CINXE.COM
Free group - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Free group - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"8958a959-3e74-4f55-b8ef-7af929f5db48","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Free_group","wgTitle":"Free group","wgCurRevisionId":1225639942,"wgRevisionId":1225639942,"wgArticleId":59735,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1: long volume value","Articles with short description","Short description is different from Wikidata","Geometric group theory","Combinatorial group theory","Free algebraic structures","Properties of groups"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Free_group","wgRelevantArticleId":59735,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject": "wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q431078","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/1200px-Cyclic_group.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1167"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/800px-Cyclic_group.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="778"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/640px-Cyclic_group.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="623"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Free group - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Free_group"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Free_group&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Free_group"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Free_group rootpage-Free_group skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Free+group" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Free+group" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Free+group" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Free+group" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Construction</span> </div> </a> <ul id="toc-Construction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Universal_property" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Universal_property"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Universal property</span> </div> </a> <ul id="toc-Universal_property-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Facts_and_theorems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Facts_and_theorems"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Facts and theorems</span> </div> </a> <ul id="toc-Facts_and_theorems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Free_abelian_group" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Free_abelian_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Free abelian group</span> </div> </a> <ul id="toc-Free_abelian_group-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tarski's_problems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Tarski's_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Tarski's problems</span> </div> </a> <ul id="toc-Tarski's_problems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Free group</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 17 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-17" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">17 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B2%D9%85%D8%B1%D8%A9_%D8%AD%D8%B1%D8%A9" title="زمرة حرة – Arabic" lang="ar" hreflang="ar" data-title="زمرة حرة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Grup_lliure" title="Grup lliure – Catalan" lang="ca" hreflang="ca" data-title="Grup lliure" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Freie_Gruppe" title="Freie Gruppe – German" lang="de" hreflang="de" data-title="Freie Gruppe" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Grupo_libre" title="Grupo libre – Spanish" lang="es" hreflang="es" data-title="Grupo libre" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Groupe_libre" title="Groupe libre – French" lang="fr" hreflang="fr" data-title="Groupe libre" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9E%90%EC%9C%A0%EA%B5%B0" title="자유군 – Korean" lang="ko" hreflang="ko" data-title="자유군" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Grup_bebas" title="Grup bebas – Indonesian" lang="id" hreflang="id" data-title="Grup bebas" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Gruppo_libero" title="Gruppo libero – Italian" lang="it" hreflang="it" data-title="Gruppo libero" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%91%D7%95%D7%A8%D7%94_%D7%97%D7%95%D7%A4%D7%A9%D7%99%D7%AA" title="חבורה חופשית – Hebrew" lang="he" hreflang="he" data-title="חבורה חופשית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Szabad_csoport" title="Szabad csoport – Hungarian" lang="hu" hreflang="hu" data-title="Szabad csoport" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vrije_groep" title="Vrije groep – Dutch" lang="nl" hreflang="nl" data-title="Vrije groep" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%87%AA%E7%94%B1%E7%BE%A4" title="自由群 – Japanese" lang="ja" hreflang="ja" data-title="自由群" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Grupa_wolna" title="Grupa wolna – Polish" lang="pl" hreflang="pl" data-title="Grupa wolna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Grupo_livre" title="Grupo livre – Portuguese" lang="pt" hreflang="pt" data-title="Grupo livre" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D0%BE%D0%B1%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0" title="Свободная группа – Russian" lang="ru" hreflang="ru" data-title="Свободная группа" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D1%96%D0%BB%D1%8C%D0%BD%D0%B0_%D0%B3%D1%80%D1%83%D0%BF%D0%B0" title="Вільна група – Ukrainian" lang="uk" hreflang="uk" data-title="Вільна група" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%87%AA%E7%94%B1%E7%BE%A4" title="自由群 – Chinese" lang="zh" hreflang="zh" data-title="自由群" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q431078#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Free_group" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Free_group" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Free_group"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Free_group&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Free_group&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Free_group"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Free_group&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Free_group&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Free_group" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Free_group" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Free_group&oldid=1225639942" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Free_group&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Free_group&id=1225639942&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFree_group"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFree_group"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Free_group&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Free_group&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Free_groups" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q431078" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematics concept</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks" style="width:20.0em;"><tbody><tr><th class="sidebar-title" style="padding-bottom:0.4em;"><span style="font-size: 8pt; font-weight: none"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structure</a> → <b>Group theory</b></span><br /><a href="/wiki/Group_theory" title="Group theory">Group theory</a></th></tr><tr><td class="sidebar-image"><span class="skin-invert"><span typeof="mw:File"><a href="/wiki/File:Cyclic_group.