_Models_for_Cause_Effect_Relation_Classification"><img alt="Research paper thumbnail of Knowledge-Augmented Language Models for Cause-Effect Relation Classification" class="work-thumbnail" src="https://attachments.academia-assets.com/113984366/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332117/Knowledge_Augmented_Language_Models_for_Cause_Effect_Relation_Classification">Knowledge-Augmented Language Models for Cause-Effect Relation Classification</a></div><div class="wp-workCard_item"><span>Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6055365462a849ad0ac68c849accc988" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984366,"asset_id":118332117,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984366/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332117"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332117"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332117; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332117]").text(description); $(".js-view-count[data-work-id=118332117]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332117; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332117']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332117, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6055365462a849ad0ac68c849accc988" } } $('.js-work-strip[data-work-id=118332117]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332117,"title":"Knowledge-Augmented Language Models for Cause-Effect Relation Classification","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","publication_name":"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332117/Knowledge_Augmented_Language_Models_for_Cause_Effect_Relation_Classification","translated_internal_url":"","created_at":"2024-04-30T07:31:05.784-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984366/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113984366/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Knowledge_Augmented_Language_Models_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984366/pdf-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DKnowledge_Augmented_Language_Models_for.pdf\u0026Expires=1732498305\u0026Signature=Rx1Cr1oGDTqbfHWqVlBoFMH0cdXjCMBc5wVAWzmviRyf3iby4-kWmyBzJ3aUBeSWDe~qbwE6x-Yt4t0UT68E9xrKFuyPlJ8Hue2uuwncb4cwwaqbT5cZRe7TmI0vg8ReicotlHnBRvCFLd6WJEkrAZ58-8uDklxE-AgVMG2kts-AxTA~7GZOXijOjw-3mLvn~TNwtAINWjUNDyb8BX0hSL362Nzj~E0E2dqT0b1JLOgwk8XaMDlYFXJAMWaxsujbAuOXoc83VCX9yWoIy7beqKgQ9BlCDp4dKvXdJXAdgRqXVv9VwrzqKFeqH4Q8lrPiyyrd1sUWLcLHly~ahFcVqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Knowledge_Augmented_Language_Models_for_Cause_Effect_Relation_Classification","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984366/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113984366/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Knowledge_Augmented_Language_Models_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984366/pdf-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DKnowledge_Augmented_Language_Models_for.pdf\u0026Expires=1732498305\u0026Signature=Rx1Cr1oGDTqbfHWqVlBoFMH0cdXjCMBc5wVAWzmviRyf3iby4-kWmyBzJ3aUBeSWDe~qbwE6x-Yt4t0UT68E9xrKFuyPlJ8Hue2uuwncb4cwwaqbT5cZRe7TmI0vg8ReicotlHnBRvCFLd6WJEkrAZ58-8uDklxE-AgVMG2kts-AxTA~7GZOXijOjw-3mLvn~TNwtAINWjUNDyb8BX0hSL362Nzj~E0E2dqT0b1JLOgwk8XaMDlYFXJAMWaxsujbAuOXoc83VCX9yWoIy7beqKgQ9BlCDp4dKvXdJXAdgRqXVv9VwrzqKFeqH4Q8lrPiyyrd1sUWLcLHly~ahFcVqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":6059,"name":"Causal reasoning","url":"https://www.academia.edu/Documents/in/Causal_reasoning"},{"id":56486,"name":"Commonsense Reasoning","url":"https://www.academia.edu/Documents/in/Commonsense_Reasoning"},{"id":184950,"name":"Question Answering","url":"https://www.academia.edu/Documents/in/Question_Answering"},{"id":266831,"name":"Graph","url":"https://www.academia.edu/Documents/in/Graph"},{"id":520672,"name":"Language Model","url":"https://www.academia.edu/Documents/in/Language_Model"},{"id":2892975,"name":"Commonsense Knowledge","url":"https://www.academia.edu/Documents/in/Commonsense_Knowledge"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332116"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332116/Understanding_Cohesion_in_Writings_and_Speech_of_Schizophrenia_Patients"><img alt="Research paper thumbnail of Understanding Cohesion in Writings and Speech of Schizophrenia Patients" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332116/Understanding_Cohesion_in_Writings_and_Speech_of_Schizophrenia_Patients">Understanding Cohesion in Writings and Speech of Schizophrenia Patients</a></div><div class="wp-workCard_item"><span>2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Schizophrenia is one of the mental disorders that impacts a person&#39;s thinking, speech, and ac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Schizophrenia is one of the mental disorders that impacts a person&#39;s thinking, speech, and actions. It can reduce a person’s ability to process auditory information and make decisions. Analyzing this disorder correctly is important because it might help with different ways of reducing its negative effects on its patients. Linguists and psychiatrists have been investigating language impairments and speech disorder in people with schizophrenia disorder which can be challenging. In this study, we attempt to address this issue by analyzing linguistic features i.e. cohesion in the writings and speech scripts of schizophrenia patients. Our results show that using referential cohesion with text easability or situation model features provides the best performance for speech whereas for writing dataset, readability or a combination of situation model and readability yield the best performance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332116"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332116"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332116; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332116]").text(description); $(".js-view-count[data-work-id=118332116]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332116; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332116']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332116, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332116]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332116,"title":"Understanding Cohesion in Writings and Speech of Schizophrenia Patients","translated_title":"","metadata":{"abstract":"Schizophrenia is one of the mental disorders that impacts a person\u0026#39;s thinking, speech, and actions. It can reduce a person’s ability to process auditory information and make decisions. Analyzing this disorder correctly is important because it might help with different ways of reducing its negative effects on its patients. Linguists and psychiatrists have been investigating language impairments and speech disorder in people with schizophrenia disorder which can be challenging. In this study, we attempt to address this issue by analyzing linguistic features i.e. cohesion in the writings and speech scripts of schizophrenia patients. Our results show that using referential cohesion with text easability or situation model features provides the best performance for speech whereas for writing dataset, readability or a combination of situation model and readability yield the best performance.