CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–15 of 15 results for author: <span class="mathjax">Lentz, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Lentz%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lentz, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lentz%2C+F&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lentz, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.14423">arXiv:2503.14423</a> <span> [<a href="https://arxiv.org/pdf/2503.14423">pdf</a>, <a href="https://arxiv.org/format/2503.14423">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Frustrated Frustration of Arrays with Four-Terminal Nb-Pt-Nb Josephson Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Teller%2C+J">Justus Teller</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%A4fer%2C+C">Christian Sch盲fer</a>, <a href="/search/cond-mat?searchtype=author&query=Moors%2C+K">Kristof Moors</a>, <a href="/search/cond-mat?searchtype=author&query=Bennemann%2C+B">Benjamin Bennemann</a>, <a href="/search/cond-mat?searchtype=author&query=Lyatti%2C+M">Matvey Lyatti</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%BCtzmacher%2C+D">Detlev Gr眉tzmacher</a>, <a href="/search/cond-mat?searchtype=author&query=Riwar%2C+R">Roman-Pascal Riwar</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%A4pers%2C+T">Thomas Sch盲pers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.14423v1-abstract-short" style="display: inline;"> We study the frustration pattern of a square lattice with in-situ fabricated Nb-Pt-Nb four-terminal Josephson junctions. The four-terminal geometry gives rise to a checker board pattern of alternating fluxes f, f' piercing the plaquettes, which stabilizes the Berezinskii-Kosterlitz-Thouless transition even at irrational flux quanta per unit cell, due to an unequal repartition of integer flux sum f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.14423v1-abstract-full').style.display = 'inline'; document.getElementById('2503.14423v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.14423v1-abstract-full" style="display: none;"> We study the frustration pattern of a square lattice with in-situ fabricated Nb-Pt-Nb four-terminal Josephson junctions. The four-terminal geometry gives rise to a checker board pattern of alternating fluxes f, f' piercing the plaquettes, which stabilizes the Berezinskii-Kosterlitz-Thouless transition even at irrational flux quanta per unit cell, due to an unequal repartition of integer flux sum f+f' into alternating plaquettes. This type of frustrated frustration manifests as a beating pattern of the dc resistance, with state configurations at the resistance dips gradually changing between the conventional zero-flux and half-flux states. Hence, the four-terminal Josephson junctions array offers a promising platform to study previously unexplored flux and vortex configurations, and provides an estimate on the spatial expansion of the four-terminal Josephson junctions central weak link area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.14423v1-abstract-full').style.display = 'none'; document.getElementById('2503.14423v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preliminary version. Feedback welcome. - 9 pages, 3 figures, 10 pages supporting information including 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08154">arXiv:2409.08154</a> <span> [<a href="https://arxiv.org/pdf/2409.08154">pdf</a>, <a href="https://arxiv.org/format/2409.08154">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gate-defined single-electron transistors in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rothstein%2C+A">Alexander Rothstein</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+A">Ammon Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Achtermann%2C+A">Anthony Achtermann</a>, <a href="/search/cond-mat?searchtype=author&query=Icking%2C+E">Eike Icking</a>, <a href="/search/cond-mat?searchtype=author&query=Hecker%2C+K">Katrin Hecker</a>, <a href="/search/cond-mat?searchtype=author&query=Banszerus%2C+L">Luca Banszerus</a>, <a href="/search/cond-mat?searchtype=author&query=Otto%2C+M">Martin Otto</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Beschoten%2C+B">Bernd Beschoten</a>, <a href="/search/cond-mat?searchtype=author&query=Dolleman%2C+R+J">Robin J. Dolleman</a>, <a href="/search/cond-mat?searchtype=author&query=Kennes%2C+D+M">Dante M. Kennes</a>, <a href="/search/cond-mat?searchtype=author&query=Stampfer%2C+C">Christoph Stampfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08154v2-abstract-short" style="display: inline;"> Twisted bilayer graphene (tBLG) near the magic angle is a unique platform where the combination of topology and strong correlations gives rise to exotic electronic phases. These phases are gate-tunable and related to the presence of flat electronic bands, isolated by single-particle band gaps. This enables gate-controlled charge confinement, essential for the operation of single-electron transisto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08154v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08154v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08154v2-abstract-full" style="display: none;"> Twisted bilayer graphene (tBLG) near the magic angle is a unique platform where the combination of topology and strong correlations gives rise to exotic electronic phases. These phases are gate-tunable and related to the presence of flat electronic bands, isolated by single-particle band gaps. This enables gate-controlled charge confinement, essential for the operation of single-electron transistors (SETs), and allows to explore the interplay of confinement, electron interactions, band renormalisation and the moir茅 superlattice, potentially revealing key