CINXE.COM

Search results for: chitosan microparticles

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: chitosan microparticles</title> <meta name="description" content="Search results for: chitosan microparticles"> <meta name="keywords" content="chitosan microparticles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="chitosan microparticles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="chitosan microparticles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 320</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: chitosan microparticles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Synthesis and Characterization of Chitosan Microparticles for Scaffold Structure and Bioprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Mendes">J. E. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20de%20Barros"> T. T. de Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20G.%20de%20Assis"> O. B. G. de Assis</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20C.%20Pessoa"> J. D. C. Pessoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan, a natural polysaccharide of β-1,4-linked glucosamine residues, is a biopolymer obtained primarily from the exoskeletons of crustaceans. Interest in polymeric materials increases year by year. Chitosan is one of the most plentiful biomaterials, with a wide range of pharmaceutical, biomedical, industrial and agricultural applications. Chitosan nanoparticles were synthesized via the ionotropic gelation of chitosan with sodium tripolyphosphate (TPP). Two concentrations of chitosan microparticles (0.1 and 0.2%) were synthesized. In this study, it was possible to synthesize and characterize microparticles of chitosan biomaterial and this will be used for future applications in cell anchorage for 3D bioprinting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles" title="chitosan microparticles">chitosan microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title=" biomaterial"> biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title=" bioprinting"> bioprinting</a> </p> <a href="https://publications.waset.org/abstracts/14524/synthesis-and-characterization-of-chitosan-microparticles-for-scaffold-structure-and-bioprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Green Approach towards Synthesis of Chitosan Nanoparticles for in vitro Release of Quercetin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipali%20Nagaonkar">Dipali Nagaonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Rai"> Mahendra Rai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan, a carbohydrate polymer at nanoscale level has gained considerable momentum in drug delivery applications due to its inherent biocompatibility and non-toxicity. However, conventional synthetic strategies for chitosan nanoparticles mainly rely upon physicochemical techniques, which often yield chitosan microparticles. Hence, there is an emergent need for development of controlled synthetic protocols for chitosan nanoparticles within the nanometer range. In this context, we report the green synthesis of size controlled chitosan nanoparticles by using Pongamia pinnata (L.) leaf extract. Nanoparticle tracking analysis confirmed formation of nanoparticles with mean particle size of 85 nm. The stability of chitosan nanoparticles was investigated by zetasizer analysis, which revealed positive surface charged nanoparticles with zeta potential 20.1 mV. The green synthesized chitosan nanoparticles were further explored for encapsulation and controlled release of antioxidant biomolecule, quercetin. The resulting drug loaded chitosan nanoparticles showed drug entrapment efficiency of 93.50% with drug-loading capacity of 42.44%. The cumulative in vitro drug release up to 15 hrs was achieved suggesting towards efficacy of green synthesized chitosan nanoparticles for drug delivery applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitosan%20nanoparticles" title="Chitosan nanoparticles">Chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pongamia%20pinnata" title=" Pongamia pinnata"> Pongamia pinnata</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a> </p> <a href="https://publications.waset.org/abstracts/20293/green-approach-towards-synthesis-of-chitosan-nanoparticles-for-in-vitro-release-of-quercetin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Local Activities of the Membranes Associated with Glycosaminoglycan-Chitosan Complexes in Bone Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Chang%20Yeh">Chih-Chang Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Fang%20Yang"> Min-Fang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-I%20Chang"> Hsin-I Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is a cationic polysaccharide derived from the partial deacetylation of chitin. Hyaluronic acid (HA), chondroitin sulfate (CS) and heparin (HP) are anionic glycosaminoglycans (GCGs) which can regulate osteogenic activity. In this study, chitosan membranes were prepared by glutaraldehyde crosslinking reaction and then complexed with three different types of GCGs. 7F2 osteoblasts-like cells and macrophages Raw264.7 were used as models to study the influence of chitosan membranes on osteometabolism. Although chitosan membranes are highly hydrophilic, the membranes associated with GCG-chitosan complexes showed about 60-70% cell attachment. Furthermore, the membranes associated with HP-chitosan complexes could increase ALP activity in comparison with chitosan films only. Three types of the membranes associated with GCG-chitosan complexes could significantly inhibit LPS induced-nitric oxide expression. In addition, chitosan membranes associated with HP and HA can down-regulate tartrate-resistant acid phosphatase (TRAP) activity but not CS-chitosan complexes. Based on these results, we conclude that chitosan membranes associated with HP can increase ALP activity in osteoblasts and chitosan membranes associated with HP and HA reduce TRAP activity in osteoclasts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoblast" title="osteoblast">osteoblast</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoclast" title=" osteoclast"> osteoclast</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosaminoglycan" title=" glycosaminoglycan"> glycosaminoglycan</a> </p> <a href="https://publications.waset.org/abstracts/3820/local-activities-of-the-membranes-associated-with-glycosaminoglycan-chitosan-complexes-in-bone-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Development and In vitro Characterization of Diclofenac-Loaded Microparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakriti%20Diwan">Prakriti Diwan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saraf"> S. Saraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study involves preparation and evaluation of microparticles of diclofenac sodium. The microparticles were prepared by the emulsion solvent evaporation techniques using ethylcellulose polymer. Four different batches of microspheres