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/120px-Cyclic_group.svg.png" decoding="async" width="120" height="117" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/180px-Cyclic_group.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/240px-Cyclic_group.svg.png 2x" data-file-width="443" data-file-height="431" /></a></span></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Basic notions</div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Subgroup" title="Subgroup">Subgroup</a></li> <li><a href="/wiki/Normal_subgroup" title="Normal subgroup">Normal subgroup</a></li> <li><a href="/wiki/Group_action" title="Group action">Group action</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Quotient_group" title="Quotient group">Quotient group</a></li> <li><a href="/wiki/Semidirect_product" title="Semidirect product">(Semi-)</a><a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a></li> <li><a href="/wiki/Direct_sum_of_groups" title="Direct sum of groups">Direct sum</a></li> <li><a href="/wiki/Free_product" title="Free product">Free product</a></li> <li><a href="/wiki/Wreath_product" title="Wreath product">Wreath product</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <i><a href="/wiki/Group_homomorphism" title="Group homomorphism">Group homomorphisms</a></i></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Kernel_(algebra)#Group_homomorphisms" title="Kernel (algebra)">kernel</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Simple_group" title="Simple group">simple</a></li> <li><a href="/wiki/Finite_group" title="Finite group">finite</a></li> <li><a href="/wiki/Infinite_group" title="Infinite group">infinite</a></li> <li><a href="/wiki/Continuous_group" class="mw-redirect" title="Continuous group">continuous</a></li> <li><a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative</a></li> <li><a href="/wiki/Additive_group" title="Additive group">additive</a></li> <li><a href="/wiki/Cyclic_group" title="Cyclic group">cyclic</a></li> <li><a href="/wiki/Abelian_group" title="Abelian group">abelian</a></li> <li><a href="/wiki/Dihedral_group" title="Dihedral group">dihedral</a></li> <li><a href="/wiki/Nilpotent_group" title="Nilpotent group">nilpotent</a></li> <li><a href="/wiki/Solvable_group" title="Solvable group">solvable</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Glossary_of_group_theory" title="Glossary of group theory">Glossary of group theory</a></li> <li><a href="/wiki/List_of_group_theory_topics" title="List of group theory topics">List of group theory topics</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Finite_group" title="Finite group">Finite groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cyclic_group" title="Cyclic group">Cyclic group</a> Z<sub><i>n</i></sub></li> <li><a href="/wiki/Symmetric_group" title="Symmetric group">Symmetric group</a> S<sub><i>n</i></sub></li> <li><a href="/wiki/Alternating_group" title="Alternating group">Alternating group</a> A<sub><i>n</i></sub></li></ul> <ul><li><a href="/wiki/Dihedral_group" title="Dihedral group">Dihedral group</a> D<sub><i>n</i></sub></li> <li><a href="/wiki/Quaternion_group" title="Quaternion group">Quaternion group</a> Q</li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cauchy%27s_theorem_(group_theory)" title="Cauchy's theorem (group theory)">Cauchy's theorem</a></li> <li><a href="/wiki/Lagrange%27s_theorem_(group_theory)" title="Lagrange's theorem (group theory)">Lagrange's theorem</a></li></ul> <ul><li><a href="/wiki/Sylow_theorems" title="Sylow theorems">Sylow theorems</a></li> <li><a href="/wiki/Hall_subgroup" title="Hall subgroup">Hall's theorem</a></li></ul> <ul><li><a href="/wiki/P-group" title="P-group"><i>p</i>-group</a></li> <li><a href="/wiki/Elementary_abelian_group" title="Elementary abelian group">Elementary abelian group</a></li></ul> <ul><li><a href="/wiki/Frobenius_group" title="Frobenius group">Frobenius group</a></li></ul> <ul><li><a href="/wiki/Schur_multiplier" title="Schur multiplier">Schur multiplier</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Classification_of_finite_simple_groups" title="Classification of finite simple groups">Classification of finite simple groups</a></th></tr><tr><td class="sidebar-content"> <ul><li>cyclic</li> <li>alternating</li> <li><a href="/wiki/Group_of_Lie_type" title="Group of Lie type">Lie type</a></li> <li><a href="/wiki/Sporadic_group" title="Sporadic group">sporadic</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><div class="hlist"><ul><li><a href="/wiki/Discrete_group" title="Discrete group">Discrete groups</a></li><li><a href="/wiki/Lattice_(discrete_subgroup)" title="Lattice (discrete subgroup)">Lattices</a></li></ul></div></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Integer" title="Integer">Integers</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li><a class="mw-selflink selflink">Free group</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Modular_group" title="Modular group">Modular groups</a> <div class="hlist"><ul><li>PSL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li><li>SL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li></ul></div></div> <ul><li><a href="/wiki/Arithmetic_group" title="Arithmetic group">Arithmetic group</a></li> <li><a href="/wiki/Lattice_(group)" title="Lattice (group)">Lattice</a></li> <li><a href="/wiki/Hyperbolic_group" title="Hyperbolic group">Hyperbolic group</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Topological_group" title="Topological group">Topological</a> and <a href="/wiki/Lie_group" title="Lie group">Lie groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Solenoid_(mathematics)" title="Solenoid (mathematics)">Solenoid</a></li> <li><a href="/wiki/Circle_group" title="Circle group">Circle</a></li></ul> <ul><li><a href="/wiki/General_linear_group" title="General linear group">General linear</a> GL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_linear_group" title="Special linear group">Special linear</a> SL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Orthogonal_group" title="Orthogonal group">Orthogonal</a> O(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Euclidean_group" title="Euclidean