CINXE.COM

Search results for: mesophilic temperature

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mesophilic temperature</title> <meta name="description" content="Search results for: mesophilic temperature"> <meta name="keywords" content="mesophilic temperature"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mesophilic temperature" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mesophilic temperature"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7032</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mesophilic temperature</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7032</span> Anaerobic Digestion of Green Wastes at Different Solids Concentrations and Temperatures to Enhance Methane Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bayat">A. Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bello-Mendoza"> R. Bello-Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Wareham"> D. G. Wareham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two major categories of green waste are fruit and vegetable (FV) waste and garden and yard (GY) waste. Although, anaerobic digestions (AD) is able to manage FV waste; there is less confidence in the conditions for AD to handle GY wastes (grass, leaves, trees and bush trimmings); mainly because GY contains lignin and other recalcitrant organics. GY in the dry state (TS ≥ 15 %) can be digested at mesophilic temperatures; however, little methane data has been reported under thermophilic conditions, where conceivably better methane yields could be achieved. In addition, it is suspected that at lower solids concentrations, the methane yield could be increased. As such, the aim of this research is to find the temperature and solids concentration conditions that produce the most methane; under two different temperature regimes (mesophilic, thermophilic) and three solids states (i.e. 'dry', 'semi-dry' and 'wet'). Twenty liters of GY waste was collected from a public park located in the northern district in Tehran. The clippings consisted of freshly cut grass as well as dry branches and leaves. The GY waste was chopped before being fed into a mechanical blender that reduced it to a paste-like consistency. An initial TS concentration of approximately 38 % was achieved. Four hundred mL of anaerobic inoculum (average total solids (TS) concentration of 2.03 ± 0.131 % of which 73.4% were volatile solid (VS), soluble chemical oxygen demand (sCOD) of 4.59 ± 0.3 g/L) was mixed with the GY waste substrate paste (along with distilled water) to achieve a TS content of approximately 20 %. For comparative purposes, approximately 20 liters of FV waste was ground in the same manner as the GY waste. Since FV waste has a much higher natural water content than GY, it was dewatered to obtain a starting TS concentration in the dry solid-state range (TS ≥ 15 %). Three samples were dewatered to an average starting TS concentration of 32.71 %. The inoculum was added (along with distilled water) to dilute the initial FV TS concentrations down to semi-dry conditions (10-15 %) and wet conditions (below 10 %). Twelve 1-L batch bioreactors were loaded simultaneously with either GY or FV waste at TS solid concentrations ranging from 3.85 ± 1.22 % to 20.11 ± 1.23 %. The reactors were sealed and were operated for 30 days while being immersed in water baths to maintain a constant temperature of 37 ± 0.5 °C (mesophilic) or 55 ± 0.5 °C (thermophilic). A maximum methane yield of 115.42 (L methane/ kg VS added) was obtained for the GY thermophilic-wet AD combination. Methane yield was enhanced by 240 % compared to the GY waste mesophilic-dry condition. The results confirm that high temperature regimes and small solids concentrations are conditions that enhance methane yield from GY waste. A similar trend was observed for the anaerobic digestion of FV waste. Furthermore, a maximum value of VS (53 %) and sCOD (84 %) reduction was achieved during the AD of GY waste under the thermophilic-wet condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic" title=" mesophilic"> mesophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20solids%20concentration" title=" total solids concentration"> total solids concentration</a> </p> <a href="https://publications.waset.org/abstracts/111217/anaerobic-digestion-of-green-wastes-at-different-solids-concentrations-and-temperatures-to-enhance-methane-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7031</span> The Feasibility of Anaerobic Digestion at 45⁰C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuruol%20S.%20Mohd">Nuruol S. Mohd</a>, <a href="https://publications.waset.org/abstracts/search?q=Safia%20Ahmed"> Safia Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rumana%20Riffat"> Rumana Riffat</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoqiang%20Li"> Baoqiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anaerobic digestion at mesophilic and thermophilic temperatures have been widely studied and evaluated by numerous researchers. Limited extensive research has been conducted on anaerobic digestion in the intermediate zone of 45°C, mainly due to the notion that limited microbial activity occurs within this zone. The objectives of this research were to evaluate the performance and the capability of anaerobic digestion at 45°C in producing class A biosolids, in comparison to a mesophilic and thermophilic anaerobic digestion system operated at 35°C and 55°C, respectively. In addition to that, the investigation on the possible inhibition factors affecting the performance of the digestion system at this temperature will be conducted as well. The 45°C anaerobic digestion systems were not able to achieve comparable methane yield and high-quality effluent compared to the mesophilic system, even though the systems produced biogas with about 62-67% methane. The 45°C digesters suffered from high acetate accumulation, but sufficient buffering capacity was observed as the pH, alkalinity and volatile fatty acids (VFA)-to-alkalinity ratio were within recommended values. The accumulation of acetate observed in 45°C systems were presumably due to the high temperature which contributed to high hydrolysis rate. Consequently, it produced a large amount of toxic salts that combined with the substrate making them not readily available to be consumed by methanogens. Acetate accumulation, even though contributed to 52 to 71% reduction in acetate degradation process, could not be considered as completely inhibitory. Additionally, at 45°C, no ammonia inhibition was observed and the digesters were able to achieve volatile solids (VS) reduction of 47.94±4.17%. The pathogen counts were less than 1,000 MPN/g total solids, thus, producing Class A biosolids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=45%C2%B0C%20anaerobic%20digestion" title="45°C anaerobic digestion">45°C anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=acetate%20accumulation" title=" acetate accumulation"> acetate accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20A%20biosolids" title=" class A biosolids"> class A biosolids</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20toxicity" title=" salt toxicity"> salt toxicity</a> </p> <a href="https://publications.waset.org/abstracts/33545/the-feasibility-of-anaerobic-digestion-at-45c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7030</span> Modelling the Anaerobic Digestion of Esparto Paper Industry Wastewater Effluent in a Batch Digester Using IWA Anaerobic Digestion Model No. 1 (ADM1)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boubaker%20Fezzani">Boubaker Fezzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Ben%20Cheikh"> Ridha Ben Cheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Rouissi"> Tarek Rouissi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work the original ADM1, implemented in the simulation software package MATLAB/Simulink, was modified and adapted and applied to reproduce the experimental results of the mesophilic anaerobic digestion of Esperto paper industry wastewater in a batch digester. The data set from lab-scale experiment runs were used to calibrate and validate the model. The simulations’ results indicated that the modified ADM1 was able to predict reasonably well the steady state results of gas flows, methane and carbon dioxide contents, pH and total volatile fatty acids (TVFA) observed with all influents concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulation" title=" Simulation"> Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ADM1" title=" ADM1"> ADM1</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20digester" title=" batch digester"> batch digester</a>, <a href="https://publications.waset.org/abstracts/search?q=esparto%20%20paper%20industry%20effluent" title=" esparto paper industry effluent"> esparto paper