were prepared by varying the concentration of polymer from 50% to 80% w/w. The microspheres were characterized for drug content, percentage yield and encapsulation efficiency, particle size analysis and surface morphology. Microsphere prepared with high drug content produces higher percentage yield and encapsulation efficiency values. It was observed the increase in concentration of the polymer, increases the mean particle size of the microspheres. The effect of polymer concentration on the in vitro release of diclofenac from the microspheres was also studied. The production microparticles yield showed 98.74%, mean particle size 956.32µm and loading efficiency 97.15%. The results were found that microparticles prepared had slower release than microparticles (p>0.05). Therefore, it may be concluded that drug loaded microparticles are suitable delivery systems for diclofenac sodium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diclofenac%20sodium" title="diclofenac sodium">diclofenac sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20solvent%20evaporation" title=" emulsion solvent evaporation"> emulsion solvent evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylcellulose" title=" ethylcellulose"> ethylcellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a> </p> <a href="https://publications.waset.org/abstracts/47663/development-and-in-vitro-characterization-of-diclofenac-loaded-microparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> An Investigation on Viscoelastic and Electrical Properties of Biopolymer-Based Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sever">K. Sever</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Seki"> Y. Seki</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Yenier"> Z. Yenier</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0.%20%C5%9Een"> İ. Şen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarikanat"> M. Sarikanat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that Chitosan, as a natural polymer, has many excellent properties such as bicompotability, biodegradability and nontoxicity. Besides it has some limitations such as poor solubility in water and low conductivity in electrical devices and sensor applications. In order to improve electrical conductivity properties grapheme loading was conducted into chitosan. For this aim, chitosan solution was prepared in acidic condition and Graphene at different ratios was mixed with chitosan solution by the help of homogenizator. After film formation electrical conductivity values of chitosan and graphene loaded chitosan were determined. After grapheme loading into chitosan,solution significant increases in surface resistivity value of chitosan were observed. Besides variations on viscoeleastic properties with graphene loading was determined by dynamic mechanical analysis. Storage and Loss moduli were obtained for chitosan and grapheme loaded chitosan samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20properties" title=" viscoelastic properties"> viscoelastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/25540/an-investigation-on-viscoelastic-and-electrical-properties-of-biopolymer-based-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Water Soluble Chitosan Derivatives via the Freeze Concentration Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Senem%20Avaz">Senem Avaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Alpay%20Taralp"> Alpay Taralp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan has been an attractive biopolymer for decades, but its processibility is lowered by its poor solubility, especially in physiological pH values. Freeze concentrated reactions of Chitosan with several organic acids including acrylic, citraconic, itaconic, and maleic acid revealed improved solubility and morphological properties. Solubility traits were assessed with a modified ninhydrin test. Chitosan derivatives were characterized by ATR-FTIR and morphological characteristics were determined by SEM. This study is a unique approach to chemically modify Chitosan to enhance water solubility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20concentration" title=" freeze concentration"> freeze concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=frozen%20reactions" title=" frozen reactions"> frozen reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=ninhydrin%20test" title=" ninhydrin test"> ninhydrin test</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20soluble%20chitosan" title=" water soluble chitosan"> water soluble chitosan</a> </p> <a href="https://publications.waset.org/abstracts/18730/water-soluble-chitosan-derivatives-via-the-freeze-concentration-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> The Effect of Solution pH of Chitosan on Antimicrobial Properties of Nylon 6,6 Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nil%C3%BCfer%20Y%C4%B1ld%C4%B1z%20Varan">Nilüfer Yıldız Varan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The antimicrobial activities of chitosan against various bacteria and fungi are well known, and the antimicrobial activity of chitosan depends on pH. This study investigates the antimicrobial activity at different pH levels. Nylon 6,6 fabrics were treated with different chitosan solutions. Additionally, samples were treated also in basic conditions to see the antimicrobial activities. AATCC Test Method 100 was followed to evaluate the antimicrobial activity using Staphylococcus aureus ATCC 6538 test inoculum. The pH of the chitosan solutions was controlled below 6.5 since chitosan shows its antimicrobial activity only in acidic conditions because of its poor solubility above 6.5. In basic conditions, the samples did not show any antimicrobial activity. It appears from SEM images that the bonded chitosan in the structures exists. In acidic media (ph < 6.5), all samples showed antimicrobial activity. No correlation was found between pH levels and antimicrobial activity in acidic media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%206" title=" nylon 6"> nylon 6</a>, <a href="https://publications.waset.org/abstracts/search?q=6" title="6">6</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking" title=" crosslinking"> crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stability" title=" pH stability"> pH stability</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/74096/the-effect-of-solution-ph-of-chitosan-on-antimicrobial-properties-of-nylon-66-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Poly(N-Vinylcaprolactam-Co-Itaconic Acid-Co-Ethylene Glycol Dimethacrylate)-Based Microgels Embedded in Chitosan Matrix for Controlled Release of Ketoprofen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simone%20F.%20Medeiros">Simone F. Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20M.%20Fonseca"> Jessica M. Fonseca</a>, <a href="https://publications.waset.org/abstracts/search?q=Gizelda%20M.%20Alves"> Gizelda M. Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Danilo%20M.