group">Euclidean</a> E(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">Special orthogonal</a> SO(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Unitary_group" title="Unitary group">Unitary</a> U(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_unitary_group" title="Special unitary group">Special unitary</a> SU(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Symplectic_group" title="Symplectic group">Symplectic</a> Sp(<i>n</i>)</li></ul> <ul><li><a href="/wiki/G2_(mathematics)" title="G2 (mathematics)">G<sub>2</sub></a></li> <li><a href="/wiki/F4_(mathematics)" title="F4 (mathematics)">F<sub>4</sub></a></li> <li><a href="/wiki/E6_(mathematics)" title="E6 (mathematics)">E<sub>6</sub></a></li> <li><a href="/wiki/E7_(mathematics)" title="E7 (mathematics)">E<sub>7</sub></a></li> <li><a href="/wiki/E8_(mathematics)" title="E8 (mathematics)">E<sub>8</sub></a></li></ul> <ul><li><a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz</a></li> <li><a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré</a></li> <li><a href="/wiki/Conformal_group" title="Conformal group">Conformal</a></li></ul> <ul><li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a></li> <li><a href="/wiki/Loop_group" title="Loop group">Loop</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Infinite_dimensional_Lie_group" class="mw-redirect" title="Infinite dimensional Lie group">Infinite dimensional Lie group</a> <div class="hlist"><ul><li>O(∞)</li><li>SU(∞)</li><li>Sp(∞)</li></ul></div></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Algebraic_group" title="Algebraic group">Algebraic groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Linear_algebraic_group" title="Linear algebraic group">Linear algebraic group</a></li></ul> <ul><li><a href="/wiki/Reductive_group" title="Reductive group">Reductive group</a></li></ul> <ul><li><a href="/wiki/Abelian_variety" title="Abelian variety">Abelian variety</a></li></ul> <ul><li><a href="/wiki/Elliptic_curve" title="Elliptic curve">Elliptic curve</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Group_theory_sidebar" title="Template:Group theory sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Group_theory_sidebar" title="Template talk:Group theory sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Group_theory_sidebar" title="Special:EditPage/Template:Group theory sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:F2_Cayley_Graph.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/F2_Cayley_Graph.png/220px-F2_Cayley_Graph.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/F2_Cayley_Graph.png/330px-F2_Cayley_Graph.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/F2_Cayley_Graph.png/440px-F2_Cayley_Graph.png 2x" data-file-width="522" data-file-height="522" /></a><figcaption>Diagram showing the <a href="/wiki/Cayley_graph" title="Cayley graph">Cayley graph</a> for the free group on two generators. Each vertex represents an element of the free group, and each edge represents multiplication by <i>a</i> or <i>b</i>.</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>free group</b> <i>F</i><sub><i>S</i></sub> over a given set <i>S</i> consists of all <a href="/wiki/Word_(group_theory)" title="Word (group theory)">words</a> that can be built from members of <i>S</i>, considering two words to be different unless their equality follows from the <a href="/wiki/Group_(mathematics)#Definition" title="Group (mathematics)">group axioms</a> (e.g. <i>st</i> = <i>suu</i><sup>−1</sup><i>t</i> but <i>s</i> ≠ <i>t</i><sup>−1</sup> for <i>s</i>,<i>t</i>,<i>u</i> ∈ <i>S</i>). The members of <i>S</i> are called <b>generators</b> of <i>F</i><sub><i>S</i></sub>, and the number of generators is the <b>rank</b> of the free group. An arbitrary <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> <i>G</i> is called <b>free</b> if it is <a href="/wiki/Group_isomorphism" title="Group isomorphism">isomorphic</a> to <i>F</i><sub><i>S</i></sub> for some <a href="/wiki/Subset" title="Subset">subset</a> <i>S</i> of <i>G</i>, that is, if there is a subset <i>S</i> of <i>G</i> such that every element of <i>G</i> can be written in exactly one way as a product of finitely many elements of <i>S</i> and their inverses (disregarding trivial variations such as <i>st</i> = <i>suu</i><sup>−1</sup><i>t</i>). </p><p>A related but different notion is a <a href="/wiki/Free_abelian_group" title="Free abelian group">free abelian group</a>; both notions are particular instances of a <a href="/wiki/Free_object" title="Free object">free object</a> from <a href="/wiki/Universal_algebra" title="Universal algebra">universal algebra</a>. As such, free groups are defined by their <a class="mw-selflink-fragment" href="#Universal_property">universal property</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Free groups first arose in the study of <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a>, as examples of <a href="/wiki/Fuchsian_group" title="Fuchsian group">Fuchsian groups</a> (discrete groups acting by <a href="/wiki/Isometry" title="Isometry">isometries</a> on the <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic plane</a>). In an 1882 paper, <a href="/wiki/Walther_von_Dyck" title="Walther von Dyck">Walther von Dyck</a> pointed out that these groups have the simplest possible <a href="/wiki/Group_presentation" class="mw-redirect" title="Group presentation">presentations</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The algebraic study of free groups was initiated by <a href="/wiki/Jakob_Nielsen_(mathematician)" title="Jakob Nielsen (mathematician)">Jakob Nielsen</a> in 1924, who gave them their name and established many of their basic properties.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Max_Dehn" title="Max Dehn">Max Dehn</a> realized the connection with topology, and obtained the first proof of the full <a href="/wiki/Nielsen%E2%80%93Schreier_theorem" title="Nielsen–Schreier theorem">Nielsen–Schreier theorem</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Otto_Schreier" title="Otto Schreier">Otto Schreier</a> published an algebraic proof of this result in 1927,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Kurt_Reidemeister" title="Kurt Reidemeister">Kurt Reidemeister</a> included a comprehensive treatment of free groups in his 1932 book on <a href="/wiki/Combinatorial_topology" title="Combinatorial topology">combinatorial topology</a>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Later on in the 1930s, <a href="/wiki/Wilhelm_Magnus" title="Wilhelm Magnus">Wilhelm Magnus</a> discovered the connection between the <a href="/wiki/Lower_central_series" class="mw-redirect" title="Lower central series">lower central series</a> of free groups and <a href="/wiki/Free_Lie_algebra" title="Free Lie algebra">free Lie algebras</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=2" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The group (<b>Z</b>,+) of <a href="/wiki/Integer" title="Integer">integers</a> is