CINXE.COM
Search results for: construction of building
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: construction of building</title> <meta name="description" content="Search results for: construction of building"> <meta name="keywords" content="construction of building"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="construction of building" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="construction of building"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6985</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: construction of building</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6985</span> An Assessment of the Factors Affecting Green Building Technology (GBT) Adoption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuruddeen%20Usman">Nuruddeen Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Mohammed%20Gidado"> Usman Mohammed Gidado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A construction and post construction activity in buildings contributes to environmental degradation, because of the generation of solid waste during construction to the production of carbon dioxide by the occupants during utilization. These problems were caused as a result of lack of adopting green building technology during and after construction. However, this study aims at conceptualizing the factors that are affecting the adoption of green building technology with a view to suggest better ways for its successful adoption in the construction industry through developing a green building technology model. Thus, the research findings show that: Economic, social, cultural, and technological progresses are the factors affecting Green Building Technology Adoption. Therefore, identifying these factors and developing the model might help in the successful adoption of green building technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building%20technology" title="green building technology">green building technology</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20construction" title=" post construction"> post construction</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/17350/an-assessment-of-the-factors-affecting-green-building-technology-gbt-adoption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">661</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6984</span> Exploring the Relationship between Building Construction Activity and Road-Related Expenditure in Victoria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Aftabuzzaman">Md. Aftabuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Kamruzzaman"> Md. Kamruzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road-related expenditure and building construction activity are two significant drivers of the Victorian economy. This paper investigates the relationship between building construction activity and road-related expenditure. Data for construction activities were collected from Victorian Building Authority, and road-related expenditure data were explored by the Bureau of Infrastructure and Transport Research Economics. The trend between these two sectors was compared. The analysis found a strong relationship between road-related expenditure and the volume of construction activity, i.e., the more construction activities, the greater the requirement of road-related expenditure, or vice-versa. The road-related expenditure has a two-year lag period, suggesting that the road sector requires two years to respond to the growth in the building sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20activity" title="building construction activity">building construction activity</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20expenditure" title=" road expenditure"> road expenditure</a>, <a href="https://publications.waset.org/abstracts/search?q=Victorian%20Building%20Authority" title=" Victorian Building Authority"> Victorian Building Authority</a> </p> <a href="https://publications.waset.org/abstracts/151164/exploring-the-relationship-between-building-construction-activity-and-road-related-expenditure-in-victoria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6983</span> Factors Affecting Time Performance in Building Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibraheem%20A.%20K.%20Mahameed">Ibraheem A. K. Mahameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to identify the risks affecting time performance of building construction projects in the West Bank in Palestine from contractors’ viewpoint. 38 risks that might affect time performance of building construction projects were defined through a detailed literature review. These risks have been classified into 6 groups: project, managerial, consultant, financial, external, and construction items. A questionnaire survey was performed to rank the considered risks in terms of severity and frequency. The analysis of the survey indicated that the top five risks affecting time performance of building construction projects in Palestine are: award project to the lowest price, political situation, poor communication and coordination between construction parties, change orders, and financial status of contractor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay" title="delay">delay</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20performance" title=" time performance"> time performance</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a> </p> <a href="https://publications.waset.org/abstracts/37929/factors-affecting-time-performance-in-building-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6982</span> The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Scalisi">Francesca Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesare%20Sposito"> Cesare Sposito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title="embodied energy">embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20construction" title=" material construction"> material construction</a> </p> <a href="https://publications.waset.org/abstracts/77543/the-eco-efficient-construction-a-review-of-embodied-energy-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6981</span> Green Construction in EGYPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Anwar">Hanan A. Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title="green construction">green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofreindly" title=" ecofreindly"> ecofreindly</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficient%20town" title=" self-sufficient town"> self-sufficient town</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutral%20atmosphere" title=" carbon neutral atmosphere"> carbon neutral atmosphere</a> </p> <a href="https://publications.waset.org/abstracts/21630/green-construction-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6980</span> Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeda%20Sansakorn">Preeda Sansakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20An"> Min An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety%20risk%20assessment" title="safety risk assessment">safety risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20safety" title=" building construction safety"> building construction safety</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20reasoning" title=" fuzzy reasoning"> fuzzy reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20risk%20assessment%20model" title=" construction risk assessment model"> construction risk assessment model</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20projects" title=" building construction projects"> building construction projects</a> </p> <a href="https://publications.waset.org/abstracts/28627/development-of-risk-assessment-and-occupational-safety-management-model-for-building-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6979</span> A Prediction of Electrical Cost for High-Rise Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Picha%20Sriprachan">Picha Sriprachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-rise%20building%20construction" title="high-rise building construction">high-rise building construction</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20cost" title=" electrical cost"> electrical cost</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20phase" title=" construction phase"> construction phase</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20phase" title=" architectural phase"> architectural phase</a> </p> <a href="https://publications.waset.org/abstracts/9483/a-prediction-of-electrical-cost-for-high-rise-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6978</span> A Study of Carbon Emissions during Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonggeon%20Lee">Jonggeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Tae"> Sungho Tae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjoon%20Suk"> Sungjoon Suk</a>, <a href="https://publications.waset.org/abstracts/search?q=Keunhyeok%20Yang"> Keunhyeok Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Ford"> George Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20E.%20Smith"> Michael E. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Omidreza%20Shoghli"> Omidreza Shoghli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20phase" title="building construction phase">building construction phase</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions%20assessment" title=" carbon emissions assessment"> carbon emissions assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20life%20cycle" title=" building life cycle "> building life cycle </a> </p> <a href="https://publications.waset.org/abstracts/29496/a-study-of-carbon-emissions-during-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">751</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6977</span> Derivation of Technology Element for Automation in Table Formwork in a Tall Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junehyuck%20Lee">Junehyuck Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongmin%20Lee"> Dongmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunhee%20Cho"> Hunhee Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-In%20Kang"> Kyung-In Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A table formwork method has recently been widely applied in reinforced concrete structures in a tall building construction to improve safety and productivity. However, this method still depended mainly on manpower. Therefore, this study aimed at derivation of technology element to apply the automation in table formwork in a tall building construction. These results will contribute to improve productivity and labor saving in table formwork in tall building construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20form" title="table form">table form</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/61287/derivation-of-technology-element-for-automation-in-table-formwork-in-a-tall-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6976</span> A Review on the Necessities of Green Building in Bangladesh and Its Construction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Afsana%20Azad">Syeda Afsana Azad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change, due to the release of greenhouse gases into the atmosphere has been recognized as one of the biggest threats to the present world. The condition of the earth is getting worse day by day due to climate change. Bangladesh is considered to be one of the most vulnerable countries to climate change due to large population, sharp urbanization, etc. Construction of green building is a very good solution to reduce the greenhouse effect. Green building technology refers to that kind of structures which are environmentally friendly and resource-efficient throughout a building’s service life. This technology can provide at least 50% energy saving opportunity to the nation. The necessity of the construction of structures in an environment-friendly way is increasing now. This study shows the scenario of rapid population growth, urbanization, necessity of green building in Bangladesh and also discusses the construction process of green building. As the present climate condition of Bangladesh is not friendly, construction of green building is very much needed. To battle climate change, it is mandatory to construct green building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20house%20effect" title=" green house effect"> green house effect</a> </p> <a href="https://publications.waset.org/abstracts/83938/a-review-on-the-necessities-of-green-building-in-bangladesh-and-its-construction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6975</span> Proposal for Sustainable Construction of a New College Hostel Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Raskar-Phule">Reshma Raskar-Phule</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20Shinde"> Abhay Shinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Manesh%20Konkani"> Manesh Konkani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Nighot"> Rohit