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)"},"translated_abstract":"Schizophrenia is one of the mental disorders that impacts a person\u0026#39;s thinking, speech, and actions. It can reduce a person’s ability to process auditory information and make decisions. Analyzing this disorder correctly is important because it might help with different ways of reducing its negative effects on its patients. Linguists and psychiatrists have been investigating language impairments and speech disorder in people with schizophrenia disorder which can be challenging. In this study, we attempt to address this issue by analyzing linguistic features i.e. cohesion in the writings and speech scripts of schizophrenia patients. Our results show that using referential cohesion with text easability or situation model features provides the best performance for speech whereas for writing dataset, readability or a combination of situation model and readability yield the best performance.","internal_url":"https://www.academia.edu/118332116/Understanding_Cohesion_in_Writings_and_Speech_of_Schizophrenia_Patients","translated_internal_url":"","created_at":"2024-04-30T07:31:05.460-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Understanding_Cohesion_in_Writings_and_Speech_of_Schizophrenia_Patients","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":134386,"name":"Readability","url":"https://www.academia.edu/Documents/in/Readability"},{"id":212702,"name":"Scripting Language","url":"https://www.academia.edu/Documents/in/Scripting_Language"}],"urls":[{"id":41528933,"url":"http://xplorestaging.ieee.org/ielx7/8974348/8998966/08999111.pdf?arnumber=8999111"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332114"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332114/The_Columbia_GWU_System_at_the_2017_TAC_KBP_BeSt_Evaluation"><img alt="Research paper thumbnail of The Columbia-GWU System at the 2017 TAC KBP BeSt Evaluation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332114/The_Columbia_GWU_System_at_the_2017_TAC_KBP_BeSt_Evaluation">The Columbia-GWU System at the 2017 TAC KBP BeSt Evaluation</a></div><div class="wp-workCard_item"><span>Text Analysis Conference</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332114"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332114"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332114; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332114]").text(description); $(".js-view-count[data-work-id=118332114]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332114; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332114']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332114, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332114]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332114,"title":"The Columbia-GWU System at the 2017 TAC KBP BeSt Evaluation","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Text Analysis Conference"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332114/The_Columbia_GWU_System_at_the_2017_TAC_KBP_BeSt_Evaluation","translated_internal_url":"","created_at":"2024-04-30T07:31:05.280-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Columbia_GWU_System_at_the_2017_TAC_KBP_BeSt_Evaluation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332113"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332113/Computational_Approaches_to_Linguistic_Code_Switching"><img alt="Research paper thumbnail of Computational Approaches to Linguistic Code Switching" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332113/Computational_Approaches_to_Linguistic_Code_Switching">Computational Approaches to Linguistic Code Switching</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332113"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332113"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332113; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332113]").text(description); $(".js-view-count[data-work-id=118332113]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332113; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332113']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332113, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332113]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332113,"title":"Computational Approaches to Linguistic Code Switching","translated_title":"","metadata":{"publisher":"INTERSPEECH","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332113/Computational_Approaches_to_Linguistic_Code_Switching","translated_internal_url":"","created_at":"2024-04-30T07:31:05.038-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Computational_Approaches_to_Linguistic_Code_Switching","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":131779,"name":"Code Switching","url":"https://www.academia.edu/Documents/in/Code_Switching"}],"urls":[{"id":41528932,"url":"http://www.isca-speech.org/archive/Interspeech_2016/abstracts/abs16.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332112/Semantic_parsing_of_modern_standard_Arabic"><img alt="Research paper thumbnail of Semantic parsing of modern standard Arabic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332112/Semantic_parsing_of_modern_standard_Arabic">Semantic parsing of modern standard Arabic</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332112]").text(description); $(".js-view-count[data-work-id=118332112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332112, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332112,"title":"Semantic parsing of modern standard Arabic","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332112/Semantic_parsing_of_modern_standard_Arabic","translated_internal_url":"","created_at":"2024-04-30T07:31:04.860-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semantic_parsing_of_modern_standard_Arabic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":14493,"name":"Parsing","url":"https://www.academia.edu/Documents/in/Parsing"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332111"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332111/Transferring_Semantic_Roles_Using_Translation_and_Syntactic_Information"><img alt="Research paper thumbnail of Transferring Semantic Roles Using Translation and Syntactic Information" class="work-thumbnail" src="https://attachments.academia-assets.com/113984329/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332111/Transferring_Semantic_Roles_Using_Translation_and_Syntactic_Information">Transferring Semantic Roles Using Translation and Syntactic Information</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Our paper addresses the problem of annotation projection for semantic role labeling for resource-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Our paper addresses the problem of annotation projection for semantic role labeling for resource-poor languages using supervised annotations from a resource-rich language through parallel data. We propose a transfer method that employs information from source and target syntactic dependencies as well as word alignment density to improve the quality of an iterative bootstrapping method. Our experiments yield a 3.5 absolute labeled F-score improvement over a standard annotation projection method.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eba0042cadd3d5a47ea63bc76715c1d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984329,"asset_id":118332111,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984329/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332111"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332111"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332111; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332111]").text(description); $(".js-view-count[data-work-id=118332111]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332111; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332111']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332111, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eba0042cadd3d5a47ea63bc76715c1d0" } } $('.js-work-strip[data-work-id=118332111]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332111,"title":"Transferring Semantic Roles Using Translation and Syntactic Information","translated_title":"","metadata":{"abstract":"Our paper addresses the problem of annotation projection for semantic role labeling for resource-poor languages using supervised annotations from a resource-rich language through parallel data. We propose a transfer method that employs information from source and target syntactic dependencies as well as word alignment density to improve the quality of an iterative bootstrapping method. Our experiments yield a 3.5 absolute labeled F-score improvement over a standard annotation projection method.","publisher":"IJCNLP","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"Our paper addresses the problem of annotation projection for semantic role labeling for resource-poor languages using supervised annotations from a resource-rich language through parallel