%20Santos"> Danilo M. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9rgio%20P.%20Campana-Filho"> Sérgio P. Campana-Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Amilton%20M.%20Santos"> Amilton M. Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stimuli responsive and biocompatible hydrogel nanoparticles have gained special attention as systems for potential applications in controlled release of drugs to improve their therapeutic efficacy while minimizing side effects. In this work, novel solid dispersions based on thermo- and pH-responsive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate) hydrogel nanoparticles embedded in chitosan matrices were prepared via spray drying for controlled release of ketoprofen. Firstly, the hydrogel nanoparticles containing ketoprofen were prepared via precipitation polymerization and their stimuli-responsive behavior, thermal properties, chemical composition, encapsulation efficiency and morphology were characterized. Then, hydrogel nanoparticles with different particles size were embedded into chitosan matrices via spray-drying. Scanning electron microscopy (SEM) analyses were performed to investigate the particles size, dispersity and morphology. Finally, ketoprofen release profiles were studied as a function of pH and temperature. Chitosan/poly(NVCL-co-IA-co-EGDMA)-ketoprofen microparticles presented spherical shape, rough surface and pronounced agglomeration, indicating that hydrogels nanoparticles loaded with ketoprofen modified the surface of chitosan matrix. The maximum encapsulation efficiency of ketoprofen into hydrogel nanoparticles was 57.8% and the electrostatic interactions between amino groups from chitosan and carboxylic groups from hydrogel nanoparticles were able to control ketoprofen release. The hydrogel nanoparticles themselves were capable to retard the release of ketoprofen-loaded until 48h of in vitro release tests, while their incorporation into chitosan matrix achieved a maximum percentage of drug release of 45%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 10:7, and 69%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 5:2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles" title="hydrogel nanoparticles">hydrogel nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28N-vinylcaprolactam-co-itaconic%20acid-co-ethylene-%20glycol%20dimethacrylate%29" title=" poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate)"> poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate)</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=ketoprofen" title=" ketoprofen"> ketoprofen</a>, <a href="https://publications.waset.org/abstracts/search?q=spray-drying" title=" spray-drying"> spray-drying</a> </p> <a href="https://publications.waset.org/abstracts/81767/polyn-vinylcaprolactam-co-itaconic-acid-co-ethylene-glycol-dimethacrylate-based-microgels-embedded-in-chitosan-matrix-for-controlled-release-of-ketoprofen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malek%20Ali">Malek Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation properties were characterized and the result indicates that Mechanical and degradation of 80%PVA/5%Chitosan/15%HNTs higher than the others PVA/CS/HNTs composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVA%2Fchitosan" title="PVA/chitosan">PVA/chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA%2FCS%2FHNTs" title=" PVA/CS/HNTs"> PVA/CS/HNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=HNTs" title=" HNTs"> HNTs</a> </p> <a href="https://publications.waset.org/abstracts/42719/synthesis-and-study-the-effect-of-hnts-on-pvachitosan-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Fabrication of Chitosan/Polyacrylonitrile Blend and SEMI-IPN Hydrogel with Epichlorohydrin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Omer%20Aijaz">Muhammad Omer Aijaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Haider"> Sajjad Haider</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20S.%20Al%20Mubddal"> Fahad S. Al Mubddal</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Al-Zeghayer"> Yousef Al-Zeghayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Waheed%20A.%20Al%20Masry"> Waheed A. Al Masry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is focused on the preparation of chitosan-based blend and Semi-Interpenetrating Polymer Network (SEMI-IPN) with polyacrylonitrile (PAN). Blend Chitosan/Polyacrylonitrile (PAN) hydrogel films were prepared by solution blending and casting technique. Chitosan in the blend was cross-linked with epichlorohydrin (ECH) to prepare SEMI-IPN. The developed Chitosan/PAN blend and SEMI-IPN hydrogels were characterized with SEM, FTIR, TGA, and DSC. The result showed good miscibility between chitosan and PAN, crosslinking of chitosan in the blend, and improved thermal properties for SEMI-IPN. The swelling of the different blended and SEMI-IPN hydrogels samples were examined at room temperature. Blend (C80/P20) sample showed highest swelling (2400%) and fair degree of stability (28%) whereas SEMI-IPN hydrogel exhibited relatively low degree of swelling (244%) and high degree of aqueous stability (85.5%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20hydrogels" title="polymer hydrogels">polymer hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=SEMI-IPN" title=" SEMI-IPN"> SEMI-IPN</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a>, <a href="https://publications.waset.org/abstracts/search?q=epichlorohydrin" title=" epichlorohydrin"> epichlorohydrin</a> </p> <a href="https://publications.waset.org/abstracts/3854/fabrication-of-chitosanpolyacrylonitrile-blend-and-semi-ipn-hydrogel-with-epichlorohydrin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20T.%20Kumbhar">S. T. Kumbhar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Bhatia"> M. S. Bhatia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Khairate"> R. C. Khairate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Curcumin" title="Curcumin">Curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title=" anticancer activity"> anticancer activity</a> </p> <a href="https://publications.waset.org/abstracts/145045/curcumin-loaded-modified-chitosan-nanocarrier-for-tumor-specificity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Formation of Microcapsules in Microchannel through Droplet Merging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Danish%20Eqbal">Md. Danish Eqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkat%20Gundabala"> Venkat Gundabala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microparticles and microcapsules are basically used as a carrier for cells, tissues, drugs, and chemicals. Due to its biocompatibility, non-toxicity and biodegradability, alginate based microparticles have numerous applications in drug delivery, tissue engineering, organ repair and transplantation, etc. The production of uniform monodispersed microparticles was a challenge for the past few decades. However, emergence of