free of rank 1; a generating set is <i>S</i> = {1}. The integers are also a <a href="/wiki/Free_abelian_group" title="Free abelian group">free abelian group</a>, although all free groups of rank <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≥<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25a54ba6d06eab355fe1fb7e66f3a073de6db584" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.616ex; height:2.343ex;" alt="{\displaystyle \geq 2}"></span> are non-abelian. A free group on a two-element set <i>S</i> occurs in the proof of the <a href="/wiki/Banach%E2%80%93Tarski_paradox" title="Banach–Tarski paradox">Banach–Tarski paradox</a> and is described there. </p><p>On the other hand, any nontrivial finite group cannot be free, since the elements of a free generating set of a free group have infinite order. </p><p>In <a href="/wiki/Algebraic_topology" title="Algebraic topology">algebraic topology</a>, the <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a> of a <a href="/wiki/Bouquet_of_circles" class="mw-redirect" title="Bouquet of circles">bouquet of <i>k</i> circles</a> (a set of <i>k</i> loops having only one point in common) is the free group on a set of <i>k</i> elements. </p> <div class="mw-heading mw-heading2"><h2 id="Construction">Construction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=3" title="Edit section: Construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>free group</b> <i>F<sub>S</sub></i> with <b>free generating set</b> <i>S</i> can be constructed as follows. <i>S</i> is a set of symbols, and we suppose for every <i>s</i> in <i>S</i> there is a corresponding "inverse" symbol, <i>s</i><sup>−1</sup>, in a set <i>S</i><sup>−1</sup>. Let <i>T</i> = <i>S</i> ∪ <i>S</i><sup>−1</sup>, and define a <b><a href="/wiki/Word_(group_theory)" title="Word (group theory)">word</a></b> in <i>S</i> to be any written product of elements of <i>T</i>. That is, a word in <i>S</i> is an element of the <a href="/wiki/Monoid" title="Monoid">monoid</a> generated by <i>T</i>. The empty word is the word with no symbols at all. For example, if <i>S</i> = {<i>a</i>, <i>b</i>, <i>c</i>}, then <i>T</i> = {<i>a</i>, <i>a</i><sup>−1</sup>, <i>b</i>, <i>b</i><sup>−1</sup>, <i>c</i>, <i>c</i><sup>−1</sup>}, and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab^{3}c^{-1}ca^{-1}c\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>c</mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>c</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab^{3}c^{-1}ca^{-1}c\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26151409883c8c4dfea972cd5adada055fcae1cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.585ex; height:2.676ex;" alt="{\displaystyle ab^{3}c^{-1}ca^{-1}c\,}"></span></dd></dl> <p>is a word in <i>S</i>. </p><p>If an element of <i>S</i> lies immediately next to its inverse, the word may be simplified by omitting the c, c<sup>−1</sup> pair: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab^{3}c^{-1}ca^{-1}c\;\;\longrightarrow \;\;ab^{3}\,a^{-1}c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>c</mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>c</mi> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab^{3}c^{-1}ca^{-1}c\;\;\longrightarrow \;\;ab^{3}\,a^{-1}c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfb7580343291185d465acfebf78dae9efd12659" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:28.759ex; height:2.676ex;" alt="{\displaystyle ab^{3}c^{-1}ca^{-1}c\;\;\longrightarrow \;\;ab^{3}\,a^{-1}c.}"></span></dd></dl> <p>A word that cannot be simplified further is called <b>reduced</b>. </p><p>The free group <i>F<sub>S</sub></i> is defined to be the group of all reduced words in <i>S</i>, with <a href="/wiki/Concatenation" title="Concatenation">concatenation</a> of words (followed by reduction if necessary) as group operation. The identity is the empty word. </p><p>A reduced word is called <b>cyclically reduced</b> if its first and last letter are not inverse to each other. Every word is <a href="/wiki/Conjugacy_class" title="Conjugacy class">conjugate</a> to a cyclically reduced word, and a cyclically reduced conjugate of a cyclically reduced word is a cyclic permutation of the letters in the word. For instance <i>b</i><sup>−1</sup><i>abcb</i> is not cyclically reduced, but is conjugate to <i>abc</i>, which is cyclically reduced. The only cyclically reduced conjugates of <i>abc</i> are <i>abc</i>, <i>bca</i>, and <i>cab</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Universal_property">Universal property</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=4" title="Edit section: Universal property"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The free group <i>F<sub>S</sub></i> is the <a href="/wiki/Universal_(mathematics)" class="mw-redirect" title="Universal (mathematics)">universal</a> group generated by the set <i>S</i>. This can be formalized by the following <a href="/wiki/Universal_property" title="Universal property">universal property</a>: given any function <span class="texhtml mvar" style="font-style:italic;">f</span> from <i>S</i> to a group <i>G</i>, there exists a unique <a href="/wiki/Group_homomorphism" title="Group homomorphism">homomorphism</a> <i>φ</i>: <i>F<sub>S</sub></i> → <i>G</i> making the following <a href="/wiki/Commutative_diagram" title="Commutative diagram">diagram</a> commute (where the unnamed mapping denotes the <a href="/wiki/Inclusion_map" title="Inclusion map">inclusion</a> from <i>S</i> into <i>F<sub>S</sub></i>): </p> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Free_Group_Universal.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Free_Group_Universal.svg/100px-Free_Group_Universal.svg.png" decoding="async" width="100" height="94" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Free_Group_Universal.svg/150px-Free_Group_Universal.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Free_Group_Universal.svg/200px-Free_Group_Universal.svg.png 2x" data-file-width="277" data-file-height="261" /></a><figcaption></figcaption></figure> <p>That is, homomorphisms <i>F<sub>S</sub></i> → <i>G</i> are in one-to-one correspondence with functions <i>S</i> → <i>G</i>. For a non-free group, the presence of <a href="/wiki/Group_presentation" class="mw-redirect" title="Group presentation">relations</a> would restrict the possible images of the generators under a homomorphism. </p><p>To see how this relates to the constructive definition, think of the mapping from <i>S</i> to <i>F<sub>S</sub></i> as sending each symbol to a word consisting of that symbol. To construct <i>φ</i> for the given <span class="texhtml mvar" style="font-style:italic;">f</span>, first note that <i>φ</i> sends the empty word to the identity of <i>G</i> and it has to agree with <span class="texhtml mvar" style="font-style:italic;">f</span> on the elements of <i>S</i>. For the remaining words (consisting of more than one symbol), <i>φ</i> can be uniquely