CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 276 results for author: <span class="mathjax">Russell, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Russell, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Russell%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Russell, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04828">arXiv:2411.04828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04828">pdf</a>, <a href="https://arxiv.org/format/2411.04828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Lack of emission lines in the optical spectra of SAX J1808.4-3658 during reflaring of the 2019 outburst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Asquini%2C+L">L. Asquini</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/?searchtype=author&amp;query=Zanon%2C+A+M">A. Miraval Zanon</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">K. Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">D. M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04828v1-abstract-short" style="display: inline;"> We present spectroscopy of the accreting X-ray binary and millisecond pulsar SAX J1808.4-3658. These observations are the first to be obtained during a reflaring phase. We collected spectroscopic data during the beginning of reflaring of the 2019 outburst and we compare them to previous datasets, taken at different epochs both of the same outburst and across the years. In order to do so, we also p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04828v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04828v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04828v1-abstract-full" style="display: none;"> We present spectroscopy of the accreting X-ray binary and millisecond pulsar SAX J1808.4-3658. These observations are the first to be obtained during a reflaring phase. We collected spectroscopic data during the beginning of reflaring of the 2019 outburst and we compare them to previous datasets, taken at different epochs both of the same outburst and across the years. In order to do so, we also present spectra of the source taken during quiescence in 2007, one year before the next outburst. We made use of data taken by the Very Large Telescope (VLT) X-shooter spectrograph on August 31, 2019, three weeks after the outburst peak. For flux calibration, we used photometric data taken during the same night by the 1m telescopes from the Las Cumbres Observatory network that are located in Chile. We compare our spectra to the quiescent data taken by the VLT-FORS1 spectrograph in September 2007. We inspected the spectral energy distribution by fitting our data with a multi-colour accretion disk model and sampled the posterior probability density function for the model parameters with a Markov-Chain Monte Carlo algorithm. We find the optical spectra of the 2019 outburst to be unusually featureless, with no emission lines present despite the high resolution of the instrument. Fitting the UV-optical spectral energy distribution with a disk plus irradiated star model results in a very large value for the inner disk radius of $\sim 5130 \pm 240$ km, which could suggest that the disk has been emptied of material during the outburst, possibly accounting for the emission-less spectra. Alternatively, the absence of emission lines could be due to a significant contribution of the jet emission at optical wavelengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04828v1-abstract-full').style.display = 'none'; document.getElementById('2411.04828v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication by A&amp;A, 7 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00100">arXiv:2411.00100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00100">pdf</a>, <a href="https://arxiv.org/format/2411.00100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The formation and stability of a cold disc made out of stellar winds in the Galactic Centre </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Calder%C3%B3n%2C+D">Diego Calder贸n</a>, <a href="/search/?searchtype=author&amp;query=Cuadra%2C+J">Jorge Cuadra</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">Christopher M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Burkert%2C+A">Andreas Burkert</a>, <a href="/search/?searchtype=author&amp;query=Rosswog%2C+S">Stephan Rosswog</a>, <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+M">Mayura Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00100v1-abstract-short" style="display: inline;"> The reported discovery of a cold ($\sim$10$^4~\text{K}$) disc-like structure around the super-massive black hole at the centre of the Milk Way, Sagittarius A* (Sgr A*), has challenged our understanding of the gas dynamics and thermodynamic state of the plasma in its immediate vicinity. State-of-the-art simulations do not agree on whether or not such a disc can indeed be a product of the multiple s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00100v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00100v1-abstract-full" style="display: none;"> The reported discovery of a cold ($\sim$10$^4~\text{K}$) disc-like structure around the super-massive black hole at the centre of the Milk Way, Sagittarius A* (Sgr A*), has challenged our understanding of the gas dynamics and thermodynamic state of the plasma in its immediate vicinity. State-of-the-art simulations do not agree on whether or not such a disc can indeed be a product of the multiple stellar wind interactions of the mass-losing stars in the region. This study aims to constrain the conditions for the formation of a cold disc as a natural outcome of the system of the mass-losing stars orbiting around Sgr A*, to investigate if the disc is a transient or long-lasting structure, and to assess the validity of the model through direct comparisons with observations. We conduct a set of hydrodynamic simulations of the observed Wolf-Rayet (WR) stars feeding Sgr A* using the finite-volume adaptive mesh-refinement code Ramses. We focus, for the first time, on the impact of the chemical composition of the plasma emanating from the WR stars. The simulations show that the chemical composition of the plasma affects the radiative cooling enough to impact the properties of the medium such as density and temperature and, as a consequence, the rate at which the material inflows onto Sgr A*. We demonstrated that the formation of a cold disc from the stellar winds is possible for certain chemical compositions that are consistent with the current observational constraints. However, even in such a case, it is not possible to reproduce the reported properties of the observed disc-like structure, namely its inclination and hydrogen recombination line fluxes. We conclude that the stellar winds on their own cannot form the cold disc around Sgr A* inferred from the observations. Either relevant ingredients are still missing in the model, or the interpretation of the observed data needs to be revised. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00100v1-abstract-full').style.display = 'none'; document.getElementById('2411.00100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&amp;A, 17 pages, 11 figures (+2 pages, +2 figures in Appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14883">arXiv:2409.14883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14883">pdf</a>, <a href="https://arxiv.org/format/2409.14883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Geometry of the comptonization region of MAXI J1348$-$630 through type-C quasi-periodic oscillations with NICER </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">Kevin Alabarta</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A9ndez%2C+M">Mariano M茅ndez</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa%2C+F">Federico Garc铆a</a>, <a href="/search/?searchtype=author&amp;query=Altamirano%2C+D">Diego Altamirano</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yuexin Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L">Liang Zhang</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6nig%2C+O">Ole K枚nig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14883v1-abstract-short" style="display: inline;"> We use the rms and lag spectra of the type-C quasi-periodic oscillation (QPO) to study the properties of the Comptonisation region (aka corona) during the low/hard and hard-intermediate states of the main outburst and reflare of MAXI J1348$-$630. We simultaneously fit the time-averaged energy spectrum of the source and the fractional rms and phase-lag spectra of the QPO with the time-dependent Com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14883v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14883v1-abstract-full" style="display: none;"> We use the rms and lag spectra of the type-C quasi-periodic oscillation (QPO) to study the properties of the Comptonisation region (aka corona) during the low/hard and hard-intermediate states of the main outburst and reflare of MAXI J1348$-$630. We simultaneously fit the time-averaged energy spectrum of the source and the fractional rms and phase-lag spectra of the QPO with the time-dependent Comptonization model vKompth. The data can be explained by two physically connected coronae interacting with the accretion disc via a feedback loop of X-ray photons. The best-fitting model consists of a corona of $\sim$10$^3$ km located at the inner edge of the disc and a second corona of $\sim$10$^4$ km horizontally extended and covering the inner parts of the accretion disc. The properties of both coronae during the reflare are similar to those during the low/hard state of the main outburst, reinforcing the idea that both the outburst and the reflare are driven by the same physical mechanisms. We combine our results for the type-C QPO with those from previous work focused on the study of type-A and type-B QPOs with the same model to study the evolution of the geometry of the corona through the whole outburst, including the reflare of MAXI J1348$-$630. Finally, we show that the sudden increase in the phase-lag frequency spectrum and the sharp drop in the coherence function previously observed in MAXI J1348$-$630 are due to the type-C QPO during the decay of the outburst and can be explained in terms of the geometry of the coronae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14883v1-abstract-full').style.display = 'none'; document.getElementById('2409.14883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures, 1 table. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06856">arXiv:2408.06856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06856">pdf</a>, <a href="https://arxiv.org/format/2408.06856">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> X-ray and optical polarization aligned with the radio jet ejecta in GX 339-4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mastroserio%2C+G">G. Mastroserio</a>, <a href="/search/?searchtype=author&amp;query=De+Marco%2C+B">B. De Marco</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Carotenuto%2C+F">F. Carotenuto</a>, <a href="/search/?searchtype=author&amp;query=Fabiani%2C+S">S. Fabiani</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+T+D">T. D. Russell</a>, <a href="/search/?searchtype=author&amp;query=Capitanio%2C+F">F. Capitanio</a>, <a href="/search/?searchtype=author&amp;query=Cavecchi%2C+Y">Y. Cavecchi</a>, <a href="/search/?searchtype=author&amp;query=Motta%2C+S">S. Motta</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">D. M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Dovciak%2C+M">M. Dovciak</a>, <a href="/search/?searchtype=author&amp;query=Del+Santo%2C+M">M. Del Santo</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">K. Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Ambrifi%2C+A">A. Ambrifi</a>, <a href="/search/?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/?searchtype=author&amp;query=Casella%2C+P">P. Casella</a>, <a href="/search/?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/?searchtype=author&amp;query=Illiano%2C+G">G. Illiano</a>, <a href="/search/?searchtype=author&amp;query=Kara%2C+E">E. Kara</a>, <a href="/search/?searchtype=author&amp;query=Lai%2C+E+V">E. V. Lai</a>, <a href="/search/?searchtype=author&amp;query=Lodato%2C+G">G. Lodato</a>, <a href="/search/?searchtype=author&amp;query=Manca%2C+A">A. Manca</a>, <a href="/search/?searchtype=author&amp;query=Mariani%2C+I">I. Mariani</a>, <a href="/search/?searchtype=author&amp;query=Marino%2C+A">A. Marino</a>, <a href="/search/?searchtype=author&amp;query=Miceli%2C+C">C. Miceli</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06856v1-abstract-short" style="display: inline;"> We present the first X-ray polarization measurements of GX 339-4. IXPE observed this source twice during its 2023-2024 outburst, once in the soft-intermediate state and again during a soft state. The observation taken during the intermediate state shows significant ($4蟽$) polarization degree P = $1.3\% \pm 0.3\%$ and polarization angle $胃$ = -74\degree $\pm$ 7\degree only in the 3 - 8 keV band. FO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06856v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06856v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06856v1-abstract-full" style="display: none;"> We present the first X-ray polarization measurements of GX 339-4. IXPE observed this source twice during its 2023-2024 outburst, once in the soft-intermediate state and again during a soft state. The observation taken during the intermediate state shows significant ($4蟽$) polarization degree P = $1.3\% \pm 0.3\%$ and polarization angle $胃$ = -74\degree $\pm$ 7\degree only in the 3 - 8 keV band. FORS2 at VLT observed the source simultaneously detecting optical polarization in the B, V, R, I bands (between $0.1%$ and $0.7\%$), all roughly aligned with the X-ray polarization. We also detect a discrete jet knot from radio observations taken later in time; this knot would have been ejected from the system around the same time as the hard-to-soft X-ray state transition and a bright radio flare occurred $\sim$3 months earlier. The proper motion of the jet knot provides a direct measurement of the jet orientation angle on the plane of the sky at the time of the ejection. We find that both the X-ray and optical polarization angles are aligned with the direction of the ballistic jet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06856v1-abstract-full').style.display = 'none'; document.getElementById('2408.06856v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18637">arXiv:2406.18637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18637">pdf</a>, <a href="https://arxiv.org/ps/2406.18637">ps</a>, <a href="https://arxiv.org/format/2406.18637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Rapid Mid-Infrared Spectral-Timing with JWST. I. The prototypical black hole X-ray Binary GRS 1915+105 during a MIR-bright and X-ray-obscured state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gandhi%2C+P">P. Gandhi</a>, <a href="/search/?searchtype=author&amp;query=Borowski%2C+E+S">E. S. Borowski</a>, <a href="/search/?searchtype=author&amp;query=Byrom%2C+J">J. Byrom</a>, <a href="/search/?searchtype=author&amp;query=Hynes%2C+R+I">R. I. Hynes</a>, <a href="/search/?searchtype=author&amp;query=Maccarone%2C+T+J">T. J. Maccarone</a>, <a href="/search/?searchtype=author&amp;query=Shaw%2C+A+W">A. W. Shaw</a>, <a href="/search/?searchtype=author&amp;query=Adegoke%2C+O+K">O. K. Adegoke</a>, <a href="/search/?searchtype=author&amp;query=Altamirano%2C+D">D. Altamirano</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Bhargava%2C+Y">Y. Bhargava</a>, <a href="/search/?searchtype=author&amp;query=Britt%2C+C+T">C. T. Britt</a>, <a href="/search/?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/?searchtype=author&amp;query=Buisson%2C+D+J+K">D. J. K. Buisson</a>, <a href="/search/?searchtype=author&amp;query=Casella%2C+P">P. Casella</a>, <a href="/search/?searchtype=author&amp;query=Segura%2C+N+C">N. Castro Segura</a>, <a href="/search/?searchtype=author&amp;query=Charles%2C+P+A">P. A. Charles</a>, <a href="/search/?searchtype=author&amp;query=Corral-Santana%2C+J+M">J. M. Corral-Santana</a>, <a href="/search/?searchtype=author&amp;query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/?searchtype=author&amp;query=Fender%2C+R">R. Fender</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BArpide%2C+A">A. G煤rpide</a>, <a href="/search/?searchtype=author&amp;query=Heinke%2C+C+O">C. O. Heinke</a>, <a href="/search/?searchtype=author&amp;query=Igl%2C+A+B">A. B. Igl</a>, <a href="/search/?searchtype=author&amp;query=Knigge%2C+C">C. Knigge</a>, <a href="/search/?searchtype=author&amp;query=Markoff%2C+S">S. Markoff</a>, <a href="/search/?searchtype=author&amp;query=Mastroserio%2C+G">G. Mastroserio</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18637v1-abstract-short" style="display: inline;"> We present mid-infrared (MIR) spectral-timing measurements of the prototypical Galactic microquasar GRS 1915+105. The source was observed with the Mid-Infrared Instrument (MIRI) onboard JWST in June 2023 at a MIR luminosity L(MIR)~10^{36} erg/s exceeding past IR levels by about a factor of 10. By contrast, the X-ray flux is much fainter than the historical average, in the source&#39;s now-persistent &#39;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18637v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18637v1-abstract-full" style="display: none;"> We present mid-infrared (MIR) spectral-timing measurements of the prototypical Galactic microquasar GRS 1915+105. The source was observed with the Mid-Infrared Instrument (MIRI) onboard JWST in June 2023 at a MIR luminosity L(MIR)~10^{36} erg/s exceeding past IR levels by about a factor of 10. By contrast, the X-ray flux is much fainter than the historical average, in the source&#39;s now-persistent &#39;obscured&#39; state. The MIRI low-resolution spectrum shows a plethora of emission lines, the strongest of which are consistent with recombination in the hydrogen Pfund (Pf) series and higher. Low amplitude (~1%) but highly significant peak-to-peak photometric variability is found on timescales of ~1,000 s. The brightest Pf(6-5) emission line lags the continuum. Though difficult to constrain accurately, this lag is commensurate with light-travel timescales across the outer accretion disc or with expected recombination timescales inferred from emission line diagnostics. Using the emission line as a bolometric indicator suggests a moderate (~5-30% Eddington) intrinsic accretion rate. Multiwavelength monitoring shows that JWST caught the source close in-time to unprecedentedly bright MIR and radio long-term flaring. Assuming a thermal bremsstrahlung origin for the MIRI continuum suggests an unsustainably high mass-loss rate during this time unless the wind remains bound, though other possible origins cannot be ruled out. PAH features previously detected with Spitzer are now less clear in the MIRI data, arguing for possible destruction of dust in the interim. These results provide a preview of new parameter space for exploring MIR spectral-timing in XRBs and other variable cosmic sources on rapid timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18637v1-abstract-full').style.display = 'none'; document.getElementById('2406.18637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Dedicated to the memory of our colleague, Tomaso Belloni. Submitted 2024 June 21; Comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14631">arXiv:2406.14631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14631">pdf</a>, <a href="https://arxiv.org/format/2406.14631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multistructured accretion flow of Sgr A* II: Signatures of a Cool Accretion Disk in Hydrodynamic Simulations of Stellar Winds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+M">Mayura Balakrishnan</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">Christopher M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Corrales%2C+L">Lia Corrales</a>, <a href="/search/?searchtype=author&amp;query=Calder%C3%B3n%2C+D">Diego Calder贸n</a>, <a href="/search/?searchtype=author&amp;query=Cuadra%2C+J">Jorge Cuadra</a>, <a href="/search/?searchtype=author&amp;query=Haggard%2C+D">Daryl Haggard</a>, <a href="/search/?searchtype=author&amp;query=Markoff%2C+S">Sera Markoff</a>, <a href="/search/?searchtype=author&amp;query=Neilsen%2C+J">Joey Neilsen</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+M">Michael Nowak</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q+D">Q. Daniel Wang</a>, <a href="/search/?searchtype=author&amp;query=Baganoff%2C+F">Fred Baganoff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14631v1-abstract-short" style="display: inline;"> Hydrodynamic simulations of the stellar winds from Wolf-Rayet stars within the Galactic Center can provide predictions for the X-ray spectrum of supermassive black hole Sgr A*. Herein, we present results from updated smooth particle hydrodynamics simulations, building on the architecture of Cuadra et al. (2015); Russell et al. (2017), finding that a cold gas disk forms around Sgr A* with a simulat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14631v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14631v1-abstract-full" style="display: none;"> Hydrodynamic simulations of the stellar winds from Wolf-Rayet stars within the Galactic Center can provide predictions for the X-ray spectrum of supermassive black hole Sgr A*. Herein, we present results from updated smooth particle hydrodynamics simulations, building on the architecture of Cuadra et al. (2015); Russell et al. (2017), finding that a cold gas disk forms around Sgr A* with a simulation runtime of 3500 years. This result is consistent with previous grid-based simulations, demonstrating that a cold disk can form regardless of numerical method. We examine the plasma scenarios arising from an environment with and without this cold disk, by generating synthetic spectra for comparison to the quiescent Fe K alpha Sgr A* spectrum from Chandra HETG-S, taken through the Chandra X-ray Visionary Program. We find that current and future X-ray missions are unlikely to distinguish between the kinematic signatures in the plasma in these two scenarios. Nonetheless, the stellar wind plasma model presents a good fit to the dispersed Chandra spectra within 1.5&#34; of Sgr A*. We compare our results to the Radiatively Inefficient Accretion Flow (RIAF) model fit to the HETG-S spectrum presented in Paper I and find that the Bayesian model evidence does not strongly favor either model. With 9&#34; angular resolution and high spectral resolution of the X-IFU, NewAthena will offer a clearer differentiation between the RIAF plasma model and hydrodynamic simulations, but only a future X-ray mission with arcsecond resolution will significantly advance our understanding of Sgr A*&#39;s accretion flow in X-rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14631v1-abstract-full').style.display = 'none'; document.getElementById('2406.14631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures. Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14630">arXiv:2406.14630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14630">pdf</a>, <a href="https://arxiv.org/format/2406.14630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multistructured accretion flow of Sgr A* I: Examination of a RIAF model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+M">Mayura Balakrishnan</a>, <a href="/search/?searchtype=author&amp;query=Corrales%2C+L">Lia Corrales</a>, <a href="/search/?searchtype=author&amp;query=Markoff%2C+S">Sera Markoff</a>, <a href="/search/?searchtype=author&amp;query=Nowak%2C+M">Michael Nowak</a>, <a href="/search/?searchtype=author&amp;query=Haggard%2C+D">Daryl Haggard</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q+D">Q. Daniel Wang</a>, <a href="/search/?searchtype=author&amp;query=Neilsen%2C+J">Joey Neilsen</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">Christopher M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Calder%C3%B3n%2C+D">Diego Calder贸n</a>, <a href="/search/?searchtype=author&amp;query=Cuadra%2C+J">Jorge Cuadra</a>, <a href="/search/?searchtype=author&amp;query=Baganoff%2C+F">Fred Baganoff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14630v1-abstract-short" style="display: inline;"> The extreme low-luminosity supermassive black hole Sgr A* provides a unique laboratory in which to test radiatively inefficient accretion flow (RIAF) models. Previous fits to the quiescent Chandra ACIS-S spectrum found a RIAF model with an equal inflow-outflow balance works well. In this work, we apply the RIAF model to the Chandra HETG-S spectrum obtained through the Chandra X-ray Visionary Progr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14630v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14630v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14630v1-abstract-full" style="display: none;"> The extreme low-luminosity supermassive black hole Sgr A* provides a unique laboratory in which to test radiatively inefficient accretion flow (RIAF) models. Previous fits to the quiescent Chandra ACIS-S spectrum found a RIAF model with an equal inflow-outflow balance works well. In this work, we apply the RIAF model to the Chandra HETG-S spectrum obtained through the Chandra X-ray Visionary Program, which displays features suggestive of temperature and velocity structures within the plasma. A comprehensive forward model analysis accounting for the accretion flow geometry and HETG-S instrumental effects is required for a full interpretation of the quiescent Chandra HETG-S spectrum. We present a RIAF model that takes these effects into account. Our fits to the high-resolution gratings spectrum indicate an inflow balanced by an outflow ($s \sim 1$) alongside a temperature profile that appears shallower than what would be expected from a gravitational potential following $1/r$. The data require that the abundance of Iron relative to solar is $Z_{Fe} &lt; 0.32 Z_\odot$ (90\% credible interval), much lower than the $2~Z_\odot$ metallicity measured in nearby late-type giants. While future missions like NewAthena will provide higher spectral resolution, source separation will continue to be a problem. Leveraging Chandra&#39;s unparalleled spatial resolution, which is not expected to be surpassed for decades, remains essential for detailed investigations of the densely populated Galactic Center in X-rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14630v1-abstract-full').style.display = 'none'; document.getElementById('2406.14630v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, 1 table. Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12014">arXiv:2406.12014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12014">pdf</a>, <a href="https://arxiv.org/format/2406.12014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> An IXPE-Led X-ray Spectro-Polarimetric Campaign on the Soft State of Cygnus X-1: X-ray Polarimetric Evidence for Strong Gravitational Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Steiner%2C+J+F">James F. Steiner</a>, <a href="/search/?searchtype=author&amp;query=Nathan%2C+E">Edward Nathan</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+K">Kun Hu</a>, <a href="/search/?searchtype=author&amp;query=Krawczynski%2C+H">Henric Krawczynski</a>, <a href="/search/?searchtype=author&amp;query=Dovciak%2C+M">Michal Dovciak</a>, <a href="/search/?searchtype=author&amp;query=Veledina%2C+A">Alexandra Veledina</a>, <a href="/search/?searchtype=author&amp;query=Muleri%2C+F">Fabio Muleri</a>, <a href="/search/?searchtype=author&amp;query=Svoboda%2C+J">Jiri Svoboda</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">Kevin Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Parra%2C+M">Maxime Parra</a>, <a href="/search/?searchtype=author&amp;query=Bhargava%2C+Y">Yash Bhargava</a>, <a href="/search/?searchtype=author&amp;query=Matt%2C+G">Giorgio Matt</a>, <a href="/search/?searchtype=author&amp;query=Poutanen%2C+J">Juri Poutanen</a>, <a href="/search/?searchtype=author&amp;query=Petrucci%2C+P">Pierre-Olivier Petrucci</a>, <a href="/search/?searchtype=author&amp;query=Tennant%2C+A+F">Allyn F. Tennant</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. Cristina Baglio</a>, <a href="/search/?searchtype=author&amp;query=Baldini%2C+L">Luca Baldini</a>, <a href="/search/?searchtype=author&amp;query=Barnier%2C+S">Samuel Barnier</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharyya%2C+S">Sudip Bhattacharyya</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+S">Stefano Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Brigitte%2C+M">Maimouna Brigitte</a>, <a href="/search/?searchtype=author&amp;query=Cabezas%2C+M">Mauricio Cabezas</a>, <a href="/search/?searchtype=author&amp;query=Cangemi%2C+F">Floriane Cangemi</a>, <a href="/search/?searchtype=author&amp;query=Capitanio%2C+F">Fiamma Capitanio</a>, <a href="/search/?searchtype=author&amp;query=Casey%2C+J">Jacob Casey</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12014v1-abstract-short" style="display: inline;"> We present the first X-ray spectropolarimetric results for Cygnus X-1 in its soft state from a campaign of five IXPE observations conducted during 2023 May-June. Companion multiwavelength data during the campaign are likewise shown. The 2-8 keV X-rays exhibit a net polarization degree PD=1.99%+/-0.13% (68% confidence). The polarization signal is found to increase with energy across IXPE&#39;s 2-8 keV&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12014v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12014v1-abstract-full" style="display: none;"> We present the first X-ray spectropolarimetric results for Cygnus X-1 in its soft state from a campaign of five IXPE observations conducted during 2023 May-June. Companion multiwavelength data during the campaign are likewise shown. The 2-8 keV X-rays exhibit a net polarization degree PD=1.99%+/-0.13% (68% confidence). The polarization signal is found to increase with energy across IXPE&#39;s 2-8 keV bandpass. The polarized X-rays exhibit an energy-independent polarization angle of PA=-25.7+/-1.8 deg. East of North (68% confidence). This is consistent with being aligned to Cyg X-1&#39;s AU-scale compact radio jet and its pc-scale radio lobes. In comparison to earlier hard-state observations, the soft state exhibits a factor of 2 lower polarization degree, but a similar trend with energy and a similar (also energy-independent) position angle. When scaling by the natural unit of the disk temperature, we find the appearance of a consistent trendline in the polarization degree between soft and hard states. Our favored polarimetric model indicates Cyg X-1&#39;s spin is likely high (a* above ~0.96). The substantial X-ray polarization in Cyg X-1&#39;s soft state is most readily explained as resulting from a large portion of X-rays emitted from the disk returning and reflecting off the disk surface, generating a high polarization degree and a polarization direction parallel to the black hole spin axis and radio jet. In IXPE&#39;s bandpass, the polarization signal is dominated by the returning reflection emission. This constitutes polarimetric evidence for strong gravitational lensing of X-rays close to the black hole. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12014v1-abstract-full').style.display = 'none'; document.getElementById('2406.12014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12370">arXiv:2405.12370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12370">pdf</a>, <a href="https://arxiv.org/format/2405.12370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad6572">10.3847/2041-8213/ad6572 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swift J1727.8-1613 has the Largest Resolved Continuous Jet Ever Seen in an X-ray Binary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wood%2C+C+M">Callan M. Wood</a>, <a href="/search/?searchtype=author&amp;query=Miller-Jones%2C+J+C+A">James C. A. Miller-Jones</a>, <a href="/search/?searchtype=author&amp;query=Bahramian%2C+A">Arash Bahramian</a>, <a href="/search/?searchtype=author&amp;query=Tingay%2C+S+J">Steven J. Tingay</a>, <a href="/search/?searchtype=author&amp;query=Prabu%2C+S">Steve Prabu</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+T+D">Thomas D. Russell</a>, <a href="/search/?searchtype=author&amp;query=Atri%2C+P">Pikky Atri</a>, <a href="/search/?searchtype=author&amp;query=Carotenuto%2C+F">Francesco Carotenuto</a>, <a href="/search/?searchtype=author&amp;query=Altamirano%2C+D">Diego Altamirano</a>, <a href="/search/?searchtype=author&amp;query=Motta%2C+S+E">Sara E. Motta</a>, <a href="/search/?searchtype=author&amp;query=Hyland%2C+L">Lucas Hyland</a>, <a href="/search/?searchtype=author&amp;query=Reynolds%2C+C">Cormac Reynolds</a>, <a href="/search/?searchtype=author&amp;query=Weston%2C+S">Stuart Weston</a>, <a href="/search/?searchtype=author&amp;query=Fender%2C+R">Rob Fender</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6rding%2C+E">Elmar K枚rding</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+D">Dipankar Maitra</a>, <a href="/search/?searchtype=author&amp;query=Markoff%2C+S">Sera Markoff</a>, <a href="/search/?searchtype=author&amp;query=Migliari%2C+S">Simone Migliari</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/?searchtype=author&amp;query=Sivakoff%2C+G+R">Gregory R. Sivakoff</a>, <a href="/search/?searchtype=author&amp;query=Soria%2C+R">Roberto Soria</a>, <a href="/search/?searchtype=author&amp;query=Tetarenko%2C+A+J">Alexandra J. Tetarenko</a>, <a href="/search/?searchtype=author&amp;query=Tudose%2C+V">Valeriu Tudose</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12370v2-abstract-short" style="display: inline;"> Multi-wavelength polarimetry and radio observations of Swift J1727.8-1613 at the beginning of its recent 2023 outburst suggested the presence of a bright compact jet aligned in the north-south direction, which could not be confirmed without high angular resolution images. Using the Very Long Baseline Array and the Long Baseline Array, we imaged Swift J1727.8-1613, during the hard/hard-intermediate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12370v2-abstract-full').style.display = 'inline'; document.getElementById('2405.12370v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12370v2-abstract-full" style="display: none;"> Multi-wavelength polarimetry and radio observations of Swift J1727.8-1613 at the beginning of its recent 2023 outburst suggested the presence of a bright compact jet aligned in the north-south direction, which could not be confirmed without high angular resolution images. Using the Very Long Baseline Array and the Long Baseline Array, we imaged Swift J1727.8-1613, during the hard/hard-intermediate state, revealing a bright core and a large, two-sided, asymmetrical, resolved jet. The jet extends in the north-south direction, at a position angle of $-0.60\pm0.07掳$ East of North. At 8.4 GHz, the entire resolved jet structure is $\sim110 (d/2.7\,\text{kpc})/\sin i$ AU long, with the southern approaching jet extending $\sim80 (d/2.7\,\text{kpc})/\sin i$ AU from the core, where $d$ is the distance to the source and $i$ is the inclination of the jet axis to the line of sight. These images reveal the most resolved continuous X-ray binary jet, and possibly the most physically extended continuous X-ray binary jet ever observed. Based on the brightness ratio of the approaching and receding jets, we put a lower limit on the intrinsic jet speed of $尾\geq0.27$ and an upper limit on the jet inclination of $i\leq74掳$. In our first observation we also detected a rapidly fading discrete jet knot $66.89\pm0.04$ mas south of the core, with a proper motion of $0.66\pm0.05$ mas hour$^{-1}$, which we interpret as the result of a downstream internal shock or a jet-ISM interaction, as opposed to a transient relativistic jet launched at the beginning of the outburst. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12370v2-abstract-full').style.display = 'none'; document.getElementById('2405.12370v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03851">arXiv:2404.03851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03851">pdf</a>, <a href="https://arxiv.org/ps/2404.03851">ps</a>, <a href="https://arxiv.org/format/2404.03851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> </div> </div> <p class="title is-5 mathjax"> Remarks on the conjectures of Capparelli, Meurman, Primc and Primc </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kanade%2C+S">Shashank Kanade</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+M+C">Matthew C. Russell</a>, <a href="/search/?searchtype=author&amp;query=Tsuchioka%2C+S">Shunsuke Tsuchioka</a>, <a href="/search/?searchtype=author&amp;query=Warnaar%2C+S+O">S. Ole Warnaar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03851v1-abstract-short" style="display: inline;"> In a sequence of two papers, S. Capparelli, A. Meurman, A. Primc, M. Primc (CMPP) and then M. Primc put forth three remarkable sets of conjectures, stating that the generating functions of coloured integer partition in which the parts satisfy restrictions on the multiplicities admit simple infinite product forms. While CMPP related one set of conjectures to the principally specialised characters o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03851v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03851v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03851v1-abstract-full" style="display: none;"> In a sequence of two papers, S. Capparelli, A. Meurman, A. Primc, M. Primc (CMPP) and then M. Primc put forth three remarkable sets of conjectures, stating that the generating functions of coloured integer partition in which the parts satisfy restrictions on the multiplicities admit simple infinite product forms. While CMPP related one set of conjectures to the principally specialised characters of standard modules for the affine Lie algebra $\mathrm{C}_n^{(1)}$, finding a Lie-algebraic interpretation for the remaining two sets remained an open problem. In this paper, we use the work of Griffin, Ono and the fourth author on Rogers-Ramanujan identities for affine Lie algebras to solve this problem, relating the remaining two sets of conjectures to non-standard specialisations of standard modules for $\mathrm{A}_{2n}^{(2)}$ and $\mathrm{D}_{n+1}^{(2)}$. We also use their work to formulate conjectures for the bivariate generating function of one-parameter families of CMPP partitions in terms of Hall-Littlewood symmetric functions. We make a detailed study of several further aspects of CMPP partitions, obtaining (i) functional equations for bivariate generating functions which generalise the well-known Rogers-Selberg equations, (ii) a partial level-rank duality in the $\mathrm{A}_{2n}^{(2)}$ case, and (iii) (conjectural) identities of the Rogers-Ramanujan type for $\mathrm{D}_3^{(2)}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03851v1-abstract-full').style.display = 'none'; document.getElementById('2404.03851v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05A17; 05E05; 05E10; 11P84; 12B67 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04621">arXiv:2403.04621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04621">pdf</a>, <a href="https://arxiv.org/format/2403.04621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> </div> <p class="title is-5 mathjax"> Correction and standardisation of lung oscillometry techniques using parameter inference: A study group report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Brook%2C+B+S">Bindi S. Brook</a>, <a href="/search/?searchtype=author&amp;query=Douglas%2C+G+R">Graeham R. Douglas</a>, <a href="/search/?searchtype=author&amp;query=Jensen%2C+O+E">Oliver E. Jensen</a>, <a href="/search/?searchtype=author&amp;query=Mistry%2C+S">Sonal Mistry</a>, <a href="/search/?searchtype=author&amp;query=Nath%2C+S+K">Sujit Kumar Nath</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+M+J">Matthew J. Russell</a>, <a href="/search/?searchtype=author&amp;query=Saffaran%2C+S">Sina Saffaran</a>, <a href="/search/?searchtype=author&amp;query=Shemilt%2C+J">James Shemilt</a>, <a href="/search/?searchtype=author&amp;query=Weaver%2C+L">Liam Weaver</a>, <a href="/search/?searchtype=author&amp;query=Whitfield%2C+C+A">Carl A. Whitfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04621v1-abstract-short" style="display: inline;"> This report relates to a study group hosted by the EPSRC funded network, Integrating data-driven BIOphysical models into REspiratory MEdicine (BIOREME), and supported by The Insigneo Institute and The Knowledge Transfer Network. The BIOREME network hosts events, including this study group, to bring together multi-disciplinary researchers, clinicians, companies and charities to catalyse research in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04621v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04621v1-abstract-full" style="display: none;"> This report relates to a study group hosted by the EPSRC funded network, Integrating data-driven BIOphysical models into REspiratory MEdicine (BIOREME), and supported by The Insigneo Institute and The Knowledge Transfer Network. The BIOREME network hosts events, including this study group, to bring together multi-disciplinary researchers, clinicians, companies and charities to catalyse research in the applications of mathematical modelling for respiratory medicine. The goal of this study group was to provide an interface between companies, clinicians, and mathematicians to develop mathematical tools to the problems presented. The study group was held at The University of Sheffield on the 17 - 20 April 2023 and was attended by 24 researchers from 13 different institutions. This report relates to a challenge presented by Arete Medical Technologies relating to impulse oscillometry (IOS), whereby a short pressure oscillation is imposed at a person&#39;s mouth during normal breathing, usually by a loudspeaker. The resulting pressure and flow rate changes can be used to the impedance of the airways, which in turn can provide proxy measurements for (patho)physiological changes in the small airways. Disentangling the signal so that airway mechanics can be measured accurately (and device properties/environmental effects can be accounted for) remains an open challenge that has the potential to significantly improve the device and its translation to clinic. In this report, several approaches to this problem, and the wider problem of interpreting oscillometry resuts are explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04621v1-abstract-full').style.display = 'none'; document.getElementById('2403.04621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures, Study group report</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02874">arXiv:2403.02874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02874">pdf</a>, <a href="https://arxiv.org/format/2403.02874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The bright black hole X-ray binary 4U 1543-47 during 2021 outburst. A clear state transition from super-Eddington to sub-Eddington accretion revealed by Insight-HXMT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jin%2C+P">Pei Jin</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+G">Guobao Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yuexin Zhang</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A9ndez%2C+M">Mariano M茅ndez</a>, <a href="/search/?searchtype=author&amp;query=Qu%2C+J">Jinlu Qu</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Jiancheng Wang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+S">Shuangnan Zhang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+Y">Yi-Jung Yang</a>, <a href="/search/?searchtype=author&amp;query=Jia%2C+S">Shumei Jia</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+Z">Zixu Yang</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+H">Hexin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02874v1-abstract-short" style="display: inline;"> We present a detailed analysis of the observations with the Hard X-ray Modulation Telescope of the black hole X-ray transient 4U~1543-47 during its outburst in 2021. We find a clear state transition during the outburst decay of the source. Using previous measurements of the black-hole mass and distance to the source, the source luminosity during this transition is close to the Eddington limit. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02874v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02874v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02874v1-abstract-full" style="display: none;"> We present a detailed analysis of the observations with the Hard X-ray Modulation Telescope of the black hole X-ray transient 4U~1543-47 during its outburst in 2021. We find a clear state transition during the outburst decay of the source. Using previous measurements of the black-hole mass and distance to the source, the source luminosity during this transition is close to the Eddington limit. The light curves before and after the transition can be fitted by two exponential functions with short ($\sim 16$ days) and long ($\sim 130$ days) decay time scales, respectively. We detect strong reflection features in all observations that can be described with either the RelxillNS or Reflionx_bb reflection models, both of which have a black-body incident spectrum. In the super-Eddington state, we observe a Comptonized component characterized by a low electron temperature of approximately 2.0 keV. We suggest that this component appears exclusively within the inner radiation-pressure dominated region of the supercritical disk as a part of the intrinsic spectrum of the accretion disk itself. This feature vanishes as the source transitions into the sub-Eddington state. The emissivity index of the accretion disk in the reflection component is significantly different before and after the transition, $\sim3.0$-$5.0$ and $\sim7.0$-$9.0$ in the super- and sub-Eddington states, respectively. Based on the reflection geometry of returning disk radiation, the geometrically thicker the accretion disk, the smaller the emissivity index. Therefore, we propose that the transition is primarily driven by the change of the accretion flow from a supercritical to a thin disk configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02874v1-abstract-full').style.display = 'none'; document.getElementById('2403.02874v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08237">arXiv:2402.08237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08237">pdf</a>, <a href="https://arxiv.org/format/2402.08237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad24ef">10.3847/1538-4357/ad24ef <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A multi-wavelength study of the hard and soft states of MAXI J1820+070 during its 2018 outburst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Banerjee%2C+S">Srimanta Banerjee</a>, <a href="/search/?searchtype=author&amp;query=Dewangan%2C+G+C">Gulab C. Dewangan</a>, <a href="/search/?searchtype=author&amp;query=Knigge%2C+C">Christian Knigge</a>, <a href="/search/?searchtype=author&amp;query=Georganti%2C+M">Maria Georganti</a>, <a href="/search/?searchtype=author&amp;query=Gandhi%2C+P">Poshak Gandhi</a>, <a href="/search/?searchtype=author&amp;query=Mithun%2C+N+P+S">N. P. S. Mithun</a>, <a href="/search/?searchtype=author&amp;query=Saikia%2C+P">Payaswini Saikia</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharya%2C+D">Dipankar Bhattacharya</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+F">Fraser Lewis</a>, <a href="/search/?searchtype=author&amp;query=Zdziarski%2C+A+A">Andrzej A. Zdziarski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08237v1-abstract-short" style="display: inline;"> We present a comprehensive multi-wavelength spectral analysis of the black hole X-ray binary MAXI J1820+070 during its 2018 outburst, utilizing AstroSat far UV, soft and hard X-ray data, along with (quasi-)simultaneous optical and X-ray data from Las Cumbres Observatory and NICER, respectively. In the soft state, we detect soft X-ray and UV/optical excess components over and above the intrinsic ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08237v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08237v1-abstract-full" style="display: none;"> We present a comprehensive multi-wavelength spectral analysis of the black hole X-ray binary MAXI J1820+070 during its 2018 outburst, utilizing AstroSat far UV, soft and hard X-ray data, along with (quasi-)simultaneous optical and X-ray data from Las Cumbres Observatory and NICER, respectively. In the soft state, we detect soft X-ray and UV/optical excess components over and above the intrinsic accretion disk emission ($kT_{\rm in}\sim 0.58$ keV) and a steep X-ray power-law component. The soft X-ray excess is consistent with a high-temperature blackbody ($kT\sim 0.79$ keV), while the UV/optical excess is described by UV emission lines and two low-temperature blackbody components ($kT\sim 3.87$ eV and $\sim 0.75$ eV). Employing continuum spectral fitting, we determine the black hole spin parameter ($a=0.77\pm0.21$), using the jet inclination angle of $64^{\circ}\pm5^{\circ}$ and a mass spanning $5-10M_{\odot}$. In the hard state, we observe a significantly enhanced optical/UV excess component, indicating a stronger reprocessed emission in the outer disk. Broad-band X-ray spectroscopy in the hard state reveals a two-component corona, each associated with its reflection component, in addition to the disk emission ($kT_{\rm in}\sim 0.19$ keV). The softer coronal component dominates the bolometric X-ray luminosity and produces broader relativistic reflection features, while the harder component gets reflected far from the inner disk, yielding narrow reflection features. Furthermore, our analysis in the hard state suggests a substantial truncation of the inner disk ($\gtrsim 51$ gravitational radii) and a high disk density ($\sim 10^{20}\ \rm cm^{-3}$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08237v1-abstract-full').style.display = 'none'; document.getElementById('2402.08237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 19 figures, 8 Tables, Accepted for publication in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, 964, 189 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12883">arXiv:2401.12883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12883">pdf</a>, <a href="https://arxiv.org/ps/2401.12883">ps</a>, <a href="https://arxiv.org/format/2401.12883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> Counting subgraphs of coloring graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Asgarli%2C+S">Shamil Asgarli</a>, <a href="/search/?searchtype=author&amp;query=Krehbiel%2C+S">Sara Krehbiel</a>, <a href="/search/?searchtype=author&amp;query=Levinson%2C+H+W">Howard W. Levinson</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+H+M">Heather M. Russell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12883v1-abstract-short" style="display: inline;"> The chromatic polynomial $蟺_{G}(k)$ of a graph $G$ can be viewed as counting the number of vertices in a family of coloring graphs $\mathcal C_k(G)$ associated with (proper) $k$-colorings of $G$ as a function of the number of colors $k$. These coloring graphs can be understood as a reconfiguration system. We generalize the chromatic polynomial to $蟺_G^{(H)}(k)$, counting occurrences of arbitrary i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12883v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12883v1-abstract-full" style="display: none;"> The chromatic polynomial $蟺_{G}(k)$ of a graph $G$ can be viewed as counting the number of vertices in a family of coloring graphs $\mathcal C_k(G)$ associated with (proper) $k$-colorings of $G$ as a function of the number of colors $k$. These coloring graphs can be understood as a reconfiguration system. We generalize the chromatic polynomial to $蟺_G^{(H)}(k)$, counting occurrences of arbitrary induced subgraphs $H$ in these coloring graphs, and we prove that these functions are polynomial in $k$. In particular, we study the chromatic pairs polynomial $蟺_{G}^{(P_2)}(k)$, which counts the number of edges in coloring graphs, corresponding to the number of pairs of colorings that differ on a single vertex. We show two trees share a chromatic pairs polynomial if and only if they have the same degree sequence, and we conjecture that the chromatic pairs polynomial refines the chromatic polynomial in general. We also instantiate our polynomials with other choices of $H$ to generate new graph invariants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12883v1-abstract-full').style.display = 'none'; document.getElementById('2401.12883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05C15; 05C31 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00977">arXiv:2401.00977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00977">pdf</a>, <a href="https://arxiv.org/format/2401.00977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3635">10.1093/mnras/stad3635 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray plasma flow and turbulence in the colliding winds of WR140 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Miyamoto%2C+A">Asca Miyamoto</a>, <a href="/search/?searchtype=author&amp;query=Sugawara%2C+Y">Yasuharu Sugawara</a>, <a href="/search/?searchtype=author&amp;query=Maeda%2C+Y">Yoshitomo Maeda</a>, <a href="/search/?searchtype=author&amp;query=Ishida%2C+M">Manabu Ishida</a>, <a href="/search/?searchtype=author&amp;query=Hamaguchi%2C+K">Kenji Hamaguchi</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">Christopher M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Moffat%2C+A+F+J">Anthony F. J. Moffat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00977v1-abstract-short" style="display: inline;"> We analyse $\textit{XMM-Newton}$ RGS spectra of Wolf-Rayet (WR) 140, an archetype long-period eccentric WR+O colliding wind binary. We evaluate the spectra of O and Fe emission lines and find that the plasmas emitting these lines have the largest approaching velocities with the largest velocity dispersions between phases 0.935 and 0.968 where the inferior conjunction of the O star occurs. This beh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00977v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00977v1-abstract-full" style="display: none;"> We analyse $\textit{XMM-Newton}$ RGS spectra of Wolf-Rayet (WR) 140, an archetype long-period eccentric WR+O colliding wind binary. We evaluate the spectra of O and Fe emission lines and find that the plasmas emitting these lines have the largest approaching velocities with the largest velocity dispersions between phases 0.935 and 0.968 where the inferior conjunction of the O star occurs. This behaviour is the same as that of the Ne line-emission plasma presented in our previous paper. We perform diagnosis of electron number density $n_{\rm e}$ using He-like triplet lines of O and Ne-like Fe-L lines. The former results in a conservative upper limit of $n_{\rm e} \lesssim 10^{10}$-10$^{12}$ cm$^{-3}$ on the O line-emission site, while the latter can not impose any constraint on the Fe line-emission site because of statistical limitations. We calculate the line-of-sight velocity and its dispersion separately along the shock cone. By comparing the observed and calculated line-of-sight velocities, we update the distance of the Ne line-emission site from the stagnation point. By assuming radiative cooling of the Ne line-emission plasma using the observed temperature and the local stellar wind density, we estimate the line-emission site extends along the shock cone by at most $\pm$58 per cent (phase 0.816) of the distance from the stagnation point. In this framework, excess of the observed velocity dispersion over the calculated one is ascribed to turbulence in the hot-shocked plasma at earlier orbital phases of 0.816, 0.912, and 0.935, with the largest velocity dispersion of 340-630 km s$^{-1}$ at phase 0.912. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00977v1-abstract-full').style.display = 'none'; document.getElementById('2401.00977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15948">arXiv:2311.15948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.15948">pdf</a>, <a href="https://arxiv.org/format/2311.15948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> A First Look with JWST Aperture Masking Interferometry (AMI): Resolving Circumstellar Dust around the Wolf-Rayet Binary WR 137 beyond the Rayleigh Limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lau%2C+R+M">Ryan M. Lau</a>, <a href="/search/?searchtype=author&amp;query=Hankins%2C+M+J">Matthew J. Hankins</a>, <a href="/search/?searchtype=author&amp;query=Sanchez-Bermudez%2C+J">Joel Sanchez-Bermudez</a>, <a href="/search/?searchtype=author&amp;query=Thatte%2C+D">Deepashri Thatte</a>, <a href="/search/?searchtype=author&amp;query=Soulain%2C+A">Anthony Soulain</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+A">Rachel A. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Sivaramakrishnan%2C+A">Anand Sivaramakrishnan</a>, <a href="/search/?searchtype=author&amp;query=Corcoran%2C+M+F">Michael F. Corcoran</a>, <a href="/search/?searchtype=author&amp;query=Greenbaum%2C+A+Z">Alexandra Z. Greenbaum</a>, <a href="/search/?searchtype=author&amp;query=Gull%2C+T+R">Theodore R. Gull</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+Y">Yinuo Han</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+O+C">Olivia C. Jones</a>, <a href="/search/?searchtype=author&amp;query=Madura%2C+T">Thomas Madura</a>, <a href="/search/?searchtype=author&amp;query=Moffat%2C+A+F+J">Anthony F. J. Moffat</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">Christopher M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Richardson%2C+N+D">Noel D. Richardson</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+N">Nathan Smith</a>, <a href="/search/?searchtype=author&amp;query=Tuthill%2C+P">Peter Tuthill</a>, <a href="/search/?searchtype=author&amp;query=Volk%2C+K">Kevin Volk</a>, <a href="/search/?searchtype=author&amp;query=Weigelt%2C+G">Gerd Weigelt</a>, <a href="/search/?searchtype=author&amp;query=Williams%2C+P+M">Peredur M. Williams</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15948v2-abstract-short" style="display: inline;"> We present infrared aperture masking interferometry (AMI) observations of newly formed dust from the colliding winds of the massive binary system Wolf-Rayet (WR) 137 with JWST using the Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS AMI observations of WR 137 and a point-spread-function calibrator star, HD~228337, were taken using the F380M and F480M filters in 2022 July and Augus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15948v2-abstract-full').style.display = 'inline'; document.getElementById('2311.15948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15948v2-abstract-full" style="display: none;"> We present infrared aperture masking interferometry (AMI) observations of newly formed dust from the colliding winds of the massive binary system Wolf-Rayet (WR) 137 with JWST using the Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS AMI observations of WR 137 and a point-spread-function calibrator star, HD~228337, were taken using the F380M and F480M filters in 2022 July and August as part of the Director&#39;s Discretionary Early Release Science (DD-ERS) program 1349. Interferometric observables (squared visibilities and closure phases) from the WR 137 &#34;interferogram&#34; were extracted and calibrated using three independent software tools: ImPlaneIA, AMICAL, and SAMpip. The analysis of the calibrated observables yielded consistent values except for slightly discrepant closure phases measured by ImPlaneIA. Based on all three sets of calibrated observables, images were reconstructed using three independent software tools: BSMEM, IRBis, and SQUEEZE. All reconstructed image combinations generated consistent images in both F380M and F480M filters. The reconstructed images of WR 137 reveal a bright central core with a $\sim300$ mas linear filament extending to the northwest. A geometric colliding-wind model with dust production constrained to the orbital plane of the binary system and enhanced as the system approaches periapsis provided a general agreement with the interferometric observables and reconstructed images. Based on a colliding-wind dust condensation analysis, we suggest that dust formation within the orbital plane of WR 137 is induced by enhanced equatorial mass-loss from the rapidly rotating O9 companion star, whose axis of rotation is aligned with that of the orbit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15948v2-abstract-full').style.display = 'none'; document.getElementById('2311.15948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures, Accepted for publication in ApJ. Updated plotting error in Fig. 2</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11523">arXiv:2311.11523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11523">pdf</a>, <a href="https://arxiv.org/format/2311.11523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad1a10">10.3847/1538-4357/ad1a10 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chasing the break: Tracing the full evolution of a black hole X-ray binary jet with multi-wavelength spectral modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Echibur%C3%BA-Trujillo%2C+C">Constanza Echibur煤-Trujillo</a>, <a href="/search/?searchtype=author&amp;query=Tetarenko%2C+A+J">Alexandra J. Tetarenko</a>, <a href="/search/?searchtype=author&amp;query=Haggard%2C+D">Daryl Haggard</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+T+D">Thomas D. Russell</a>, <a href="/search/?searchtype=author&amp;query=Koljonen%2C+K+I+I">Karri I. I. Koljonen</a>, <a href="/search/?searchtype=author&amp;query=Bahramian%2C+A">Arash Bahramian</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Jingyi Wang</a>, <a href="/search/?searchtype=author&amp;query=Bremer%2C+M">Michael Bremer</a>, <a href="/search/?searchtype=author&amp;query=Bright%2C+J">Joe Bright</a>, <a href="/search/?searchtype=author&amp;query=Casella%2C+P">Piergiorgio Casella</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Altamirano%2C+D">Diego Altamirano</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. Cristina Baglio</a>, <a href="/search/?searchtype=author&amp;query=Belloni%2C+T">Tomaso Belloni</a>, <a href="/search/?searchtype=author&amp;query=Ceccobello%2C+C">Chiara Ceccobello</a>, <a href="/search/?searchtype=author&amp;query=Corbel%2C+S">Stephane Corbel</a>, <a href="/search/?searchtype=author&amp;query=Trigo%2C+M+D">Maria Diaz Trigo</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+D">Dipankar Maitra</a>, <a href="/search/?searchtype=author&amp;query=Gabuya%2C+A">Aldrin Gabuya</a>, <a href="/search/?searchtype=author&amp;query=Gallo%2C+E">Elena Gallo</a>, <a href="/search/?searchtype=author&amp;query=Heinz%2C+S">Sebastian Heinz</a>, <a href="/search/?searchtype=author&amp;query=Homan%2C+J">Jeroen Homan</a>, <a href="/search/?searchtype=author&amp;query=Kara%2C+E">Erin Kara</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6rding%2C+E">Elmar K枚rding</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+F">Fraser Lewis</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11523v2-abstract-short" style="display: inline;"> Black hole X-ray binaries (BH XRBs) are ideal targets to study the connection between accretion inflow and jet outflow. Here we present quasi-simultaneous, multi-wavelength observations of the Galactic black hole system MAXI J1820+070, throughout its 2018-2019 outburst. Our data set includes coverage from the radio through X-ray bands from 17 different instruments/telescopes, and encompasses 19 ep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11523v2-abstract-full').style.display = 'inline'; document.getElementById('2311.11523v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11523v2-abstract-full" style="display: none;"> Black hole X-ray binaries (BH XRBs) are ideal targets to study the connection between accretion inflow and jet outflow. Here we present quasi-simultaneous, multi-wavelength observations of the Galactic black hole system MAXI J1820+070, throughout its 2018-2019 outburst. Our data set includes coverage from the radio through X-ray bands from 17 different instruments/telescopes, and encompasses 19 epochs over a 7 month time period, resulting in one of the most well-sampled multi-wavelength data sets of a BH XRB outburst to date. With our data, we compile and model the broad-band spectra of this source using a phenomenological model that includes emission from the jet, companion star, and accretion flow. This modeling allows us to track the evolution of the spectral break in the jet spectrum, a key observable that samples the jet launching region. We find that the spectral break location changes over at least $\approx3$ orders of magnitude in electromagnetic frequency over this period. Using these spectral break measurements, we link the full cycle of jet behavior, including the rising, quenching, and re-ignition, to the changing accretion flow properties as the source evolves through its different accretion states. Our analyses show a consistent jet behavior with other sources in similar phases of their outbursts, reinforcing that the jet quenching and recovery may be a global feature of BH XRB systems in outburst. Our results also provide valuable evidence supporting a close connection between the geometry of the inner accretion flow and the base of the jet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11523v2-abstract-full').style.display = 'none'; document.getElementById('2311.11523v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 ApJ 962 116 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03460">arXiv:2311.03460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03460">pdf</a>, <a href="https://arxiv.org/format/2311.03460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The omnipresent flux-dependent optical dips of the black hole transient Swift J1357.2-0933 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Panizo-Espinar%2C+G">G. Panizo-Espinar</a>, <a href="/search/?searchtype=author&amp;query=Mu%C3%B1oz-Darias%2C+T">T. Mu帽oz-Darias</a>, <a href="/search/?searchtype=author&amp;query=Padilla%2C+M+A">M. Armas Padilla</a>, <a href="/search/?searchtype=author&amp;query=Jim%C3%A9nez-Ibarra%2C+F">F. Jim茅nez-Ibarra</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A1nchez%2C+D+M">D. Mata S谩nchez</a>, <a href="/search/?searchtype=author&amp;query=Yanes-Rizo%2C+I+V">I. V. Yanes-Rizo</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">K. Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Caruso%2C+E">E. Caruso</a>, <a href="/search/?searchtype=author&amp;query=Casares%2C+J">J. Casares</a>, <a href="/search/?searchtype=author&amp;query=Corral-Santana%2C+J+M">J. M. Corral-Santana</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+F">F. Lewis</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">D. M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Saikia%2C+P">P. Saikia</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A1nchez-Sierras%2C+J">J. S谩nchez-Sierras</a>, <a href="/search/?searchtype=author&amp;query=Shahbaz%2C+T">T. Shahbaz</a>, <a href="/search/?searchtype=author&amp;query=Torres%2C+M+A+P">M. A. P. Torres</a>, <a href="/search/?searchtype=author&amp;query=Vincentelli%2C+F">F. Vincentelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03460v1-abstract-short" style="display: inline;"> Swift J1357.2-0933 is a black hole transient of particular interest due to the optical, recurrent dips found during its first two outbursts (in 2011 and 2017), with no obvious X-ray equivalent. We present fast optical photometry during its two most recent outbursts, in 2019 and 2021. Our observations reveal that the optical dips were present in every observed outburst of the source, although they&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03460v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03460v1-abstract-full" style="display: none;"> Swift J1357.2-0933 is a black hole transient of particular interest due to the optical, recurrent dips found during its first two outbursts (in 2011 and 2017), with no obvious X-ray equivalent. We present fast optical photometry during its two most recent outbursts, in 2019 and 2021. Our observations reveal that the optical dips were present in every observed outburst of the source, although they were shallower and showed longer recurrence periods in the two most recent and fainter events. We perform a global study of the dips properties in the four outbursts, and find that they do not follow a common temporal evolution. In addition, we discover a correlation with the X-ray and optical fluxes, with dips being more profound and showing shorter recurrence periods for brighter stages. This trend seems to extend even to the faintest, quiescent states of the source. Finally, we discuss these results in the context of the possible connection between optical dips and outflows found in previous works. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03460v1-abstract-full').style.display = 'none'; document.getElementById('2311.03460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06788">arXiv:2310.06788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.06788">pdf</a>, <a href="https://arxiv.org/ps/2310.06788">ps</a>, <a href="https://arxiv.org/format/2310.06788">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a variable energy-dependent X-ray polarization in the accreting neutron star GX 5-1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fabiani%2C+S">Sergio Fabiani</a>, <a href="/search/?searchtype=author&amp;query=Capitanio%2C+F">Fiamma Capitanio</a>, <a href="/search/?searchtype=author&amp;query=Iaria%2C+R">Rosario Iaria</a>, <a href="/search/?searchtype=author&amp;query=Poutanen%2C+J">Juri Poutanen</a>, <a href="/search/?searchtype=author&amp;query=Gnarini%2C+A">Andrea Gnarini</a>, <a href="/search/?searchtype=author&amp;query=Ursini%2C+F">Francesco Ursini</a>, <a href="/search/?searchtype=author&amp;query=Farinelli%2C+R">Ruben Farinelli</a>, <a href="/search/?searchtype=author&amp;query=Bobrikova%2C+A">Anna Bobrikova</a>, <a href="/search/?searchtype=author&amp;query=Steiner%2C+J+F">James F. Steiner</a>, <a href="/search/?searchtype=author&amp;query=Svoboda%2C+J">Jiri Svoboda</a>, <a href="/search/?searchtype=author&amp;query=Anitra%2C+A">Alessio Anitra</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">Maria C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Carotenuto%2C+F">Francesco Carotenuto</a>, <a href="/search/?searchtype=author&amp;query=Del+Santo%2C+M">Melania Del Santo</a>, <a href="/search/?searchtype=author&amp;query=Ferrigno%2C+C">Carlo Ferrigno</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+F">Fraser Lewis</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+T+D">Thomas D. Russell</a>, <a href="/search/?searchtype=author&amp;query=Eijnden%2C+J+v+d">Jakob van den Eijnden</a>, <a href="/search/?searchtype=author&amp;query=Cocchi%2C+M">Massimo Cocchi</a>, <a href="/search/?searchtype=author&amp;query=Di+Marco%2C+A">Alessandro Di Marco</a>, <a href="/search/?searchtype=author&amp;query=La+Monaca%2C+F">Fabio La Monaca</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+K">Kuan Liu</a>, <a href="/search/?searchtype=author&amp;query=Rankin%2C+J">John Rankin</a>, <a href="/search/?searchtype=author&amp;query=Weisskopf%2C+M+C">Martin C. Weisskopf</a> , et al. (94 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06788v2-abstract-short" style="display: inline;"> We report on the coordinated observations of the neutron star low-mass X-ray binary (NS-LMXB) \gx in X-rays (IXPE, NICER, Nustar and INTEGRAL), optical (REM and LCO), near-infrared (REM), mid-infrared (VLT VISIR), and radio (ATCA). This Z-source was observed by \IXPE twice in March-April 2023 (Obs. 1 and 2). In the radio band, the source was detected, but only upper-limits to the linear polarizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06788v2-abstract-full').style.display = 'inline'; document.getElementById('2310.06788v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06788v2-abstract-full" style="display: none;"> We report on the coordinated observations of the neutron star low-mass X-ray binary (NS-LMXB) \gx in X-rays (IXPE, NICER, Nustar and INTEGRAL), optical (REM and LCO), near-infrared (REM), mid-infrared (VLT VISIR), and radio (ATCA). This Z-source was observed by \IXPE twice in March-April 2023 (Obs. 1 and 2). In the radio band, the source was detected, but only upper-limits to the linear polarization were obtained at a $3蟽$ level of $6.1\%$ at 5.5 GHz and $5.9\%$ at 9 GHz in Obs.~1 and $12.5\%$ at 5.5~GHz and $20\%$ at 9~GHz in Obs.~2. The mid-IR, near-IR and optical observations suggest the presence of a compact jet which peaks in the mid- or far-IR. The X-ray polarization degree was found to be $3.7\% \pm 0.4 \%$ (at $90\%$ confidence level) during Obs.~1 when the source was in the horizontal branch of the Z-track and $1.8\% \pm 0.4 \%$ during Obs.~2 when the source was in the normal-flaring branch. These results confirm the variation of polarization degree as a function of the position of the source in the color-color diagram as for previously observed Z-track sources (Cyg~X-2 and XTE~1701$-$462). Evidence for a variation of the polarization angle $\sim 20^\circ$ with energy is found in both observations, likely related to the different, non-orthogonal polarization angles of the disk and Comptonization components which peak at different energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06788v2-abstract-full').style.display = 'none'; document.getElementById('2310.06788v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Astronomy and Astrophysics on 06 July 2023. Accepted on 21 November 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15570">arXiv:2308.15570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15570">pdf</a>, <a href="https://arxiv.org/ps/2308.15570">ps</a>, <a href="https://arxiv.org/format/2308.15570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Sub-second infrared variability from the archetypal accreting neutron star 4U~1728-34 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vincentelli%2C+F+M">F. M. Vincentelli</a>, <a href="/search/?searchtype=author&amp;query=Casella%2C+P">P. Casella</a>, <a href="/search/?searchtype=author&amp;query=Borghese%2C+A">A. Borghese</a>, <a href="/search/?searchtype=author&amp;query=Cavecchi%2C+Y">Y. Cavecchi</a>, <a href="/search/?searchtype=author&amp;query=Mastroserio%2C+G">G. Mastroserio</a>, <a href="/search/?searchtype=author&amp;query=Stella%2C+L">L. Stella</a>, <a href="/search/?searchtype=author&amp;query=Altamirano%2C+D">D. Altamirano</a>, <a href="/search/?searchtype=author&amp;query=Padilla%2C+M+A">M. Armas Padilla</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Belloni%2C+T+M">T. M. Belloni</a>, <a href="/search/?searchtype=author&amp;query=Casares%2C+J">J. Casares</a>, <a href="/search/?searchtype=author&amp;query=C%C3%BAneo%2C+V+A">V. A. C煤neo</a>, <a href="/search/?searchtype=author&amp;query=Degenaar%2C+N">N. Degenaar</a>, <a href="/search/?searchtype=author&amp;query=Trigo%2C+M+D">M. D铆az Trigo</a>, <a href="/search/?searchtype=author&amp;query=Fender%2C+R">R. Fender</a>, <a href="/search/?searchtype=author&amp;query=Maccarone%2C+T">T. Maccarone</a>, <a href="/search/?searchtype=author&amp;query=Malzac%2C+J">J. Malzac</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A1nchez%2C+D+M">D. Mata S谩nchez</a>, <a href="/search/?searchtype=author&amp;query=Middleton%2C+M">M. Middleton</a>, <a href="/search/?searchtype=author&amp;query=Migliari%2C+S">S. Migliari</a>, <a href="/search/?searchtype=author&amp;query=Mu%C3%B1oz-Darias%2C+T">T. Mu帽oz-Darias</a>, <a href="/search/?searchtype=author&amp;query=O%27Brien%2C+K">K. O&#39;Brien</a>, <a href="/search/?searchtype=author&amp;query=Panizo-Espinar%2C+G">G. Panizo-Espinar</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A1nchez-Sierras%2C+J">J. S谩nchez-Sierras</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">D. M. Russell</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15570v1-abstract-short" style="display: inline;"> We report on the first simultaneous high-time resolution X-ray and infrared (IR) observations of a neutron star low mass X-ray binary in its hard state. We performed $\approx 2\,$h of simultaneous observations of 4U 1728-34 using HAWK-I@VLT, XMM-Newton and NuSTAR. The source displayed significant X-ray and IR variability down to sub-second timescales. By measuring the cross-correlation function be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15570v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15570v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15570v1-abstract-full" style="display: none;"> We report on the first simultaneous high-time resolution X-ray and infrared (IR) observations of a neutron star low mass X-ray binary in its hard state. We performed $\approx 2\,$h of simultaneous observations of 4U 1728-34 using HAWK-I@VLT, XMM-Newton and NuSTAR. The source displayed significant X-ray and IR variability down to sub-second timescales. By measuring the cross-correlation function between the infrared and X-ray lightcurves, we discovered a significant correlation with an infrared lead of $\approx 30-40\,$ms with respect to the X-rays. We analysed the X-ray energy dependence of the lag, finding a marginal increase towards higher energies. Given the sign of the lag, we interpret this as possible evidence of Comptonization from external seed photons. We discuss the origin of the IR seed photons in terms of cyclo-synchrotron radiation from an extended hot flow. Finally, we also observed the IR counterpart of a type-I X-ray burst, with a delay of $\approx7.2\,$s. Although some additional effects may be at play, by assuming that this lag is due to light travel time between the central object and the companion star, we find that 4U 1728-34 must have an orbital period longer than $3\,$h and an inclination higher than 8$^\circ$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15570v1-abstract-full').style.display = 'none'; document.getElementById('2308.15570v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS, 11 pages 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16753">arXiv:2307.16753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.16753">pdf</a>, <a href="https://arxiv.org/ps/2307.16753">ps</a>, <a href="https://arxiv.org/format/2307.16753">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> </div> </div> <p class="title is-5 mathjax"> A refinement of and a companion to MacMahon&#39;s partition identity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Russell%2C+M+C">Matthew C. Russell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16753v1-abstract-short" style="display: inline;"> We provide a refinement of MacMahon&#39;s partition identity on sequence-avoiding partitions, and use it to produce another mod 6 partition identity. In addition, we show that our technique also extends to cover Andrews&#39;s generalization of MacMahon&#39;s identity. Our proofs are bijective in nature, exploiting a theorem of Xiong and Keith. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16753v1-abstract-full" style="display: none;"> We provide a refinement of MacMahon&#39;s partition identity on sequence-avoiding partitions, and use it to produce another mod 6 partition identity. In addition, we show that our technique also extends to cover Andrews&#39;s generalization of MacMahon&#39;s identity. Our proofs are bijective in nature, exploiting a theorem of Xiong and Keith. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16753v1-abstract-full').style.display = 'none'; document.getElementById('2307.16753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05A17; 11P84 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08407">arXiv:2307.08407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08407">pdf</a>, <a href="https://arxiv.org/format/2307.08407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2044">10.1093/mnras/stad2044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Clockwise evolution in the hardness-intensity diagram of the black hole X-ray binary Swift J1910.2-0546 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Saikia%2C+P">Payaswini Saikia</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Pirbhoy%2C+S+F">Saarah F. Pirbhoy</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+M">M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">Kevin Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+F">Fraser Lewis</a>, <a href="/search/?searchtype=author&amp;query=Charles%2C+P">Phil Charles</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08407v1-abstract-short" style="display: inline;"> We present a detailed study of optical data from the 2012 outburst of the candidate black hole X-ray binary Swift J1910.2-0546 using the Faulkes Telescope and Las Cumbres Observatory (LCO). We analyse the peculiar spectral state changes of Swift J1910.2-0546 in different energy bands, and characterise how the optical and UV emission correlates with the unusual spectral state evolution. Using vario&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08407v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08407v1-abstract-full" style="display: none;"> We present a detailed study of optical data from the 2012 outburst of the candidate black hole X-ray binary Swift J1910.2-0546 using the Faulkes Telescope and Las Cumbres Observatory (LCO). We analyse the peculiar spectral state changes of Swift J1910.2-0546 in different energy bands, and characterise how the optical and UV emission correlates with the unusual spectral state evolution. Using various diagnostic tools like the optical/X-ray correlation and spectral energy distributions, we disentangle the different emission processes contributing towards the optical flux of the system. When Swift J1910.2-0546 transitions to the pure hard state, we find significant optical brightening of the source along with a dramatic change in the optical colour due to the onset of a jet during the spectral state transition. For the rest of the spectral states, the optical/UV emission is mostly dominated by an X-ray irradiated disk. From our high cadence optical study, we have discovered a putative modulation. Assuming that this modulation arises from a superhump, we suggest Swift J1910.2-0546 to have an orbital period of 2.25-2.47 hr, which would make it the shortest orbital period black hole X-ray binary known to date. Finally, from the state transition luminosity of the source, we find that the distance to the source is likely to be ~4.5-20.8 kpc, which is also supported by the comparative position of the source in the global optical/X-ray correlation of a large sample of black hole and neutron star X-ray binaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08407v1-abstract-full').style.display = 'none'; document.getElementById('2307.08407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published at MNRAS, 12 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16251">arXiv:2306.16251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16251">pdf</a>, <a href="https://arxiv.org/ps/2306.16251">ps</a>, <a href="https://arxiv.org/format/2306.16251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> </div> </div> <p class="title is-5 mathjax"> Companions to the Andrews-Gordon and Andrews-Bressoud identities, and recent conjectures of Capparelli, Meurman, Primc, and Primc </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Russell%2C+M+C">Matthew C. Russell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16251v1-abstract-short" style="display: inline;"> We find bivariate generating functions for the $k=1$ cases of recently conjectured colored partition identities of Capparelli, Meurman, A. Primc, and M. Primc that are slight variants of the generating functions for the sum sides of the Andrews-Gordon and Andrews-Bressoud identities. As a consequence, we prove sum-to-product identities for these cases, thus proving the conjectures. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16251v1-abstract-full" style="display: none;"> We find bivariate generating functions for the $k=1$ cases of recently conjectured colored partition identities of Capparelli, Meurman, A. Primc, and M. Primc that are slight variants of the generating functions for the sum sides of the Andrews-Gordon and Andrews-Bressoud identities. As a consequence, we prove sum-to-product identities for these cases, thus proving the conjectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16251v1-abstract-full').style.display = 'none'; document.getElementById('2306.16251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 11P84 (Primary) 05A17; 17B67 (Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.14509">arXiv:2305.14509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.14509">pdf</a>, <a href="https://arxiv.org/format/2305.14509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346418">10.1051/0004-6361/202346418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Matter ejections behind the highs and lows of the transitional millisecond pulsar PSR J1023+0038 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Zelati%2C+F+C">F. Coti Zelati</a>, <a href="/search/?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/?searchtype=author&amp;query=Busquet%2C+G">G. Busquet</a>, <a href="/search/?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/?searchtype=author&amp;query=Giarratana%2C+S">S. Giarratana</a>, <a href="/search/?searchtype=author&amp;query=Giroletti%2C+M">M. Giroletti</a>, <a href="/search/?searchtype=author&amp;query=Ambrosino%2C+F">F. Ambrosino</a>, <a href="/search/?searchtype=author&amp;query=Crespi%2C+S">S. Crespi</a>, <a href="/search/?searchtype=author&amp;query=Zanon%2C+A+M">A. Miraval Zanon</a>, <a href="/search/?searchtype=author&amp;query=Hou%2C+X">X. Hou</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+P">P. Wang</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">D. M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Torres%2C+D+F">D. F. Torres</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">K. Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Casella%2C+P">P. Casella</a>, <a href="/search/?