microfluidics has provided controlled methods for the generation of the uniform monodispersed microparticles. In this work, we present a successful method for the generation of both microparticles and microcapsules (single and double core) using merging approach of two droplets, completely inside the microfluidic device. We have fabricated hybrid glass- PDMS (polydimethylsiloxane) based microfluidic device which has coflow geometry as well as the T junction channel. Coflow is used to generate the single as well as double oil-alginate emulsion in oil and T junction helps to form the calcium chloride droplets in oil. The basic idea is to match the frequency of the alginate droplets and calcium chloride droplets perfectly for controlled generation. Using the merging of droplets technique, we have successfully generated the microparticles and the microcapsules having single core as well as double and multiple cores. The cores in the microcapsules are very stable, well separated from each other and very intact as seen through cross-sectional confocal images. The size and the number of the cores along with the thickness of the shell can be easily controlled by controlling the flowrate of the liquids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-core" title="double-core">double-core</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsules" title=" microcapsules"> microcapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a> </p> <a href="https://publications.waset.org/abstracts/62027/formation-of-microcapsules-in-microchannel-through-droplet-merging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Antibacterial Activity of Nickel Oxide Composite Films with Chitosan/Polyvinyl Chloride/Polyethylene Glycol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Garba%20Danjani">Ali Garba Danjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrasheed%20Halliru%20Usman"> Abdulrasheed Halliru Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the rapidly increasing biological applications and antibacterial properties of versatile chitosan composites, the effects of chitosan/polyvinyl chloride composites film were investigated. Chitosan/polyvinyl chloride films were prepared by a casting method. Polyethylene glycol (PEG) was used as a plasticizer in the blending stage of film preparation. Characterizations of films were done by Scanning Electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and thermogravimetric analyzer (TGA). Chitosan composites incorporation enhanced the antibacterial activity of chitosan films against Escherichia coli and Staphylococcus aureus. The composite film produced is proposed as packaging or coating material because of its flexibility, antibacterial efficacy, and good mechanical strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20nanocomposites" title=" polymeric nanocomposites"> polymeric nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20blend" title=" polymer blend"> polymer blend</a> </p> <a href="https://publications.waset.org/abstracts/159830/antibacterial-activity-of-nickel-oxide-composite-films-with-chitosanpolyvinyl-chloridepolyethylene-glycol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Cadmium Removal from Aqueous Solution Using Chitosan Beads Prepared from Shrimp Shell Extracted Chitosan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bendjaballah%20Malek%3B%20Makhlouf%20Mohammed%20Rabeh%3B%20Boukerche%20Imane%3B%20Benhamza%20Mohammed%20El%20Hocine">Bendjaballah Malek; Makhlouf Mohammed Rabeh; Boukerche Imane; Benhamza Mohammed El Hocine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, chitosan was derived from Parapenaeus longirostris shrimp shells sourced from a local market in Annaba, eastern Algeria. The extraction process entailed four chemical stages: demineralization, deproteinization, decolorization, and deacetylation. The degree of deacetylation was calculated to be 80.86 %. The extracted chitosan was physically altered to synthesize chitosan beads and characterized via FTIR and XRD analysis. These beads were employed to eliminate cadmium ions from synthetic water. The batch adsorption process was optimized by analyzing the impact of contact time, pH, adsorbent dose, and temperature. The adsorption capacity of and Cd+2 on chitosan beads was found to be 6.83 mg/g and 7.94 mg/g, respectively. The kinetic adsorption of Cd+2 conformed to the pseudo-first-order model, while the isotherm study indicated that the Langmuir Isotherm model well described the adsorption of cadmium . A thermodynamic analysis demonstrated that the adsorption of Cd+2 on chitosan beads is spontaneous and exothermic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cd" title="Cd">Cd</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosanbeds" title=" chitosanbeds"> chitosanbeds</a>, <a href="https://publications.waset.org/abstracts/search?q=bioadsorbent" title=" bioadsorbent"> bioadsorbent</a> </p> <a href="https://publications.waset.org/abstracts/167473/cadmium-removal-from-aqueous-solution-using-chitosan-beads-prepared-from-shrimp-shell-extracted-chitosan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Application of Chitosan as a Natural Antimicrobial Compound in Stirred Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Hesari">Javad Hesari</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Donyatalab"> Tahereh Donyatalab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sodeif%20Azadmard%20Damirchi"> Sodeif Azadmard Damirchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rezaii%20Mokaram"> Reza Rezaii Mokaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Rafat"> Abbas Rafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research was to increase shelf life of stirred yoghurt by adding chitosan as a naturally antimicrobial compound. Chitosan were added at different concentrations (0.1, 0.3 and 0.6%) to the stirred yoghurt. Samples were stored at refrigerator and room temperature for 3 weeks and tested with respect of microbial properties (counts of starter bacteria, mold and yeast, coliforms and E. coli). Starter bacteria and yeast counts in samples containing chitosan was significantly (p<0.05) lower than those in control samples and its antibacterial and anti-yeast effects increased with increasing concentration of chitosan. The lowest counts of starter bacteria and yeast were observed at samples whit 0.6% of chitosan. The Results showed Chitosan had a positive effect on increasing shelf life and controlling of yeasts and therefore can be used as a natural preservative in stirred yogurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20preservative" title=" natural preservative"> natural preservative</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred%20yoghurt" title=" stirred yoghurt"> stirred yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=self-life" title=" self-life"> self-life</a> </p> <a href="https://publications.waset.org/abstracts/32001/application-of-chitosan-as-a-natural-antimicrobial-compound-in-stirred-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> Thermal