industry effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature" title=" mesophilic temperature"> mesophilic temperature</a> </p> <a href="https://publications.waset.org/abstracts/37483/modelling-the-anaerobic-digestion-of-esparto-paper-industry-wastewater-effluent-in-a-batch-digester-using-iwa-anaerobic-digestion-model-no-1-adm1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7029</span> A Study of the Effects of Temperatures and Optimum pH on the Specific Methane Production of Perennial Ryegrass during Anaerobic Digestion Process under a Discontinuous Daily Feeding Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uchenna%20Egwu">Uchenna Egwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Jonathan%20Sallis"> Paul Jonathan Sallis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perennial ryegrass is an abundant renewable lignocellulosic biofuel feedstock for biomethane production through anaerobic digestion (AD). In this study, six anaerobic continuously stirred tank reactors (CSTRs) were set up in three pairs. Each pair of the CSTRs was then used to study the effects of operating temperatures – psychrophilic, mesophilic, and thermophilic, and optimum pH on the specific methane production (SMP) of the ryegrass during AD under discontinuous daily feeding conditions. The reactors were fed at an organic loading rate (OLR) ranging from 1-1.5 kgVS.L⁻¹d⁻¹ and hydraulic residence time, HRT=20 days for 140 days. The pH of the digesters was maintained at the range of 6.8-7.2 using 1 M NH₄HCO₃ solution, but this was replaced with biomass ash-extracts from day 105-140. The results obtained showed that the mean SMP of ryegrass measured between HRT 3 and 4 were 318.4, 425.4 and 335 N L CH₄ kg⁻¹VS.d⁻¹ for the psychrophilic (25 ± 2°C), mesophilic (40 ± 1°C) and thermophilic (60 ± 1°C) temperatures respectively. It was also observed that the buffering ability of the reactors increased with operating temperature, probably due to an increase in the solubility of ammonium bicarbonate (NH₄HCO₃) with temperature. The reactors also achieved a mean VS destruction of 61.9, 68.5 and 63.5%, respectively, which signifies that the mesophilic reactors achieved the highest specific methane production (SMP), while the psychrophilic reactors achieved the lowest. None of the reactors attained steady-state condition due to the discontinuous daily feeding times, and therefore, such feeding practice may not be the most effective for maximum biogas production over long periods of time. The addition of NH₄HCO₃ as supplement provided a good buffering condition in these AD digesters, but the digesters failed in the long run due to inhibition from the accumulation of free ammonia, which later led to decrease in pH, acidification, and souring of the digesters. However, the addition of biomass ash extracts was shown to potentially revive failed AD reactors by providing an adequate buffering and essential trace nutrient supplements necessary for optimal bacterial growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20%20feeding" title=" discontinuous feeding"> discontinuous feeding</a>, <a href="https://publications.waset.org/abstracts/search?q=perennial%20ryegrass" title=" perennial ryegrass"> perennial ryegrass</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20methane%20production" title=" specific methane production"> specific methane production</a>, <a href="https://publications.waset.org/abstracts/search?q=supplements" title=" supplements"> supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/98564/a-study-of-the-effects-of-temperatures-and-optimum-ph-on-the-specific-methane-production-of-perennial-ryegrass-during-anaerobic-digestion-process-under-a-discontinuous-daily-feeding-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7028</span> Temperature Susceptibility for Optimal Biogas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujjal%20Chattaraj">Ujjal Chattaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Pbharat%20Saikumar"> Pbharat Saikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Thinley%20Dorji"> Thinley Dorji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth is going to be a planet where no further life can sustain if people continue to pollute the environment. We need energy and fuels everyday for heating and lighting purposes in our life. It’s high time we know this problem and take measures at-least to reduce pollution and take alternative measures for everyday livelihood. Biogas is one of them. It is very essential to define and control the parameters for optimization of biogas production. Biogas plants can be made of different size, but it is very vital to make a biogas which will be cost effective, with greater efficiency (more production) and biogas plants that will sustain for a longer period of time for usage. In this research, experiments were carried out only on cow dung and Chicken manure depending on the substrates people out there (Bhutan) used. The experiment was done within 25 days and was tested for different temperatures and found out which produce more amount. Moreover, it was also statistically tested for their dependency and non-dependency which gave clear idea more on their production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digester" title="digester">digester</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature" title=" mesophilic temperature"> mesophilic temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20manure" title=" organic manure"> organic manure</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20temperature" title=" thermophilic temperature"> thermophilic temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=t-test" title=" t-test"> t-test</a> </p> <a href="https://publications.waset.org/abstracts/54436/temperature-susceptibility-for-optimal-biogas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7027</span> Purification and Characterization of Phycoerythrin from a Mesophilic Cyanobacterium Nostoc piscinale PUPCCC 405.17</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kaur">Sandeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phycoerythrin (PE) from the mesophilic filamentous cyanobacterium Nostoc piscinale PUPCCC 405.17, a good producer of phycobiliproteins, has been characterized in terms of their unit assembly and stability. The phycoerythrin was extracted by freeze-thawing the cells in water, concentrated by ammonium sulphate fractionation and purified by anion exchange chromatography. The purification process resulted in 2.90 fold increase in phycoerythrin purity reaching to 1.54. Sodium Dodecyl Sulphate- Polyacrylamide Gel Electrophoresis of purified PE demonstrated three protein bands of 14.3, 27.54 and 39.81 kDa. The native PE also showed one band of 125.87 kDa, assumed to be a dimer (αβ)2γ based on results of non-denaturing PAGE. Lyophilized powder PE was more stable compared to phycoerythrin in the solution. The half-life of dry PE is 80 days when stored at 4 °C under dark. The phycoerythrin from this organism has potential applications in food as natural colour and as a fluorescent marker. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Nostoc%20piscinale" title=" Nostoc piscinale"> Nostoc piscinale</a>, <a href="https://publications.waset.org/abstracts/search?q=phycoerythrin" title=" phycoerythrin"> phycoerythrin</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification "> purification </a> </p> <a href="https://publications.waset.org/abstracts/108813/purification-and-characterization-of-phycoerythrin-from-a-mesophilic-cyanobacterium-nostoc-piscinale-pupccc-40517" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7026</span> Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rocio%20L%C3%B3pez">Rocio López</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Tena"> Miriam Tena</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20P%C3%A9rez"> Montserrat Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosario%20Solera"> Rosario Solera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20co-digestion" title="anaerobic co-digestion">anaerobic co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=TPAD" title=" TPAD"> TPAD</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=BHP" title=" BHP"> BHP</a>, <a href="https://publications.waset.org/abstracts/search?q=BMP" title=" BMP"> BMP</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20waste" title=" fish waste"> fish waste</a> </p> <a href="https://publications.waset.org/abstracts/143315/anaerobic-co-digestion-in-two-phase-tpad-system-of-sewage-sludge-and-fish-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7025</span> M. J. Rodríguez, F. M. Sánchez, B. Velardo, P. Calvo, M. J. Serradilla, J. Delgado, J. M. López</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q.