Nighot</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrirang%20Mahajan"> Shrirang Mahajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Viraj%20Thorat"> Viraj Thorat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability in construction projects can be considered from three dimensions - environment, economy and society. Key concepts of sustainable construction include the protection of the natural environment, choice of non-toxic materials, reduction and reuse of resources, waste minimization, and life cycle analysis. The present paper attempts to identify and analyze the use of sustainable construction materials for a new college hostel building in terms of sustainability development indices (SDIs). Low SDI materials, say as composite fiberglass reinforcement (SDI 4074.96), compressed earth blocks (SDI 0.47), and fiber-reinforced doors (SDI 0.13) are the proposed sustainable materials for the hostel building. Indian Green Building Certification (IGBC) is applied for the hostel building and it earns 5 points out of total 16 points for criterion 5 – Building Materials and Resources of IGBC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title=" construction materials"> construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=IGBC" title=" IGBC"> IGBC</a>, <a href="https://publications.waset.org/abstracts/search?q=hostel%20building" title=" hostel building"> hostel building</a> </p> <a href="https://publications.waset.org/abstracts/152734/proposal-for-sustainable-construction-of-a-new-college-hostel-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6974</span> Stress Variation of Underground Building Structure during Top-Down Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo-yeon%20Seo">Soo-yeon Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seol-ki%20Kim"> Seol-ki Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-jin%20Jung"> Su-jin Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20of%20building" title="construction of building">construction of building</a>, <a href="https://publications.waset.org/abstracts/search?q=top-down%20construction%20method" title=" top-down construction method"> top-down construction method</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20pressure%20distribution" title=" earth pressure distribution"> earth pressure distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=member%20force" title=" member force"> member force</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a> </p> <a href="https://publications.waset.org/abstracts/63230/stress-variation-of-underground-building-structure-during-top-down-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6973</span> Research on the Calculation Method of Smartization Rate of Concrete Structure Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongyu%20Ye">Hongyu Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Zhang"> Hong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjie%20Sun"> Minjie Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Xu"> Hongfang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of China's promotion of smart construction and building industrialization, there is a need for evaluation standards for the development of building industrialization based on assembly-type construction. However, the evaluation of smart construction remains a challenge in the industry's development process. This paper addresses this issue by proposing a calculation and evaluation method for the smartization rate of concrete structure building construction. The study focuses on examining the factors of smart equipment application and their impact on costs throughout the process of smart construction design, production, transfer, and construction. Based on this analysis, the paper presents an evaluation method for the smartization rate based on components. Furthermore, it introduces calculation methods for assessing the smartization rate of buildings. The paper also suggests a rapid calculation method for determining the smartization rate using Building Information Modeling (BIM) and information expression technology. The proposed research provides a foundation for the swift calculation of the smartization rate based on BIM and information technology. Ultimately, it aims to promote the development of smart construction and the construction of high-quality buildings in China. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20industrialization" title="building industrialization">building industrialization</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20quality%20building" title=" high quality building"> high quality building</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20construction" title=" smart construction"> smart construction</a>, <a href="https://publications.waset.org/abstracts/search?q=smartization%20rate" title=" smartization rate"> smartization rate</a>, <a href="https://publications.waset.org/abstracts/search?q=component" title=" component"> component</a> </p> <a href="https://publications.waset.org/abstracts/181557/research-on-the-calculation-method-of-smartization-rate-of-concrete-structure-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6972</span> Prevalence of Plastic Use in Building and Construction: An Analysis of 250 Common Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teresa%20McGrath">Teresa McGrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Johnson"> Ryan Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Stamm"> Rebecca Stamm</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassidy%20Clarity"> Cassidy Clarity</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yung%20Lui"> Wei Yung Lui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building and construction is the second largest plastic user behind packaging, accounting for 16% of plastic production. Building and construction is also by far the largest user of one of the most impactful plastics, polyvinyl chloride (aka vinyl or PVC), accounting for 69% of PVC production. Building materials also have an outsized contribution to plastic pollution, including microplastic pollution. Yet building materials are often overlooked in plastic waste and pollution reduction efforts. Habitable will present a plastics and petrochemical analysis of over 250 common building material types and demonstrate how changes to building material selection towards safer, renewable, and lower carbon materials can reduce global consumption of plastics and associated pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fenceline%20communities" title=" fenceline