data. We propose a transfer method that employs information from source and target syntactic dependencies as well as word alignment density to improve the quality of an iterative bootstrapping method. Our experiments yield a 3.5 absolute labeled F-score improvement over a standard annotation projection method.","internal_url":"https://www.academia.edu/118332111/Transferring_Semantic_Roles_Using_Translation_and_Syntactic_Information","translated_internal_url":"","created_at":"2024-04-30T07:31:04.589-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984329,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984329/thumbnails/1.jpg","file_name":"1710.01411v1.pdf","download_url":"https://www.academia.edu/attachments/113984329/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transferring_Semantic_Roles_Using_Transl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984329/1710.01411v1-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DTransferring_Semantic_Roles_Using_Transl.pdf\u0026Expires=1732498305\u0026Signature=EVgidnYeFqseEm8y~G-11kVqdseI93UpxnO3hk9S1rbkIMn82Avfh0rzVfov8DOzhQWWAMdqqk0sDkFOaHi26pywQUrN8a07gBFiSctCkZglFh13GVzU3L-skyrsDXifPAt5XuVAZVGf4Fjab~WVXLdHsMSlmPJkjU~wBBeuYUIpYLzVupClZMDyaggn0oqWrfv0UqdBpUFOv7mYoeKcD53t5HJj7vG9hbq7Xbs3U63Ee~0-VKN3T3zfLoZ-YPZziFcB9jCTDowN1ErEUYg4pC9-FUI9Xhl2M8HAubZBdY9QLBg-VbPC9BfrjOsooSMULhcchNTmNednkBhTQ~68Eg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Transferring_Semantic_Roles_Using_Translation_and_Syntactic_Information","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984329,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984329/thumbnails/1.jpg","file_name":"1710.01411v1.pdf","download_url":"https://www.academia.edu/attachments/113984329/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transferring_Semantic_Roles_Using_Transl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984329/1710.01411v1-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DTransferring_Semantic_Roles_Using_Transl.pdf\u0026Expires=1732498305\u0026Signature=EVgidnYeFqseEm8y~G-11kVqdseI93UpxnO3hk9S1rbkIMn82Avfh0rzVfov8DOzhQWWAMdqqk0sDkFOaHi26pywQUrN8a07gBFiSctCkZglFh13GVzU3L-skyrsDXifPAt5XuVAZVGf4Fjab~WVXLdHsMSlmPJkjU~wBBeuYUIpYLzVupClZMDyaggn0oqWrfv0UqdBpUFOv7mYoeKcD53t5HJj7vG9hbq7Xbs3U63Ee~0-VKN3T3zfLoZ-YPZziFcB9jCTDowN1ErEUYg4pC9-FUI9Xhl2M8HAubZBdY9QLBg-VbPC9BfrjOsooSMULhcchNTmNednkBhTQ~68Eg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113984328,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984328/thumbnails/1.jpg","file_name":"1710.01411v1.pdf","download_url":"https://www.academia.edu/attachments/113984328/download_file","bulk_download_file_name":"Transferring_Semantic_Roles_Using_Transl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984328/1710.01411v1-libre.pdf?1714487644=\u0026response-content-disposition=attachment%3B+filename%3DTransferring_Semantic_Roles_Using_Transl.pdf\u0026Expires=1732498305\u0026Signature=OWE8bzw6zTZft3IGGVX92orAAif26dbYW~FKKKfKaA5QrEsGmHoB-R8qSeLTI-Khmno0pSpF~bSMCjQk9rOWyIS~3-PsB4SK4U8BAV7NBy-I50C9lmpGlUctodDzzrScJBTsZMFdfFPVyIe3486B0vhKAcTtUHOmUyNToOW6GYypfn6U59hTxh5YIMohUqUKulcJnS1fT0pkVnreV~1LiblcYBbu4DsBGVvhTBXepqmH3Sxfpfv8FJmWlCWP7oC52qO8H6iTWM1r3dkGPbaBWMrwrslHG07pwnADFxlVFyVS6DjC5QEiDafKX3-w0SMYc1mjb4varVr8W3NVb1chQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":4696,"name":"Machine Translation","url":"https://www.academia.edu/Documents/in/Machine_Translation"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":1534202,"name":"Bootstrapping Finance","url":"https://www.academia.edu/Documents/in/Bootstrapping_Finance"}],"urls":[{"id":41528931,"url":"https://arxiv.org/pdf/1710.01411v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332110/Annotated_corpora_and_tools_of_the_PARSEME_Shared_Task_on_Automatic_Identification_of_Verbal_Multiword_Expressions_edition_1_1_"><img alt="Research paper thumbnail of Annotated corpora and tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions (edition 1.1)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332110/Annotated_corpora_and_tools_of_the_PARSEME_Shared_Task_on_Automatic_Identification_of_Verbal_Multiword_Expressions_edition_1_1_">Annotated corpora and tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions (edition 1.1)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VM...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). VMWEs were annotated according to the universal guidelines in 19 languages. The corpora are provided in the cupt format, inspired by the CONLL-U format. The corpora were used in the 1.1 edition of the PARSEME Shared Task (2018). For most languages, morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe). This item contains training, development and test data, as well as the evaluation tools us...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332110]").text(description); $(".js-view-count[data-work-id=118332110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332110, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332110,"title":"Annotated corpora and tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions (edition 1.1)","translated_title":"","metadata":{"abstract":"This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). VMWEs were annotated according to the universal guidelines in 19 languages. The corpora are provided in the cupt format, inspired by the CONLL-U format. The corpora were used in the 1.1 edition of the PARSEME Shared Task (2018). For most languages, morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe). This item contains training, development and test data, as well as the evaluation tools us...","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). VMWEs were annotated according to the universal guidelines in 19 languages. The corpora are provided in the cupt format, inspired by the CONLL-U format. The corpora were used in the 1.1 edition of the PARSEME Shared Task (2018). For most languages, morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe). This item contains training, development and test data, as well as the evaluation tools us...","internal_url":"https://www.academia.edu/118332110/Annotated_corpora_and_tools_of_the_PARSEME_Shared_Task_on_Automatic_Identification_of_Verbal_Multiword_Expressions_edition_1_1_","translated_internal_url":"","created_at":"2024-04-30T07:31:03.570-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Annotated_corpora_and_tools_of_the_PARSEME_Shared_Task_on_Automatic_Identification_of_Verbal_Multiword_Expressions_edition_1_1_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":14493,"name":"Parsing","url":"https://www.academia.edu/Documents/in/Parsing"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":153799,"name":"Verb","url":"https://www.academia.edu/Documents/in/Verb"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332109"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332109/COLEPL_and_COLSLM_An_Unsupervised_WSD_Approach_to_Multilingual_Lexical_Substitution_Tasks_2_and_3_SemEval_2010"><img alt="Research paper thumbnail of COLEPL and COLSLM: An Unsupervised WSD Approach to Multilingual Lexical Substitution, Tasks 2 and 3 SemEval 2010" class="work-thumbnail" src="https://attachments.academia-assets.com/113984325/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332109/COLEPL_and_COLSLM_An_Unsupervised_WSD_Approach_to_Multilingual_Lexical_Substitution_Tasks_2_and_3_SemEval_2010">COLEPL and COLSLM: An Unsupervised WSD Approach to Multilingual Lexical Substitution, Tasks 2 and 3 SemEval 2010</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we present a word sense disambiguation (WSD) based system for multilingual lexical...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we present a word sense disambiguation (WSD) based system for multilingual lexical substitution. Our method depends on having a WSD system for English and an automatic word alignment method. Crucially the approach relies on having parallel corpora. For Task 2 (Sinha et al., 2009) we apply a supervised WSD system to derive the English word senses. For Task 3 (Lefever & Hoste, 2009), we apply an unsupervised approach to the training and test data. Both of our systems that participated in Task 2 achieve a decent ranking among the participating systems. For Task 3 we achieve the highest ranking on several of the language pairs: French, German and Italian.