%20Rzina">Q. Rzina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lahrouni"> M. Lahrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rida"> S. Rida</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saadaoui"> N. Saadaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Almossaid"> Y. Almossaid</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Oufdou"> K. Oufdou</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Fares"> K. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many organic solid wastes are produced in the world. Poultry manure (PM), municipal organic wastes (MOW) and sugar beet lime sludge (LS) are produced in large quantities in Morocco. The co-composting of these organic wastes was investigated. The recycling and the valorization of such wastes is environmentally and economically beneficial especially for PM which is known source of bacterial pathogens. The aerobic biodegradation process was carried out by using three windrows of variable compositions: C1 prepared without LS (only MOW were composted with PM), C2 prepared from MOW plus PM and10% LS; and the last one C3 from MOW plus PM and 20% LS. The main process physico-chemical parameters (temperature, pH, humidity and C/N) and microbiological populations (mesophilic and thermophilic flora, total coliform, fecal coliform, Streptococci, Staphylococcus aureus and mesophilic fungi) were monitored over three months to ascertain the compost maturity and to ensure the compost hygienic aspect. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 10.6-10.9. The organic matter degradation was reached approximately 59% for C2 and C3. In addition, the monitoring of the microbial population showed that the produced composts are mature and hygienic. The agronomic valorization of the final composts was tested on radish plant with tree level of composts and poultry manure without composting. The primary results of field trial showed a growth of radish plant biomass and root development without any phytotoxicity detected which reflects the quality of the composts produced. As for poultry manure it allowed to have a better results than other composts because of its readily available nitrogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20organic%20wastes" title=" municipal organic wastes"> municipal organic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=radish%20crop" title=" radish crop"> radish crop</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime%20sludge" title=" sugar beet lime sludge"> sugar beet lime sludge</a> </p> <a href="https://publications.waset.org/abstracts/42134/m-j-rodriguez-f-m-sanchez-b-velardo-p-calvo-m-j-serradilla-j-delgado-j-m-lopez" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7024</span> Isolation and Characterization of Lactic Acid Bacteria from Libyan Traditional Fermented Milk &quot;Laban&quot;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Nahaisi">M. H. Nahaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Almaroum"> N. M. Almaroum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laban is a Libyan traditional fermented milk product. This lactic fermentation has been known in many cities of Libya long time ago as stable, nutritious, refreshing drink especially during the summer. 16 naturally fermented milk samples were collected from different cities located in North West of Libya. The average pH, titratable acidity, fat and total solids were 4.16, 0.73%, 1.54% and 8.12 % respectively. Coliform, yeast and mold counts were 21×10⁴, 39×10⁴ and 41 ×10³ cfu/ ml. respectively. The average Lactococcus, Streptococcus, Mesophilic Lactobacillus / Leuconostoc and Thermophilic Lactobacillus counts were 99 ×10⁷, 96 ×10⁷, 93 ×10⁷ and 15 ×10⁷ cfu / ml. respectively. A total of one hundred forty two lactic acid bacteria (LAB) isolates were identified to the genus level as Lactobacillus (48.59%), Lactococcus (43.66%), Streptococcus (4.93%) and Leuconostoc (2.82%). Sugar fermentation tests have revealed that the most frequently Lactobacillus species was found to be Lactobacillus delbrueckii ssp. lactis (62.32%) followed by Lactobacillus plantarum (31.88%). Furthermore, other selected LAB isolates were identified by API 50 CH test as Lactococcus lactis ssp. lactics, Lactobacillus pentosus, Lactobacillus brevis and Leuconostoc mesenteroides ssp. cremoris. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traditional%20fermented%20milk" title="traditional fermented milk">traditional fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=laban" title=" laban"> laban</a>, <a href="https://publications.waset.org/abstracts/search?q=lactococcus" title=" lactococcus"> lactococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=streptococcus" title=" streptococcus"> streptococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic%20lactobacillus" title=" mesophilic lactobacillus"> mesophilic lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20lactobacillus%20counts" title=" thermophilic lactobacillus counts"> thermophilic lactobacillus counts</a> </p> <a href="https://publications.waset.org/abstracts/21085/isolation-and-characterization-of-lactic-acid-bacteria-from-libyan-traditional-fermented-milk-laban" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7023</span> Anaerobic Co-Digestion of Sewage Sludge and Bagasse for Biogas Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Ahmed%20Mohamed%20Hassan">Raouf Ahmed Mohamed Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Egypt, the excess sewage sludge from wastewater Treatment Plants (WWTPs) is rapidly increasing due to the continuous increase of population, urban planning and industrial developments. Also, cane bagasses constitute an important component of Urban Solid Waste (USW), especially at the south of Egypt, which are difficult to degrade under normal composting conditions. These wastes need to be environmentally managed to reduce the negative impacts of its application or disposal. In term of biogas recovery, the anaerobic digestion of sewage sludge or bagasse separately is inefficient, due to the presence of nutrients and minerals. Also, the Carbone-Nitrogen Ratio (C/N) play an important role, sewage sludge has a ratio varies from 6-16, where cane bagasse has a ratio around 150, whereas the suggested optimum C/N ratio for anaerobic digestion is in the range of 20 to 30. The anaerobic co-digestion is presented as a successful methodology that combines several biodegradable organic substrates able to decrease the amount of output wastes by biodegradation, sharing processing facilities, reducing operating costs, while enabling recovery of biogas. This paper presents the study of co-digestion of sewage sludge from wastewater treatment plants as a type of organic wastes and bagasse as agriculture wastes. Laboratory-scale mesophilic and thermophilic digesters were operated with varied hydraulic retention times. Different percentage of sludge and bagasse are investigated based on the total solids (TS). Before digestion, the bagasse was subjected to grinding pretreatment and soaked in distilled water (water pretreatment). The effect of operating parameters (mixing, temperature) is investigated in order to optimize the process in the biogas production. The yield and the composition of biogas from the different experiments were evaluated and the cumulative curves were estimated. The conducted tests did show that there is a good potential to using the co-digestion of wastewater sludge and bagasse for biogas production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-digestion" title="co-digestion">co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse" title=" bagasse"> bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic" title=" mesophilic"> mesophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a> </p> <a href="https://publications.waset.org/abstracts/2234/anaerobic-co-digestion-of-sewage-sludge-and-bagasse-for-biogas-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7022</span> Bacterial Contamination of Kitchen Sponges and Cutting Surfaces and Disinfection Procedures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayyan%20I%20Al%20Taweil">Hayyan I Al Taweil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The most common of bacterium in kitchen sponges and cutting surfaces which can play a task within the cross-contamination of foods, fomites and hands by foodborne pathogens. Aims and Objectives: This study investigated the incidence of bacterium in kitchen Sponge, and cutting surfaces. Material and methods: a complete of twenty four kitchen Sponges were collected from home kitchens and therefore the numbers of mesotrophic microorganism, coliform microorganism, E. coli, Salmonella, genus {pseudomonas|bacteria genus} and staphylococci in every kitchen Sponges were determined. Microbiological tests of all sponges for total