paradigms of strong correlations. Here, we present gate-defined SETs in near-magic-angle tBLG with well-tunable Coulomb blockade resonances. These SETs allow to study magnetic field-induced quantum oscillations in the density of states of the source-drain reservoirs, providing insight into gate-tunable Fermi surfaces of tBLG. Comparison with tight-binding calculations highlights the importance of displacement-field-induced band renormalisation crucial for future advanced gate-tunable quantum devices and circuits in tBLG including e.g. quantum dots and Josephson junction arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08154v2-abstract-full').style.display = 'none'; document.getElementById('2409.08154v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14393">arXiv:2403.14393</a> <span> [<a href="https://arxiv.org/pdf/2403.14393">pdf</a>, <a href="https://arxiv.org/format/2403.14393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.155139">10.1103/PhysRevB.109.155139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band gap formation in commensurate twisted bilayer graphene/hBN moir茅 lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rothstein%2C+A">Alexander Rothstein</a>, <a href="/search/cond-mat?searchtype=author&query=Schattauer%2C+C">Christoph Schattauer</a>, <a href="/search/cond-mat?searchtype=author&query=Dolleman%2C+R+J">Robin J. Dolleman</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Kennes%2C+D+M">Dante M. Kennes</a>, <a href="/search/cond-mat?searchtype=author&query=Beschoten%2C+B">Bernd Beschoten</a>, <a href="/search/cond-mat?searchtype=author&query=Stampfer%2C+C">Christoph Stampfer</a>, <a href="/search/cond-mat?searchtype=author&query=Libisch%2C+F">Florian Libisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14393v1-abstract-short" style="display: inline;"> We report on the investigation of periodic superstructures in twisted bilayer graphene (tBLG) van-der-Waals heterostructures, where one of the graphene layers is aligned to hexagonal boron nitride (hBN). Our theoretical simulations reveal that if the ratio of the resulting two moir茅 unit cell areas is a simple fraction, the graphene/hBN moir茅 lattice acts as a staggered potential, breaking the deg… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14393v1-abstract-full').style.display = 'inline'; document.getElementById('2403.14393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14393v1-abstract-full" style="display: none;"> We report on the investigation of periodic superstructures in twisted bilayer graphene (tBLG) van-der-Waals heterostructures, where one of the graphene layers is aligned to hexagonal boron nitride (hBN). Our theoretical simulations reveal that if the ratio of the resulting two moir茅 unit cell areas is a simple fraction, the graphene/hBN moir茅 lattice acts as a staggered potential, breaking the degeneracy between tBLG AA sites. This leads to additional band gaps at energies where a subset of tBLG AA sites is fully occupied. These gaps manifest as Landau fans in magnetotransport, which we experimentally observe in an aligned tBLG/hBN heterostructure. Our study demonstrates the identification of commensurate tBLG/hBN van-der-Waals heterostructures by magnetotransport, highlights the persistence of moir茅 effects on length scales of tens of nanometers, and represents an interesting step forward in the ongoing effort to realise designed quantum materials with tailored properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14393v1-abstract-full').style.display = 'none'; document.getElementById('2403.14393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 155139 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13689">arXiv:2403.13689</a> <span> [<a href="https://arxiv.org/pdf/2403.13689">pdf</a>, <a href="https://arxiv.org/format/2403.13689">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological insulator based axial superconducting quantum interferometer structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zimmermann%2C+E">Erik Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&query=Jalil%2C+A+R">Abdur Rehman Jalil</a>, <a href="/search/cond-mat?searchtype=author&query=Schleenvoigt%2C+M">Michael Schleenvoigt</a>, <a href="/search/cond-mat?searchtype=author&query=Karthein%2C+J">Jan Karthein</a>, <a href="/search/cond-mat?searchtype=author&query=Frohn%2C+B">Benedikt Frohn</a>, <a href="/search/cond-mat?searchtype=author&query=Behner%2C+G">Gerrit Behner</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Neumann%2C+E">Elmar Neumann</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BCffelgen%2C+P">Peter Sch眉ffelgen</a>, <a href="/search/cond-mat?searchtype=author&query=L%C3%BCth%2C+H">Hans L眉th</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%BCtzmacher%2C+D">Detlev Gr眉tzmacher</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%A4pers%2C+T">Thomas Sch盲pers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13689v1-abstract-short" style="display: inline;"> Nanoscale superconducting quantum interference devices (SQUIDs) are fabricated in-situ from a single Bi$_{0.26}$Sb$_{1.74}$Te$_{3}$ nanoribbon that is defined using selective-area growth and contacted with superconducting Nb electrodes via a shadow mask technique. We present $h/(2e)$ magnetic flux periodic interference in both, fully and non-fully proximitized nanoribbons. The pronounced oscillati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13689v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13689v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13689v1-abstract-full" style="display: none;"> Nanoscale superconducting quantum interference devices (SQUIDs) are fabricated in-situ from a single Bi$_{0.26}$Sb$_{1.74}$Te$_{3}$ nanoribbon that