extended, since it is a homomorphism, i.e., <i>φ</i>(<i>ab</i>) = <i>φ</i>(<i>a</i>) <i>φ</i>(<i>b</i>). </p><p>The above property characterizes free groups up to <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a>, and is sometimes used as an alternative definition. It is known as the <a href="/wiki/Universal_property" title="Universal property">universal property</a> of free groups, and the generating set <i>S</i> is called a <b>basis</b> for <i>F<sub>S</sub></i>. The basis for a free group is not uniquely determined. </p><p>Being characterized by a universal property is the standard feature of <a href="/wiki/Free_object" title="Free object">free objects</a> in <a href="/wiki/Universal_algebra" title="Universal algebra">universal algebra</a>. In the language of <a href="/wiki/Category_theory" title="Category theory">category theory</a>, the construction of the free group (similar to most constructions of free objects) is a <a href="/wiki/Functor" title="Functor">functor</a> from the <a href="/wiki/Category_of_sets" title="Category of sets">category of sets</a> to the <a href="/wiki/Category_of_groups" title="Category of groups">category of groups</a>. This functor is <a href="/wiki/Left_adjoint" class="mw-redirect" title="Left adjoint">left adjoint</a> to the <a href="/wiki/Forgetful_functor" title="Forgetful functor">forgetful functor</a> from groups to sets. </p> <div class="mw-heading mw-heading2"><h2 id="Facts_and_theorems">Facts and theorems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=5" title="Edit section: Facts and theorems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some properties of free groups follow readily from the definition: </p> <ol><li>Any group <i>G</i> is the homomorphic image of some free group <i>F<sub>S</sub></i>. Let <i>S</i> be a set of <i><a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generators</a></i> of <i>G</i>. The natural map <i>φ</i>: <i>F<sub>S</sub></i> → <i>G</i> is an <a href="/wiki/Epimorphism" title="Epimorphism">epimorphism</a>, which proves the claim. Equivalently, <i>G</i> is isomorphic to a <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a> of some free group <i>F<sub>S</sub></i>. If <i>S</i> can be chosen to be finite here, then <i>G</i> is called <a href="/wiki/Finitely_generated_group" title="Finitely generated group">finitely generated</a>. The kernel Ker(<i>φ)</i> is the set of all <i>relations</i> in the <a href="/wiki/Presentation_of_a_group" title="Presentation of a group">presentation</a> of <i>G</i>; if Ker(<i>φ)</i> can be generated by the conjugates of finitely many elements of <i>F</i>, then <i>G</i> is finitely presented.</li> <li>If <i>S</i> has more than one element, then <i>F<sub>S</sub></i> is not <a href="/wiki/Abelian_group" title="Abelian group">abelian</a>, and in fact the <a href="/wiki/Center_of_a_group" class="mw-redirect" title="Center of a group">center</a> of <i>F<sub>S</sub></i> is trivial (that is, consists only of the identity element).</li> <li>Two free groups <i>F<sub>S</sub></i> and <i>F<sub>T</sub></i> are isomorphic if and only if <i>S</i> and <i>T</i> have the same <a href="/wiki/Cardinality" title="Cardinality">cardinality</a>. This cardinality is called the <b>rank</b> of the free group <i>F</i>. Thus for every <a href="/wiki/Cardinal_number" title="Cardinal number">cardinal number</a> <i>k</i>, there is, <a href="/wiki/Up_to" title="Up to">up to</a> isomorphism, exactly one free group of rank <i>k</i>.</li> <li>A free group of finite rank <i>n</i> > 1 has an <a href="/wiki/Exponential_growth" title="Exponential growth">exponential</a> <a href="/wiki/Growth_rate_(group_theory)" title="Growth rate (group theory)">growth rate</a> of order 2<i>n</i> − 1.</li></ol> <p>A few other related results are: </p> <ol><li>The <a href="/wiki/Nielsen%E2%80%93Schreier_theorem" title="Nielsen–Schreier theorem">Nielsen–Schreier theorem</a>: Every <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of a free group is free. Furthermore, if the free group <i>F</i> has rank <i>n</i> and the subgroup <i>H</i> has <a href="/wiki/Index_of_a_subgroup" title="Index of a subgroup">index</a> <i>e</i> in <i>F</i>, then <i>H</i> is free of rank 1 + <i>e</i>(<i>n–</i>1).</li> <li>A free group of rank <i>k</i> clearly has subgroups of every rank less than <i>k</i>. Less obviously, a (<i>nonabelian!</i>) free group of rank at least 2 has subgroups of all <a href="/wiki/Countable_set" title="Countable set">countable</a> ranks.</li> <li>The <a href="/wiki/Commutator_subgroup" title="Commutator subgroup">commutator subgroup</a> of a free group of rank <i>k</i> > 1 has infinite rank; for example for F(<i>a</i>,<i>b</i>), it is freely generated by the <a href="/wiki/Commutator" title="Commutator">commutators</a> [<i>a</i><sup><i>m</i></sup>, <i>b</i><sup><i>n</i></sup>] for non-zero <i>m</i> and <i>n</i>.</li> <li>The free group in two elements is <a href="/wiki/SQ_universal" class="mw-redirect" title="SQ universal">SQ universal</a>; the above follows as any SQ universal group has subgroups of all countable ranks.</li> <li>Any group that <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">acts</a> on a tree, <a href="/wiki/Free_action" class="mw-redirect" title="Free action">freely</a> and preserving the <a href="/wiki/Oriented_graph" class="mw-redirect" title="Oriented graph">orientation</a>, is a free group of countable rank (given by 1 plus the <a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a> of the <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">quotient</a> <a href="/wiki/Graph_theory" title="Graph theory">graph</a>).</li> <li>The <a href="/wiki/Cayley_graph" title="Cayley graph">Cayley graph</a> of a free group of finite rank, with respect to a free generating set, is a <a href="/wiki/Tree_(graph_theory)" title="Tree (graph theory)">tree</a> on which the group acts freely, preserving the orientation. As a topological space (a one-dimensional <a href="/wiki/Simplicial_complex" title="Simplicial complex">simplicial complex</a>), this Cayley graph Γ(<i>F</i>) is <a href="/wiki/Contractible_space" title="Contractible space">contractible</a>. For a finitely presented group <i>G,</i> the natural homomorphism defined above, <i>φ</i> : <i>F</i> → <i>G</i>, defines a <a href="/wiki/Covering_space" title="Covering space">covering map</a> of Cayley graphs <i>φ*</i> : Γ(<i>F</i>) → Γ(<i>G</i>), in fact a universal covering. Hence, the <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a> of the Cayley graph Γ(<i>G</i>) is isomorphic to the kernel of <i>φ</i>, the normal subgroup of relations among the generators of <i>G</i>. The extreme case is when <i>G</i> = {<i>e</i>}, the trivial group, considered with as many generators as <i>F</i>, all of them trivial; the Cayley graph Γ(<i>G</i>) is a bouquet of circles, and its fundamental group is <i>F</i> itself.</li> <li>Any subgroup of a free group, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\subset F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>⊂<!