mesophilic aerobic microorganism, S. aureus, Pseudomonas, Salmonella spp., and E. coli were performed on days 3, 7, and 14 by sampling. The sponges involved in daily use in kitchens countenosely with the dishwasher detergent a minimum of doubly daily Results: Results from the overall mesophilic aerobic microorganism, indicate a major increase within the variety of log CFU/ml. the amount of E. coli was reduced, Salmonella spp. was stabled, S. aureus was enhanced from the sponges throughout fourteen days. Genus Pseudomonas was enhanced and was the dominant micro flora within the sponges throughout fourteen days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kitchen%20Sponges" title="Kitchen Sponges">Kitchen Sponges</a>, <a href="https://publications.waset.org/abstracts/search?q=Microbiological%20Contamination" title=" Microbiological Contamination"> Microbiological Contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Disinfection%3B%20cutting%20surface%3B" title=" Disinfection; cutting surface; "> Disinfection; cutting surface; </a>, <a href="https://publications.waset.org/abstracts/search?q=Cross-Contamination" title=" Cross-Contamination"> Cross-Contamination</a> </p> <a href="https://publications.waset.org/abstracts/121771/bacterial-contamination-of-kitchen-sponges-and-cutting-surfaces-and-disinfection-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7021</span> Cellulolytic and Xylanolytic Enzymes from Mycelial Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Sadunishvili">T. Sadunishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kutateladze"> L. Kutateladze</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Urushadze"> T. Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khvedelidze"> R. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zakariashvili"> N. Zakariashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jobava"> M. Jobava</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kvesitadze"> G. Kvesitadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple repeated soil-climatic zones in Georgia determines the diversity of microorganisms. Hundreds of microscopic fungi of different genera have been isolated from different ecological niches, including some extreme environments. Biosynthetic ability of microscopic fungi has been studied. Trichoderma ressei, representative of the Ascomycetes secrete cellulolytic and xylanolytic enzymes that act in synergy to hydrolyze polysaccharide polymers to glucose, xylose and arabinose, which can be fermented to biofuels. The other mesophilic strains producing cellulases are Allesheria terrestris, Chaetomium thermophile, Fusarium oxysporium, Piptoporus betulinus, Penicillium echinulatum, P. purpurogenum, Aspergillus niger, A. wentii, A. versicolor, A. fumigatus etc. In the majority of the cases the cellulases produced by strains of genus Aspergillus usually have high β-glucosidase activity and average endoglucanases levels (with some exceptions), whereas strains representing Trichoderma have high endo enzyme and low β-glucosidase, and hence has limited efficiency in cellulose hydrolysis. Six producers of stable cellulases and xylanases from mesophilic and thermophilic fungi have been selected. By optimization of submerged cultivation conditions, high activities of cellulases and xylanases were obtained. For enzymes purification, their sedimentation by organic solvents such as ethyl alcohol, acetone, isopropanol and by ammonium sulphate in different ratios have been carried out. Best results were obtained with precipitation by ethyl alcohol (1:3.5) and ammonium sulphate. The yields of enzyme according to cellulase activities were 80-85% in both cases. Cellulase activity of enzyme preparation obtained from the strain Trichoderma viride X 33 is 126 U/g, from the strain Penicillium canescence D 85–185U/g and from the strain Sporotrichum pulverulentum T 5-0 110 U/g. Cellulase activity of enzyme preparation obtained from the strain Aspergillus sp. Av10 is 120 U/g, xylanase activity of enzyme preparation obtained from the strain Aspergillus niger A 7-5–1155U/g and from the strain Aspergillus niger Aj 38-1250 U/g. Optimum pH and temperature of operation and thermostability, of the enzyme preparations, were established. The efficiency of hydrolyses of different agricultural residues by the microscopic fungi cellulases has been studied. The glucose yield from the residues as a result of enzymatic hydrolysis is highly determined by the ratio of enzyme to substrate, pH, temperature, and duration of the process. Hydrolysis efficiency was significantly increased as a result of different pretreatment of the residues by different methods. Acknowledgement: The Study was supported by the ISTC project G-2117, funded by Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20fungi" title=" microscopic fungi"> microscopic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/78640/cellulolytic-and-xylanolytic-enzymes-from-mycelial-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7020</span> Treatment of Poultry Slaughterhouse Wastewater by Mesophilic Static Granular Bed Reactor (SGBR) Coupled with UF Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Basitere">Moses Basitere</a>, <a href="https://publications.waset.org/abstracts/search?q=Marshal%20Sherene%20Sheldon"> Marshal Sherene Sheldon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seteno%20Karabo%20Obed%20Ntwampe"> Seteno Karabo Obed Ntwampe</a>, <a href="https://publications.waset.org/abstracts/search?q=Debbie%20Dejager"> Debbie Dejager</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In South Africa, Poultry slaughterhouses consume largest amount of freshwater and discharges high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of bench-scale mesophilic Static Granular Bed Reactor (SGBR) containing fully anaerobic granules coupled with ultra-filtration (UF) membrane as a post-treatment for poultry slaughterhouse wastewater was investigated. The poultry slaughterhouse was characterized by chemical oxygen demand (COD) range between 2000 and 6000 mg/l, average biological oxygen demand (BOD) of 2375 mg/l and average fats, oil and grease (FOG) of 554 mg/l. A continuous SGBR anaerobic reactor was operated for 6 weeks at different hydraulic retention time (HRT) and an Organic loading rate. The results showed an average COD removal was greater than 90% for both the SGBR anaerobic digester and ultrafiltration membrane. The total suspended solids and fats oil and grease (FOG) removal was greater than 95%. The SGBR reactor coupled with UF membrane showed a greater potential to treat poultry slaughterhouse wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title="chemical oxygen demand">chemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20slaughterhouse%20wastewater" title=" poultry slaughterhouse wastewater"> poultry slaughterhouse wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20granular%20bed%20reactor" title=" static granular bed reactor"> static granular bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/36525/treatment-of-poultry-slaughterhouse-wastewater-by-mesophilic-static-granular-bed-reactor-sgbr-coupled-with-uf-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7019</span> Effect of Microstructure on Transition Temperature of Austempered Ductile Iron (ADI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ozel">A. Ozel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this study transition temperature of as-cast and austempered unalloyed ductile iron in the temperature interval from -60 to +100 degrees C have been investigated. The microstructures of samples were examined by light microscope. The impact energy values obtained from the experiments were found to depend on the austempering time and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austempered%20Ductile%20Iron%20%28ADI%29" title="Austempered Ductile Iron (ADI)">Austempered Ductile Iron (ADI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Charpy%20test" title=" Charpy test"> Charpy test</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20temperature" title=" transition temperature "> transition temperature </a> </p> <a href="https://publications.waset.org/abstracts/28406/effect-of-microstructure-on-transition-temperature-of-austempered-ductile-iron-adi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7018</span> Some Extreme Halophilic Microorganisms Produce Extracellular Proteases with Long Lasting Tolerance to Ethanol Exposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20G.