Properties of Chitosan-Filled Empty Fruit Bunches Filter Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aziatul%20Niza%20Sadikin">Aziatul Niza Sadikin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norasikin%20Othman"> Norasikin Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ghazali%20Mohd%20Nawawi"> Mohd Ghazali Mohd Nawawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Umi%20Aisah%20Asli"> Umi Aisah Asli</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshafima%20Rasit%20Ali"> Roshafima Rasit Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiziana%20Md%20Kasmani"> Rafiziana Md Kasmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-woven fibrous filter media from empty fruit bunches were fabricated by using chitosan as a binder. Chitosan powder was dissolved in a 1 wt% aqueous acetic acid and 1 wt% to 4 wt% of chitosan solutions was prepared. Chitosan-filled empty fruit bunches filter media have been prepared via wet-layup method. Thermogravimetric analysis (TGA) was performed to study various thermal properties of the fibrous filter media. It was found that the fibrous filter media have undergone several decomposition stages over a range of temperatures as revealed by TGA thermo-grams, where the temperature for 10% weight loss for chitosan-filled EFB filter media and binder-less filter media was at 150oC and 300oC, Respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empty%20fruit%20bunches" title="empty fruit bunches">empty fruit bunches</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20property" title=" thermal property"> thermal property</a> </p> <a href="https://publications.waset.org/abstracts/3285/thermal-properties-of-chitosan-filled-empty-fruit-bunches-filter-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20D.%20Perera">P. S. D. Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Adikary"> S. U. Adikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetics" title="kinetics">kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=gelation" title=" gelation"> gelation</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20system" title=" sol-gel system"> sol-gel system</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%2F%20nHA%2F%20Na%20%E2%82%82CO%E2%82%83%20composite" title=" chitosan/ nHA/ Na ₂CO₃ composite"> chitosan/ nHA/ Na ₂CO₃ composite</a> </p> <a href="https://publications.waset.org/abstracts/143713/kinetic-aspect-investigation-of-chitosan-nanohydroxyapatite-na-2co3-gel-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> The Next Generation of Mucoadhesive Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavia%20Laffleur">Flavia Laffleur</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bernkop-Schn%C3%BCrch"> Andreas Bernkop-Schnürch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study was aimed to investigate preactivated thiomers for their mucoadhesive potential. Methods: Accordingly, chitosan-thioglycolic-mercaptonicotinamide conjugates (chitosan-TGA-MNA) were synthesized by the oxidative S-S coupling of chitosan-thioglycolic acid (chitosan-TGA) with 6-mercaptonicotin amide (MNA). Unmodified chitosan, chitosan-TGA (thiomers) and chitosan-TGA-MNA conjugates were compressed into test discs to investigate cohesive properties, cytotoxicity assays and mucoadhesion studies. Results: Due to the immobilization of MNA, the chitosan-TGA-MNA conjugates exhibit comparatively higher swelling properties and cohesive properties corresponding unmodified chitosan. On the rotating cylinder, discs based on chitosan-TGA-MNA conjugates displayed 3.1-fold improved mucoadhesion time compared to thiolated polymers. Tensile study results were found in good agreement with rotating cylinder results. Moreover, preactivated thiomers showed higher stability. All polymers were found non-toxic over Caco-2 cells. Conclusion: On the basis of achieved results the pre activated thiomeric therapeutic agent seems to represent a promising generation of mucoadhesive polymers which are safe to use for a prolonged residence time to target the mucosa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title="biomedical application">biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=thiomer" title=" thiomer "> thiomer </a> </p> <a href="https://publications.waset.org/abstracts/13831/the-next-generation-of-mucoadhesive-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laidson%20P.%20Gomes">Laidson P. Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20T.%20Andrade"> Cristina T. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20M.%20Del%20Aguila"> Eduardo M. Del Aguila</a>, <a href="https://publications.waset.org/abstracts/search?q=Cameron%20Alexander"> Cameron Alexander</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%A2nia%20M.%20F.%20Paschoalin"> Vânia M. F. Paschoalin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this study, the physicochemical and antibacterial properties of chitosan nanoparticles, produced by ultrasound irradiation, were evaluated. The physicochemical properties of the nanoparticles were determined by dynamic light scattering and zeta potential analysis. Chitosan nanoparticles inhibited the growth of <em>E. coli</em>. The minimum inhibitory concentration (MIC) values were lower than 0.5 mg/mL, and the minimum bactericidal concentration (MBC) values were similar or higher than MIC values. Confocal laser scanning micrographs (CLSM) were used to observe the interaction between <em>E. coli </em>suspensions mixed with FITC-labeled chitosan polymers and nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan%20nanoparticles" title="chitosan nanoparticles">chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20light%20scattering" title=" dynamic light scattering"> dynamic light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20microscopy" title=" confocal microscopy"> confocal microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/84752/assessing-the-antimicrobial-activity-of-chitosan-nanoparticles-by-fluorescence-labeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">301</span> Hemostasis Poly Vinyl Alcohol Gauze Coated with Chitosan Encapsulated with Polymer and Drug</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishekkumar%20Ramasamy">Abhishekkumar Ramasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Parameshwari"> Parameshwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is the deacyelitated derivative of chitin, the second most abundant biopolymer just after cellulose. Without doubt, its biomedical usages have gained more importance among the vast variety of chitosan applications owing to its good biocompatibility and biodegradability. In recent years, particular interest has been devoted to chitosan hydrogels as a promising alternative in competition with conventional sutures or bioadhesives. Different parameters such as acid type and concentration, and degree of deacetylation (DD%) of