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=de+Martino%2C+D">D. de Martino</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A9ndez%2C+M">M. M茅ndez</a>, <a href="/search/?searchtype=author&amp;query=Motta%2C+S+E">S. E. Motta</a>, <a href="/search/?searchtype=author&amp;query=Papitto%2C+A">A. Papitto</a>, <a href="/search/?searchtype=author&amp;query=Saikia%2C+P">P. Saikia</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.14509v2-abstract-short" style="display: inline;"> Transitional millisecond pulsars are an emerging class of sources that link low-mass X-ray binaries to millisecond radio pulsars in binary systems. These pulsars alternate between a radio pulsar state and an active low-luminosity X-ray disc state. During the active state, these sources exhibit two distinct emission modes (high and low) that alternate unpredictably, abruptly, and incessantly. X-ray&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14509v2-abstract-full').style.display = 'inline'; document.getElementById('2305.14509v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.14509v2-abstract-full" style="display: none;"> Transitional millisecond pulsars are an emerging class of sources that link low-mass X-ray binaries to millisecond radio pulsars in binary systems. These pulsars alternate between a radio pulsar state and an active low-luminosity X-ray disc state. During the active state, these sources exhibit two distinct emission modes (high and low) that alternate unpredictably, abruptly, and incessantly. X-ray to optical pulsations are observed only during the high mode. The root cause of this puzzling behaviour remains elusive. This paper presents the results of the most extensive multi-wavelength campaign ever conducted on the transitional pulsar prototype, PSR J1023+0038, covering from the radio to X-rays. The campaign was carried out over two nights in June 2021 and involved 12 different telescopes and instruments, including XMM-Newton, HST, VLT/FORS2 (in polarimetric mode), ALMA, VLA, and FAST. By modelling the broadband spectral energy distributions in both emission modes, we show that the mode switches are caused by changes in the innermost region of the accretion disc. These changes trigger the emission of discrete mass ejections, which occur on top of a compact jet, as testified by the detection of at least one short-duration millimetre flare with ALMA at the high-to-low mode switch. The pulsar is subsequently re-enshrouded, completing our picture of the mode switches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14509v2-abstract-full').style.display = 'none'; document.getElementById('2305.14509v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 12 figures, 9 tables. Accepted for publication on Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 677, A30 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12963">arXiv:2305.12963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12963">pdf</a>, <a href="https://arxiv.org/format/2305.12963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1371/journal.pcbi.1011616">10.1371/journal.pcbi.1011616 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gene communities in co-expression networks across different tissues </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Russell%2C+M">Madison Russell</a>, <a href="/search/?searchtype=author&amp;query=Aqil%2C+A">Alber Aqil</a>, <a href="/search/?searchtype=author&amp;query=Saitou%2C+M">Marie Saitou</a>, <a href="/search/?searchtype=author&amp;query=Gokcumen%2C+O">Omer Gokcumen</a>, <a href="/search/?searchtype=author&amp;query=Masuda%2C+N">Naoki Masuda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12963v2-abstract-short" style="display: inline;"> With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly express&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12963v2-abstract-full').style.display = 'inline'; document.getElementById('2305.12963v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12963v2-abstract-full" style="display: none;"> With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest that KRTAP3-1, KRTAP3-3, and KRTAP3-5 share regulatory elements in skin and pancreas. Furthermore, we find that CELA3A and CELA3B share associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12963v2-abstract-full').style.display = 'none'; document.getElementById('2305.12963v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PLoS Computational Biology 19(11): e1011616 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14398">arXiv:2304.14398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14398">pdf</a>, <a href="https://arxiv.org/format/2304.14398">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Maximizing Model Generalization for Machine Condition Monitoring with Self-Supervised Learning and Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Russell%2C+M">Matthew Russell</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14398v2-abstract-short" style="display: inline;"> Deep Learning (DL) can diagnose faults and assess machine health from raw condition monitoring data without manually designed statistical features. However, practical manufacturing applications remain extremely difficult for existing DL methods. Machine data is often unlabeled and from very few health conditions (e.g., only normal operating data). Furthermore, models often encounter shifts in doma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14398v2-abstract-full').style.display = 'inline'; document.getElementById('2304.14398v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14398v2-abstract-full" style="display: none;"> Deep Learning (DL) can diagnose faults and assess machine health from raw condition monitoring data without manually designed statistical features. However, practical manufacturing applications remain extremely difficult for existing DL methods. Machine data is often unlabeled and from very few health conditions (e.g., only normal operating data). Furthermore, models often encounter shifts in domain as process parameters change and new categories of faults emerge. Traditional supervised learning may struggle to learn compact, discriminative representations that generalize to these unseen target domains since it depends on having plentiful classes to partition the feature space with decision boundaries. Transfer Learning (TL) with domain adaptation attempts to adapt these models to unlabeled target domains but assumes similar underlying structure that may not be present if new faults emerge. This study proposes focusing on maximizing the feature generality on the source domain and applying TL via weight transfer to copy the model to the target domain. Specifically, Self-Supervised Learning (SSL) with Barlow Twins may produce more discriminative features for monitoring health condition than supervised learning by focusing on semantic properties of the data. Furthermore, Federated Learning (FL) for distributed training may also improve generalization by efficiently expanding the effective size and diversity of training data by sharing information across multiple client machines. Results show that Barlow Twins outperforms supervised learning in an unlabeled target domain with emerging motor faults when the source training data contains very few distinct categories. Incorporating FL may also provide a slight advantage by diffusing knowledge of health conditions between machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14398v2-abstract-full').style.display = 'none'; document.getElementById('2304.14398v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02046">arXiv:2304.02046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.02046">pdf</a>, <a href="https://arxiv.org/format/2304.02046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acc8cc">10.3847/1538-4357/acc8cc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seven reflares, a mini-outburst and an outburst : High amplitude optical variations in the black hole X-ray binary Swift J1910.2-0546 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Saikia%2C+P">Payaswini Saikia</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Pirbhoy%2C+S+F">Saarah F. Pirbhoy</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">Kevin Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+F">Fraser Lewis</a>, <a href="/search/?searchtype=author&amp;query=Charles%2C+P">Phil Charles</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02046v1-abstract-short" style="display: inline;"> We present long-term (2012-2022) optical monitoring of the candidate black hole X-ray binary Swift J1910.2-0546 with the Faulkes Telescopes and Las Cumbres Observatory (LCO) network. Following its initial bright 2012 outburst, we find that the source displayed a series of at least 7 quasi-periodic, high amplitude (~3 mags) optical reflares in 2013, with a recurrence time increasing from ~42 days t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02046v1-abstract-full').style.display = 'inline'; document.getElementById('2304.02046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02046v1-abstract-full" style="display: none;"> We present long-term (2012-2022) optical monitoring of the candidate black hole X-ray binary Swift J1910.2-0546 with the Faulkes Telescopes and Las Cumbres Observatory (LCO) network. Following its initial bright 2012 outburst, we find that the source displayed a series of at least 7 quasi-periodic, high amplitude (~3 mags) optical reflares in 2013, with a recurrence time increasing from ~42 days to ~49 days. In 2014, the source experienced a mini-outburst with two peaks in the optical. We also study the recent 2022 outburst of the source at optical wavelengths, and perform a comparative analysis with the earlier rebrightenings. A single X-ray detection and only two radio detections were obtained during the 2013 reflaring period, and only optical detections were acquired in 2014. During the reflaring in both 2013 and 2014, the source showed bluer-when-brighter behavior, having optical colors consistent with a blackbody heating and cooling between 4500 and 9500 K, i.e. the temperature range in which hydrogen starts to ionize. Finally, we compare the flaring behavior of the source to re-brightening events in other X-ray binaries. We show that the repeated reflarings of Swift J1910.2-0546 are highly unusual, and propose that they arise from a sequence of repetitive heating and cooling front reflections travelling through the accretion disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02046v1-abstract-full').style.display = 'none'; document.getElementById('2304.02046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ, appendix will appear at the published version of the paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15648">arXiv:2303.15648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15648">pdf</a>, <a href="https://arxiv.org/format/2303.15648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad939">10.1093/mnras/stad939 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-dependent visibility modelling of a relativistic jet in the X-ray binary MAXI J1803-298 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wood%2C+C+M">C. M. Wood</a>, <a href="/search/?searchtype=author&amp;query=Miller-Jones%2C+J+C+A">J. C. A. Miller-Jones</a>, <a href="/search/?searchtype=author&amp;query=Bahramian%2C+A">A. Bahramian</a>, <a href="/search/?searchtype=author&amp;query=Tingay%2C+S+J">S. J. Tingay</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+T+D">T. D. Russell</a>, <a href="/search/?searchtype=author&amp;query=Tetarenko%2C+A+J">A. J. Tetarenko</a>, <a href="/search/?searchtype=author&amp;query=Altamirano%2C+D">D. Altamirano</a>, <a href="/search/?searchtype=author&amp;query=Belloni%2C+T">T. Belloni</a>, <a href="/search/?searchtype=author&amp;query=Carotenuto%2C+F">F. Carotenuto</a>, <a href="/search/?searchtype=author&amp;query=Ceccobello%2C+C">C. Ceccobello</a>, <a href="/search/?searchtype=author&amp;query=Corbel%2C+S">S. Corbel</a>, <a href="/search/?searchtype=author&amp;query=Espinasse%2C+M">M. Espinasse</a>, <a href="/search/?searchtype=author&amp;query=Fender%2C+R+P">R. P. Fender</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6rding%2C+E">E. K枚rding</a>, <a href="/search/?searchtype=author&amp;query=Migliari%2C+S">S. Migliari</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">D. M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Sarazin%2C+C+L">C. L. Sarazin</a>, <a href="/search/?searchtype=author&amp;query=Sivakoff%2C+G+R">G. R. Sivakoff</a>, <a href="/search/?searchtype=author&amp;query=Soria%2C+R">R. Soria</a>, <a href="/search/?searchtype=author&amp;query=Tudose%2C+V">V. Tudose</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15648v1-abstract-short" style="display: inline;"> Tracking the motions of transient jets launched by low-mass X-ray binaries (LMXBs) is critical for determining the moment of jet ejection, and identifying any corresponding signatures in the accretion flow. However, these jets are often highly variable and can travel across the resolution element of an image within a single observation, violating a fundamental assumption of aperture synthesis. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15648v1-abstract-full').style.display = 'inline'; document.getElementById('2303.15648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15648v1-abstract-full" style="display: none;"> Tracking the motions of transient jets launched by low-mass X-ray binaries (LMXBs) is critical for determining the moment of jet ejection, and identifying any corresponding signatures in the accretion flow. However, these jets are often highly variable and can travel across the resolution element of an image within a single observation, violating a fundamental assumption of aperture synthesis. We present a novel approach in which we directly fit a single time-dependent model to the full set of interferometer visibilities, where we explicitly parameterise the motion and flux density variability of the emission components, to minimise the number of free parameters in the fit, while leveraging information from the full observation. This technique allows us to detect and characterize faint, fast-moving sources, for which the standard time binning technique is inadequate. We validate our technique with synthetic observations, before applying it to three Very Long Baseline Array (VLBA) observations of the black hole candidate LMXB MAXI J1803-298 during its 2021 outburst. We measured the proper motion of a discrete jet component to be $1.37\pm0.14$ mas/hr, and thus we infer an ejection date of MJD $59348.08_{-0.06}^{+0.05}$, which occurs just after the peak of a radio flare observed by the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/Sub-Millimeter Array (ALMA), while MAXI J1803-298 was in the intermediate state. Further development of these new VLBI analysis techniques will lead to more precise measurements of jet ejection dates, which, combined with dense, simultaneous multi-wavelength monitoring, will allow for clearer identification of jet ejection signatures in the accretion flow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15648v1-abstract-full').style.display = 'none'; document.getElementById('2303.15648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, 4 tables; Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14502">arXiv:2303.14502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14502">pdf</a>, <a href="https://arxiv.org/format/2303.14502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> VERN: Vegetation-aware Robot Navigation in Dense Unstructured Outdoor Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sathyamoorthy%2C+A+J">Adarsh Jagan Sathyamoorthy</a>, <a href="/search/?searchtype=author&amp;query=Weerakoon%2C+K">Kasun Weerakoon</a>, <a href="/search/?searchtype=author&amp;query=Guan%2C+T">Tianrui Guan</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+M">Mason Russell</a>, <a href="/search/?searchtype=author&amp;query=Conover%2C+D">Damon Conover</a>, <a href="/search/?searchtype=author&amp;query=Pusey%2C+J">Jason Pusey</a>, <a href="/search/?searchtype=author&amp;query=Manocha%2C+D">Dinesh Manocha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14502v1-abstract-short" style="display: inline;"> We propose a novel method for autonomous legged robot navigation in densely vegetated environments with a variety of pliable/traversable and non-pliable/untraversable vegetation. We present a novel few-shot learning classifier that can be trained on a few hundred RGB images to differentiate flora that can be navigated through, from the ones that must be circumvented. Using the vegetation classific&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14502v1-abstract-full').style.display = 'inline'; document.getElementById('2303.14502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14502v1-abstract-full" style="display: none;"> We propose a novel method for autonomous legged robot navigation in densely vegetated environments with a variety of pliable/traversable and non-pliable/untraversable vegetation. We present a novel few-shot learning classifier that can be trained on a few hundred RGB images to differentiate flora that can be navigated through, from the ones that must be circumvented. Using the vegetation classification and 2D lidar scans, our method constructs a vegetation-aware traversability cost map that accurately represents the pliable and non-pliable obstacles with lower, and higher traversability costs, respectively. Our cost map construction accounts for misclassifications of the vegetation and further lowers the risk of collisions, freezing and entrapment in vegetation during navigation. Furthermore, we propose holonomic recovery behaviors for the robot for scenarios where it freezes, or gets physically entrapped in dense, pliable vegetation. We demonstrate our method on a Boston Dynamics Spot robot in real-world unstructured environments with sparse and dense tall grass, bushes, trees, etc. We observe an increase of 25-90% in success rates, 10-90% decrease in freezing rate, and up to 65% decrease in the false positive rate compared to existing methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14502v1-abstract-full').style.display = 'none'; document.getElementById('2303.14502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07087">arXiv:2303.07087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07087">pdf</a>, <a href="https://arxiv.org/ps/2303.07087">ps</a>, <a href="https://arxiv.org/format/2303.07087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Quodon Current in Tungsten and Consequences for Tokamak Fusion Reactors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Russell%2C+F+M">F. Michael Russell</a>, <a href="/search/?searchtype=author&amp;query=Archilla%2C+J+F+R">Juan F. R. Archilla</a>, <a href="/search/?searchtype=author&amp;query=Mas%2C+J+L">Jos茅 L. Mas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07087v3-abstract-short" style="display: inline;"> Tokamak fusion reactors produce energetic He ions that penetrate surfaces less than 20 micron and neutrons that spread throughout the reactor. Experiments with similar swift He ions in heavy metals show that the vibronic coupling of nonlinear lattice excitations creates mobile lattice excitations, called quodons. These are decoupled from phonons, move ballistically at near sonic speed and propagat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07087v3-abstract-full').style.display = 'inline'; document.getElementById('2303.07087v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07087v3-abstract-full" style="display: none;"> Tokamak fusion reactors produce energetic He ions that penetrate surfaces less than 20 micron and neutrons that spread throughout the reactor. Experiments with similar swift He ions in heavy metals show that the vibronic coupling of nonlinear lattice excitations creates mobile lattice excitations, called quodons. These are decoupled from phonons, move ballistically at near sonic speed and propagate easily in metals and insulators. They can couple to and transport electric charge, which allows their observation in experiments. They rapidly disperse heat throughout a fusion reactor and carry charge through electrical insulators. In this paper we present an experimental design that separates quodon current and conduction current and therefore makes it possible to measure the former. We also present time-of-flight experiments that lead to an estimation of the quodon speed which is of the order of the sound velocity and therefore much faster than the drift of electrons or holes in conduction currents. We present results on quodon current in tungsten, a material widely used in nuclear fusion technology, showing that many quodons will be produced in fusion reactors. It is predicted that at high output powers, quodons created by He ions and neutrons might adversely impact on cryogenic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07087v3-abstract-full').style.display = 'none'; document.getElementById('2303.07087v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13281">arXiv:2301.13281</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.13281">pdf</a>, <a href="https://arxiv.org/format/2301.13281">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad396">10.1093/mnras/stad396 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short Timescale Evolution of the Polarized Radio Jet during V404 Cygni&#39;s 2015 Outburst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hughes%2C+A+K">Andrew K. Hughes</a>, <a href="/search/?searchtype=author&amp;query=Sivakoff%2C+G+R">Gregory R. Sivakoff</a>, <a href="/search/?searchtype=author&amp;query=Macpherson%2C+C+E">Christopher E. Macpherson</a>, <a href="/search/?searchtype=author&amp;query=Miller-Jones%2C+J+C+A">James C. A. Miller-Jones</a>, <a href="/search/?searchtype=author&amp;query=Tetarenko%2C+A+J">Alexandra J. Tetarenko</a>, <a href="/search/?searchtype=author&amp;query=Altamirano%2C+D">Diego Altamirano</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+G+E">Gemma E. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Belloni%2C+T+M">Tomaso M. Belloni</a>, <a href="/search/?searchtype=author&amp;query=Heinz%2C+S">Sebastian Heinz</a>, <a href="/search/?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6rding%2C+E+G">Elmar G. K枚rding</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+D">Dipankar Maitra</a>, <a href="/search/?searchtype=author&amp;query=Markoff%2C+S+B">Sera B. Markoff</a>, <a href="/search/?searchtype=author&amp;query=Migliari%2C+S">Simone Migliari</a>, <a href="/search/?searchtype=author&amp;query=Mooley%2C+K+P">Kunal P. Mooley</a>, <a href="/search/?searchtype=author&amp;query=Rupen%2C+M+P">Michael P. Rupen</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+T+D">Thomas D. Russell</a>, <a href="/search/?