%20Esquerre">Cynthia G. Esquerre</a>, <a href="https://publications.waset.org/abstracts/search?q=Amparo%20Iris%20Zavaleta"> Amparo Iris Zavaleta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extremophiles constitute a potentially valuable source of proteases for the development of biotechnological processes; however, the number of available studies in the literature is limited compared to mesophilic counterparts. Therefore, in this study, Peruvian halophilic microorganisms were characterized to select suitable proteolytic strains that produce active proteases under exigent conditions. Proteolysis was screened using the streak plate method with gelatin or skim milk as substrates. After that, proteolytic microorganisms were selected for phenotypic characterization and screened by a semi-quantitative proteolytic test using a modified method of diffusion agar. Finally, proteolysis was evaluated using partially purified extracts by ice-cold ethanol precipitation and dialysis. All analyses were carried out over a wide range of NaCl concentrations, pH, temperature and substrates. Of a total of 60 strains, 21 proteolytic strains were selected, of these 19 were extreme halophiles and 2 were moderates. Most proteolytic strains demonstrated differences in their biochemical patterns, particularly in sugar fermentation. A total of 14 microorganisms produced extracellular proteases, 13 were neutral, and one was alkaline showing activity up to pH 9.0. Proteases hydrolyzed gelatin as the most specific substrate. In general, catalytic activity was efficient under a wide range of NaCl (1 to 4 M NaCl), temperature (37 to 55 °C) and after an ethanol exposition performed at -20 °C for 24 hours. In conclusion, this study reported 14 candidates extremely halophiles producing extracellular proteases capable of being stable and active on a wide range of NaCl, temperature and even long lasting ethanol exposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotechnological%20processes" title="biotechnological processes">biotechnological processes</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20exposition" title=" ethanol exposition"> ethanol exposition</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20proteases" title=" extracellular proteases"> extracellular proteases</a>, <a href="https://publications.waset.org/abstracts/search?q=extremophiles" title=" extremophiles"> extremophiles</a> </p> <a href="https://publications.waset.org/abstracts/73031/some-extreme-halophilic-microorganisms-produce-extracellular-proteases-with-long-lasting-tolerance-to-ethanol-exposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7017</span> Improvement Anaerobic Digestion Performance of Sewage Sludge by Co-Digestion with Cattle Manure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Hassan">Raouf Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biogas energy production from sewage sludge is an economically feasible and eco-friendly in nature. Sewage sludge is considered nutrient-rich substrates, but had lower values of carbone which consider an energy source for anaerobic bacteria. The lack or lower values of carbone-to-nitrogen ratio (C/N) reduced biogas yield and fermentation rate. Anaerobic co-digestion of sewage sludge offers several benefits over mono-digestion such as optimize nutrient balance, increased cost-efficiency and increased degradation rate. The high produced amounts of animal manures, which reach up to 90% of the total collected organic wastes, are recommended for the co-digestion with sewage sludge, especially with the limitations of industrial substrates. Moreover, cattle manures had high methane production potential (500 m3/t vsadded). When mixed with sewage sludge the potential methane production increased with increasing cattle manure content. In this paper, the effect of cattle manure (CM) addition as co-substrates on the sewage sludge (SS) anaerobic digestion performance was investigated under mesophilic conditions (35°C) using anaerobic batch reactors. The batch reactors were operated with a working volume 0.8 liter, and a hydraulic retention time of 30 days. The research work focus on studying two main parameters; the biogas yield (expressed as VSS) and pH values inside the reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle%20manure" title=" cattle manure"> cattle manure</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic" title=" mesophilic"> mesophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20yield" title=" biogas yield"> biogas yield</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a> </p> <a href="https://publications.waset.org/abstracts/1923/improvement-anaerobic-digestion-performance-of-sewage-sludge-by-co-digestion-with-cattle-manure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7016</span> Anaerobic Co-Digestion of Duckweed (Lemna gibba) and Waste Activated Sludge in Batch Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubia%20Gaur">Rubia Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Surindra%20Suthar"> Surindra Suthar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the anaerobic co-digestion of duckweed (Lemna gibba) and waste activated sludge (WAS) of different proportions with acclimatized anaerobic granular sludge (AAGS) as inoculum in mesophilic conditions. Batch experiments were performed in 500 mL capacity reagent bottles at 300C temperature. Varied combinations of pre-treated duckweed biomass with constant volume of anaerobic inoculum (AAGS - 100 mL) and waste activated sludge (WAS - 22.5 mL) were devised into five batch tests. The highest methane generation was observed with batch study, T4. The Gompertz model fits well on the experimental data of the batch study, T4. The values of correlation coefficient were achieved relatively higher (R2 ≥ 0.99). The co-digestion without pre-treatment of both duckweed and WAS shows poor generation of methane gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20weed" title="aquatic weed">aquatic weed</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=Gompertz%20equation" title=" Gompertz equation"> Gompertz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20activated%20sludge" title=" waste activated sludge"> waste activated sludge</a> </p> <a href="https://publications.waset.org/abstracts/57321/anaerobic-co-digestion-of-duckweed-lemna-gibba-and-waste-activated-sludge-in-batch-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7015</span> Microbiological and Physicochemical Evaluation of Traditional Greek Kopanisti Cheese Produced by Different Starter Cultures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kazou">M. Kazou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gavriil"> A. Gavriil</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Kalagkatsi"> O. Kalagkatsi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Paschos"> T. Paschos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tsakalidou"> E. Tsakalidou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kopanisti cheese is a Greek soft Protected Designation of Origin (PDO) cheese made of raw cow, sheep or goat milk, or mixtures of them, with similar organoleptic characteristics to that of Roquefort cheese. Traditional manufacturing of Kopanisti cheese is limited in small-scale dairies, without the addition of starter cultures. Instead, an amount of over-mature Kopanisti cheese, called Mana Kopanisti, is used to initiate ripening. Therefore, the selection of proper starter cultures and the understanding of the contribution of various microbial groups to its overall quality is crucial for the production of a high-quality final product with standardized organoleptic and physicochemical characteristics. Taking the above into account, the aim of the present study was the investigation of Kopanisti cheese microbiota and its role in cheese quality. For this purpose, four different types of Kopanisti were produced in triplicates, all with pasteurized cow milk, with the addition of (A) the typical mesophilic species Lactococcus lactis and Lactobacillus paracasei used as starters in the production of soft spread cheeses, (B) strains of Lactobacillus acidipiscis and Lactobacillus rennini previously isolated from Kopanisti and Mana Kopanisti, (C) all the species from (A) and (B) as inoculum, and finally (D) the species from (A) and Mana Kopanisti. Physicochemical and microbiological analysis was performed for milk and cheese samples during ripening. Enumeration was performed for major groups of lactic acid bacteria (LAB), total mesophilic bacteria, yeasts as well as hygiene indicator microorganisms. Bacterial isolates from all the different LAB groups, apart from enterococci, alongside yeasts isolates, were initially grouped using repetitive sequence-based polymerase chain reaction (rep-PCR) and then identified at the species level using 16S rRNA gene and internal transcribed spacer (ITS) DNA region sequencing, respectively. Sensory evaluation was also performed for final cheese samples at the end of the ripening period (35 days). Based on the results of the classical microbiological