-- ⊂ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\subset F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/360b3243f2b8600f9e053743cb02d740c3a9fa36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.903ex; height:2.176ex;" alt="{\displaystyle H\subset F}"></span>, corresponds to a covering space of the bouquet of circles, namely to the <a href="/wiki/Schreier_coset_graph" title="Schreier coset graph">Schreier coset graph</a> of <i>F</i>/<i>H</i>. This can be used to give a topological proof of the Nielsen-Schreier theorem above.</li> <li>The <a href="/wiki/Groupoid" title="Groupoid">groupoid</a> approach to these results, given in the work by P.J. Higgins below, is related to the use of <a href="/wiki/Covering_space" title="Covering space">covering spaces</a> above. It allows more powerful results, for example on <a href="/wiki/Grushko%27s_theorem" class="mw-redirect" title="Grushko's theorem">Grushko's theorem</a>, and a normal form for the fundamental groupoid of a graph of groups. In this approach there is considerable use of free groupoids on a directed graph.</li> <li><a href="/wiki/Grushko%27s_theorem" class="mw-redirect" title="Grushko's theorem">Grushko's theorem</a> has the consequence that if a subset <i>B</i> of a free group <i>F</i> on <i>n</i> elements generates <i>F</i> and has <i>n</i> elements, then <i>B</i> generates <i>F</i> freely.</li></ol> <div class="mw-heading mw-heading2"><h2 id="Free_abelian_group">Free abelian group</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=6" title="Edit section: Free abelian group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Free_abelian_group" title="Free abelian group">Free abelian group</a></div> <p>The free abelian group on a set <i>S</i> is defined via its universal property in the analogous way, with obvious modifications: Consider a pair (<i>F</i>, <i>φ</i>), where <i>F</i> is an abelian group and <i>φ</i>: <i>S</i> → <i>F</i> is a function. <i>F</i> is said to be the <b>free abelian group on <i>S</i> with respect to <i>φ</i> </b> if for any abelian group <i>G</i> and any function <i>ψ</i>: <i>S</i> → <i>G</i>, there exists a unique homomorphism <i>f</i>: <i>F</i> → <i>G</i> such that </p> <dl><dd><i>f</i>(<i>φ</i>(<i>s</i>)) = <i>ψ</i>(<i>s</i>), for all <i>s</i> in <i>S</i>.</dd></dl> <p>The free abelian group on <i>S</i> can be explicitly identified as the free group F(<i>S</i>) modulo the subgroup generated by its commutators, [F(<i>S</i>), F(<i>S</i>)], i.e. its <a href="/wiki/Abelianisation" class="mw-redirect" title="Abelianisation">abelianisation</a>. In other words, the free abelian group on <i>S</i> is the set of words that are distinguished only up to the order of letters. The rank of a free group can therefore also be defined as the rank of its abelianisation as a free abelian group. </p> <div class="mw-heading mw-heading2"><h2 id="Tarski's_problems"><span id="Tarski.27s_problems"></span>Tarski's problems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=7" title="Edit section: Tarski's problems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Around 1945, <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a> asked whether the free groups on two or more generators have the same <a href="/wiki/Model_theory" title="Model theory">first-order theory</a>, and whether this theory is <a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a>. <a href="#CITEREFSela2006">Sela (2006)</a> answered the first question by showing that any two nonabelian free groups have the same first-order theory, and <a href="#CITEREFKharlampovichMyasnikov2006">Kharlampovich & Myasnikov (2006)</a> answered both questions, showing that this theory is decidable. </p><p>A similar unsolved (as of 2011) question in <a href="/wiki/Free_probability_theory" class="mw-redirect" title="Free probability theory">free probability theory</a> asks whether the <a href="/wiki/Von_Neumann_group_algebra" class="mw-redirect" title="Von Neumann group algebra">von Neumann group algebras</a> of any two non-abelian finitely generated free groups are isomorphic. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=8" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">Generating set of a group</a></li> <li><a href="/wiki/Presentation_of_a_group" title="Presentation of a group">Presentation of a group</a></li> <li><a href="/wiki/Nielsen_transformation" title="Nielsen transformation">Nielsen transformation</a>, a factorization of elements of the <a href="/wiki/Automorphism_group_of_a_free_group" title="Automorphism group of a free group">automorphism group of a free group</a></li> <li><a href="/wiki/Normal_form_for_free_groups_and_free_product_of_groups" title="Normal form for free groups and free product of groups">Normal form for free groups and free product of groups</a></li> <li><a href="/wiki/Free_product" title="Free product">Free product</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=9" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFvon_Dyck1882" class="citation journal cs1"><a href="/wiki/Walther_von_Dyck" title="Walther von Dyck">von Dyck, Walther</a> (1882). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304201754/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002246724&L=1">"Gruppentheoretische Studien (Group-theoretical Studies)"</a>. <i><a href="/wiki/Mathematische_Annalen" title="Mathematische Annalen">Mathematische Annalen</a></i>. <b>20</b> (1): 1–44. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01443322">10.1007/BF01443322</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:179178038">179178038</a>. Archived from <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002246724&L=1">the original</a> on 2016-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-09-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=Gruppentheoretische+Studien+%28Group-theoretical+Studies%29&rft.volume=20&rft.issue=1&rft.pages=1-44&rft.date=1882&rft_id=info%3Adoi%2F10.1007%2FBF01443322&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A179178038%23id-name%3DS2CID&rft.aulast=von+Dyck&rft.aufirst=Walther&rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Findex.php%3Fid%3D11%26PPN%3DGDZPPN002246724%26L%3D1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsen1917" class="citation journal cs1"><a href="/wiki/Jakob_Nielsen_(mathematician)" title="Jakob Nielsen (mathematician)">Nielsen, Jakob</a> (1917). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160305141749/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002266873&L=1">"Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden"</a>. <i><a href="/wiki/Mathematische_Annalen" title="Mathematische Annalen">Mathematische Annalen</a></i>. <b>78</b> (1): 385–397. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01457113">10.1007/BF01457113</a>. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:46.0175.01">46.0175.01</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1511907">1511907</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119726936">119726936</a>. Archived from <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002266873&L=1">the original</a> on 2016-03-05<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-09-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=Die+Isomorphismen+der+allgemeinen+unendlichen+Gruppe+mit+zwei+Erzeugenden&rft.volume=78&rft.issue=1&rft.pages=385-397&rft.date=1917&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119726936%23id-name%3DS2CID&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1511907%23id-name%3DMR&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A46.0175.01%23id-name%3DJFM&rft_id=info%3Adoi%2F10.1007%2FBF01457113&rft.aulast=Nielsen&rft.aufirst=Jakob&rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Findex.php%3Fid%3D11%26PPN%3DGDZPPN002266873%26L%3D1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span> </span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsen1921" class="citation journal cs1 cs1-prop-long-vol"><a href="/wiki/Jakob_Nielsen_(mathematician)" title="Jakob Nielsen (mathematician)">Nielsen, Jakob</a> (1921). "On calculation with noncommutative factors and its application to group theory. (Translated from Danish)". <i>The Mathematical Scientist</i>. 6 (1981) (2): 73–85.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Scientist&rft.atitle=On+calculation+with+noncommutative+factors+and+its+application+to+group+theory.+%28Translated+from+Danish%29&rft.volume=6+%281981%29&rft.issue=2&rft.pages=73-85&rft.date=1921&rft.aulast=Nielsen&rft.aufirst=Jakob&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsen1924" class="citation journal cs1"><a href="/wiki/Jakob_Nielsen_(mathematician)" title="Jakob Nielsen (mathematician)">Nielsen, Jakob</a> (1924). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160305073827/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002269813&L=1">"Die Isomorphismengruppe der freien Gruppen"</a>. <i>Mathematische Annalen</i>. <b>91</b> (3): 169–209. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01556078">10.1007/BF01556078</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122577302">122577302</a>. Archived from <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002269813&L=1">the original</a> on 2016-03-05<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-09-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=Die+Isomorphismengruppe+der+freien+Gruppen&rft.volume=91&rft.issue=3&rft.pages=169-209&rft.date=1924&rft_id=info%3Adoi%2F10.1007%2FBF01556078&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122577302%23id-name%3DS2CID&rft.aulast=Nielsen&rft.aufirst=Jakob&rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Findex.php%3Fid%3D11%26PPN%3DGDZPPN002269813%26L%3D1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">See <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMagnusMoufang1954" class="citation journal cs1"><a href="/wiki/Wilhelm_Magnus" title="Wilhelm Magnus">Magnus, Wilhelm</a>; <a href="/wiki/Ruth_Moufang" title="Ruth Moufang">Moufang, Ruth</a> (1954). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160305072926/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002283808&L=1">"Max Dehn zum Gedächtnis"</a>. <i>Mathematische Annalen</i>. <b>127</b> (1): 215–227. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01361121">10.1007/BF01361121</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119917209">119917209</a>. Archived from <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002283808&L=1">the original</a> on 2016-03-05<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-09-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=Max+Dehn+zum+Ged%C3%A4chtnis&rft.volume=127&rft.issue=1&rft.pages=215-227&rft.date=1954&rft_id=info%3Adoi%2F10.1007%2FBF01361121&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119917209%23id-name%3DS2CID&rft.aulast=Magnus&rft.aufirst=Wilhelm&rft.au=Moufang%2C+Ruth&rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Findex.php%3Fid%3D11%26PPN%3DGDZPPN002283808%26L%3D1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchreier1928" class="citation journal cs1"><a href="/wiki/Otto_Schreier" title="Otto Schreier">Schreier, Otto</a> (1928). "Die Untergruppen der freien Gruppen". <i>Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg</i>. <b>5</b>: 161–183. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02952517">10.1007/BF02952517</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121888949">121888949</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Abhandlungen+aus+dem+Mathematischen+Seminar+der+Universit%C3%A4t+Hamburg&rft.atitle=Die+Untergruppen+der+freien+Gruppen&rft.volume=5&rft.pages=161-183&rft.date=1928&rft_id=info%3Adoi%2F10.1007%2FBF02952517&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121888949%23id-name%3DS2CID&rft.aulast=Schreier&rft.aufirst=Otto&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReidemeister1972" class="citation book cs1"><a href="/wiki/Kurt_Reidemeister" title="Kurt Reidemeister">Reidemeister, Kurt</a> (1972) [1932]. <i>Einführung in die kombinatorische Topologie</i>. Darmstadt: Wissenschaftliche Buchgesellschaft.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Einf%C3%BChrung+in+die+kombinatorische+Topologie&rft.place=Darmstadt&rft.pub=Wissenschaftliche+Buchgesellschaft&rft.date=1972&rft.aulast=Reidemeister&rft.aufirst=Kurt&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Free_group&action=edit&section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKharlampovichMyasnikov2006" class="citation journal cs1">Kharlampovich, Olga; Myasnikov, Alexei (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jalgebra.2006.03.033">"Elementary theory of free non-abelian groups"</a>. <i><a href="/wiki/Journal_of_Algebra" title="Journal of Algebra">Journal of Algebra</a></i>. <b>302</b> (2): 451–552. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jalgebra.2006.03.033">10.1016/j.jalgebra.2006.03.033</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2293770">2293770</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Algebra&rft.atitle=Elementary+theory+of+free+non-abelian+groups&rft.volume=302&rft.issue=2&rft.pages=451-552&rft.date=2006&rft_id=info%3Adoi%2F10.1016%2Fj.jalgebra.2006.03.033&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2293770%23id-name%3DMR&rft.aulast=Kharlampovich&rft.aufirst=Olga&rft.au=Myasnikov%2C+Alexei&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jalgebra.2006.03.033&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span></li> <li>W. Magnus, A. Karrass and D. Solitar, "Combinatorial Group Theory", Dover (1976).</li> <li>P.J. Higgins, 1971, "Categories and Groupoids", van Nostrand, {New York}. Reprints in Theory and Applications of Categories, 7 (2005) pp 1–195.