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5357dfaf20545153da6885319d14c913" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984325,"asset_id":118332109,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984325/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332109"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332109"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332109; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332109]").text(description); $(".js-view-count[data-work-id=118332109]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332109; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332109']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332109, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5357dfaf20545153da6885319d14c913" } } $('.js-work-strip[data-work-id=118332109]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332109,"title":"COLEPL and COLSLM: An Unsupervised WSD Approach to Multilingual Lexical Substitution, Tasks 2 and 3 SemEval 2010","translated_title":"","metadata":{"abstract":"In this paper, we present a word sense disambiguation (WSD) based system for multilingual lexical substitution. Our method depends on having a WSD system for English and an automatic word alignment method. Crucially the approach relies on having parallel corpora. For Task 2 (Sinha et al., 2009) we apply a supervised WSD system to derive the English word senses. For Task 3 (Lefever \u0026 Hoste, 2009), we apply an unsupervised approach to the training and test data. Both of our systems that participated in Task 2 achieve a decent ranking among the participating systems. For Task 3 we achieve the highest ranking on several of the language pairs: French, German and Italian.","publisher":"*SEMEVAL","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"In this paper, we present a word sense disambiguation (WSD) based system for multilingual lexical substitution. Our method depends on having a WSD system for English and an automatic word alignment method. Crucially the approach relies on having parallel corpora. For Task 2 (Sinha et al., 2009) we apply a supervised WSD system to derive the English word senses. For Task 3 (Lefever \u0026 Hoste, 2009), we apply an unsupervised approach to the training and test data. Both of our systems that participated in Task 2 achieve a decent ranking among the participating systems. For Task 3 we achieve the highest ranking on several of the language pairs: French, German and Italian.","internal_url":"https://www.academia.edu/118332109/COLEPL_and_COLSLM_An_Unsupervised_WSD_Approach_to_Multilingual_Lexical_Substitution_Tasks_2_and_3_SemEval_2010","translated_internal_url":"","created_at":"2024-04-30T07:31:03.309-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984325,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984325/thumbnails/1.jpg","file_name":"S10-1026.pdf","download_url":"https://www.academia.edu/attachments/113984325/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984325/S10-1026-libre.pdf?1714487641=\u0026response-content-disposition=attachment%3B+filename%3DCOLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf\u0026Expires=1732498305\u0026Signature=IT-IQ~pYrgu8QPicr~BNF~A7NBt9Pkz1kTv9KcDkESKMQfcp1M8xhQG6Wpx9k6E1NzrdhizA~4beLKQDZ~udLx9hxS7SrSt341zguDzNGVd-VbsbPm0T9gRtwPfM9X8WKvb0zHWFHWfOSdYIsmQR-im2OQaT1lQQQZNPsV5KUwDX2wlfNcqFutCLzw0qXjELryJQEB4gfs1R1XAi4dT-Ap4DD1Wnfp7J5A35DecWAfTWwBujUvsMJiLBcQlhZezltlNFFgqAf0A8H5LsS4JTB8yFvNP9ZE9asBru8HHtBxgT50LwEGvctg5~Q~FQfoc2LCLhsi97oAYw6tjHwO~ClA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"COLEPL_and_COLSLM_An_Unsupervised_WSD_Approach_to_Multilingual_Lexical_Substitution_Tasks_2_and_3_SemEval_2010","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984325,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984325/thumbnails/1.jpg","file_name":"S10-1026.pdf","download_url":"https://www.academia.edu/attachments/113984325/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984325/S10-1026-libre.pdf?1714487641=\u0026response-content-disposition=attachment%3B+filename%3DCOLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf\u0026Expires=1732498305\u0026Signature=IT-IQ~pYrgu8QPicr~BNF~A7NBt9Pkz1kTv9KcDkESKMQfcp1M8xhQG6Wpx9k6E1NzrdhizA~4beLKQDZ~udLx9hxS7SrSt341zguDzNGVd-VbsbPm0T9gRtwPfM9X8WKvb0zHWFHWfOSdYIsmQR-im2OQaT1lQQQZNPsV5KUwDX2wlfNcqFutCLzw0qXjELryJQEB4gfs1R1XAi4dT-Ap4DD1Wnfp7J5A35DecWAfTWwBujUvsMJiLBcQlhZezltlNFFgqAf0A8H5LsS4JTB8yFvNP9ZE9asBru8HHtBxgT50LwEGvctg5~Q~FQfoc2LCLhsi97oAYw6tjHwO~ClA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113984326,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984326/thumbnails/1.jpg","file_name":"S10-1026.pdf","download_url":"https://www.academia.edu/attachments/113984326/download_file","bulk_download_file_name":"COLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984326/S10-1026-libre.pdf?1714487642=\u0026response-content-disposition=attachment%3B+filename%3DCOLEPL_and_COLSLM_An_Unsupervised_WSD_Ap.pdf\u0026Expires=1732498305\u0026Signature=CS7i4YgDHzVFiK9nE0j3dWpvU2JlIMi6SszNZcg5SSYihPTNQq9MU5Y09t5Axe7vv0QkkknlgmljzMSxfpv9C4bgeaAFCXeWXJfnTjqssWG7u6D~eDx8ldVurSq8jzjBv4z8wcSFUZqNn0NA8mqtmdzIER9OEkAg84LFqw3Ab2KrbTask586NDq5KbDlXGzzmX8WsTDLwfGDvnDhE9TqFMPPvF7Kc~f0DEF9iXGovP1ghD~boC3~DDQHxKDp0ihFIwGtSATp8n8SzKB7Rl6Cghs80QbZjgo34QgOC-cXN-MatmJJyezlfz2UiVyrN6QFd7VGypiwGYALYfXBzlUyNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":2934618,"name":"substitution (logic)","url":"https://www.academia.edu/Documents/in/substitution_logic_"}],"urls":[{"id":41528930,"url":"http://www.aclweb.org/anthology/S/S10/S10-1026.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332108/Multi_Domain_Goal_Oriented_Dialogues_MultiDoGO_Strategies_toward_Curating_and_Annotating_Large_Scale_Dialogue_Data"><img alt="Research paper thumbnail of Multi-Domain Goal-Oriented Dialogues (MultiDoGO): Strategies toward Curating and Annotating Large Scale Dialogue Data" class="work-thumbnail" src="https://attachments.academia-assets.com/113984363/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332108/Multi_Domain_Goal_Oriented_Dialogues_MultiDoGO_Strategies_toward_Curating_and_Annotating_Large_Scale_Dialogue_Data">Multi-Domain Goal-Oriented Dialogues (MultiDoGO): Strategies toward Curating and Annotating Large Scale Dialogue Data</a></div><div class="wp-workCard_item"><span>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1739c1ec6de1072dc907c07950dff73b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984363,"asset_id":118332108,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984363/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332108]").text(description); $(".js-view-count[data-work-id=118332108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1739c1ec6de1072dc907c07950dff73b" } } $('.js-work-strip[data-work-id=118332108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332108,"title":"Multi-Domain Goal-Oriented Dialogues (MultiDoGO): Strategies toward Curating and Annotating Large Scale Dialogue Data","translated_title":"","metadata":{"publisher":"Association for Computational