analysis, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, ranged between 7 and 10 log colony forming unit (CFU) g⁻¹, phychrotrophic bacteria, and yeast extract glucose chloramphenicol (YGC) isolates between 4 and 8 log CFU g⁻¹, while coliforms and enterococci up to 2 log CFU g⁻¹ throughout ripening in cheese samples A, C and D. In contrast, in cheese sample B, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, phychrotrophic bacteria, and YGC isolates ranged between 0 and 10 log CFU g⁻¹ and coliforms and enterococci up to 2 log CFU g⁻¹. Although the microbial counts were not that different among samples, identification of the bacterial and yeasts isolates revealed the complex microbial community structure present in each cheese sample. Differences in the physicochemical characteristics among the cheese samples were also observed, with pH ranging from 4.3 to 5.3 and moisture from 49.6 to 58.0 % in the final cheese products. Interestingly, the sensory evaluation also revealed differences among samples, with cheese sample B ranking first based on the total score. Overall, the combination of these analyses highlighted the impact of different starter cultures on the Kopanisti microbiota as well as on the physicochemical and sensory characteristics of the final product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kopanisti%20cheese" title="Kopanisti cheese">Kopanisti cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiota" title=" microbiota"> microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20microbiological%20analysis" title=" classical microbiological analysis"> classical microbiological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20analysis" title=" physicochemical analysis"> physicochemical analysis</a> </p> <a href="https://publications.waset.org/abstracts/134356/microbiological-and-physicochemical-evaluation-of-traditional-greek-kopanisti-cheese-produced-by-different-starter-cultures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7014</span> Microbial Dynamics and Sensory Traits of Spanish- and Greek-Style Table Olives (Olea europaea L. cv. Ascolana tenera) Fermented with Sea Fennel (Crithmum maritimum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonietta%20Maoloni">Antonietta Maoloni</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Cardinali"> Federica Cardinali</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Milanovi%C4%87"> Vesna Milanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Osimani"> Andrea Osimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilario%20Ferrocino"> Ilario Ferrocino</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Rita%20Corvaglia"> Maria Rita Corvaglia</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Cocolin"> Luca Cocolin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Aquilanti"> Lucia Aquilanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Table olives (Olea europaea L.) are among the most important fermented vegetables all over the world, while sea fennel (Crithmum maritimum L.) is an emerging food crop with interesting nutritional and sensory traits. Both of them are characterized by the presence of several bioactive compounds with potential beneficial health effects, thus representing two valuable substrates for the manufacture of innovative vegetable-based preserves. Given these premises, the present study was aimed at exploring the co-fermentation of table olives and sea fennel to produce new high-value preserves. Spanish style or Greek style processing method and the use of a multiple strain starter were explored. The preserves were evaluated for their microbial dynamics and key sensory traits. During the fermentation, a progressive pH reduction was observed. Mesophilic lactobacilli, mesophilic lactococci, and yeasts were the main microbial groups at the end of the fermentation, whereas Enterobacteriaceae decreased during fermentation. An evolution of the microbiota was revealed by metataxonomic analysis, with Lactiplantibacillus plantarum dominating in the late stage of fermentation, irrespective of processing method and use of the starter. Greek style preserves resulted in more crunchy and less fibrous than Spanish style one and were preferred by trained panelists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title="lactic acid bacteria">lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactiplantibacillus%20plantarum" title=" Lactiplantibacillus plantarum"> Lactiplantibacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=metataxonomy" title=" metataxonomy"> metataxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20test" title=" panel test"> panel test</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20samphire" title=" rock samphire"> rock samphire</a> </p> <a href="https://publications.waset.org/abstracts/152082/microbial-dynamics-and-sensory-traits-of-spanish-and-greek-style-table-olives-olea-europaea-l-cv-ascolana-tenera-fermented-with-sea-fennel-crithmum-maritimum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7013</span> Temperature Profile Modelling in Flexible Pavement Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Csaba%20T%C3%B3th">Csaba Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20Lakatos"> Éva Lakatos</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A1szl%C3%B3%20Peth%C5%91"> László Pethő</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoyoung%20Cho"> Seoyoung Cho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title="temperature profile">temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20modeling" title=" flexible pavement modeling"> flexible pavement modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20modeling" title=" temperature modeling"> temperature modeling</a> </p> <a href="https://publications.waset.org/abstracts/123609/temperature-profile-modelling-in-flexible-pavement-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7012</span> A Comparative Analysis of the Performances of Four Different In-Ground Lagoons Anaerobic Digesters in the Treatment of Palm Oil Mill Effluent (POME)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Amran">Mohd Amran</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Yi%20Jing"> Chan Yi Jing</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong%20Chien%20Hwa"> Chong Chien Hwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of biogas from POME requires anaerobic digestion (AD), thus, anaerobic digester performance in biogas plants is crucial. As POME from different sources have varying characteristics due to different process flows in mills, there is no ideal treatment parameters for POME. Hence, different treatment plants alter different parameters in anaerobic digestion to achieve desired biogas production levels and to meet POME waste discharge limits. The objective of this study is to evaluate the performance of mesophilic anaerobic digestion in four different biogas plants in Malaysia. Aspects of POME pre-treatment efficiency, analysis of treated POME and AD’s bottom sludge characteristics, including several parameters like chemical oxygen demand (COD), biological oxygen demand (BOD), total solid (TS) removal in the effluent, pH and temperature changes, total biogas produced, the composition of biogas including methane (CH₄), carbon dioxide (CO₂), hydrogen sulfide (H₂S) and oxygen (O₂) were investigated. The effect of organic loading rate (OLR) and hydraulic retention time (HRT) on anaerobic digester performance is also evaluated. In pre-treatment, it is observed that BGP B has the lowest average outlet temperature of 40.41°C. All BGP shows a high-temperature fluctuation (36 to 49 0C) and good pH readings (minimum 6.7), leaving the pre-treatment facility before entering the AD.COD removal of POME is considered good, with an average of 78% and maximum removal of 85%. BGP C has the lowest average COD and TS content in treated POME, 13,313 mg/L, and 12,048 mg/L, respectively. However, it is observed that the treated POME leaving all ADs, still contains high-quality organic substances (COD between 12,000 to 19,000 mg/L) that might be able to digest further to produce more biogas. The biogas produced in all four BGPs varies due to different COD loads. BGP B has the highest amount of biogas produced, 378,874.7 Nm³/month, while BGP D has the lowest biogas production of 272,378.5 Nm³/month. Furthermore, the composition of biogas produced in all plants is well within literature values (CH4 between 55 to 65% and CO₂ between 32 to 36%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title="palm oil mill effluent">palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=in-ground%20lagoon%20anaerobic%20digester" title=" in-ground lagoon anaerobic digester"> in-ground lagoon anaerobic digester</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/156202/a-comparative-analysis-of-the-performances-of-four-different-in-ground-lagoons-anaerobic-digesters-in-the-treatment-of-palm-oil-mill-effluent-pome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7011</span> An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y.