is defined using selective-area growth and contacted with superconducting Nb electrodes via a shadow mask technique. We present $h/(2e)$ magnetic flux periodic interference in both, fully and non-fully proximitized nanoribbons. The pronounced oscillations are explained by interference effects of coherent transport through topological surface states surrounding the cross-section of the nanoribbon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13689v1-abstract-full').style.display = 'none'; document.getElementById('2403.13689v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15349">arXiv:2402.15349</a> <span> [<a href="https://arxiv.org/pdf/2402.15349">pdf</a>, <a href="https://arxiv.org/format/2402.15349">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional photonic crystal cavities in ZnSe quantum well structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qiao%2C+S">Siqi Qiao</a>, <a href="/search/cond-mat?searchtype=author&query=Driesch%2C+N+v+d">Nils von den Driesch</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Krause%2C+C">Christoph Krause</a>, <a href="/search/cond-mat?searchtype=author&query=Bennemann%2C+B">Benjamin Bennemann</a>, <a href="/search/cond-mat?searchtype=author&query=Brazda%2C+T">Thorsten Brazda</a>, <a href="/search/cond-mat?searchtype=author&query=LeBeau%2C+J+M">James M. LeBeau</a>, <a href="/search/cond-mat?searchtype=author&query=Pawlis%2C+A">Alexander Pawlis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15349v1-abstract-short" style="display: inline;"> ZnSe and related materials like ZnMgSe and ZnCdSe are promising II-VI host materials for optically mediated quantum information technology such as single photon sources or spin qubits. Integrating these heterostructures into photonic crystal (PC) cavities enables further improvements, for example realizing Purcell-enhanced single photon sources with increased quantum efficiency. Here we report on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15349v1-abstract-full').style.display = 'inline'; document.getElementById('2402.15349v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15349v1-abstract-full" style="display: none;"> ZnSe and related materials like ZnMgSe and ZnCdSe are promising II-VI host materials for optically mediated quantum information technology such as single photon sources or spin qubits. Integrating these heterostructures into photonic crystal (PC) cavities enables further improvements, for example realizing Purcell-enhanced single photon sources with increased quantum efficiency. Here we report on the successful implementation of two-dimensional (2D) PC cavities in strained ZnSe quantum wells (QW) on top of a novel AlAs supporting layer. This approach overcomes typical obstacles associated with PC membrane fabrication in strained materials, such as cracks and strain relaxation in the corresponding devices. We demonstrate the attainment of the required mechanical stability in our PC devices, complete strain retainment and effective vertical optical confinement. Structural analysis of our PC cavities reveals excellent etching anisotropy. Additionally, elemental mapping in a scanning transmission electron microscope confirms the transformation of AlAs into AlOx by post-growth wet oxidation and reveals partial oxidation of ZnMgSe at the etched sidewalls in the PC. This knowledge is utilized to tailor FDTD simulations and to extract the ZnMgSe dispersion relation with small oxygen content. Optical characterization of the PC cavities with cross-polarized resonance scattering spectroscopy verifies the presence of cavity modes. The excellent agreement between simulation and measured cavity mode energies demonstrates wide tunability of the PC cavity and proves the pertinence of our model. This implementation of 2D PC cavities in the ZnSe material system establishes a solid foundation for future developments of ZnSe quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15349v1-abstract-full').style.display = 'none'; document.getElementById('2402.15349v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07325">arXiv:2312.07325</a> <span> [<a href="https://arxiv.org/pdf/2312.07325">pdf</a>, <a href="https://arxiv.org/format/2312.07325">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Single in situ Interface Characterization Composed of Niobium and a Selectively Grown (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ Topological Insulator Nanoribbon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jan%C3%9Fen%2C+K">Kevin Jan脽en</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BC%C3%9Fmann%2C+P">Philipp R眉脽mann</a>, <a href="/search/cond-mat?searchtype=author&query=Liberda%2C+S">Sergej Liberda</a>, <a href="/search/cond-mat?searchtype=author&query=Schleenvoigt%2C+M">Michael Schleenvoigt</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+X">Xiao Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Jalil%2C+A+R">Abdur Rehman Jalil</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Bennemann%2C+B">Benjamin Bennemann</a>, <a href="/search/cond-mat?searchtype=author&query=Zimmermann%2C+E">Erik Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&query=Mussler%2C+G">Gregor Mussler</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BCffelgen%2C+P">Peter Sch眉ffelgen</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+C">Claus-Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Bl%C3%BCgel%2C+S">Stefan Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%BCtzmacher%2C+D">Detlev Gr眉tzmacher</a>, <a href="/search/cond-mat?searchtype=author&query=Plucinski%2C+L">Lukasz Plucinski</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%A4pers%2C+T">Thomas Sch盲pers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07325v1-abstract-short" style="display: inline;"> With increasing attention in Majorana physics for possible quantum bit applications, a large interest has been developed to understand the properties of the interface between a $s$-type superconductor and a topological insulator. Up to this point the interface analysis was mainly focused on in situ prepared Josephson junctions, which consist of two coupled single interfaces or to ex-situ fabricate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07325v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07325v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07325v1-abstract-full" style="display: none;"> With increasing attention in Majorana physics for possible quantum bit applications, a large interest has been developed to understand the properties of the interface between a $s$-type superconductor and a topological insulator. Up to this point the interface analysis was mainly focused on in situ prepared Josephson junctions, which consist of two coupled single interfaces or to ex-situ fabricated single interface devices. In our work we utilize a novel fabrication process, combining selective area growth and shadow evaporation which allows the characterization of a single in situ fabricated Nb/$\mathrm{(Bi_{0.15}Sb_{0.85})_2Te_3}$ nano interface. The resulting high interface transparency is apparent by a zero bias conductance increase by a factor of 1.7. Furthermore, we present a comprehensive differential conductance analysis of our single in situ interface for various magnetic fields, temperatures and gate voltages. Additionally, density functional theory calculations of the superconductor/topological insulator interface are performed in order to explain the peak-like shape of our differential conductance spectra and the origin of the observed smearing of conductance features. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07325v1-abstract-full').style.display = 'none'; document.getElementById('2312.07325v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main manuscript: 11 pages, 6 figures, Supplementary material: 10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08405">arXiv:2106.08405</a> <span> [<a href="https://arxiv.org/pdf/2106.08405">pdf</a>, <a href="https://arxiv.org/format/2106.08405">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.256802">10.1103/PhysRevLett.127.256802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing two-electron multiplets in bilayer graphene quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=M%C3%B6ller%2C+S">Samuel M枚ller</a>, <a href="/search/cond-mat?searchtype=author&query=Banszerus%2C+L">Luca Banszerus</a>, <a href="/search/cond-mat?searchtype=author&query=Knothe%2C+A">Angelika Knothe</a>, <a href="/search/cond-mat?searchtype=author&query=Steiner%2C+C">Corinne Steiner</a>, <a href="/search/cond-mat?searchtype=author&query=Icking%2C+E">Eike Icking</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Glazman%2C+L">Leonid Glazman</a>, <a href="/search/cond-mat?searchtype=author&query=Fal%27ko%2C+V">Vladimir Fal'ko</a>, <a href="/search/cond-mat?searchtype=author&query=Volk%2C+C">Christian Volk</a>, <a href="/search/cond-mat?searchtype=author&query=Stampfer%2C+C">Christoph Stampfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08405v3-abstract-short" style="display: inline;"> We report on finite bias spectroscopy measurements of the two-electron spectrum in a gate defined bilayer graphene (BLG) quantum dot for varying magnetic fields. The spin and valley degree of freedom in BLG give rise to multiplets of 6 orbital symmetric and 10 orbital anti-symmetric states. We find that orbital symmetric states are lower in energy and separated by $\approx 0.4 - 0.8$ meV from orbi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08405v3-abstract-full').style.display = 'inline'; document.getElementById('2106.08405v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08405v3-abstract-full" style="display: none;"> We report on finite bias spectroscopy measurements of the two-electron spectrum in a gate defined bilayer graphene (BLG) quantum dot for varying magnetic fields. The spin and valley degree of freedom in BLG give rise to multiplets of 6 orbital symmetric and 10 orbital anti-symmetric states. We find that orbital symmetric states are lower in energy and separated by $\approx 0.4 - 0.8$ meV from orbital anti-symmetric states. The symmetric multiplet exhibits an additional energy splitting of its 6 states of $\approx 0.15 - 0.5$ meV due to lattice scale interactions. The experimental observations are supported by theoretical calculations, which allow to determine that inter-valley scattering and 'current-current' interaction constants are of the same magnitude in BLG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08405v3-abstract-full').style.display = 'none'; document.getElementById('2106.08405v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.04825">arXiv:2103.04825</a> <span> [<a href="https://arxiv.org/pdf/2103.04825">pdf</a>, <a href="https://arxiv.org/format/2103.04825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-25498-3">10.1038/s41467-021-25498-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-valley coupling in single-electron bilayer graphene quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Banszerus%2C+L">Luca Banszerus</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6ller%2C+S">Samuel M枚ller</a>, <a href="/search/cond-mat?searchtype=author&query=Steiner%2C+C">Corinne Steiner</a>, <a href="/search/cond-mat?searchtype=author&query=Icking%2C+E">Eike Icking</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Volk%2C+C">Christian Volk</a>, <a href="/search/cond-mat?searchtype=author&query=Stampfer%2C+C">Christoph Stampfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.04825v3-abstract-short" style="display: inline;"> Understanding how the electron spin is coupled to orbital degrees of freedom, such as a valley degree of freedom in solid-state systems is central to applications in spin-based electronics and quantum computation. Recent developments in the preparation of electrostatically-confined quantum dots in gapped bilayer graphene (BLG) enables to study the low-energy single-electron spectra in BLG quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.04825v3-abstract-full').style.display = 'inline'; document.getElementById('2103.04825v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.04825v3-abstract-full" style="display: none;"> Understanding how the electron spin is coupled to orbital degrees of freedom, such as a valley degree of freedom in solid-state systems is central to applications in spin-based electronics and quantum computation. Recent developments in the preparation of electrostatically-confined quantum dots in gapped bilayer graphene (BLG) enables to study the low-energy single-electron spectra in BLG quantum dots, which is crucial for potential spin and spin-valley qubit operations. Here, we present the observation of the spin-valley coupling in a bilayer graphene quantum dot in the single-electron regime. By making use of a highly-tunable double quantum dot device we achieve an energy resolution allowing us to resolve the lifting of the fourfold spin and valley degeneracy by a Kane-Mele type spin-orbit coupling of $\approx 65~渭$eV. Also, we find an upper limit of a potentially disorder-induced mixing of the $K$ and $K'$ states below $20~渭$eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.04825v3-abstract-full').style.display = 'none'; document.getElementById('2103.04825v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages 5 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02555">arXiv:2012.02555</a> <span> [<a href="https://arxiv.org/pdf/2012.02555">pdf</a>, <a href="https://arxiv.org/format/2012.02555">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L081404">10.1103/PhysRevB.103.L081404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsed-gate spectroscopy of single-electron spin states in bilayer graphene quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Banszerus%2C+L">Luca Banszerus</a>, <a href="/search/cond-mat?searchtype=author&query=Hecker%2C+K">Katrin Hecker</a>, <a href="/search/cond-mat?searchtype=author&query=Icking%2C+E">Eike Icking</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Volk%2C+C">Christian Volk</a>, <a href="/search/cond-mat?searchtype=author&query=Stampfer%2C+C">Christoph Stampfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02555v2-abstract-short" style="display: inline;"> Graphene and bilayer graphene quantum dots are promising hosts for spin qubits with long coherence times. Although recent technological improvements make it possible to confine single electrons electrostatically in bilayer graphene quantum dots, and their spin and valley texture of the single particle spectrum has been studied in detail, their relaxation dynamics remains still unexplored. Here, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02555v2-abstract-full').style.display = 'inline'; document.getElementById('2012.02555v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02555v2-abstract-full" style="display: none;"> Graphene and bilayer graphene quantum dots are promising hosts for spin qubits with long coherence times. Although recent technological improvements make it possible to confine single electrons electrostatically in bilayer graphene quantum dots, and their spin and valley texture of the single particle spectrum has been studied in detail, their relaxation dynamics remains still unexplored. Here, we report on transport through a high-frequency gate controlled single-electron bilayer graphene quantum dot. By transient current spectroscopy of single-electron spin states, we extract a lower bound of the spin relaxation time of 0.5~$渭$s. This result represents an important step towards the investigation of spin coherence times in graphene-based quantum dots and the implementation of spin-qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02555v2-abstract-full').style.display = 'none'; document.getElementById('2012.02555v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 4 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 081404 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.02585">arXiv:2008.02585</a> <span> [<a href="https://arxiv.org/pdf/2008.02585">pdf</a>, <a href="https://arxiv.org/format/2008.02585">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c03227">10.1021/acs.nanolett.0c03227 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-hole crossover in gate-controlled bilayer graphene quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Banszerus%2C+L">Luca Banszerus</a>, <a href="/search/cond-mat?searchtype=author&query=Rothstein%2C+A">Alexander Rothstein</a>, <a href="/search/cond-mat?searchtype=author&query=Fabian%2C+T">Thomas Fabian</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6ller%2C+S">Samuel M枚ller</a>, <a href="/search/cond-mat?searchtype=author&query=Icking%2C+E">Eike Icking</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Libisch%2C+F">Florian Libisch</a>, <a href="/search/cond-mat?searchtype=author&query=Volk%2C+C">Christian Volk</a>, <a href="/search/cond-mat?searchtype=author&query=Stampfer%2C+C">Christoph Stampfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.02585v2-abstract-short" style="display: inline;"> Electron and hole Bloch states in gapped bilayer graphene exhibit topological orbital magnetic moments with opposite