chitosan, were altered to modify hydrogel properties including viscosity, pH, cohesive strength, and tissue bioadhesiveness. In the current work, we have investigated the effectiveness of chitosan hydrogel encapsulated with tanexamic acid to stop bleeding. Chitosan film was obtained with solubilization of chitosan powder in aqueous acidic media. In vivo experiments have been conducted on rat and rabbit models that provide a convenient way to evaluate the efficacy of prepared samples. The arteries vein was punctured on the hind limb of the rat and the gauze was been applied on the punchered area. Bioadhesive strength as well as irritant effects were discussed. Samples with higher degree of deacetylation, including Chs-16 and Chs-19 that were dissolved in lactic media showed best sealing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomaptibility" title=" biocomaptibility"> biocomaptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=bioadhersive" title=" bioadhersive"> bioadhersive</a>, <a href="https://publications.waset.org/abstracts/search?q=deacetylation" title=" deacetylation"> deacetylation</a> </p> <a href="https://publications.waset.org/abstracts/41700/hemostasis-poly-vinyl-alcohol-gauze-coated-with-chitosan-encapsulated-with-polymer-and-drug" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">300</span> Phosphoproteomic Analysis of the Response of Rice Leaves to Chitosan under Drought Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narumon%20Phaonakrop">Narumon Phaonakrop</a>, <a href="https://publications.waset.org/abstracts/search?q=Janthima%20Jaresitthikunchai"> Janthima Jaresitthikunchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sittiruk%20Roytrakul"> Sittiruk Roytrakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasinee%20Pongprayoon"> Wasinee Pongprayoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan has been proposed as a natural polymer, and it is derived from chitin. The objective of this research was to determine the growth promoting responses induced by chitosan at the molecular physiology level in Khao Dawk Mali 105 (KDML 105) rice (Oryza sativa L.) seedlings under drought stress by adding of 2% polyethylene glycol 4000 (PEG4000) to the nutrient solution and after removal of the drought stress (re-water). Oligomeric chitosan at 40 ppm could enhance shoot fresh weight and shoot dry weight during drought stress and re-water. After 7 days of drought stress and re-water, significant increases in chlorophyll a and chlorophyll b contents in KDML 105 cultivar were observed. The 749 phosphoproteins in rice leaf treated with chitosan could be resolved by phosphoprotein enrichment, tryptic digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. They can be classified into 10 groups. Proteins involved in the metabolic process and biological regulation were upregulated in response to chitosan during drought stress. This work will help us to understand protein phosphorylation relating to chitosan response during drought stress in aromatic rice seedlings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitosan" title="Chitosan">Chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoproteome" title=" phosphoproteome"> phosphoproteome</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a> </p> <a href="https://publications.waset.org/abstracts/109972/phosphoproteomic-analysis-of-the-response-of-rice-leaves-to-chitosan-under-drought-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle&#039;s Exhaust with Absorbent Chitosan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuandanis%20Wahyu%20Salam">Yuandanis Wahyu Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfi%20Panrepi"> Irfi Panrepi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuraeni"> Nuraeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filter" title="filter">filter</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=carbondioxide" title=" carbondioxide"> carbondioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust" title=" exhaust"> exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a> </p> <a href="https://publications.waset.org/abstracts/36368/modelling-of-filters-co2-carbondioxide-and-co-carbonmonoxide-portable-in-motor-vehicles-exhaust-with-absorbent-chitosan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> Effect of Chitosan and Ascorbic Acid Coating on the Refrigerated Tilapia Fish Fillet (Oreochromis niliticus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jau-Shya%20Lee">Jau-Shya Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rossita%20Shapawi"> Rossita Shapawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vin%20Cent%20Pua"> Vin Cent Pua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tilapia is a popular cultured fresh-water fish in Malaysia. The highly perishable nature of the fish and increasing demand for high-quality ready-to-cook fish has intensified the search for better fish preservation method. Chitosan edible coating has been evident to extend the shelf life of fish fillet. This work was attempted to explore the potential of ascorbic acid in enhancing the shelf life extension ability of chitosan coated Tilapia fillet under refrigeration condition (4 ± 1oC). A 3 2 Factorial Design which comprising of three concentrations of chitosan (1, 1.5 and 2%) and two concentrations of ascorbic acids (2.5 and 5%) was used. The fish fillets were analyzed for total viable count, thiobarbituric acid (TBA) value, pH, aw and colour changes at 3-day interval over 15-day storage. The shelf life of chitosan coated (1.5% and 2%) fillet was increased to 15 days as compared to uncoated fish fillet which can only last for nine days. The inhibition of microbial growth of fish fillet was enhanced with the addition of 5% of ascorbic acids in 2% of chitosan. The TBA value, pH and aw for chitosan coated samples were found lower than that of uncoated sample (p<0.05). The colour stability of the fish fillet was also improved by the composite coating. Overall, 2% of chitosan and 5% of ascorbic acid formed the most effective coating to enhance the quality and to lengthen the shelf life of refrigerated Tilapia fillet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title="ascorbic acid">ascorbic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20coating" title=" edible coating"> edible coating</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20fillet" title=" fish fillet"> fish fillet</a> </p> <a href="https://publications.waset.org/abstracts/74929/effect-of-chitosan-and-ascorbic-acid-coating-on-the-refrigerated-tilapia-fish-fillet-oreochromis-niliticus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Synthesis and Characterization of Water Soluble Ferulic Acid-Grafted Chitosan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarekha%20Woranuch">Sarekha Woranuch</a>, <a href="https://publications.waset.org/abstracts/search?q=Rangrong%20Yoksan"> Rangrong Yoksan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is a derivative of