%20Arabul">Ahmet Y. Arabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Senol"> Ibrahim Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Keskin%20Arabul"> Fatma Keskin Arabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G.%20Aydeniz"> Mustafa G. Aydeniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Oner"> Yasemin Oner</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Kalkan"> Gokhan Kalkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which are on agreed statements tables. During the tests, it came out that hot-spot temperature calculation method is just making a simple calculation and not uses significant all other variables that could affect the hot-spot temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hot-spot%20temperature" title="Hot-spot temperature">Hot-spot temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20system" title=" monitoring system"> monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title=" power transformer"> power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/33034/an-investigation-on-hot-spot-temperature-calculation-methods-of-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7010</span> Temperature Distribution Control for Baby Incubator System Using Arduino AT Mega 2560</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Widhiada">W. Widhiada</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20K.%20P.%20Negara"> D. N. K. P. Negara</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Suryawan"> P. A. Suryawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technological advances in the field of health to be very important, especially on the safety of the baby. In this case a lot of premature infants death caused by poorly managed health facilities. Mostly the death of premature baby caused by bacteria since the temperature around the baby is not normal. Related to this, the incubator equipment needs to be important, especially in how to control the temperature in incubator. On/Off controls is used to regulate the temperature distribution in the incubator so that the desired temperature is 36 °C to stay awake and stable. The authors have been observed and analyzed the data to determine the temperature distribution in the incubator using program of MATLAB/Simulink. The output temperature distribution is obtained at 36 °C in 400 seconds using an Arduino AT 2560. This incubator is able to maintain an ambient temperature and maintain the baby's body temperature within normal limits and keep the moisture in the air in accordance with the limit values required in infant incubator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=on%2Foff%20control" title="on/off control">on/off control</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20temperature" title=" distribution temperature"> distribution temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino%20AT%202560" title=" Arduino AT 2560"> Arduino AT 2560</a>, <a href="https://publications.waset.org/abstracts/search?q=baby%20incubator" title=" baby incubator"> baby incubator</a> </p> <a href="https://publications.waset.org/abstracts/63688/temperature-distribution-control-for-baby-incubator-system-using-arduino-at-mega-2560" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7009</span> Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanjuan%20Sun">Chanjuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijie%20Hong"> Shijie Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jialing%20Zhang"> Jialing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchao%20Guo"> Yuchao Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Zou"> Zhijun Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Huang"> Chen Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title="air temperature">air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature" title=" extreme air temperature"> extreme air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20temperature%20difference" title=" air temperature difference"> air temperature difference</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20diseases" title=" respiratory diseases"> respiratory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/120913/childhood-respiratory-diseases-related-to-indoor-and-outdoor-air-temperature-in-shanghai-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7008</span> Analysis of Generated Biogas from Anaerobic Digestion of Piggery Dung</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatope%20Alabadan">Babatope Alabadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeyinka%20Adesanya"> Adeyinka Adesanya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20E.%20Afangideh"> I. E. Afangideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of energy is paramount to human existence. Every activity globally revolves round it. Over the years, different sources of energy (petroleum fuels predominantly) have been utilized. Animal waste treatment on the farm is a phenomenon that has called for rapt research attention. Generated wastes on farm pollute the environment in diverse ways. Waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. The objective of this work is to generate methane (CH4) gas from the anaerobic digestion of piggery dung. A retention time of 15 and 30 days and a mesophilic temperature range were selected. The generated biogas composition was methane (CH4), carbondioxide (CO2), hydrogen sulphide (H2S) and ammonia (NH3) using gas chromatography method. At 15 days retention time, 60% of (CH4) was collected while CO2 and traces of H2S and NH3 accounted for 40%. At 30 days retention time, 75% of CH4, 20% of CO2 was collected while traces of H2S and NH3 amounted to 5%. For on and off farm uses, biogas can be upgraded to biomethane by removing the CO2, NH3 and H2S. This product (CH4) can meet heating and power needs or serve as transportation fuels <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=piggery%20dung" title=" piggery dung"> piggery dung</a> </p> <a href="https://publications.waset.org/abstracts/66260/analysis-of-generated-biogas-from-anaerobic-digestion-of-piggery-dung" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7007</span> Separate Production of Hydrogen and Methane from Ethanol Wastewater Using Two-Stage UASB: Micronutrient Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jaikeaw">S. Jaikeaw</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chavadej"> S. Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to determine the effects of COD loading rate on hydrogen and methane production and micronutrient transportation using a two-stage upflow anaerobic sludge blanket (UASB) system under mesophilic temperature (37°C) with a constant recycle ratio of 1:1 (final effluent flow rate: feed flow rate). The first (hydrogen) UASB unit having 4 L liquid holding volume was controlled at pH 5.5 but the second (methane) UASB unit having 24 L liquid holding volume had no pH control. The two-stage UASB system operated at different COD loading rates from 8 to 20 kg/m³d based on total UASB working volume. The results showed that, at the optimum COD loading rate of 13 kg/m³d, the produced gas from the hydrogen UASB unit contained 1.5% H₂, 16.5% CH₄, and 82% CO₂ with H₂S of 252 ppm and also provided a hydrogen yield of 1.66 mL/g COD removed (or 0.56 mL/g COD applied) and a specific hydrogen production rate of 156.85 ml H₂/LRd (or 5.12 ml H₂/g MLVSS d). Under the optimum COD loading rate, the produced gas from the methane UASB unit mainly contained methane and carbon dioxide without hydrogen of 74 and 26%, respectively with hydrogen sulfide of 287 ppm and the system also provided a maximum methane yield of 407.00 mL/g COD removed (or 263.23 mL/g COD applied) and a specific methane production rate of 2081.44 ml CH₄/LRd (or 99.75 ml CH₄/g MLVSS d). Under the optimum COD loading rate, all micronutrients markedly dropped by the sulfide precipitation reactions. The reduction of micronutrients mostly appeared in the methane UASB unit. Under the studied conditions, both Co and Ni were found to be greatly precipitated out, causing the deficiency to microbial activity. It is hypothesized that an addition of both Co and Ni can improve the methanogenic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20and%20methane%20production" title="hydrogen and methane production">hydrogen and methane production</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20wastewater" title=" ethanol wastewater"> ethanol wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20two-stage%20upflow%20anaerobic%20blanket%20%28UASB%29%20system" title=" a