Linguistics","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332108/Multi_Domain_Goal_Oriented_Dialogues_MultiDoGO_Strategies_toward_Curating_and_Annotating_Large_Scale_Dialogue_Data","translated_internal_url":"","created_at":"2024-04-30T07:31:03.125-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984363/thumbnails/1.jpg","file_name":"D19-1460.pdf","download_url":"https://www.academia.edu/attachments/113984363/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Domain_Goal_Oriented_Dialogues_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984363/D19-1460-libre.pdf?1714487643=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Domain_Goal_Oriented_Dialogues_Mul.pdf\u0026Expires=1732498305\u0026Signature=J2XR3n1GwfJMKj5D2o2uhCSdKfzeY~cCJUEaxL51~7WG0iVhmEErPYnHbdbaGkOSYFNxlhWCCHOnAgq0Vt8aNlFK7p2a~zzDacKWwOki68Pw9hm80v7fExCFTCtO9Z84dWeEc-zmMODqTnOFMUBh7bhlFIKgQ-m8v1af6xtXRGBy4eikh-ZzIJiZFOFSlVZGbUFtomVuuqB4grHSoKnFvl6gSRc~v~58mNrjh6U3GNT9OFs-1cNuH50BaM~PurLLAVHsWJF4bZmd4iTqkTKG3CkZESfIPARk1YBKdDeR6~3P06XGKmOB-syWVfWVbGan~F0do14OYn~wKhAaxgDPUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_Domain_Goal_Oriented_Dialogues_MultiDoGO_Strategies_toward_Curating_and_Annotating_Large_Scale_Dialogue_Data","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984363/thumbnails/1.jpg","file_name":"D19-1460.pdf","download_url":"https://www.academia.edu/attachments/113984363/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Domain_Goal_Oriented_Dialogues_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984363/D19-1460-libre.pdf?1714487643=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Domain_Goal_Oriented_Dialogues_Mul.pdf\u0026Expires=1732498305\u0026Signature=J2XR3n1GwfJMKj5D2o2uhCSdKfzeY~cCJUEaxL51~7WG0iVhmEErPYnHbdbaGkOSYFNxlhWCCHOnAgq0Vt8aNlFK7p2a~zzDacKWwOki68Pw9hm80v7fExCFTCtO9Z84dWeEc-zmMODqTnOFMUBh7bhlFIKgQ-m8v1af6xtXRGBy4eikh-ZzIJiZFOFSlVZGbUFtomVuuqB4grHSoKnFvl6gSRc~v~58mNrjh6U3GNT9OFs-1cNuH50BaM~PurLLAVHsWJF4bZmd4iTqkTKG3CkZESfIPARk1YBKdDeR6~3P06XGKmOB-syWVfWVbGan~F0do14OYn~wKhAaxgDPUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":1350274,"name":"Archaeology of Natural Places","url":"https://www.academia.edu/Documents/in/Archaeology_of_Natural_Places"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332107/On_Arabic_Multi_Genre_Corpus_Diacritization"><img alt="Research paper thumbnail of On Arabic Multi-Genre Corpus Diacritization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332107/On_Arabic_Multi_Genre_Corpus_Diacritization">On Arabic Multi-Genre Corpus Diacritization</a></div><div class="wp-workCard_item"><span>Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the characteristics of writing in Modern Standard Arabic (MSA) is that the commonly used o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the characteristics of writing in Modern Standard Arabic (MSA) is that the commonly used orthography is mostly consonantal and does not provide full vocalization of the text. It sometimes includes optional diacritical marks (henceforth, diacritics or vowels).Arabic script consists of two classes of symbols: letters and diacritics. Letters comprise long vowels such as A, y, w as well as consonants. Diacritics on the other hand comprise short vowels, gemination markers, nunation markers, as well as other markers (such as hamza, the glottal stop which appears in conjunction with a small number of letters, dots on letters, elongation and emphatic markers) which in all, if present, render a more or less exact precise reading of a word. In this study, we are mostly addressing three types of diacritical marks: short vowels, nunation, and shadda (gemination).Diacritics are extremely useful for text readability and understanding. Their absence in Arabic text adds another layer of lexi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332107]").text(description); $(".js-view-count[data-work-id=118332107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332107, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332107,"title":"On Arabic Multi-Genre Corpus Diacritization","translated_title":"","metadata":{"abstract":"One of the characteristics of writing in Modern Standard Arabic (MSA) is that the commonly used orthography is mostly consonantal and does not provide full vocalization of the text. It sometimes includes optional diacritical marks (henceforth, diacritics or vowels).Arabic script consists of two classes of symbols: letters and diacritics. Letters comprise long vowels such as A, y, w as well as consonants. Diacritics on the other hand comprise short vowels, gemination markers, nunation markers, as well as other markers (such as hamza, the glottal stop which appears in conjunction with a small number of letters, dots on letters, elongation and emphatic markers) which in all, if present, render a more or less exact precise reading of a word. In this study, we are mostly addressing three types of diacritical marks: short vowels, nunation, and shadda (gemination).Diacritics are extremely useful for text readability and understanding. Their absence in Arabic text adds another layer of lexi...","publisher":"Hamad bin Khalifa University Press (HBKU Press)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1"},"translated_abstract":"One of the characteristics of writing in Modern Standard Arabic (MSA) is that the commonly used orthography is mostly consonantal and does not provide full vocalization of the text. It sometimes includes optional diacritical marks (henceforth, diacritics or vowels).Arabic script consists of two classes of symbols: letters and diacritics. Letters comprise long vowels such as A, y, w as well as consonants. Diacritics on the other hand comprise short vowels, gemination markers, nunation markers, as well as other markers (such as hamza, the glottal stop which appears in conjunction with a small number of letters, dots on letters, elongation and emphatic markers) which in all, if present, render a more or less exact precise reading of a word. In this study, we are mostly addressing three types of diacritical marks: short vowels, nunation, and shadda (gemination).Diacritics are extremely useful for text readability and understanding. Their absence in Arabic text adds another layer of lexi...","internal_url":"https://www.academia.edu/118332107/On_Arabic_Multi_Genre_Corpus_Diacritization","translated_internal_url":"","created_at":"2024-04-30T07:31:02.938-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Arabic_Multi_Genre_Corpus_Diacritization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":15674,"name":"Linguistics","url":"https://www.academia.edu/Documents/in/Linguistics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332106"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332106/Building_a_Rich_Lexical_Resource_for_Standard_Arabic"><img alt="Research paper thumbnail of Building a Rich Lexical Resource for Standard Arabic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332106/Building_a_Rich_Lexical_Resource_for_Standard_Arabic">Building a Rich Lexical Resource for Standard Arabic</a></div><div class="wp-workCard_item"><span>Qatar Foundation Annual Research Conference Proceedings Volume 2018 Issue 4</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Language ambiguity is an inherent characteristic of natural languages. It refers to the phenomeno...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Language ambiguity is an inherent characteristic of natural languages. It refers to the phenomenon where an instance can be interpreted in multiple ways. Ambiguity is at the core of the problems faced by natural language processing applications (Obeid et al. 2013). Although humans have the ability to resolve such ambiguity based on their prior knowledge and context, there are instances (sentences, words,... etc) that require multiple readings to resolve it within a context (Hawwari et al. 2013; Diab et al. 2008). The problem of natural language ambiguity is further exacerbated by conventional orthographic decisions where not all phonemes are explicitly represented (Maamouri et al. 2010; Maamouri et al. 2012). Arabic standard orthography is one of these languages that is underspecified for some of the characters such as short vowels, gemination, glottal stops, etc which are collectively represented as diacritics (Zaghouani et al. 2012; Zaghouani et al. 2016). Most typical text in Ara...