signs near the band edges, which allows for tunable valley-polarization in an out-of-plane magnetic field. This intrinsic property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here we show measurements of the electron-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02585v2-abstract-full').style.display = 'inline'; document.getElementById('2008.02585v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.02585v2-abstract-full" style="display: none;"> Electron and hole Bloch states in gapped bilayer graphene exhibit topological orbital magnetic moments with opposite signs near the band edges, which allows for tunable valley-polarization in an out-of-plane magnetic field. This intrinsic property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here we show measurements of the electron-hole crossover in a bilayer graphene QD, demonstrating the opposite sign of the orbital magnetic moments associated with the Berry curvature. Using three layers of metallic top gates, we independently control the tunneling barriers of the QD while tuning the occupation from the few-hole regime to the few-electron regime, crossing the displacement-field controlled band gap. The band gap is around 25 meV, while the charging energies of the electron and hole dots are between 3-5 meV. The extracted valley g-factor is around 17 and leads to opposite valley polarization for electron and hole states at moderate B-fields. Our measurements agree well with tight-binding calculations for our device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02585v2-abstract-full').style.display = 'none'; document.getElementById('2008.02585v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04224">arXiv:2007.04224</a> <span> [<a href="https://arxiv.org/pdf/2007.04224">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04055">10.1021/acs.nanolett.1c04055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integration of topological insulator Josephson junctions in superconducting qubit circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+T+W">Tobias W. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Connolly%2C+M+R">Malcolm R. Connolly</a>, <a href="/search/cond-mat?searchtype=author&query=Schleenvoigt%2C+M">Michael Schleenvoigt</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chenlu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kennedy%2C+O">Oscar Kennedy</a>, <a href="/search/cond-mat?searchtype=author&query=Ch%C3%A1vez-Garcia%2C+J+M">Jos茅 M. Ch谩vez-Garcia</a>, <a href="/search/cond-mat?searchtype=author&query=Jalil%2C+A+R">Abdur R. Jalil</a>, <a href="/search/cond-mat?searchtype=author&query=Bennemann%2C+B">Benjamin Bennemann</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Neumann%2C+E">Elmar Neumann</a>, <a href="/search/cond-mat?searchtype=author&query=Lindstr%C3%B6m%2C+T">Tobias Lindstr枚m</a>, <a href="/search/cond-mat?searchtype=author&query=de+Graaf%2C+S+E">Sebastian E. de Graaf</a>, <a href="/search/cond-mat?searchtype=author&query=Berenschot%2C+E">Erwin Berenschot</a>, <a href="/search/cond-mat?searchtype=author&query=Tas%2C+N">Niels Tas</a>, <a href="/search/cond-mat?searchtype=author&query=Mussler%2C+G">Gregor Mussler</a>, <a href="/search/cond-mat?searchtype=author&query=Petersson%2C+K+D">Karl D. Petersson</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%BCtzmacher%2C+D">Detlev Gr眉tzmacher</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BCffelgen%2C+P">Peter Sch眉ffelgen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04224v2-abstract-short" style="display: inline;"> The integration of semiconductor Josephson junctions (JJs) in superconducting quantum circuits provides a versatile platform for hybrid qubits and offers a powerful way to probe exotic quasiparticle excitations. Recent proposals for using circuit quantum electrodynamics (cQED) to detect topological superconductivity motivate the integration of novel topological materials in such circuits. Here, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04224v2-abstract-full').style.display = 'inline'; document.getElementById('2007.04224v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04224v2-abstract-full" style="display: none;"> The integration of semiconductor Josephson junctions (JJs) in superconducting quantum circuits provides a versatile platform for hybrid qubits and offers a powerful way to probe exotic quasiparticle excitations. Recent proposals for using circuit quantum electrodynamics (cQED) to detect topological superconductivity motivate the integration of novel topological materials in such circuits. Here, we report on the realization of superconducting transmon qubits implemented with $(Bi_{0.06}Sb_{0.94})_{2}Te_{3}$ topological insulator (TI) JJs using ultra-high vacuum fabrication techniques. Microwave losses on our substrates with monolithically integrated hardmask, used for selective area growth of TI nanostructures, imply microsecond limits to relaxation times and thus their compatibility with strong-coupling cQED. We use the cavity-qubit interaction to show that the Josephson energy of TI-based transmons scales with their JJ dimensions and demonstrate qubit control as well as temporal quantum coherence. Our results pave the way for advanced investigations of topological materials in both novel Josephson and topological qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04224v2-abstract-full').style.display = 'none'; document.getElementById('2007.04224v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A second experimental run allowed for time-domain measurements of a TI-based transmon qubit. In the updated manuscript additional data on qubit control and coherence are included. Taking account of these new results, the focus and the title of the