communities"> fenceline communities</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=safer%20alternatives" title=" safer alternatives"> safer alternatives</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemicals" title=" petrochemicals"> petrochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a> </p> <a href="https://publications.waset.org/abstracts/190126/prevalence-of-plastic-use-in-building-and-construction-an-analysis-of-250-common-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6971</span> Factors Influencing the Use of Green Building Practices in the South African Residential Apartment Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mongezi%20Nene">Mongezi Nene</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Ayesu-Koranteng"> Emma Ayesu-Koranteng</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Amoah"> Christopher Amoah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayo%20Adeniran"> Ayo Adeniran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although its use has been criticized over the years as being unencouraging, the green building concept is quickly overtaking other concepts, particularly in the construction of commercial properties. The goal of the study is to identify the variables influencing the use of green building practices when developing residential structures. A qualitative methodology, using interviews with semi-structured open-ended questions to 35 property practitioners operating residential apartments in Bloemfontein, South Africa, was used to collect primary data which was analysed using thematic content analysis. The findings show that while respondents have a good understanding of green building principles, they are not being used in the construction of residential buildings in South Africa due to issues with green building approval procedures, the potential for tenant rent increases, the cost of materials, technical issues, contractual issues, and a lack of awareness, among others. This paper recommends among others an urgent need to implement measures by stakeholders towards enhancing the adoption of green building concepts in the construction of residential buildings as well as incentivising its construction through lowered property rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20apartments" title=" residential apartments"> residential apartments</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/161017/factors-influencing-the-use-of-green-building-practices-in-the-south-african-residential-apartment-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6970</span> Investigations into Transition from Traditional Construction to Industrial Construction in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Latif%20Karimi">A. Latif Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since 2001, construction works, especially the construction of new homes and residential buildings, witnessed a dramatic boom across Afghanistan. More so, the construction industry and house builders are relied upon as important players in the country’s job market, economy and infrastructural development schemes. However, a lack of innovation, quality assurance mechanism, substandard construction and market dominance by traditional methods push all the parties in house building sector to shift for more advanced construction techniques and mass production technologies to meet the rising demands for proper accommodation. Meanwhile, rapid population growth and urbanization are widening the gap between the demand and supply of new and modern houses in urban areas like Kabul, Herat, etc. This paper investigates about current condition of construction practices in house building projects, the associated challenges, and the outcomes of transition to more reasonable and sustainable building methods. It is obvious, the introduction and use of Modern Methods of Construction (MMC) can help construction industry and house builders in Afghanistan to tackle the challenges and meet the desired standards for modern houses. This paper focuses on prefabrication, a popular MMC that is becoming more common, improving in quality and available in a variety of budgets. It is revealed that this method is the way forward to improving house building practices as it has been proven to reduce construction time, minimize waste and improve environmental performance of construction developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20houses" title="modern houses">modern houses</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20construction" title=" traditional construction"> traditional construction</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20methods%20of%20construction" title=" modern methods of construction"> modern methods of construction</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabrication" title=" prefabrication"> prefabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building" title=" sustainable building"> sustainable building</a> </p> <a href="https://publications.waset.org/abstracts/90748/investigations-into-transition-from-traditional-construction-to-industrial-construction-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6969</span> Assessment of Causes of Building Collapse in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20Oyedele">Olufemi Oyedele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building collapse (BC) in Nigeria is becoming a regular occurrence, each recording great casualties in the number of lives and materials lost. Building collapse is a situation where building which has been completed and occupied, completed but not occupied or under construction, collapses on its own due to action or inaction of man or due to natural event like earthquake, storm, flooding, tsunami or wildfire. It is different from building demolition. There are various causes of building collapse and each case requires expert judgment to decide the cause of its collapse. Rate of building collapse is a reflection of the level of organization and control of building activities and degree of sophistication of the construction professionals in a country. This study explored the use of case study by examining the causes of six (6) collapsed buildings (CB) across Nigeria. Samples of materials from the sites of the collapsed buildings were taken for testing and analysis, while critical observations were made at the sites to note the conditions of the ground (building base). The study found out that majority