two-stage upflow anaerobic blanket (UASB) system"> a two-stage upflow anaerobic blanket (UASB) system</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophillic%20temperature" title=" mesophillic temperature"> mesophillic temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20concentration%20%28MLVSS%29" title=" microbial concentration (MLVSS)"> microbial concentration (MLVSS)</a>, <a href="https://publications.waset.org/abstracts/search?q=micronutrients" title=" micronutrients"> micronutrients</a> </p> <a href="https://publications.waset.org/abstracts/66190/separate-production-of-hydrogen-and-methane-from-ethanol-wastewater-using-two-stage-uasb-micronutrient-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7006</span> Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng">Tumisang Seodigeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biogas" title="Biogas">Biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=DynoChem%20Scale-up" title=" DynoChem Scale-up"> DynoChem Scale-up</a>, <a href="https://publications.waset.org/abstracts/search?q=Michaelis-Menten" title=" Michaelis-Menten "> Michaelis-Menten </a> </p> <a href="https://publications.waset.org/abstracts/33007/kinetic-modeling-study-and-scale-up-of-niogas-generation-using-garden-grass-and-cattle-dung-as-feedstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7005</span> Microbial and SARS-CoV-2 Efficiency Analysis of Froumann HEPA Filter Air Cleaner Brand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serap%20Gedikli">Serap Gedikli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20%C3%87akmak"> Hakan Çakmak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bu%C4%9Fra%20G%C3%BCldiken"> M. Buğra Güldiken</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Yaln%C4%B1zo%C4%9Flu"> Duygu Yalnızoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air, which is necessary for living things to survive; while it carries some useful substances in it, it can also carry foreign particles of different sizes that may be harmful to the health. All airborne organic substances of biological origin, including bacteria, fungi, fungal spores, viruses, pollen, and their components, are called "bioaerosols". Nowadays, everyone spends most of their time in closed areas such as home, workplace, school, etc. Although it is known that outdoor air pollution affects health, it is not known that indoor air pollution has harmful effects in terms of health. In this study, indoor air microbial load and SARS-CoV-2 virus cleaning efficiency of Froumann brand air cleaners were studied. This work in 300 m³, 600 m³, and 1000 m³ completely closed areas without any air circulation with Froumann N80, N90, and N100 air-cleaning devices. Analyzes were performed for both areas at 60 minutes before and after the device was operated using a particle measuring device (Particles Plus 7302) and an air sampler (Mas-100 ECO). The measurements were taken by placing the test equipment 1.5-2 m away from the air cleaner. At the same time, the efficiency of the HEPA filter was evaluated by taking samples from the air outlet point of the HEPA filter using the air sampling device (Mas-100 ECO) after the device was started. Nutrient agar and malt agar are used as total mesophilic bacteria and total fungi. The number of colony-forming units per m³ (cfu/m³) was calculated by counting colonies in Petri dishes after incubation for 48 hours at 37°C for bacteria and 72 hours at 30°C for fungi. The change in the number of colonies and the decrease in the microbial load was calculated as a percentage value. SARS-CoV-2 activity analysis studies were carried out by İnönü University Microbiology Department in accordance with the World Health Organization regulations. Finally, the HEPA filter in the devices used was taken and kept under a certain temperature and humidity, and the change in the microbial load on it was monitored over a 6-month period. At the end of the studies, a 91%-94% reduction was determined in the total mesophilic bacteria count of Frouman brand N80, N90, and N100 model air cleaners. A decrease of 94%-96% was detected in the total number of yeast/molds. HEPA filter efficiency was evaluated, and at the end of the analysis, 98% of the bacterial load and approximately 100% of yeast/mold load at the HEPA filter air outlet point were decreased. According to the SARS- CoV-2 analysis results, when the device is operating at the medium airflow level 3, it can filter virus-carrying aerosols by 99%. As a result, it was determined that the Froumann model air cleaner was effective in controlling and reducing the microbial load in the indoor air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEPA%20filter" title="HEPA filter">HEPA filter</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20load" title=" microbial load"> microbial load</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title=" SARS-CoV-2"> SARS-CoV-2</a> </p> <a href="https://publications.waset.org/abstracts/140805/microbial-and-sars-cov-2-efficiency-analysis-of-froumann-hepa-filter-air-cleaner-brand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7004</span> Comparison between FEM Simulation and Experiment of Temperature Rise in Power Transformer Inner Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byung%20hyun%20Bae">Byung hyun Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power transformer, leakage magnetic flux generate temperature rise of inner steel plate. Sometimes, this temperature rise can be serious problem. If temperature of steel plate is over critical point, harmful gas will be generated in the tank. And this gas can be a reason of fire, explosion and life decrease. So, temperature rise forecasting of steel plate is very important at the design stage of power transformer. To improve accuracy of forecasting of temperature rise, comparison between simulation and experiment achieved in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title="power transformer">power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20plate" title=" steel plate"> steel plate</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20rise" title=" temperature rise"> temperature rise</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/12749/comparison-between-fem-simulation-and-experiment-of-temperature-rise-in-power-transformer-inner-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7003</span> A Statistical Analysis on Relationship between Temperature Variations with Latitude and Altitude regarding Total Amount of Atmospheric Carbon Dioxide in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Moghbel">Masoumeh Moghbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, carbon dioxide which is produced by human activities is considered as the main effective factor in the global warming occurrence. Regarding to the role of CO2 and its ability in trapping the heat, the main objective of this research is study the effect of atmospheric CO2 (which is recorded in Manaloa) on variations of temperature parameters (daily mean temperature, minimum temperature and maximum temperature) in 5 meteorological stations in Iran which were selected according to the latitude and altitude in 40 years statistical period. Firstly, the trend of temperature parameters was studied by Regression and none-graphical Man-Kendal methods. Then, relation between temperature variations and CO2 were studied by Correlation technique. Also, the impact of CO2 amount on temperature in different atmospheric levels (850 and 500 hpa) was analyzed. The results illustrated that correlation coefficient between temperature variations and CO2 in low latitudes and high altitudes is more significant rather than other regions. it is important to note that altitude as the one of the main geographic factor has limitation in affecting the temperature variations, so that correlation coefficient between these two parameters in 850 hpa (r=0.86) is more significant than 500 hpa (r = 0.62). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altitude" title="altitude">altitude</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbon%20dioxide" title=" atmospheric carbon dioxide"> atmospheric carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=latitude" title=" latitude"> latitude</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20variations" title=" temperature variations"> temperature variations</a> </p> <a href="https://publications.waset.org/abstracts/34560/a-statistical-analysis-on-relationship-between-temperature-variations-with-latitude-and-altitude-regarding-total-amount-of-atmospheric-carbon-dioxide-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=234">234</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=235">235</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10