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332106"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332106"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332106; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332106]").text(description); $(".js-view-count[data-work-id=118332106]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332106; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332106']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332106, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332106]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332106,"title":"Building a Rich Lexical Resource for Standard Arabic","translated_title":"","metadata":{"abstract":"Language ambiguity is an inherent characteristic of natural languages. It refers to the phenomenon where an instance can be interpreted in multiple ways. Ambiguity is at the core of the problems faced by natural language processing applications (Obeid et al. 2013). Although humans have the ability to resolve such ambiguity based on their prior knowledge and context, there are instances (sentences, words,... etc) that require multiple readings to resolve it within a context (Hawwari et al. 2013; Diab et al. 2008). The problem of natural language ambiguity is further exacerbated by conventional orthographic decisions where not all phonemes are explicitly represented (Maamouri et al. 2010; Maamouri et al. 2012). Arabic standard orthography is one of these languages that is underspecified for some of the characters such as short vowels, gemination, glottal stops, etc which are collectively represented as diacritics (Zaghouani et al. 2012; Zaghouani et al. 2016). Most typical text in Ara...","publisher":"Hamad bin Khalifa University Press (HBKU Press)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Qatar Foundation Annual Research Conference Proceedings Volume 2018 Issue 4"},"translated_abstract":"Language ambiguity is an inherent characteristic of natural languages. It refers to the phenomenon where an instance can be interpreted in multiple ways. Ambiguity is at the core of the problems faced by natural language processing applications (Obeid et al. 2013). Although humans have the ability to resolve such ambiguity based on their prior knowledge and context, there are instances (sentences, words,... etc) that require multiple readings to resolve it within a context (Hawwari et al. 2013; Diab et al. 2008). The problem of natural language ambiguity is further exacerbated by conventional orthographic decisions where not all phonemes are explicitly represented (Maamouri et al. 2010; Maamouri et al. 2012). Arabic standard orthography is one of these languages that is underspecified for some of the characters such as short vowels, gemination, glottal stops, etc which are collectively represented as diacritics (Zaghouani et al. 2012; Zaghouani et al. 2016). Most typical text in Ara...","internal_url":"https://www.academia.edu/118332106/Building_a_Rich_Lexical_Resource_for_Standard_Arabic","translated_internal_url":"","created_at":"2024-04-30T07:31:02.714-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Building_a_Rich_Lexical_Resource_for_Standard_Arabic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332105"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332105/Unsupervised_Word_Mapping_Using_Structural_Similarities_in_Monolingual_Embeddings"><img alt="Research paper thumbnail of Unsupervised Word Mapping Using Structural Similarities in Monolingual Embeddings" class="work-thumbnail" src="https://attachments.academia-assets.com/113984324/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332105/Unsupervised_Word_Mapping_Using_Structural_Similarities_in_Monolingual_Embeddings">Unsupervised Word Mapping Using Structural Similarities in Monolingual Embeddings</a></div><div class="wp-workCard_item"><span>Transactions of the Association for Computational Linguistics</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Most existing methods for automatic bilingual dictionary induction rely on prior alignments betwe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monolingual word embeddings. The proposed method exploits local and global structures in monolingual vector spaces to align them such that similar words are mapped to each other. We show empirically that the performance of bilingual correspondents that are learned using our proposed unsupervised method is comparable to that of using supervised bilingual correspondents from a seed dictionary.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ad11e7a413311d938d3a6e332ff0ba02" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984324,"asset_id":118332105,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984324/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332105"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332105"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332105; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332105]").text(description); $(".js-view-count[data-work-id=118332105]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332105; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332105']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332105, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ad11e7a413311d938d3a6e332ff0ba02" } } $('.js-work-strip[data-work-id=118332105]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332105,"title":"Unsupervised Word Mapping Using Structural Similarities in Monolingual Embeddings","translated_title":"","metadata":{"abstract":"Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monolingual word embeddings. The proposed method exploits local and global structures in monolingual vector spaces to align them such that similar words are mapped to each other. We show empirically that the performance of bilingual correspondents that are learned using our proposed unsupervised method is comparable to that of using supervised bilingual correspondents from a seed dictionary.","publisher":"MIT Press - Journals","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Transactions of the Association for Computational Linguistics"},"translated_abstract":"Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monolingual word embeddings. The proposed method exploits local and global structures in monolingual vector spaces to align them such that similar words are mapped to each other. We show empirically that the performance of bilingual correspondents that are learned using our proposed unsupervised method is comparable to that of using supervised bilingual correspondents from a seed dictionary.","internal_url":"https://www.academia.edu/118332105/Unsupervised_Word_Mapping_Using_Structural_Similarities_in_Monolingual_Embeddings","translated_internal_url":"","created_at":"2024-04-30T07:31:02.329-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984324,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984324/thumbnails/1.jpg","file_name":"tacl_a_00014.pdf","download_url":"https://www.academia.edu/attachments/113984324/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unsupervised_Word_Mapping_Using_Structur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984324/tacl_a_00014-libre.pdf?1714487671=\u0026response-content-disposition=attachment%3B+filename%3DUnsupervised_Word_Mapping_Using_Structur.pdf\u0026Expires=1732498305\u0026Signature=CZup9u5zcNYROrI3cUajpIRXz~ftpxOnWPFzuNO09aVpqlAeTv25d~I9IYZS4pZ2cDkfWLODGj3qwGNRwIbNRyP4VgboE6zSg1dF3QLWdrg3-XMLrYaJx~PdklYfzgQiwYE2CpJh9~63zkhBQrE~3hc-pKDVI5lEH9I19TkmIZSwYavb7CaX-e~9aZtsjXwRpCFKKLWIcNfiF2ZGCLqlMrQx5W3MjMyXc0BRMVm6mU4Du9txX~wu2r3LHi2OfChzzWPZ01JYP7zdIcb-uUpWGYoCdIkzz5Jc27CwGt6u5Yw93l27vr2EYdLWVb85gdnmNWqdr02VjBcdWnixd96q1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Unsupervised_Word_Mapping_Using_Structural_Similarities_in_Monolingual_Embeddings","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984324,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984324/thumbnails/1.jpg","file_name":"tacl_a_00014.pdf","download_url":"https://www.academia.edu/attachments/113984324/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unsupervised_Word_Mapping_Using_Structur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984324/tacl_a_00014-libre.pdf?1714487671=\u0026response-content-disposition=attachment%3B+filename%3DUnsupervised_Word_Mapping_Using_Structur.pdf\u0026Expires=1732498305\u0026Signature=CZup9u5zcNYROrI3cUajpIRXz~ftpxOnWPFzuNO09aVpqlAeTv25d~I9IYZS4pZ2cDkfWLODGj3qwGNRwIbNRyP4VgboE6zSg1dF3QLWdrg3-XMLrYaJx~PdklYfzgQiwYE2CpJh9~63zkhBQrE~3hc-pKDVI5lEH9I19TkmIZSwYavb7CaX-e~9aZtsjXwRpCFKKLWIcNfiF2ZGCLqlMrQx5W3MjMyXc0BRMVm6mU4Du9txX~wu2r3LHi2OfChzzWPZ01JYP7zdIcb-uUpWGYoCdIkzz5Jc27CwGt6u5Yw93l27vr2EYdLWVb85gdnmNWqdr02VjBcdWnixd96q1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113984323,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984323/thumbnails/1.jpg","file_name":"tacl_a_00014.pdf","download_url":"https://www.academia.edu/attachments/113984323/download_file","bulk_download_file_name":"Unsupervised_Word_Mapping_Using_Structur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984323/tacl_a_00014-libre.pdf?1714487670=\u0026response-content-disposition=attachment%3B+filename%3DUnsupervised_Word_Mapping_Using_Structur.pdf\u0026Expires=1732498305\u0026Signature=CWInopNWwHdLIOmyqFkQL8QIfCsa7hZmQBOJrFkBffG4o6K3wTwVsGLRE6Ex8fPglEoozOq0pSQzo7Bou6EVs73J8Scdbg80f0NuGU4OaP6B4ncbMm3K5x9QAZhLdbgiqeOKWV3NzgezaRrbqX6SAmJWnma7~AuGao8h6u0gz6eSItIulTWYBapP8FEV-MIzT55BrGLIwhDOH0Fndw9NwLmtDKh5bOJH15okLAkUocqk4Y3~2HFsb1GaEktXIaQVzbQrtUPtnHjHYHRTXdAAEluXcmWxRkrE5N35LDlGTI7W9jQNdskFE~n0GpM6nTE5BnbFntYWkF4Ytzr9foFkPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":693977,"name":"Exploit","url":"https://www.academia.edu/Documents/in/Exploit"},{"id":704843,"name":"Bilingual