chitin, which is a second most naturally abundant polysaccharide found in crab shells, shrimp shells, and squid pens. The applications of chitosan in pharmaceutical, cosmetics, food and packaging industries have been reported owing to its general recognition as safe, excellent biodegradability and biocompatibility, as well as ability to form films, membranes, gels, beads, fibers and particles. Nevertheless, chitosan is an amino polysaccharide consisting of strong inter- and intramolecular hydrogen bonds which limit its solubility in neutral pH water resulting in restricted utilization. Chemical modification is an alternative way to impede hydrogen bond formation. The objective of the present research is to improve water solubility and antioxidant activity of chitosan by grafting with ferulic acid. Ferulic acid was grafted onto chitosan at the C-2 position via a carbodiimide-mediated coupling reaction. Different mole ratios of chitosan to ferulic acid (i.e. 1.0:0.0, 1.0:0.5, 1.0:1.0, 1.0:1.5, 1.0:2.0, and 1.0:2.5) and various reaction temperatures (i.e. 40, 60, and 80 °C) were used. The reaction was performed at different times (i.e. 1.5, 3.0, 4.5, and 6.0 h). The obtained ferulic acid-grafted chitosan was characterized by FTIR and 1H NMR technique. The influences of ferulic acid on crystallinity, solubility and radical scavenging activity of chitosan were also investigated. Ferulic acid grafted chitosan was successfully synthesized as confirmed from (i) the appearance of FTIR absorption band at 1517 cm-1 belonging to C=C aromatic ring of ferulic acid and the increased C–H stretching band intensity and (ii) the appearance of proton signals at δ = 6.31-7.67 ppm ascribing to methine protons of ferulic acid. The condition in which the reaction temperature of 60°C, reaction time of 3 h and the mole ratio of chitosan to ferulic acid of 1:1 gave the highest ferulic acid substitution degree, i.e. 0.37. The resulting ferulic acid grafted chitosan was soluble in water (1.3 mg/mL) due to its reduced crystallinity as compared with chitosan and also exhibited 90% greater radical scavenging activity than chitosan. The result suggested the utilization of ferulic acid grafted chitosan as an antioxidant material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20property" title="antioxidant property">antioxidant property</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=ferulic%20acid" title=" ferulic acid"> ferulic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=grafting" title=" grafting"> grafting</a> </p> <a href="https://publications.waset.org/abstracts/28965/synthesis-and-characterization-of-water-soluble-ferulic-acid-grafted-chitosan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debajyoti%20Bose">Debajyoti Bose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fungi" title="fungi">fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocapsule" title=" nanocapsule"> nanocapsule</a> </p> <a href="https://publications.waset.org/abstracts/14998/production-extraction-and-purification-of-fungal-chitosan-and-its-modification-for-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> Preparation and Biological Evaluation of 186/188Re-Chitosan for Radiosynovectomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ahmadi">N. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahrami-Samani"> A. Bahrami-Samani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is a natural and biodegradable polysaccharide with special characteristic for application in intracavital therapy. 166Ho-chitosan has been reported for the treatment of hepatocellular carcinoma and RSV with promising results. The aim of this study was to prepare 186/188Re-chitosan for radiosynovectomy purposes and investigate the probability of its leakage from the knee joint. 186/188Re was produced by neutron irradiation of the natural rhenium in a research reactor. Chemical processing was performed to obtain (186/188Re)-NaReO4- according to the IAEA manual. A stock solution of chitosan was prepared by dissolving in 1 % acetic acid aqueous solution (10 mg/mL). 1.5 mL of this stock solution was added to the vial containing the activity and the mixture was stirred for 5 min in the room temperature. The radiochemical purity of the complex was checked by the ITLC method, showing the purity of higher than 98%. Distribution of the radiolabeled complex was determined after intra-articular injection into the knees of rats. Excellent retention was observed in the joint with approximately no activity in the other organs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage" title=" leakage"> leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=radiosynovectomy" title=" radiosynovectomy"> radiosynovectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=rhenium" title=" rhenium "> rhenium </a> </p> <a href="https://publications.waset.org/abstracts/34358/preparation-and-biological-evaluation-of-186188re-chitosan-for-radiosynovectomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> Development of 90y-Chitosan Complex for Radiosynovectomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirzaei">A. Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Athari-Allaf"> M. Athari-Allaf</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis is the most common autoimmune disease, leading to the destruction of the joints. The aim of this study was the preparation of 90Y-chitosan complex as a novel agent for radiosynovectomy. The complex was prepared in the diluted acetic acid solution. At the optimized condition, the radiochemical purity of higher than 99% was obtained by ITLC method on Whatman No. 1 and by using a mixture of methanol/water/acetic acid (4:4:2) as the mobile phase. The complex was stable in acidic media (pH=3) and its radiochemical purity was above 98% even after 48 hours. The biodistribution data in rats showed that there was no significant leakage of the injected activity even after 48 h. Considering all of the excellent features of the complex, 90Y-chitosan can be used to manipulate synovial inflammation effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y-90" title=" Y-90"> Y-90</a>, <a href="https://publications.waset.org/abstracts/search?q=radiosynovectomy" title=" radiosynovectomy"> radiosynovectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title=" biodistribution"> biodistribution</a> </p> <a href="https://publications.waset.org/abstracts/23149/development-of-90y-chitosan-complex-for-radiosynovectomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> Electromechanical Behaviour of Chitosan Based Electroactive Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarikanat">M. Sarikanat</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Akar"> E. Akar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20%C5%9Een"> I. Şen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Seki"> Y. Seki</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20C.%20Y%C4%B1lmaz"> O. C. Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20O.