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/?searchtype=author&amp;query=Soria%2C+R">Roberto Soria</a>, <a href="/search/?searchtype=author&amp;query=Tudose%2C+V">Valeriu Tudose</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13281v1-abstract-short" style="display: inline;"> We present a high time resolution, multi-frequency linear polarization analysis of Very Large Array (VLA) radio observations during some of the brightest radio flaring (~1 Jy) activity of the 2015 outburst of V404 Cygni. The VLA simultaneously captured the radio evolution in two bands (each with two 1 GHz base-bands), recorded at 5/7 GHz and 21/26 GHz, allowing for a broadband polarimetric analysi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13281v1-abstract-full').style.display = 'inline'; document.getElementById('2301.13281v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13281v1-abstract-full" style="display: none;"> We present a high time resolution, multi-frequency linear polarization analysis of Very Large Array (VLA) radio observations during some of the brightest radio flaring (~1 Jy) activity of the 2015 outburst of V404 Cygni. The VLA simultaneously captured the radio evolution in two bands (each with two 1 GHz base-bands), recorded at 5/7 GHz and 21/26 GHz, allowing for a broadband polarimetric analysis. Given the source&#39;s high flux densities, we were able to measure polarization on timescales of ~13 minutes, constituting one of the highest temporal resolution radio polarimetric studies of a black hole X-ray binary (BHXB) outburst to date. Across all base-bands, we detect variable, weakly linearly polarized emission (&lt;1%) with a single, bright peak in the time-resolved polarization fraction, consistent with an origin in an evolving, dynamic jet component. We applied two independent polarimetric methods to extract the intrinsic electric vector position angles and rotation measures from the 5 and 7 GHz base-band data and detected a variable intrinsic polarization angle, indicative of a rapidly evolving local environment or a complex magnetic field geometry. Comparisons to the simultaneous, spatially-resolved observations taken with the Very Long Baseline Array at 15.6 GHz, do not show a significant connection between the jet ejections and the polarization state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13281v1-abstract-full').style.display = 'none'; document.getElementById('2301.13281v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 9 figures, accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07184">arXiv:2301.07184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07184">pdf</a>, <a href="https://arxiv.org/format/2301.07184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Practicing Information Sensibility: How Gen Z Engages with Online Information </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hassoun%2C+A">Amelia Hassoun</a>, <a href="/search/?searchtype=author&amp;query=Beacock%2C+I">Ian Beacock</a>, <a href="/search/?searchtype=author&amp;query=Consolvo%2C+S">Sunny Consolvo</a>, <a href="/search/?searchtype=author&amp;query=Goldberg%2C+B">Beth Goldberg</a>, <a href="/search/?searchtype=author&amp;query=Kelley%2C+P+G">Patrick Gage Kelley</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">Daniel M. Russell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07184v2-abstract-short" style="display: inline;"> Assessing the trustworthiness of information online is complicated. Literacy-based paradigms are both widely used to help and widely critiqued. We conducted a study with 35 Gen Zers from across the U.S. to understand how they assess information online. We found that they tended to encounter -- rather than search for -- information, and that those encounters were shaped more by social motivations t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07184v2-abstract-full').style.display = 'inline'; document.getElementById('2301.07184v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07184v2-abstract-full" style="display: none;"> Assessing the trustworthiness of information online is complicated. Literacy-based paradigms are both widely used to help and widely critiqued. We conducted a study with 35 Gen Zers from across the U.S. to understand how they assess information online. We found that they tended to encounter -- rather than search for -- information, and that those encounters were shaped more by social motivations than by truth-seeking queries. For them, information processing is fundamentally a social practice. Gen Zers interpreted online information together, as aspirational members of social groups. Our participants sought information sensibility: a socially-informed awareness of the value of information encountered online. We outline key challenges they faced and practices they used to make sense of information. Our findings suggest that like their information sensibility practices, solutions and strategies to address misinformation should be embedded in social contexts online. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07184v2-abstract-full').style.display = 'none'; document.getElementById('2301.07184v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures, 2 tables, 130 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07133">arXiv:2301.07133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07133">pdf</a>, <a href="https://arxiv.org/format/2301.07133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/asna.20230017">10.1002/asna.20230017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the infrared coincidence: what is the jet contribution to the X-ray power law in GX 339-4? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07133v1-abstract-short" style="display: inline;"> The hard X-ray power law, prominent in the hard state in black hole X-ray binaries, is generally due to thermal Comptonization in the corona. Optically thin synchrotron emission from compact jets is commonly seen at infrared wavelengths in the hard state. The extent of this spectrum to higher energies remains uncertain. Here, a multi-wavelength study of GX 339-4 is presented. The IR to X-ray spect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07133v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07133v1-abstract-full" style="display: none;"> The hard X-ray power law, prominent in the hard state in black hole X-ray binaries, is generally due to thermal Comptonization in the corona. Optically thin synchrotron emission from compact jets is commonly seen at infrared wavelengths in the hard state. The extent of this spectrum to higher energies remains uncertain. Here, a multi-wavelength study of GX 339-4 is presented. The IR to X-ray spectral index is measured and compared to the X-ray spectral index fitted separately. On some dates in which the jet dominates the IR emission, the X-ray power law and the IR to X-ray power law spectral indices are both in the range alpha = -0.7 +/- 0.2 (where F_nu ~ nu^alpha), i.e. photon index, Gamma = 1.7 +/- 0.2. This suggests they could be the same power law with the same origin, or that this is a coincidence. On other dates in the hard state, alpha_{IR-X} &lt; alpha_{X}, ruling out a common origin. It is likely that Comptonization dominates on most dates, as expected. However, the X-ray power law never appears to be fainter than the jet power law extrapolated from IR to X-ray, implying that the jet contribution imposes a lower limit to the X-ray flux. If confirmed, this would imply the cooling break in the synchrotron spectrum probably resides at X-ray or higher energies. It is suggested that X-ray spectral fitting should include an extra power law with a break (ideally fit to IR too). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07133v1-abstract-full').style.display = 'none'; document.getElementById('2301.07133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Astronomische Nachrichten/Astronomical Notes (proceedings of XMM-Newton workshop &#39;Black Hole Accretion Under the X-ray Microscope&#39;, ESAC, Madrid, Spain, 14-17 June 2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05002">arXiv:2212.05002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.05002">pdf</a>, <a href="https://arxiv.org/format/2212.05002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> RSK tableaux and the weak order on fully commutative permutations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gunawan%2C+E">Emily Gunawan</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+J">Jianping Pan</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+H+M">Heather M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Tenner%2C+B+E">Bridget Eileen Tenner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05002v1-abstract-short" style="display: inline;"> For each fully commutative permutation, we construct a &#34;boolean core,&#34; which is the maximal boolean permutation in its principal order ideal under the right weak order. We partition the set of fully commutative permutations into the recently defined crowded and uncrowded elements, distinguished by whether or not their RSK insertion tableaux satisfy a sparsity condition. We show that a fully commut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05002v1-abstract-full').style.display = 'inline'; document.getElementById('2212.05002v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05002v1-abstract-full" style="display: none;"> For each fully commutative permutation, we construct a &#34;boolean core,&#34; which is the maximal boolean permutation in its principal order ideal under the right weak order. We partition the set of fully commutative permutations into the recently defined crowded and uncrowded elements, distinguished by whether or not their RSK insertion tableaux satisfy a sparsity condition. We show that a fully commutative element is uncrowded exactly when it shares the RSK insertion tableau with its boolean core. We present the dynamics of the right weak order on fully commutative permutations, with particular interest in when they change from uncrowded to crowded. In particular, we use consecutive permutation patterns and descents to characterize the minimal crowded elements under the right weak order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05002v1-abstract-full').style.display = 'none'; document.getElementById('2212.05002v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> Primary 05A05; Secondary 06A07 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01445">arXiv:2211.01445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01445">pdf</a>, <a href="https://arxiv.org/format/2211.01445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The long-term spectral changes of eta Carinae: are they caused by a dissipating occulter as indicated by CMFGEN models? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Damineli%2C+A">A. Damineli</a>, <a href="/search/?searchtype=author&amp;query=Hillier%2C+D+J">D. J. Hillier</a>, <a href="/search/?searchtype=author&amp;query=Navarete%2C+F">F. Navarete</a>, <a href="/search/?searchtype=author&amp;query=Moffat%2C+A+F+J">A. F. J. Moffat</a>, <a href="/search/?searchtype=author&amp;query=Weigelt%2C+G">G. Weigelt</a>, <a href="/search/?searchtype=author&amp;query=Corcoran%2C+M+F">M. F. Corcoran</a>, <a href="/search/?searchtype=author&amp;query=Gull%2C+T+R">T. R. Gull</a>, <a href="/search/?searchtype=author&amp;query=Richardson%2C+N+D">N. D. Richardson</a>, <a href="/search/?searchtype=author&amp;query=Ho%2C+T+P">T. P. Ho</a>, <a href="/search/?searchtype=author&amp;query=Madura%2C+T+I">T. I. Madura</a>, <a href="/search/?searchtype=author&amp;query=Espinoza-Galeas%2C+D">D. Espinoza-Galeas</a>, <a href="/search/?searchtype=author&amp;query=Hartman%2C+H">H. Hartman</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+P">P. Morris</a>, <a href="/search/?searchtype=author&amp;query=Pickett%2C+C+S">C. S. Pickett</a>, <a href="/search/?searchtype=author&amp;query=Stevens%2C+I+R">I. R. Stevens</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">C. M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Hamaguchi%2C+K">K. Hamaguchi</a>, <a href="/search/?searchtype=author&amp;query=Jablonski%2C+F+J">F. J. Jablonski</a>, <a href="/search/?searchtype=author&amp;query=Teodoro%2C+M">M. Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McGee%2C+P">P. McGee</a>, <a href="/search/?searchtype=author&amp;query=Cacella%2C+P">P. Cacella</a>, <a href="/search/?searchtype=author&amp;query=Heathcote%2C+B">B. Heathcote</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+K">K. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Johnston%2C+M">M. Johnston</a>, <a href="/search/?searchtype=author&amp;query=Bohlsen%2C+T">T. Bohlsen</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01445v2-abstract-short" style="display: inline;"> Eta Carinae ($畏$\,Car) exhibits a unique set of P Cygni profiles with both broad and narrow components. Over many decades, the spectrum has changed -- there has been an increase in observed continuum fluxes and a decrease in FeII and HI emission line equivalent widths. The spectrum is evolving towards that of a P Cygni star such as P~Cygni itself and HDE~316285. The spectral evolution has been att&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01445v2-abstract-full').style.display = 'inline'; document.getElementById('2211.01445v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01445v2-abstract-full" style="display: none;"> Eta Carinae ($畏$\,Car) exhibits a unique set of P Cygni profiles with both broad and narrow components. Over many decades, the spectrum has changed -- there has been an increase in observed continuum fluxes and a decrease in FeII and HI emission line equivalent widths. The spectrum is evolving towards that of a P Cygni star such as P~Cygni itself and HDE~316285. The spectral evolution has been attributed to intrinsic variations such as a decrease in the mass-loss rate of the primary star or differential evolution in a latitudinal-dependent stellar wind. However intrinsic wind changes conflict with three observational results: the steady long-term bolometric luminosity; the repeating X-ray light curve over the binary period; and the constancy of the dust-scattered spectrum from the Homunculus. We extend previous work that showed a secular strengthening of P~Cygni absorptions by adding more orbital cycles to overcome temporary instabilities and by examining more atomic transitions. {\sc cmfgen} modeling of the primary wind shows that a time-decreasing mass-loss rate is not the best explanation for the observations. However, models with a `small&#39; dissipating absorber in our line-of-site can explain both the increase in brightness and changes in the emission and P Cygni absorption profiles. If the spectral evolution is caused by the dissipating circumstellar medium, and not by intrinsic changes in the binary, the dynamical timescale to recover from the Great Eruption is much less than a century, different from previous suggestions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01445v2-abstract-full').style.display = 'none'; document.getElementById('2211.01445v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">71 pages, 8 figures, 4 long tables, to appear on ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06452">arXiv:2210.06452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.06452">pdf</a>, <a href="https://arxiv.org/format/2210.06452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-022-01812-x">10.1038/s41550-022-01812-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nested Dust Shells around the Wolf-Rayet Binary WR 140 observed with JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lau%2C+R+M">Ryan M. Lau</a>, <a href="/search/?searchtype=author&amp;query=Hankins%2C+M+J">Matthew J. Hankins</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+Y">Yinuo Han</a>, <a href="/search/?searchtype=author&amp;query=Argyriou%2C+I">Ioannis Argyriou</a>, <a href="/search/?searchtype=author&amp;query=Corcoran%2C+M+F">Michael F. Corcoran</a>, <a href="/search/?searchtype=author&amp;query=Eldridge%2C+J+J">Jan J. Eldridge</a>, <a href="/search/?searchtype=author&amp;query=Endo%2C+I">Izumi Endo</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+O+D">Ori D. Fox</a>, <a href="/search/?searchtype=author&amp;query=Marin%2C+M+G">Macarena Garcia Marin</a>, <a href="/search/?searchtype=author&amp;query=Gull%2C+T+R">Theodore R. Gull</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+O+C">Olivia C. Jones</a>, <a href="/search/?searchtype=author&amp;query=Hamaguchi%2C+K">Kenji Hamaguchi</a>, <a href="/search/?searchtype=author&amp;query=Lamberts%2C+A">Astrid Lamberts</a>, <a href="/search/?searchtype=author&amp;query=Law%2C+D+R">David R. Law</a>, <a href="/search/?searchtype=author&amp;query=Madura%2C+T">Thomas Madura</a>, <a href="/search/?searchtype=author&amp;query=Marchenko%2C+S+V">Sergey V. Marchenko</a>, <a href="/search/?searchtype=author&amp;query=Matsuhara%2C+H">Hideo Matsuhara</a>, <a href="/search/?searchtype=author&amp;query=Moffat%2C+A+F+J">Anthony F. J. Moffat</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+P+W">Patrick W. Morris</a>, <a href="/search/?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/?searchtype=author&amp;query=Ressler%2C+M+E">Michael E. Ressler</a>, <a href="/search/?searchtype=author&amp;query=Richardson%2C+N+D">Noel D. Richardson</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">Christopher M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Sanchez-Bermudez%2C+J">Joel Sanchez-Bermudez</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06452v1-abstract-short" style="display: inline;"> Massive colliding-wind binaries that host a Wolf-Rayet (WR) star present a potentially important source of dust and chemical enrichment in the interstellar medium (ISM). However, the chemical composition and survival of dust formed from such systems is not well understood. The carbon-rich WR (WC) binary WR~140 presents an ideal astrophysical laboratory for investigating these questions given its w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06452v1-abstract-full').style.display = 'inline'; document.getElementById('2210.06452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06452v1-abstract-full" style="display: none;"> Massive colliding-wind binaries that host a Wolf-Rayet (WR) star present a potentially important source of dust and chemical enrichment in the interstellar medium (ISM). However, the chemical composition and survival of dust formed from such systems is not well understood. The carbon-rich WR (WC) binary WR~140 presents an ideal astrophysical laboratory for investigating these questions given its well-defined orbital period and predictable dust-formation episodes every 7.93 years around periastron passage. We present observations from our Early Release Science program (ERS1349) with the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) Medium-Resolution Spectrometer (MRS) and Imager that reveal the spectral and spatial signatures of nested circumstellar dust shells around WR~140. MIRI MRS spectroscopy of the second dust shell and Imager detections of over 17 shells formed throughout the past $\gtrsim130$ years confirm the survival of carbonaceous dust grains from WR~140 that are likely carriers of &#34;unidentified infrared&#34; (UIR)-band features at 6.4 and 7.7 $渭$m. The observations indicate that dust-forming WC binaries can enrich the ISM with organic compounds and carbonaceous dust. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06452v1-abstract-full').style.display = 'none'; document.getElementById('2210.06452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature Astronomy on Oct 12, 2022; 21 pages, 5 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Lau, R.M., Hankins, M.J., Han, Y. et al. Nested dust shells around the Wolf-Rayet binary WR 140 observed with JWST. Nat Astron (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09864">arXiv:2209.09864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09864">pdf</a>, <a href="https://arxiv.org/format/2209.09864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2630574">10.1117/12.2630574 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of the Low Frequency Telescope Focal Plane Detector Modules for LiteBIRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Westbrook%2C+B">Benjamin Westbrook</a>, <a href="/search/?searchtype=author&amp;query=Raum%2C+C">Christopher Raum</a>, <a href="/search/?searchtype=author&amp;query=Beckman%2C+S">Shawn Beckman</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/?searchtype=author&amp;query=Farias%2C+N">Nicole Farias</a>, <a href="/search/?searchtype=author&amp;query=Bogdan%2C+A">Andrew Bogdan</a>, <a href="/search/?searchtype=author&amp;query=Hornsby%2C+A">Amber Hornsby</a>, <a href="/search/?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/?searchtype=author&amp;query=Rotermund%2C+K">Kaja Rotermund</a>, <a href="/search/?searchtype=author&amp;query=Elleflot%2C+T">Tucker Elleflot</a>, <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/?searchtype=author&amp;query=Vissers%2C+M+R">Michael R. Vissers</a>, <a href="/search/?searchtype=author&amp;query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/?searchtype=author&amp;query=Jaehnig%2C+G">Greg Jaehnig</a>, <a href="/search/?searchtype=author&amp;query=Halverson%2C+N">Nils Halverson</a>, <a href="/search/?searchtype=author&amp;query=Ghigna%2C+T">Tomasso Ghigna</a>, <a href="/search/?searchtype=author&amp;query=Hazumi%2C+M">Masashi Hazumi</a>, <a href="/search/?searchtype=author&amp;query=Stever%2C+S">Samantha Stever</a>, <a href="/search/?searchtype=author&amp;query=Minami%2C+Y">Yuto Minami</a>, <a href="/search/?searchtype=author&amp;query=Thompson%2C+K+L">Keith L. Thompson</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+M">Megan Russell</a>, <a href="/search/?