manuscript have been reworked, 14 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 22, 7 (2022) 2595-2602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13056">arXiv:2006.13056</a> <span> [<a href="https://arxiv.org/pdf/2006.13056">pdf</a>, <a href="https://arxiv.org/format/2006.13056">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssb.202000333">10.1002/pssb.202000333 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrostatic detection of Shubnikov-de-Haas oscillations in bilayer graphene by Coulomb resonances in gate-defined quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Banszerus%2C+L">Luca Banszerus</a>, <a href="/search/cond-mat?searchtype=author&query=Fabian%2C+T">Thomas Fabian</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6ller%2C+S">Samuel M枚ller</a>, <a href="/search/cond-mat?searchtype=author&query=Icking%2C+E">Eike Icking</a>, <a href="/search/cond-mat?searchtype=author&query=Heiming%2C+H">Henning Heiming</a>, <a href="/search/cond-mat?searchtype=author&query=Trellenkamp%2C+S">Stefan Trellenkamp</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&query=Otto%2C+M">Martin Otto</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Libisch%2C+F">Florian Libisch</a>, <a href="/search/cond-mat?searchtype=author&query=Volk%2C+C">Christian Volk</a>, <a href="/search/cond-mat?searchtype=author&query=Stampfer%2C+C">Christoph Stampfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13056v3-abstract-short" style="display: inline;"> A gate-defined quantum dot in bilayer graphene is utilized as a sensitive electrometer for probing the charge density of its environment. Under the influence of a perpendicular magnetic field, the charge carrier density of the channel region next to the quantum dot oscillates due to the formation of Landau levels. This is experimentally observed as oscillations in the gate-voltage positions of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13056v3-abstract-full').style.display = 'inline'; document.getElementById('2006.13056v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13056v3-abstract-full" style="display: none;"> A gate-defined quantum dot in bilayer graphene is utilized as a sensitive electrometer for probing the charge density of its environment. Under the influence of a perpendicular magnetic field, the charge carrier density of the channel region next to the quantum dot oscillates due to the formation of Landau levels. This is experimentally observed as oscillations in the gate-voltage positions of the Coulomb resonances of the nearby quantum dot. From the frequency of the oscillations, we extract the charge carrier density in the channel and from the amplitude the shift of the quantum dot potential. We compare these experimental results with an electrostatic simulation of the device and find good agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13056v3-abstract-full').style.display = 'none'; document.getElementById('2006.13056v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, 4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09839">arXiv:2004.09839</a> <span> [<a href="https://arxiv.org/pdf/2004.09839">pdf</a>, <a href="https://arxiv.org/format/2004.09839">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.14.054019">10.1103/PhysRevApplied.14.054019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hard-gap spectroscopy in a self-defined mesoscopic InAs/Al nanowire Josephson junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zellekens%2C+P">Patrick Zellekens</a>, <a href="/search/cond-mat?searchtype=author&query=Deacon%2C+R">Russell Deacon</a>, <a href="/search/cond-mat?searchtype=author&query=Perla%2C+P">Pujitha Perla</a>, <a href="/search/cond-mat?searchtype=author&query=Fonseka%2C+H+A">H. Aruni Fonseka</a>, <a href="/search/cond-mat?searchtype=author&query=Moerstedt%2C+T">Timm Moerstedt</a>, <a href="/search/cond-mat?searchtype=author&query=Hindmarsh%2C+S+A">Steven A. Hindmarsh</a>, <a href="/search/cond-mat?searchtype=author&query=Bennemann%2C+B">Benjamin Bennemann</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Lepsa%2C+M+I">Mihail Ion Lepsa</a>, <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+A+M">Ana M. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%BCtzmacher%2C+D">Detlev Gr眉tzmacher</a>, <a href="/search/cond-mat?searchtype=author&query=Ishibashi%2C+K">Koji Ishibashi</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%A4pers%2C+T">Thomas Sch盲pers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09839v2-abstract-short" style="display: inline;"> Superconductor/semiconductor-nanowire hybrid structures can serve as versatile building blocks to realize Majorana circuits or superconducting qubits based on quantized levels such as Andreev qubits. For all these applications it is essential that the superconductor-semiconductor interface is as clean as possible. Furthermore, the shape and dimensions of the superconducting electrodes needs to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09839v2-abstract-full').style.display = 'inline'; document.getElementById('2004.09839v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09839v2-abstract-full" style="display: none;"> Superconductor/semiconductor-nanowire hybrid structures can serve as versatile building blocks to realize Majorana circuits or superconducting qubits based on quantized levels such as Andreev qubits. For all these applications it is essential that the superconductor-semiconductor interface is as clean as possible. Furthermore, the shape and dimensions of the superconducting electrodes needs to be precisely controlled. We fabricated self-defined InAs/Al core/shell nanowire junctions by a fully in-situ approach, which meet all these criteria. Transmission