%20G%C3%BCrses"> B. O. Gürses</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Cetin"> L. Cetin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20%C3%96zdemir"> O. Özdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sever"> K. Sever</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is a natural, nontoxic, polyelectrolyte, cheap polymer. In this study, chitosan based electroactive polymer (CBEAP) was fabricated. Electroactive properties of this polymer were investigated at different voltages. It exhibited excellent tip displacement at low voltages (1, 3, 5, 7 V). Tip displacement was increased as the applied voltage increased. Best tip displacement was investigated as 28 mm at 5V. Characterization of CBEAP was investigated by scanning electron microscope, X-ray diffraction and tensile testing. CBEAP exhibited desired electroactive properties at low voltages. It is suitable for using in artificial muscle and various robotic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=electroactive%20polymer" title=" electroactive polymer"> electroactive polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=electroactive%20properties" title=" electroactive properties"> electroactive properties</a> </p> <a href="https://publications.waset.org/abstracts/25625/electromechanical-behaviour-of-chitosan-based-electroactive-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Kinetic and Thermodynamic Modified Pectin with Chitosan by Forming Polyelectrolyte Complex Adsorbent to Remediate of Pb(II)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Budi%20Hastuti">Budi Hastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudasir"> Mudasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Siswanta"> Dwi Siswanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Triyono"> Triyono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosorbent, such as pectin and chitosan, are usually produced with low physical stability, thus the materials need to be modified. In this research, the physical characteristic of adsorbent was increased by grafting chitosan using acetate carboxymetyl chitosan (CC). Further, CC and Pectin (Pec) were crosslinked using cross-linking agent BADGE (bis phenol A diglycidyl ether) to get CC-Pec-BADGE (CPB) adsorbent. The cross-linking processes aim to form stable structure and resistance on acidic media. Furthermore, in order to increase the adsorption capacity in removing Pb(II), the adsorbent was added with NaCl to form macroporous adsorbent named CCPec-BADGE-Na (CPB-Na). The physical and chemical characteristics of the porogenic adsorbent structure were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The adsorption parameter of CPB-Na to adsorb Pb(II) ion was determined. The kinetics and thermodynamics of the bath sorption of Pb(II) on CPB-Na adsorbent and using chitosan and pectin as a comparison were also studied. The results showed that the CPB-Na biosorbent was stable on acidic media. It had a rough and porous surface area, increased and gave higher sorption capacity for removal of Pb(II) ion. The CPB-Na 1/1 and 1/3 adsorbent adsorbed Pb(II) with adsorption capacity of 45.48 mg/g and 45.97 mg/g respectively, whereas pectin and chitosan were of 39.20 mg /g and 24.67 mg /g respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porogen" title="porogen">porogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pectin" title=" Pectin"> Pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=Carboxymethyl%20Chitosan%20%28CC%29" title=" Carboxymethyl Chitosan (CC)"> Carboxymethyl Chitosan (CC)</a>, <a href="https://publications.waset.org/abstracts/search?q=CC-%20Pec-BADGE-Na" title=" CC- Pec-BADGE-Na"> CC- Pec-BADGE-Na</a> </p> <a href="https://publications.waset.org/abstracts/91832/kinetic-and-thermodynamic-modified-pectin-with-chitosan-by-forming-polyelectrolyte-complex-adsorbent-to-remediate-of-pbii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Preparation and Characterization of Chitosan-Hydrocortisone Nanoshell for Drug Delivery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suyeon%20Kwon">Suyeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ik%20Joong%20Kang"> Ik Joong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Bingjie"> Wang Bingjie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is a polymer that is usually produced from N-deacetylation of chitin. It is emerging as a promising biocompatible polymer that is harmless to humans. For the reason that many merits such as good adsorptive, biodegradability, many researches are being done on the chitosan for drug delivery system. Drug delivery system (DDS) has been developed for the control of drug. It makes the drug can be delivered effectively and safely into the targeted human body. The drug used in this work is hydrocortisone that is used in Rheumatism, skin diseases, allergy treatment. In this work, hydrocortisone was used to make allergic rhinitis medicine. Our study focuses on drug delivery through the nasal mucosa by using hydrocortisone impregnated chitosan nanoshells. This study has performed an investigation in order to establish the optimal conditions, changing concentration, quantity of hydrocortisone. DLS, SEM, TEM, FT-IR, UV spectrum were used to analyze the manufactured chitosan-hydrocortisone silver nanoshell and silver nanoshell, whose function as drug carriers. This study has performed an investigation on new drug carriers and delivery routes for hydrocortisone. Various methods of manufacturing chitosan-hydrocortisone nanoshells were attempted in order to establish the optimal condition. As a result, the average size of chitosan-hydrocortisone silver nanoshell is about 80 nm. So, chitosan-hydrocortisone silver nanoshell is suitable as drug carriers because optimal size of drug carrier in human body is less than 120 nm. UV spectrum of Chitosan-hydrocortisone silver nanoshell shows the characteristic peak of silver nanoshell at 420 nm. Likewise, the average size of chitosan-hydrocortisone silver nanoshell is about 100nm. It is also suitable for drug carrier in human body. Also, multi-layered silver shell over chitosan nanoshells induced the red-shift of absorption peak and increased the intensity of absorption peak. The resultant chitosan–silver nanocomposites (or nanoshells) exhibited the absorption peak around 430nm attributed to silvershell formation. i.e. the absorption peak was red-shifted by ca. 40 nm in reference to 390 nm of silver nanoshells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocortisone" title=" hydrocortisone"> hydrocortisone</a>, <a href="https://publications.waset.org/abstracts/search?q=rhinitis" title=" rhinitis"> rhinitis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoshell" title=" nanoshell"> nanoshell</a> </p> <a href="https://publications.waset.org/abstracts/53497/preparation-and-characterization-of-chitosan-hydrocortisone-nanoshell-for-drug-delivery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10