Dictionary","url":"https://www.academia.edu/Documents/in/Bilingual_Dictionary"}],"urls":[{"id":41528929,"url":"https://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00014"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332104"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332104/HLT_and_NLP_within_the_Arabic_world_Arabic_Language_and_local_languages_processing_Status_Updates_and_Prospects"><img alt="Research paper thumbnail of HLT & NLP within the Arabic world: Arabic Language and local languages processing Status Updates and Prospects" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332104/HLT_and_NLP_within_the_Arabic_world_Arabic_Language_and_local_languages_processing_Status_Updates_and_Prospects">HLT & NLP within the Arabic world: Arabic Language and local languages processing Status Updates and Prospects</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332104"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332104"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332104; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332104]").text(description); $(".js-view-count[data-work-id=118332104]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332104; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332104']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332104, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332104]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332104,"title":"HLT \u0026 NLP within the Arabic world: Arabic Language and local languages processing Status Updates and Prospects","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332104/HLT_and_NLP_within_the_Arabic_world_Arabic_Language_and_local_languages_processing_Status_Updates_and_Prospects","translated_internal_url":"","created_at":"2024-04-30T07:31:02.158-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"HLT_and_NLP_within_the_Arabic_world_Arabic_Language_and_local_languages_processing_Status_Updates_and_Prospects","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332103"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332103/Simplified_guidelines_for_the_creation_of_Large_Scale_Dialectal_Arabic_Annotations"><img alt="Research paper thumbnail of Simplified guidelines for the creation of Large Scale Dialectal Arabic Annotations" class="work-thumbnail" src="https://attachments.academia-assets.com/113984361/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332103/Simplified_guidelines_for_the_creation_of_Large_Scale_Dialectal_Arabic_Annotations">Simplified guidelines for the creation of Large Scale Dialectal Arabic Annotations</a></div><div class="wp-workCard_item"><span>lrec-conf.org</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7fe8f6532e5a1d894a66a808cbc3e60f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984361,"asset_id":118332103,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984361/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332103"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332103"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332103; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332103]").text(description); $(".js-view-count[data-work-id=118332103]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332103; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332103']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332103, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7fe8f6532e5a1d894a66a808cbc3e60f" } } $('.js-work-strip[data-work-id=118332103]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332103,"title":"Simplified guidelines for the creation of Large Scale Dialectal Arabic Annotations","translated_title":"","metadata":{"publication_name":"lrec-conf.org"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332103/Simplified_guidelines_for_the_creation_of_Large_Scale_Dialectal_Arabic_Annotations","translated_internal_url":"","created_at":"2024-04-30T07:31:01.884-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984361,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984361/thumbnails/1.jpg","file_name":"815_Paper.pdf","download_url":"https://www.academia.edu/attachments/113984361/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simplified_guidelines_for_the_creation_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984361/815_Paper-libre.pdf?1714487640=\u0026response-content-disposition=attachment%3B+filename%3DSimplified_guidelines_for_the_creation_o.pdf\u0026Expires=1732498305\u0026Signature=KToearISFx3iFuaTss0NZDKvnECG7qrIr8eZPdIOI3hBoW9c8s8e~rmghRhLOuG8dqwsPNrbMdKN9s3r9ZqwUyLWZnlybTg~7MfkUgzEv32m8Ih7Jurz1ARxtoHz9ycVrYJc5vlDEi4jZHwAQtEbVJ25yxUp-LJS-0tsC8jU1pByOEdSXZ0Mlq7h0Mt4GA1bOPTQv1Yog6hkFrwsI5igoanY2GIH3ZidWAqxU60TQkVVMOD6Xi2YhfZNiOvEQnxhLZBf9EU-VN3ahSh2EVvN6bDN2s103Itjc09zN3yhlxf6K91X5lDwfKM6BVrY3njQ0zJSPL7-Ej2ebHkiUnDG3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Simplified_guidelines_for_the_creation_of_Large_Scale_Dialectal_Arabic_Annotations","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984361,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984361/thumbnails/1.jpg","file_name":"815_Paper.pdf","download_url":"https://www.academia.edu/attachments/113984361/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simplified_guidelines_for_the_creation_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984361/815_Paper-libre.pdf?1714487640=\u0026response-content-disposition=attachment%3B+filename%3DSimplified_guidelines_for_the_creation_o.pdf\u0026Expires=1732498305\u0026Signature=KToearISFx3iFuaTss0NZDKvnECG7qrIr8eZPdIOI3hBoW9c8s8e~rmghRhLOuG8dqwsPNrbMdKN9s3r9ZqwUyLWZnlybTg~7MfkUgzEv32m8Ih7Jurz1ARxtoHz9ycVrYJc5vlDEi4jZHwAQtEbVJ25yxUp-LJS-0tsC8jU1pByOEdSXZ0Mlq7h0Mt4GA1bOPTQv1Yog6hkFrwsI5igoanY2GIH3ZidWAqxU60TQkVVMOD6Xi2YhfZNiOvEQnxhLZBf9EU-VN3ahSh2EVvN6bDN2s103Itjc09zN3yhlxf6K91X5lDwfKM6BVrY3njQ0zJSPL7-Ej2ebHkiUnDG3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":131779,"name":"Code Switching","url":"https://www.academia.edu/Documents/in/Code_Switching"},{"id":154257,"name":"Modern Standard Arabic","url":"https://www.academia.edu/Documents/in/Modern_Standard_Arabic"},{"id":4074395,"name":"dialectal Arabic","url":"https://www.academia.edu/Documents/in/dialectal_Arabic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332102"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118332102/Semantic_parsing_for_modern_standard_Arabic"><img alt="Research paper thumbnail of Semantic parsing for modern standard Arabic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118332102/Semantic_parsing_for_modern_standard_Arabic">Semantic parsing for modern standard Arabic</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332102"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332102]").text(description); $(".js-view-count[data-work-id=118332102]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332102']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332102, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118332102]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332102,"title":"Semantic parsing for modern standard Arabic","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/118332102/Semantic_parsing_for_modern_standard_Arabic","translated_internal_url":"","created_at":"2024-04-30T07:31:01.397-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semantic_parsing_for_modern_standard_Arabic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118332009"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118332009/Measuring_Verb_Similarity_eScholarship"><img alt="Research paper thumbnail of Measuring Verb Similarity - eScholarship" class="work-thumbnail" src="https://attachments.academia-assets.com/113984307/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118332009/Measuring_Verb_Similarity_eScholarship">Measuring Verb Similarity - eScholarship</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Measuring Verb Similarity Philip Resnik and Mona Diab Department of Linguistics and Institute for...