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09864v1-abstract-short" style="display: inline;"> LiteBIRD is a JAXA-led strategic large-class satellite mission designed to measure the polarization of the cosmic microwave background and Galactic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s. The scientific payload includes three telescopes which are called the low-, mid-, and high-frequency telescopes each with their own receiver that covers a portion of the mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09864v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09864v1-abstract-full" style="display: none;"> LiteBIRD is a JAXA-led strategic large-class satellite mission designed to measure the polarization of the cosmic microwave background and Galactic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s. The scientific payload includes three telescopes which are called the low-, mid-, and high-frequency telescopes each with their own receiver that covers a portion of the mission&#39;s frequency range. The low frequency telescope will map synchrotron radiation from the Galactic foreground and the cosmic microwave background. We discuss the design, fabrication, and characterization of the low-frequency focal plane modules for low-frequency telescope, which has a total bandwidth ranging from 34 to 161 GHz. There will be a total of 4 different pixel types with 8 overlapping bands to cover the full frequency range. These modules are housed in a single low-frequency focal plane unit which provides thermal isolation, mechanical support, and radiative baffling for the detectors. The module design implements multi-chroic lenslet-coupled sinuous antenna arrays coupled to transition edge sensor bolometers read out with frequency-domain mulitplexing. While this technology has strong heritage in ground-based cosmic microwave background experiments, the broad frequency coverage, low optical loading conditions, and the high cosmic ray background of the space environment require further development of this technology to be suitable for LiteBIRD. In these proceedings, we discuss the optical and bolometeric characterization of a triplexing prototype pixel with bands centered on 78, 100, and 140 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09864v1-abstract-full').style.display = 'none'; document.getElementById('2209.09864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE Astronomical Telescope + Instrumentation (AS22)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 12190-30 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09785">arXiv:2209.09785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09785">pdf</a>, <a href="https://arxiv.org/format/2209.09785">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2686">10.1093/mnras/stac2686 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gamma-ray observations of MAXI J1820+070 during the 2018 outburst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Acciari%2C+V+A">V. A. Acciari</a>, <a href="/search/?searchtype=author&amp;query=Aniello%2C+T">T. Aniello</a>, <a href="/search/?searchtype=author&amp;query=Ansoldi%2C+S">S. Ansoldi</a>, <a href="/search/?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/?searchtype=author&amp;query=Engels%2C+A+A">A. Arbet Engels</a>, <a href="/search/?searchtype=author&amp;query=Arcaro%2C+C">C. Arcaro</a>, <a href="/search/?searchtype=author&amp;query=Artero%2C+M">M. Artero</a>, <a href="/search/?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/?searchtype=author&amp;query=Baack%2C+D">D. Baack</a>, <a href="/search/?searchtype=author&amp;query=Babi%C4%87%2C+A">A. Babi膰</a>, <a href="/search/?searchtype=author&amp;query=Baquero%2C+A">A. Baquero</a>, <a href="/search/?searchtype=author&amp;query=de+Almeida%2C+U+B">U. Barres de Almeida</a>, <a href="/search/?searchtype=author&amp;query=Barrio%2C+J+A">J. A. Barrio</a>, <a href="/search/?searchtype=author&amp;query=Batkovi%C4%87%2C+I">I. Batkovi膰</a>, <a href="/search/?searchtype=author&amp;query=Baxter%2C+J">J. Baxter</a>, <a href="/search/?searchtype=author&amp;query=Gonz%C3%A1lez%2C+J+B">J. Becerra Gonz谩lez</a>, <a href="/search/?searchtype=author&amp;query=Bednarek%2C+W">W. Bednarek</a>, <a href="/search/?searchtype=author&amp;query=Bernardini%2C+E">E. Bernardini</a>, <a href="/search/?searchtype=author&amp;query=Bernardos%2C+M">M. Bernardos</a>, <a href="/search/?searchtype=author&amp;query=Berti%2C+A">A. Berti</a>, <a href="/search/?searchtype=author&amp;query=Besenrieder%2C+J">J. Besenrieder</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharyya%2C+W">W. Bhattacharyya</a>, <a href="/search/?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a> , et al. (418 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09785v2-abstract-short" style="display: inline;"> MAXI J1820+070 is a low-mass X-ray binary with a black hole as a compact object. This binary underwent an exceptionally bright X-ray outburst from March to October 2018, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 hours of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS expe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09785v2-abstract-full').style.display = 'inline'; document.getElementById('2209.09785v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09785v2-abstract-full" style="display: none;"> MAXI J1820+070 is a low-mass X-ray binary with a black hole as a compact object. This binary underwent an exceptionally bright X-ray outburst from March to October 2018, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 hours of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to ~ 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential high-energy and very-high-energy gamma-ray emitting region should be located at a distance from the black hole ranging between 10^11 and 10^13 cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09785v2-abstract-full').style.display = 'none'; document.getElementById('2209.09785v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14581">arXiv:2208.14581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14581">pdf</a>, <a href="https://arxiv.org/ps/2208.14581">ps</a>, <a href="https://arxiv.org/format/2208.14581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> </div> </div> <p class="title is-5 mathjax"> Principal subspaces of basic modules for twisted affine Lie algebras, $q$-series multisums, and Nandi&#39;s identities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Baker%2C+K">Katherine Baker</a>, <a href="/search/?searchtype=author&amp;query=Kanade%2C+S">Shashank Kanade</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+M+C">Matthew C. Russell</a>, <a href="/search/?searchtype=author&amp;query=Sadowski%2C+C">Christopher Sadowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14581v1-abstract-short" style="display: inline;"> We provide an observation relating several known and conjectured $q$-series identities to the theory of principal subspaces of basic modules for twisted affine Lie algebras. We also state and prove two new families of $q$-series identities. The first family provides quadruple sum representations for Nandi&#39;s identities, including a manifestly positive representation for the first identity. The seco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14581v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14581v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14581v1-abstract-full" style="display: none;"> We provide an observation relating several known and conjectured $q$-series identities to the theory of principal subspaces of basic modules for twisted affine Lie algebras. We also state and prove two new families of $q$-series identities. The first family provides quadruple sum representations for Nandi&#39;s identities, including a manifestly positive representation for the first identity. The second is a family of new mod 10 identities connected with principal characters of level 4 integrable, highest-weight modules of $\mathrm{D}_4^{(3)}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14581v1-abstract-full').style.display = 'none'; document.getElementById('2208.14581v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">See ancillary files for Maple programs regarding proof verification</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05A15; 05A17; 11P84; 17B69 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05119">arXiv:2207.05119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05119">pdf</a>, <a href="https://arxiv.org/ps/2207.05119">ps</a>, <a href="https://arxiv.org/format/2207.05119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> Runs and RSK tableaux of boolean permutations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gunawan%2C+E">Emily Gunawan</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+J">Jianping Pan</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+H+M">Heather M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Tenner%2C+B+E">Bridget Eileen Tenner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05119v2-abstract-short" style="display: inline;"> We define and construct the &#34;canonical reduced word&#34; of a boolean permutation, and show that the RSK tableaux for that permutation can be read off directly from this reduced word. We also describe those tableaux that can correspond to boolean permutations, and enumerate them. In addition, we generalize a result of Mazorchuk and Tenner, showing that the &#34;run&#34; statistic influences the shape of the R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05119v2-abstract-full').style.display = 'inline'; document.getElementById('2207.05119v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05119v2-abstract-full" style="display: none;"> We define and construct the &#34;canonical reduced word&#34; of a boolean permutation, and show that the RSK tableaux for that permutation can be read off directly from this reduced word. We also describe those tableaux that can correspond to boolean permutations, and enumerate them. In addition, we generalize a result of Mazorchuk and Tenner, showing that the &#34;run&#34; statistic influences the shape of the RSK tableau of arbitrary permutations, not just of those that are boolean. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05119v2-abstract-full').style.display = 'none'; document.getElementById('2207.05119v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">final version, to appear in Annals of Combinatorics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> Primary 05A05; Secondary 20F55; 06A07; 05A19 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03457">arXiv:2207.03457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.03457">pdf</a>, <a href="https://arxiv.org/format/2207.03457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac69ce">10.3847/1538-4357/ac69ce <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NICER X-ray Observations of Eta Carinae During its Most Recent Periastron Passage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Espinoza-Galeas%2C+D">David Espinoza-Galeas</a>, <a href="/search/?searchtype=author&amp;query=Corcoran%2C+M+F">Michael Francis Corcoran</a>, <a href="/search/?searchtype=author&amp;query=Hamaguchi%2C+K">Kenji Hamaguchi</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">Christopher M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Gull%2C+T+R">Theodore R. Gull</a>, <a href="/search/?searchtype=author&amp;query=Moffat%2C+A">Anthony Moffat</a>, <a href="/search/?searchtype=author&amp;query=Richardson%2C+N+D">Noel D. Richardson</a>, <a href="/search/?searchtype=author&amp;query=Weigelt%2C+G">Gerd Weigelt</a>, <a href="/search/?searchtype=author&amp;query=Hillier%2C+D+J">D. John Hillier</a>, <a href="/search/?searchtype=author&amp;query=Damineli%2C+A">Augusto Damineli</a>, <a href="/search/?searchtype=author&amp;query=Stevens%2C+I+R">Ian R. Stevens</a>, <a href="/search/?searchtype=author&amp;query=Madura%2C+T">Thomas Madura</a>, <a href="/search/?searchtype=author&amp;query=Gendreau%2C+K">Keith Gendreau</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+Z">Zaven Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Navarete%2C+F">Felipe Navarete</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03457v1-abstract-short" style="display: inline;"> We report high-precision X-ray monitoring observations in the 0.4-10 keV band of the luminous, long-period colliding-wind binary Eta Carinae up to and through its most recent X-ray minimum/periastron passage in February 2020. Eta Carinae reached its observed maximum X-ray flux on 7 January 2020, at a flux level of $3.30 \times 10^{-10}$ ergs s$^{-1}$ cm$^{-2}$, followed by a rapid plunge to its ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03457v1-abstract-full').style.display = 'inline'; document.getElementById('2207.03457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03457v1-abstract-full" style="display: none;"> We report high-precision X-ray monitoring observations in the 0.4-10 keV band of the luminous, long-period colliding-wind binary Eta Carinae up to and through its most recent X-ray minimum/periastron passage in February 2020. Eta Carinae reached its observed maximum X-ray flux on 7 January 2020, at a flux level of $3.30 \times 10^{-10}$ ergs s$^{-1}$ cm$^{-2}$, followed by a rapid plunge to its observed minimum flux, $0.03 \times 10^{-10}$ ergs s$^{-1}$ cm$^{-2}$ near 17 February 2020. The NICER observations show an X-ray recovery from minimum of only $\sim$16 days, the shortest X-ray minimum observed so far. We provide new constraints of the &#34;deep&#34; and &#34;shallow&#34; minimum intervals. Variations in the characteristic X-ray temperature of the hottest observed X-ray emission indicate that the apex of the wind-wind &#34;bow shock&#34; enters the companion&#39;s wind acceleration zone about 81 days before the start of the X-ray minimum. There is a step-like increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During recovery and after, the column density shows a smooth decline, which agrees with previous $N_{H}$ measurements made by SWIFT at the same orbital phase, indicating that changes in mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of $\sim 10^{41}$ ergs s$^{-1}$ near the time of the &#34;Great Eruption&#39;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03457v1-abstract-full').style.display = 'none'; document.getElementById('2207.03457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15116">arXiv:2205.15116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15116">pdf</a>, <a href="https://arxiv.org/format/2205.15116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac74c2">10.3847/1538-4357/ac74c2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Eta Carinae: an evolving view of the central binary, its interacting winds and its foreground ejecta </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gull%2C+T+R">Theodore R. Gull</a>, <a href="/search/?searchtype=author&amp;query=Hillier%2C+D+J">D. John Hillier</a>, <a href="/search/?searchtype=author&amp;query=Hartman%2C+H">Henrik Hartman</a>, <a href="/search/?searchtype=author&amp;query=Corcoran%2C+M+F">Michael F. Corcoran</a>, <a href="/search/?searchtype=author&amp;query=Damineli%2C+A">Augusto Damineli</a>, <a href="/search/?searchtype=author&amp;query=Espinoza-Galeas%2C+D">David Espinoza-Galeas</a>, <a href="/search/?searchtype=author&amp;query=Hamaguchi%2C+K">Kenji Hamaguchi</a>, <a href="/search/?searchtype=author&amp;query=Navarete%2C+F">Felipe Navarete</a>, <a href="/search/?searchtype=author&amp;query=Nielsen%2C+K">Krister Nielsen</a>, <a href="/search/?searchtype=author&amp;query=Madura%2C+T">Thomas Madura</a>, <a href="/search/?searchtype=author&amp;query=Moffat%2C+A+F+J">Anthony F. J. Moffat</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+P">Patrick Morris</a>, <a href="/search/?searchtype=author&amp;query=Richardson%2C+N+D">Noel D. Richardson</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">Christopher M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Stevens%2C+I+R">Ian R. Stevens</a>, <a href="/search/?searchtype=author&amp;query=Weigelt%2C+G">Gerd Weigelt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15116v1-abstract-short" style="display: inline;"> FUV spectra of Eta Car, recorded across two decades with HST/STIS, document multiple changes in resonant lines caused by dissipating extinction in our line of sight. The FUV flux has increased nearly ten-fold which has led to increased ionization of the multiple shells within the Homunculus and photo-destruction of molecular hydrogen. Comparison of observed resonant line profiles with CMFGEN model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15116v1-abstract-full').style.display = 'inline'; document.getElementById('2205.15116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15116v1-abstract-full" style="display: none;"> FUV spectra of Eta Car, recorded across two decades with HST/STIS, document multiple changes in resonant lines caused by dissipating extinction in our line of sight. The FUV flux has increased nearly ten-fold which has led to increased ionization of the multiple shells within the Homunculus and photo-destruction of molecular hydrogen. Comparison of observed resonant line profiles with CMFGEN model profiles allows separation of wind-wind collision and shell absorptions from the primary wind, P Cygni profiles.The dissipating occulter preferentially obscured the central binary and interacting winds relative to the very extended primary wind. We are now able to monitor changes in the colliding winds with orbital phase. High velocity transient absorptions occurred across the most recent periastron passage, indicating acceleration of the primary wind by the secondary wind which leads to a downstream, high velocity bowshock that is newly generated every orbital period. There is no evidence of changes in the properties of the binary winds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15116v1-abstract-full').style.display = 'none'; document.getElementById('2205.15116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 22 figures, accepted Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04452">arXiv:2205.04452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04452">pdf</a>, <a href="https://arxiv.org/format/2205.04452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6ce1">10.3847/1538-4357/ac6ce1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A multi-wavelength study of GRS 1716-249 in outburst : constraints on its system parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Saikia%2C+P">Payaswini Saikia</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=Casella%2C+P">Piergiorgio Casella</a>, <a href="/search/?searchtype=author&amp;query=Trigo%2C+M+D">M. Diaz Trigo</a>, <a href="/search/?searchtype=author&amp;query=Gandhi%2C+P">Poshak Gandhi</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+J">Jiachen Jiang</a>, <a href="/search/?searchtype=author&amp;query=Maccarone%2C+T">Thomas Maccarone</a>, <a href="/search/?searchtype=author&amp;query=Soria%2C+R">Roberto Soria</a>, <a href="/search/?searchtype=author&amp;query=Noori%2C+H+A">Hind Al Noori</a>, <a href="/search/?searchtype=author&amp;query=Yazeedi%2C+A+A">Aisha Al Yazeedi</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">Kevin Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Belloni%2C+T">Tomaso Belloni</a>, <a href="/search/?searchtype=author&amp;query=Bel%2C+M+C">Marion Cadolle Bel</a>, <a href="/search/?searchtype=author&amp;query=Ceccobello%2C+C">Chiara Ceccobello</a>, <a href="/search/?searchtype=author&amp;query=Corbel%2C+S">Stephane Corbel</a>, <a href="/search/?searchtype=author&amp;query=Fender%2C+R">Rob Fender</a>, <a href="/search/?searchtype=author&amp;query=Gallo%2C+E">Elena Gallo</a>, <a href="/search/?searchtype=author&amp;query=Homan%2C+J">Jeroen Homan</a>, <a href="/search/?searchtype=author&amp;query=Koljonen%2C+K">Karri Koljonen</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+F">Fraser Lewis</a>, <a href="/search/?searchtype=author&amp;query=Markoff%2C+S+B">Sera B. Markoff</a>, <a href="/search/?searchtype=author&amp;query=Miller-Jones%2C+J+C+A">James C. A. Miller-Jones</a>, <a href="/search/?searchtype=author&amp;query=Rodriguez%2C+J">Jerome Rodriguez</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04452v1-abstract-short" style="display: inline;"> We present a detailed study of the evolution of the Galactic black hole transient GRS 1716-249 during its 2016-2017 outburst at optical (Las Cumbres Observatory), mid-infrared (Very Large Telescope), near-infrared (Rapid Eye Mount telescope), and ultraviolet (the Neil Gehrels Swift Observatory Ultraviolet/Optical Telescope) wavelengths, along with archival radio and X-ray data. We show that the op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04452v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04452v1-abstract-full" style="display: none;"> We present a detailed study of the evolution of the Galactic black hole transient GRS 1716-249 during its 2016-2017 outburst at optical (Las Cumbres Observatory), mid-infrared (Very Large Telescope), near-infrared (Rapid Eye Mount telescope), and ultraviolet (the Neil Gehrels Swift Observatory Ultraviolet/Optical Telescope) wavelengths, along with archival radio and X-ray data. We show that the optical/near-infrared and UV emission of the source mainly originates from a multi-temperature accretion disk, while the mid-infrared and radio emission are dominated by synchrotron emission from a compact jet. The optical/UV flux density is correlated with the X-ray emission when the source is in the hard state, consistent with an X-ray irradiated accretion disk with an additional contribution from the viscous disk during the outburst fade. We also report the long-term optical light curve of the source and find that the quiescent i-band magnitude is 21.39$\pm$0.15 mag. Furthermore, we discuss how previous estimates of the system parameters of the source are based on various incorrect assumptions, and so are likely to be inaccurate. By comparing our GRS 1716-249 dataset to those of other outbursting black hole X-ray binaries, we find that while GRS 1716-249 shows similar X-ray behaviour, it is noticeably optically fainter, if the literature distance of 2.4 kpc is adopted. Using several lines of reasoning, we argue that the source distance is further than previously assumed in the literature, likely within 4-17 kpc, with a most likely range of $\sim$4-8 