of the building collapses in Nigeria were due to poor workmanship, sub-standard building materials, followed by bad building base and poor design. The National Building Code 2006 is not effective due to lack of enforcement and the Physical Development Departments of states and Federal Capital Territory are just mere agents of corruption allowing all types of construction without building approvals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20collapse" title="building collapse">building collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20tests" title=" concrete tests"> concrete tests</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20settlement" title=" differential settlement"> differential settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=integrity%20test" title=" integrity test"> integrity test</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a> </p> <a href="https://publications.waset.org/abstracts/57378/assessment-of-causes-of-building-collapse-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6968</span> A Review: Recycled Materials Used in Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oghenerukome%20Akponovo">Oghenerukome Akponovo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20I.%20Onyebuchukwu"> Lynda I. Onyebuchukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/159098/a-review-recycled-materials-used-in-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6967</span> Review on the Role of Sustainability Techniques in Development of Green Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ubaid%20Ur%20Rahman">Ubaid Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqar%20Younas"> Waqar Younas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooraj%20Kumar%20Chhabira"> Sooraj Kumar Chhabira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title="sustainable construction">sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20waste%20material" title=" recycled waste material"> recycled waste material</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/73467/review-on-the-role-of-sustainability-techniques-in-development-of-green-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6966</span> Contributing Factors to Building Failures and Defects in the Nigerian Construction Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ndibarafinia%20Tobin">Ndibarafinia Tobin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building defect and failure are common phenomena in the Nigerian construction industry. The activities of the inexperienced labor force in the Nigerian construction industry have tarnished the image of practicing construction professionals in recent past. Defects and collapse can cause unnecessary expenditure, delays, loss of lives, property and left many people injured. They are also generating controversies among parties involved. Also, if this situation is left unanswered and untreated, it will lead to more serious problems in the future upcoming construction projects in Nigeria. Quite a number of factors are responsible for collapse of high-rise, reinforced concrete buildings in Nigeria. Government, professional bodies and stakeholders are asking countless questions as to who should be responsible and how solutions could be proffered. Therefore this study is aimed to identify the contributing factors to high-rise buildings defects and failures in Nigeria, which frequently occur in construction project in order to minimize time and cost and also the roles of professionals and other participants play in the industry in terms of the use of building materials, placement and curing of concrete, modification in the use of a building, collapse of building induced by fire and other causes. The data is collected from questionnaire from various players in construction industry in Nigeria. This study is succeeds in identifying the causes of building failure and also suggesting possible measures to be taken by government and other regulatory bodies in the building industry to avert this and also improve the effectiveness of managing appraisal process of failures and defects in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20defects" title="building defects">building defects</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20failures" title=" building failures"> building failures</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigerian%20construction%20industry" title=" Nigerian construction industry"> Nigerian construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=professionals" title=" professionals"> professionals</a> </p> <a href="https://publications.waset.org/abstracts/87801/contributing-factors-to-building-failures-and-defects-in-the-nigerian-construction-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6965</span> Circular Economy: Development of Quantitative Material Wastage Management Plan for Effective Waste Reduction in Building Construction Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20Tak%20Kit">Kwok Tak Kit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and GHGs emissions in the economy of different countries and cities. Many types of research had conducted and discussed the topic of waste management and waste management being a macro-level control is well developed in the building and construction industry. However, there is little research and studies on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. In this paper, we will focus on the potentialities and importance of material wastage management and review the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantitative%20measurement" title="quantitative measurement">quantitative measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20wastage%20management%20plan" title=" material wastage management plan"> material wastage management plan</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=uncalculated%20waste" title=" uncalculated waste"> uncalculated waste</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a> </p> <a href="https://publications.waset.org/abstracts/145718/circular-economy-development-of-quantitative-material-wastage-management-plan-for-effective-waste-reduction-in-building-construction-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6964</span> Damage Assessment and Repair for Older Brick Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tim%20D.