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Measuring Verb Similarity Philip Resnik and Mona Diab Department of Linguistics and Institute for Advanced Computer Studies University of Maryland College Park, MD USA f resnik,mdiab g @umiacs.umd.edu Abstract The way we model semantic similarity is closely tied to our understanding of linguistic representations. We present several models of semantic similarity, based on diering representational assumptions, and investigate their properties via comparison with human ratings of verb similarity. The results oer insight into the bases for human similarity judgments and provide a testbed for further investigation of the interactions among syn- tactic properties, semantic structure, and semantic con- tent. Introduction The way we model semantic similarity is closely tied to our understanding of how linguistic representations are acquired and used. Some models of similarity, such as Tversky&#39;s (1977), assume an explicit set of features over which a similarity measure can be computed, a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5cb511f45119da671ee1d58c24e4cb5e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113984307,"asset_id":118332009,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113984307/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118332009"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118332009"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118332009; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118332009]").text(description); $(".js-view-count[data-work-id=118332009]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118332009; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118332009']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118332009, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5cb511f45119da671ee1d58c24e4cb5e" } } $('.js-work-strip[data-work-id=118332009]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118332009,"title":"Measuring Verb Similarity - eScholarship","translated_title":"","metadata":{"abstract":"Measuring Verb Similarity Philip Resnik and Mona Diab Department of Linguistics and Institute for Advanced Computer Studies University of Maryland College Park, MD USA f resnik,mdiab g @umiacs.umd.edu Abstract The way we model semantic similarity is closely tied to our understanding of linguistic representations. We present several models of semantic similarity, based on diering representational assumptions, and investigate their properties via comparison with human ratings of verb similarity. The results oer insight into the bases for human similarity judgments and provide a testbed for further investigation of the interactions among syn- tactic properties, semantic structure, and semantic con- tent. Introduction The way we model semantic similarity is closely tied to our understanding of how linguistic representations are acquired and used. Some models of similarity, such as Tversky\u0026#39;s (1977), assume an explicit set of features over which a similarity measure can be computed, a...","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"Measuring Verb Similarity Philip Resnik and Mona Diab Department of Linguistics and Institute for Advanced Computer Studies University of Maryland College Park, MD USA f resnik,mdiab g @umiacs.umd.edu Abstract The way we model semantic similarity is closely tied to our understanding of linguistic representations. We present several models of semantic similarity, based on diering representational assumptions, and investigate their properties via comparison with human ratings of verb similarity. The results oer insight into the bases for human similarity judgments and provide a testbed for further investigation of the interactions among syn- tactic properties, semantic structure, and semantic con- tent. Introduction The way we model semantic similarity is closely tied to our understanding of how linguistic representations are acquired and used. Some models of similarity, such as Tversky\u0026#39;s (1977), assume an explicit set of features over which a similarity measure can be computed, a...","internal_url":"https://www.academia.edu/118332009/Measuring_Verb_Similarity_eScholarship","translated_internal_url":"","created_at":"2024-04-30T07:29:29.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32411980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113984307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984307/thumbnails/1.jpg","file_name":"qt9bw0t5sb.pdf","download_url":"https://www.academia.edu/attachments/113984307/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measuring_Verb_Similarity_eScholarship.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984307/qt9bw0t5sb-libre.pdf?1714487645=\u0026response-content-disposition=attachment%3B+filename%3DMeasuring_Verb_Similarity_eScholarship.pdf\u0026Expires=1732498305\u0026Signature=byS9W7tWSD0aiqPqk274IGnxNnCZfzlVnhx~-YhD04-rphlGzz7~Y8TbGOGebbYykIjPxk940DAQkwVoGP7JQVh5DN4TaCsVyVGhaiC0nJ1iC6kS5xu7tQqW~99AhXJh2cY-r2PHHK2PMrYiiXsCB1VbhYalF1SPeE5MkEB8tvyk48kYLWDaeqHwnHvRvR6sJG6VmjrkjYWEd4jLSp2lJ~9ccu1ilErQwdZewb7lai4AKcG44z80JGc5K0KYGFSkHiR9zkCogBnyDPyp~9MUClk-Yus1KfXvInOYsmdOwB8TFM8~sOR2VFV~ehqNvcA~TB4Qbm6hy97PJomnsFYIYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Measuring_Verb_Similarity_eScholarship","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32411980,"first_name":"Mona","middle_initials":null,"last_name":"Diab","page_name":"MDiab","domain_name":"gwu","created_at":"2015-06-21T18:43:17.283-07:00","display_name":"Mona Diab","url":"https://gwu.academia.edu/MDiab"},"attachments":[{"id":113984307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113984307/thumbnails/1.jpg","file_name":"qt9bw0t5sb.pdf","download_url":"https://www.academia.edu/attachments/113984307/download_file?st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&st=MTczMjQ5NDcwNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measuring_Verb_Similarity_eScholarship.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113984307/qt9bw0t5sb-libre.pdf?1714487645=\u0026response-content-disposition=attachment%3B+filename%3DMeasuring_Verb_Similarity_eScholarship.pdf\u0026Expires=1732498305\u0026Signature=byS9W7tWSD0aiqPqk274IGnxNnCZfzlVnhx~-YhD04-rphlGzz7~Y8TbGOGebbYykIjPxk940DAQkwVoGP7JQVh5DN4TaCsVyVGhaiC0nJ1iC6kS5xu7tQqW~99AhXJh2cY-r2PHHK2PMrYiiXsCB1VbhYalF1SPeE5MkEB8tvyk48kYLWDaeqHwnHvRvR6sJG6VmjrkjYWEd4jLSp2lJ~9ccu1ilErQwdZewb7lai4AKcG44z80JGc5K0KYGFSkHiR9zkCogBnyDPyp~9MUClk-Yus1KfXvInOYsmdOwB8TFM8~sOR2VFV~ehqNvcA~TB4Qbm6hy97PJomnsFYIYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":11120,"name":"Semantic similarity","url":"https://www.academia.edu/Documents/in/Semantic_similarity"},{"id":153799,"name":"Verb","url":"https://www.academia.edu/Documents/in/Verb"},{"id":3847659,"name":"Similarity Geometry","url":"https://www.academia.edu/Documents/in/Similarity_Geometry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "f2f156feb97af3bf7c8213efb65ca71dc13cfd06d24fbad4c0d171834516985e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="oar5Wm+XLWVOBWfN2nRpDPHr5Toi3/TlKaGseLBc9ubg2NV7w4vCEJ/NU5HhKAChuSTMS/mcBLTAU3cVoOYzuQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://gwu.academia.edu/MDiab" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="nfZHO+0jEJVZuZjzT69FpqpDkQ06mhx041UYZIGqToTchGsaQT//4IhxrK908ywL4oy4fOHZ7CUKp8MJkRCL2w==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>