kpc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04452v1-abstract-full').style.display = 'none'; document.getElementById('2205.04452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09626">arXiv:2204.09626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.09626">pdf</a>, <a href="https://arxiv.org/format/2204.09626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1120">10.1093/mnras/stac1120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The origin of UV/optical emission in the black hole low-mass X-ray binary Swift J1753.5-0127 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yang%2C+P">Pengcheng Yang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+G">Guobao Zhang</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">David M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Gelfand%2C+J+D">Joseph D. Gelfand</a>, <a href="/search/?searchtype=author&amp;query=M%C3%A9ndez%2C+M">Mariano M茅ndez</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Jiancheng Wang</a>, <a href="/search/?searchtype=author&amp;query=Lyu%2C+M">Ming Lyu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09626v1-abstract-short" style="display: inline;"> The emission from the accreting black holes (BHs) in low-mass X-ray binaries (LMXBs) covers a broad energy band from radio to X-rays. Studying the correlations between emission in different energy bands during outbursts can provide valuable information about the accretion process. We analyse the simultaneous optical, ultraviolet (UV) and X-ray data of the BH-LMXB Swift J1753.5-0127 during its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09626v1-abstract-full').style.display = 'inline'; document.getElementById('2204.09626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09626v1-abstract-full" style="display: none;"> The emission from the accreting black holes (BHs) in low-mass X-ray binaries (LMXBs) covers a broad energy band from radio to X-rays. Studying the correlations between emission in different energy bands during outbursts can provide valuable information about the accretion process. We analyse the simultaneous optical, ultraviolet (UV) and X-ray data of the BH-LMXB Swift J1753.5-0127 during its $\sim$ 12-year long outburst with the {\it Neil Gehrels Swift Observatory}. We find that the UV/optical and X-ray emission are strongly correlated during the hard states of the outburst. We fit the relation with a power-law function $F_{UV/optical} \propto F_{X}^尾$ and find that the power-law index $尾$ increases from $\sim$ 0.24 to $\sim$ 0.33 as the UV/optical wavelength decreases from $\sim$ 5400 脜 (V) to $\sim$ 2030 脜 (UVW2). We explore the possible reasons for this and suggest that in Swift J1753.5-0127 the UV/optical emission is dominated by a viscously heated accretion disc at large radii. We find that the data that deviate from the correlation correspond to the low-intensity peaks appeared in the X-ray band during the outburst, and suggest that these deviations are driven by the emission from the inner part of the accretion disc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09626v1-abstract-full').style.display = 'none'; document.getElementById('2204.09626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures, 1 table, accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00030">arXiv:2204.00030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00030">pdf</a>, <a href="https://arxiv.org/format/2204.00030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac63ad">10.3847/1538-4357/ac63ad <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A misfired outburst in the neutron star X-ray binary Centaurus X-4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Baglio%2C+M+C">M. C. Baglio</a>, <a href="/search/?searchtype=author&amp;query=Saikia%2C+P">P. Saikia</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+D+M">D. M. Russell</a>, <a href="/search/?searchtype=author&amp;query=Homan%2C+J">J. Homan</a>, <a href="/search/?searchtype=author&amp;query=Waterval%2C+S">S. Waterval</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+F">F. Lewis</a>, <a href="/search/?searchtype=author&amp;query=Eijnden%2C+J+V+d">J. Van den Eijnden</a>, <a href="/search/?searchtype=author&amp;query=Alabarta%2C+K">K. Alabarta</a>, <a href="/search/?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/?searchtype=author&amp;query=Goldoni%2C+P">P. Goldoni</a>, <a href="/search/?searchtype=author&amp;query=Masetti%2C+N">N. Masetti</a>, <a href="/search/?searchtype=author&amp;query=Mu%C3%B1oz-Darias%2C+T">T. Mu帽oz-Darias</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00030v1-abstract-short" style="display: inline;"> We report on a long-term optical monitoring of the neutron star X-ray binary Centaurus X-4 performed during the last 13.5 years. This source has been in quiescence since its outburst in 1979. Our monitoring reveals the overall evolution of the accretion disc; we detect short-duration flares, likely originating also in the disc, superimposed with a small-amplitude (&lt; 0.1 mag) ellipsoidal modulation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00030v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00030v1-abstract-full" style="display: none;"> We report on a long-term optical monitoring of the neutron star X-ray binary Centaurus X-4 performed during the last 13.5 years. This source has been in quiescence since its outburst in 1979. Our monitoring reveals the overall evolution of the accretion disc; we detect short-duration flares, likely originating also in the disc, superimposed with a small-amplitude (&lt; 0.1 mag) ellipsoidal modulation from the companion star due to geometrical effects. A long-term (~2300 days) downward trend, followed by a shorter (~1000 days) upward one, is observed in the disc light curve. Such a rise in the optical has been observed for other X-ray binaries preceding outbursts, as predicted by the disc instability model. For Cen X-4, the rise of the optical flux proceeded for ~3 years, and culminated in a flux increase at all wavelengths (optical-UV-X-rays) at the end of 2020. This increase faded after ~2 weeks, without giving rise to a full outburst. We suggest that the propagation of an inside-out heating front was ignited due to a partial ionization of hydrogen in the inner disc. The propagation might have stalled soon after the ignition due to the increasing surface density in the disc that the front encountered while propagating outwards. The stall was likely eased by the low level irradiation of the outer regions of the large accretion disc, as shown by the slope of the optical/X-ray correlation, suggesting that irradiation does not play a strong role in the optical, compared to other sources of emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00030v1-abstract-full').style.display = 'none'; document.getElementById('2204.00030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05690">arXiv:2203.05690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05690">pdf</a>, <a href="https://arxiv.org/ps/2203.05690">ps</a>, <a href="https://arxiv.org/format/2203.05690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> </div> </div> <p class="title is-5 mathjax"> Completing the $\mathrm{A}_2$ Andrews-Schilling-Warnaar identities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kanade%2C+S">Shashank Kanade</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+M+C">Matthew C. Russell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05690v2-abstract-short" style="display: inline;"> We study the Andrews-Schilling-Warnaar sum-sides for the principal characters of standard (i.e., integrable, highest weight) modules of $\mathrm{A}_2^{(1)}$. These characters have been studied recently by various subsets of Corteel, Dousse, Foda, Uncu, Warnaar and Welsh. We prove complete sets of identities for moduli $5$ through $8$ and $10$, in Andrews-Schilling-Warnaar form. The cases of moduli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05690v2-abstract-full').style.display = 'inline'; document.getElementById('2203.05690v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05690v2-abstract-full" style="display: none;"> We study the Andrews-Schilling-Warnaar sum-sides for the principal characters of standard (i.e., integrable, highest weight) modules of $\mathrm{A}_2^{(1)}$. These characters have been studied recently by various subsets of Corteel, Dousse, Foda, Uncu, Warnaar and Welsh. We prove complete sets of identities for moduli $5$ through $8$ and $10$, in Andrews-Schilling-Warnaar form. The cases of moduli $6$ and $10$ are new. Our methods depend on the Corteel-Welsh recursions governing the cylindric partitions and on certain relations satisfied by the Andrews-Schilling-Warnaar sum-sides. We speculate on the role of the latter in the proofs of higher modulus identities. Further, we provide a complete set of conjectures for modulus $9$. In fact, we show that at any given modulus, a complete set of conjectures may be deduced using a subset of &#34;seed&#34; conjectures. These seed conjectures are obtained by appropriately truncating conjectures for the &#34;infinite&#34; level. Additionally, for moduli $3k$, we use an identity of Weierstrass to deduce new sum-product identities starting from the results of Andrews-Schilling-Warnaar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05690v2-abstract-full').style.display = 'none'; document.getElementById('2203.05690v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Typos and errors corrected. See ancillary files for the SAGE notebooks and the data required for proofs. 34 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05A15; 05A17; 11P84; 17B65; 17B69 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02773">arXiv:2202.02773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02773">pdf</a>, <a href="https://arxiv.org/format/2202.02773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac150">10.1093/ptep/ptac150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LiteBIRD+Collaboration"> LiteBIRD Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Allys%2C+E">E. Allys</a>, <a href="/search/?searchtype=author&amp;query=Arnold%2C+K">K. Arnold</a>, <a href="/search/?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/?searchtype=author&amp;query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/?searchtype=author&amp;query=Azzoni%2C+S">S. Azzoni</a>, <a href="/search/?searchtype=author&amp;query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/?searchtype=author&amp;query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/?searchtype=author&amp;query=Banerji%2C+R">R. Banerji</a>, <a href="/search/?searchtype=author&amp;query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/?searchtype=author&amp;query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/?searchtype=author&amp;query=Bautista%2C+L">L. Bautista</a>, <a href="/search/?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/?searchtype=author&amp;query=Beckman%2C+S">S. Beckman</a>, <a href="/search/?searchtype=author&amp;query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/?searchtype=author&amp;query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/?searchtype=author&amp;query=Brilenkov%2C+M">M. Brilenkov</a>, <a href="/search/?searchtype=author&amp;query=Bucher%2C+M">M. Bucher</a>, <a href="/search/?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/?searchtype=author&amp;query=Campeti%2C+P">P. Campeti</a>, <a href="/search/?searchtype=author&amp;query=Carones%2C+A">A. Carones</a>, <a href="/search/?searchtype=author&amp;query=Casas%2C+F+J">F. J. Casas</a>, <a href="/search/?searchtype=author&amp;query=Catalano%2C+A">A. Catalano</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+V">V. Chan</a>, <a href="/search/?searchtype=author&amp;query=Cheung%2C+K">K. Cheung</a> , et al. (166 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02773v3-abstract-short" style="display: inline;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA&#39;s H3 rocket. LiteBIRD is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02773v3-abstract-full').style.display = 'inline'; document.getElementById('2202.02773v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02773v3-abstract-full" style="display: none;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA&#39;s H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2$渭$K-arcmin, with a typical angular resolution of 0.5$^\circ$ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02773v3-abstract-full').style.display = 'none'; document.getElementById('2202.02773v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">155 pages, accepted for publication in PTEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02425">arXiv:2112.02425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02425">pdf</a>, <a href="https://arxiv.org/format/2112.02425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02796-8">10.1007/s10909-022-02796-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low Noise Frequency Domain Multiplexing of TES Bolometers using Sub-kelvin SQUIDs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Elleflot%2C+T">Tucker Elleflot</a>, <a href="/search/?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/?searchtype=author&amp;query=Bebek%2C+C">Chris Bebek</a>, <a href="/search/?searchtype=author&amp;query=Cantor%2C+R+H">Robin H. Cantor</a>, <a href="/search/?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/?searchtype=author&amp;query=Groh%2C+J">John Groh</a>, <a href="/search/?searchtype=author&amp;query=de+Haan%2C+T">Tijmen de Haan</a>, <a href="/search/?searchtype=author&amp;query=Hornsby%2C+A">Amber Hornsby</a>, <a href="/search/?searchtype=author&amp;query=Joseph%2C+J">John Joseph</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Tiffany Liu</a>, <a href="/search/?searchtype=author&amp;query=Montgomery%2C+J">Joshua Montgomery</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+M">Megan Russell</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+Q">Qingyang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02425v1-abstract-short" style="display: inline;"> Digital Frequency-Domain Multiplexing (DfMux) is a technique that uses MHz superconducting resonators and Superconducting Quantum Interference Device (SQUID) arrays to read out sets of Transition Edge Sensors. DfMux has been used by several Cosmic Microwave Background experiments, including most recently POLARBEAR-2 and SPT-3G with multiplexing factors as high as 68, and is the baseline readout te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02425v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02425v1-abstract-full" style="display: none;"> Digital Frequency-Domain Multiplexing (DfMux) is a technique that uses MHz superconducting resonators and Superconducting Quantum Interference Device (SQUID) arrays to read out sets of Transition Edge Sensors. DfMux has been used by several Cosmic Microwave Background experiments, including most recently POLARBEAR-2 and SPT-3G with multiplexing factors as high as 68, and is the baseline readout technology for the planned satellite mission LiteBIRD. Here, we present recent work focused on improving DfMux readout noise, reducing parasitic impedance, and improving sensor operation. We have achieved a substantial reduction in stray impedance by integrating the sensors, resonators, and SQUID array onto a single carrier board operated at 250 mK. This also drastically simplifies the packaging of the cryogenic components and leads to better-controlled crosstalk. We demonstrate a low readout noise level of 8.6 pA/Hz$^{-1/2}$, which was made possible by operating the SQUID array at a reduced temperature and with a low dynamic impedance. This is a factor of two improvement compared to the achieved readout noise level in currently operating Cosmic Microwave Background experiments using DfMux and represents a critical step toward maturation of the technology for the next generation of instruments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02425v1-abstract-full').style.display = 'none'; document.getElementById('2112.02425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10350">arXiv:2109.10350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10350">pdf</a>, <a href="https://arxiv.org/format/2109.10350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2430">10.3847/1538-4357/ac2430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competitive X-ray and Optical Cooling in the Collisionless Shocks of WR 140 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pollock%2C+A+M+T">A. M. T. Pollock</a>, <a href="/search/?searchtype=author&amp;query=Corcoran%2C+M+F">M. F. Corcoran</a>, <a href="/search/?searchtype=author&amp;query=Stevens%2C+I+R">I. R. Stevens</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+C+M+P">C. M. P. Russell</a>, <a href="/search/?searchtype=author&amp;query=Hamaguchi%2C+K">K. Hamaguchi</a>, <a href="/search/?searchtype=author&amp;query=Williams%2C+P+M">P. M. Williams</a>, <a href="/search/?searchtype=author&amp;query=Moffat%2C+A+F+J">A. F. J. Moffat</a>, <a href="/search/?searchtype=author&amp;query=Weigelt%2C+G">G. Weigelt</a>, <a href="/search/?searchtype=author&amp;query=Shenavrin%2C+V">V. Shenavrin</a>, <a href="/search/?searchtype=author&amp;query=Richardson%2C+N+D">N. D. Richardson</a>, <a href="/search/?searchtype=author&amp;query=Espinoza%2C+D">D. Espinoza</a>, <a href="/search/?searchtype=author&amp;query=Drake%2C+S+A">S. A. Drake</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10350v1-abstract-short" style="display: inline;"> WR 140 is a long-period, highly eccentric Wolf-Rayet star binary system with exceptionally well-determined orbital and stellar parameters. Bright, variable X-ray emission is generated in shocks produced by the collision of the winds of the WC7pd+O5.5fc component stars. We discuss the variations in the context of the colliding-wind model using broad-band spectrometry from the RXTE, SWIFT, and NICER&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10350v1-abstract-full').style.display = 'inline'; document.getElementById('2109.10350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10350v1-abstract-full" style="display: none;"> WR 140 is a long-period, highly eccentric Wolf-Rayet star binary system with exceptionally well-determined orbital and stellar parameters. Bright, variable X-ray emission is generated in shocks produced by the collision of the winds of the WC7pd+O5.5fc component stars. We discuss the variations in the context of the colliding-wind model using broad-band spectrometry from the RXTE, SWIFT, and NICER observatories obtained over 20 years and nearly 1000 observations through 3 consecutive 7.94-year orbits including 3 periastron passages. The X-ray luminosity varies as expected with the inverse of the stellar separation over most of the orbit: departures near periastron are produced when cooling shifts to excess optical emission in CIII $\lambda5696$ in particular. We use X-ray absorption to estimate mass-loss rates for both stars and to constrain the system morphology. The absorption maximum coincides closely with inferior conjunction of the WC star and provides evidence of the ion-reflection mechanism that underlies the formation of collisionless shocks governed by magnetic fields probably generated by the Weibel instability. Comparisons with K-band emission and HeI $位$10830 absorption show that both are correlated after periastron with the asymmetric X-ray absorption. Dust appears within a few days of periastron suggesting formation within shocked gas near the stagnation point. X-ray flares seen in $畏$ Carinae have not occurred in WR 140, suggesting the absence of large-scale wind inhomogeneities. Relatively constant soft emission revealed during the X-ray minimum is probably not from recombining plasma entrained in outflowing shocked gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10350v1-abstract-full').style.display = 'none'; document.getElementById('2109.10350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 17+1 figures, Accepted for publication in The Astrophysical Journal 23 August 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01909">arXiv:2109.01909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01909">pdf</a>, <a href="https://arxiv.org/ps/2109.01909">ps</a>, <a href="https://arxiv.org/format/2109.01909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> </div> <p class="title is-5 mathjax"> On certain identities involving Nahm-type sums with double poles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kanade%2C+S">Shashank Kanade</a>, <a href="/search/?searchtype=author&amp;query=Milas%2C+A">Antun Milas</a>, <a href="/search/?searchtype=author&amp;query=Russell%2C+M+C">Matthew C. Russell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01909v1-abstract-short" style="display: inline;"> We prove certain Nahm-type sum representations for the (odd modulus) Andrews-Gordon identities, the (even modulus) Andrews-Bressoud identities, and Rogers&#39; false theta functions. These identities are motivated on one hand by a recent work of C. Jennings-Shaffer and one of us on double pole series, and, on the other hand, by C贸rdova, Gaiotto and Shao&#39;s work on defect Schur&#39;s indices. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01909v1-abstract-full" style="display: none;"> We prove certain Nahm-type sum representations for the (odd modulus) Andrews-Gordon identities, the (even modulus) Andrews-Bressoud identities, and Rogers&#39; false theta functions. These identities are motivated on one hand by a recent work of C. Jennings-Shaffer and one of us on double pole series, and, on the other hand, by C贸rdova, Gaiotto and Shao&#39;s work on defect Schur&#39;s indices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01909v1-abstract-full').style.display = 'none'; document.getElementById('2109.01909v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Russell%2C+M&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10