%20Sass">Tim D. Sass</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experience of engineers and architects practicing today is typically limited to current building code requirements and modern construction methods and materials. However, many cities have a mix of new and old buildings with many buildings constructed over one hundred years ago when building codes and construction methods were much different. When a brick building sustains damage, a structural engineer is often hired to determine the cause of damage as well as determine the necessary repairs. Forensic studies of dozens of brick buildings shows an appreciation of historical building methods and materials is needed to correctly identify the cause of damage and design an appropriate repair. Damage on an older, brick building can be mistakenly attributed to storms or seismic events when the real source of the damage is deficient original construction. Assessing and remediating damaged brickwork on older brick buildings requires an understanding of the original construction, an understanding of older repair methods, and, an understanding of current building code requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick" title="brick">brick</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=deterioration" title=" deterioration"> deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=facade" title=" facade"> facade</a> </p> <a href="https://publications.waset.org/abstracts/78577/damage-assessment-and-repair-for-older-brick-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6963</span> Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20A.%20S.%20Essawy">Yasmeen A. S. Essawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Nassar"> Khaled Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling%20%28BIM%29" title="building information modeling (BIM)">building information modeling (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20graph%20data%20model%20%28EGDM%29" title=" elemental graph data model (EGDM)"> elemental graph data model (EGDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20and%20topological%20data%20models" title=" geometric and topological data models"> geometric and topological data models</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a> </p> <a href="https://publications.waset.org/abstracts/70542/elemental-graph-data-model-a-semantic-and-topological-representation-of-building-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6962</span> Application of Proper Foundation in Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwuma%20Anya">Chukwuma Anya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foundation is popularly defined as the lowest load-bearing part of a building typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably resulting to a misuse or abuse of the building materials, man power, and sometimes altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of the foundation, and even building settlement and stability. In addition to those, it will improve aesthetics and maintain cost effectiveness, both construction cost and maintenance cost. Finally, it will ensure the safety of the building and its inhabitants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundation" title="foundation">foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=balance" title=" balance"> balance</a>, <a href="https://publications.waset.org/abstracts/search?q=aesthetic" title=" aesthetic"> aesthetic</a> </p> <a href="https://publications.waset.org/abstracts/195389/application-of-proper-foundation-in-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6961</span> The Potential Role of Industrialized Building Systems in Malaysian Sustainable Construction: Awareness and Barriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aawag%20Mohsen%20Al-Awag">Aawag Mohsen Al-Awag</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Salah%20Alaloul"> Wesam Salah Alaloul</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Liew"> M. S. Liew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrialized building system (IBS) is a method of construction with concentrated practices consisting of techniques, products, and a set of linked elements which operate collectively to accomplish objectives. The Industrialised Building System (IBS) has been recognised as a viable method for improving overall construction performance in terms of quality, cost, safety and health, waste reduction, and productivity. The Malaysian construction industry is considered one of the contributors to the development of the country. The acceptance level of IBS is still below government expectations. Thus, the Malaysian government has been continuously encouraging the industry to use and implement IBS. Conventional systems have several drawbacks, including project delays, low economic efficiency, excess inventory, and poor product quality. When it comes to implementing IBS, construction companies still face several obstacles and problems, notably in terms of contractual and procurement concerns, which leads to the low adoption of IBS in Malaysia. There are barriers to the acceptance of IBS technology, focused on awareness of historical failure and risks connected to IBS practices to provide enhanced performance. Therefore, the transformation from the existing conventional building systems to the industrialized building systems (IBS) is needed more than ever. The flexibility of IBS in Malaysia’s construction industry is very low due to numerous shortcomings and obstacles. Due to its environmental, economic, and social benefits, IBS could play a significant role in the Malaysian construction industry in the future. This paper concentrates on the potential role of IBS in sustainable construction practices in Malaysia. It also highlights the awareness, barriers, advantages, and disadvantages of IBS in the construction sector. The study concludes with recommendations for Malaysian construction stakeholders to encourage and increase the utilization of industrialised building systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title="construction industry">construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=industrialized%20building%20system" title=" industrialized building system"> industrialized building system</a>, <a href="https://publications.waset.org/abstracts/search?q=barriers" title=" barriers"> barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=advantages%20and%20disadvantages" title=" advantages and disadvantages"> advantages and disadvantages</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/167550/the-potential-role-of-industrialized-building-systems-in-malaysian-sustainable-construction-awareness-and-barriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6960</span> Life