electron microscopy measurements confirm the sharp and clean interface between the nanowire and the in-situ deposited Al electrodes which were formed by means of shadow evaporation. Furthermore, we report on tunnel spectroscopy, gate and magnetic field-dependent transport measurements. The achievable short junction lengths,the observed hard-gap and the magnetic field robustness make this new hybrid structure very attractive for applications which rely on a precise control of the number of sub-gap states, like Andreev qubits or topological systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09839v2-abstract-full').style.display = 'none'; document.getElementById('2004.09839v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures. Inclusion of additional TEM and EDX data</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 14, 054019 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.2589">arXiv:1303.2589</a> <span> [<a href="https://arxiv.org/pdf/1303.2589">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms2784">10.1038/ncomms2784 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanobatteries in redox-based resistive switches require extension of memristor theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Valov%2C+I">Ilia Valov</a>, <a href="/search/cond-mat?searchtype=author&query=Linn%2C+E">Eike Linn</a>, <a href="/search/cond-mat?searchtype=author&query=Tappertzhofen%2C+S">Stefan Tappertzhofen</a>, <a href="/search/cond-mat?searchtype=author&query=Schmelzer%2C+S">Sebastian Schmelzer</a>, <a href="/search/cond-mat?searchtype=author&query=Hurk%2C+J+v+d">Jan van den Hurk</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+F">Florian Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Waser%2C+R">Rainer Waser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.2589v1-abstract-short" style="display: inline;"> Redox-based nanoionic resistive memory cells (ReRAMs) are one of the most promising emerging nano-devices for future information technology with applications for memory, logic and neuromorphic computing. Recently, the serendipitous discovery of the link between ReRAMs and memristors and memristive devices has further intensified the research in this field. Here we show on both a theoretical and an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.2589v1-abstract-full').style.display = 'inline'; document.getElementById('1303.2589v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.2589v1-abstract-full" style="display: none;"> Redox-based nanoionic resistive memory cells (ReRAMs) are one of the most promising emerging nano-devices for future information technology with applications for memory, logic and neuromorphic computing. Recently, the serendipitous discovery of the link between ReRAMs and memristors and memristive devices has further intensified the research in this field. Here we show on both a theoretical and an experimental level that nanoionic-type memristive elements are inherently controlled by non-equilibrium states resulting in a nanobattery. As a result the memristor theory must be extended to fit the observed non zerocrossing I-V characteristics. The initial electromotive force of the nanobattery depends on the chemistry and the transport properties of the materials system but can also be introduced during ReRAM cell operations. The emf has a strong impact on the dynamic behaviour of nanoscale memories, and thus, its control is one of the key factors for future device development and accurate modelling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.2589v1-abstract-full').style.display = 'none'; document.getElementById('1303.2589v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Nature Communications, Manuscript: 20 pages, 5 figures, Supplementary Information: 19 pages, 12 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0001294">arXiv:cond-mat/0001294</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0001294">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0001294">ps</a>, <a href="https://arxiv.org/format/cond-mat/0001294">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.86.179">10.1103/PhysRevLett.86.179 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Avalanches of popping bubbles in collapsing foams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vandewalle%2C+N">N. Vandewalle</a>, <a href="/search/cond-mat?searchtype=author&query=Lentz%2C+J+F">J. F. Lentz</a>, <a href="/search/cond-mat?searchtype=author&query=Dorbolo%2C+S">S. Dorbolo</a>, <a href="/search/cond-mat?searchtype=author&query=Brisbois%2C+F">F. Brisbois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0001294v1-abstract-short" style="display: inline;"> We report acoustic experiments on foam systems. We have recorded the sound emitted by crackling cells during the collapsing of foams. The sound pattern is then analyzed using classical methods of statistical physics. Fundamental processes at the surface of the collapsing foam are found. In particular, size is not a relevant parameter for exploding bubbles. </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0001294v1-abstract-full" style="display: none;"> We report acoustic experiments on foam systems. We have recorded the sound emitted by crackling cells during the collapsing of foams. The sound pattern is then analyzed using classical methods of statistical physics. Fundamental processes at the surface of the collapsing foam are found. In particular, size is not a relevant parameter for exploding bubbles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0001294v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0001294v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, submitted for publication</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>