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSela2006" class="citation journal cs1"><a href="/wiki/Zlil_Sela" title="Zlil Sela">Sela, Zlil</a> (2006). "Diophantine geometry over groups. VI. The elementary theory of a free group". <i>Geom. Funct. Anal</i>. <b>16</b> (3): 707–730. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00039-006-0565-8">10.1007/s00039-006-0565-8</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2238945">2238945</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123197664">123197664</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geom.+Funct.+Anal.&rft.atitle=Diophantine+geometry+over+groups.+VI.+The+elementary+theory+of+a+free+group.&rft.volume=16&rft.issue=3&rft.pages=707-730&rft.date=2006&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2238945%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123197664%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00039-006-0565-8&rft.aulast=Sela&rft.aufirst=Zlil&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span></li> <li><a href="/wiki/Jean-Pierre_Serre" title="Jean-Pierre Serre">Serre, Jean-Pierre</a>, <i>Trees</i>, Springer (2003) (English translation of "arbres, amalgames, SL<sub>2</sub>", 3rd edition, <i>astérisque</i> <b>46</b> (1983))</li> <li>P.J. Higgins, <i><a rel="nofollow" class="external text" href="https://doi.org/10.1112/jlms/s2-13.1.145">The fundamental groupoid of a graph of groups</a></i>, <a href="/wiki/Journal_of_the_London_Mathematical_Society" class="mw-redirect" title="Journal of the London Mathematical Society">Journal of the London Mathematical Society</a> (2) <b>13</b> (1976), no. 1, 145–149.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAluffi2009" class="citation book cs1">Aluffi, Paolo (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=deWkZWYbyHQC&pg=PA70"><i>Algebra: Chapter 0</i></a>. AMS Bookstore. p. 70. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4781-7" title="Special:BookSources/978-0-8218-4781-7"><bdi>978-0-8218-4781-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra%3A+Chapter+0&rft.pages=70&rft.pub=AMS+Bookstore&rft.date=2009&rft.isbn=978-0-8218-4781-7&rft.aulast=Aluffi&rft.aufirst=Paolo&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdeWkZWYbyHQC%26pg%3DPA70&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrillet2007" class="citation book cs1">Grillet, Pierre Antoine (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LJtyhu8-xYwC&pg=PA27"><i>Abstract algebra</i></a>. Springer. p. 27. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-71567-4" title="Special:BookSources/978-0-387-71567-4"><bdi>978-0-387-71567-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Abstract+algebra&rft.pages=27&rft.pub=Springer&rft.date=2007&rft.isbn=978-0-387-71567-4&rft.aulast=Grillet&rft.aufirst=Pierre+Antoine&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLJtyhu8-xYwC%26pg%3DPA27&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFree+group" class="Z3988"></span>.</li></ul> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐5f67bcf949‐cgglk Cached time: 20241127005303 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.398 seconds Real time usage: 0.521 seconds Preprocessor visited node count: 1224/1000000 Post‐expand include size: 54289/2097152 bytes Template argument size: 760/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 74519/5000000 bytes Lua time usage: 0.252/10.000 seconds Lua memory usage: 6679286/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 398.493 1 -total 35.55% 141.673 1 Template:Reflist 31.58% 125.863 8 Template:Cite_journal 26.17% 104.300 1 Template:Group_theory_sidebar 25.52% 101.697 1 Template:Sidebar_with_collapsible_lists 19.14% 76.277 1 Template:Short_description 12.76% 50.857 2 Template:Pagetype 8.34% 33.228 3 Template:Hlist 7.98% 31.814 2 Template:Harvtxt 7.95% 31.666 2 Template:Sidebar --> <!-- Saved in parser cache with key enwiki:pcache:idhash:59735-0!canonical and timestamp 20241127005303 and revision id 1225639942. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Free_group&oldid=1225639942">https://en.wikipedia.org/w/index.php?title=Free_group&oldid=1225639942</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Geometric_group_theory" title="Category:Geometric group theory">Geometric group theory</a></li><li><a href="/wiki/Category:Combinatorial_group_theory" title="Category:Combinatorial group theory">Combinatorial group theory</a></li><li><a href="/wiki/Category:Free_algebraic_structures" title="Category:Free algebraic structures">Free algebraic structures</a></li><li><a href="/wiki/Category:Properties_of_groups" title="Category:Properties of groups">Properties of groups</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 25 May 2024, at 19:40<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Free_group&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5cd4cd96d5-hvnjm","wgBackendResponseTime":155,"wgPageParseReport":{"limitreport":{"cputime":"0.398","walltime":"0.521","ppvisitednodes":{"value":1224,"limit":1000000},"postexpandincludesize":{"value":54289,"limit":2097152},"templateargumentsize":{"value":760,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":74519,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 398.493 1 -total"," 35.55% 141.673 1 Template:Reflist"," 31.58% 125.863 8 Template:Cite_journal"," 26.17% 104.300 1 Template:Group_theory_sidebar"," 25.52% 101.697 1 Template:Sidebar_with_collapsible_lists"," 19.14% 76.277 1 Template:Short_description"," 12.76% 50.857 2 Template:Pagetype"," 8.34% 33.228 3 Template:Hlist"," 7.98% 31.814 2 Template:Harvtxt"," 7.95% 31.666 2 Template:Sidebar"]},"scribunto":{"limitreport-timeusage":{"value":"0.252","limit":"10.000"},"limitreport-memusage":{"value":6679286,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAluffi2009\"] = 1,\n [\"CITEREFGrillet2007\"] = 1,\n [\"CITEREFKharlampovichMyasnikov2006\"] = 1,\n [\"CITEREFMagnusMoufang1954\"] = 1,\n [\"CITEREFNielsen1917\"] = 1,\n [\"CITEREFNielsen1921\"] = 1,\n [\"CITEREFNielsen1924\"] = 1,\n [\"CITEREFReidemeister1972\"] = 1,\n [\"CITEREFSchreier1928\"] = 1,\n [\"CITEREFSela2006\"] = 1,\n [\"CITEREFvon_Dyck1882\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Cite book\"] = 3,\n [\"Cite journal\"] = 8,\n [\"DEFAULTSORT:Free Group\"] = 1,\n [\"Further\"] = 1,\n [\"Group theory sidebar\"] = 1,\n [\"Harvtxt\"] = 2,\n [\"Mvar\"] = 3,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-5f67bcf949-cgglk","timestamp":"20241127005303","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Free group","url":"https:\/\/en.wikipedia.org\/wiki\/Free_group","sameAs":"http:\/\/www.wikidata.org\/entity\/Q431078","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q431078","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-06-27T10:11:44Z","dateModified":"2024-05-25T19:40:39Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/5f\/Cyclic_group.svg","headline":"free object in the category of groups; a group admitting a presentation without any relations"}</script> </body> </html>