Cycle Assessment of Mass Timber Structure, Construction Process as System Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboobeh%20Hemmati">Mahboobeh Hemmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Messadi"> Tahar Messadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongmei%20Gu"> Hongmei Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, life cycle assessment (LCA) is a leading method in mitigating the environmental impacts emerging from the building sector. In this paper, LCA is used to quantify the Green House Gas (GHG) emissions during the construction phase of the largest mass timber residential structure in the United States, Adohi Hall. This building is a 200,000 square foot 708-bed complex located on the campus of the University of Arkansas. The energy used for buildings’ operation is the most dominant source of emissions in the building industry. Lately, however, the efforts were successful at increasing the efficiency of building operation in terms of emissions. As a result, the attention is now shifted to the embodied carbon, which is more noticeable in the building life cycle. Unfortunately, most of the studies have, however, focused on the manufacturing stage, and only a few have addressed to date the construction process. Specifically, less data is available about environmental impacts associated with the construction of mass timber. This study presents, therefore, an assessment of the environmental impact of the construction processes based on the real and newly built mass timber building mentioned above. The system boundary of this study covers modules A4 and A5 based on building LCA standard EN 15978. Module A4 includes material and equipment transportation. Module A5 covers the construction and installation process. This research evolves through 2 stages: first, to quantify materials and equipment deployed in the building, and second, to determine the embodied carbon associated with running equipment for construction materials, both transported to, and installed on, the site where the edifice is built. The Global Warming Potential (GWP) of the building is the primary metric considered in this research. The outcomes of this study bring to the front a better understanding of hotspots in terms of emission during the construction process. Moreover, the comparative analysis of the mass timber construction process with that of a theoretically similar steel building will enable an effective assessment of the environmental efficiency of mass timber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20process" title="construction process">construction process</a>, <a href="https://publications.waset.org/abstracts/search?q=GWP" title=" GWP"> GWP</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA" title=" LCA"> LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20timber" title=" mass timber"> mass timber</a> </p> <a href="https://publications.waset.org/abstracts/140663/life-cycle-assessment-of-mass-timber-structure-construction-process-as-system-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6959</span> Modern Methods of Construction (MMC): The Potentials and Challenges of Using Prefabrication Technology for Building Modern Houses in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latif%20Karimi">Latif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhide%20Mochida"> Yasuhide Mochida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to study Modern Methods of Construction (MMC); specifically, the prefabrication technology and check the applicability, suitability, and benefits of this construction technique over conventional methods for building new houses in Afghanistan. Construction industry and house building sector are a key contributor to Afghanistan’s economy. However, this sector is challenged with lack of innovation and severe impacts that it has on the environment due to huge amount of construction waste from building, demolition and or renovation activities. This paper studies the prefabrication technology, a popular MMC that is becoming more common, improving in quality and being available in a variety of budgets. Several feasibility studies worldwide have revealed that this method is the way forward in improving construction industry performance as it has been proven to reduce construction time, construction wastes and improve the environmental performance of the construction processes. In addition, this study emphasizes on 'sustainability' in-house building, since it is a common challenge in housing construction projects on a global scale. This challenge becomes more severe in the case of under-developed countries, like Afghanistan. Because, most of the houses are being built in the absence of a serious quality control mechanism and dismissive to basic requirements of sustainable houses; well-being, cost-effectiveness, minimization - prevention of wastes production during construction and use, and severe environmental impacts in view of a life cycle assessment. Methodology: A literature review and study of the conventional practices of building houses in urban areas of Afghanistan. A survey is also being completed to study the potentials and challenges of using prefabrication technology for building modern houses in the cities across the country. A residential housing project is selected for case study to determine the drawbacks of current construction methods vs. prefabrication technique for building a new house. Originality: There are little previous research available about MMC considering its specific impacts on sustainability related to house building practices. This study will be specifically of interest to a broad range of people, including planners, construction managers, builders, and house owners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20methods%20of%20construction%20%28MMC%29" title="modern methods of construction (MMC)">modern methods of construction (MMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabrication" title=" prefabrication"> prefabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=prefab%20houses" title=" prefab houses"> prefab houses</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title=" sustainable construction"> sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20houses" title=" modern houses"> modern houses</a> </p> <a href="https://publications.waset.org/abstracts/87950/modern-methods-of-construction-mmc-the-potentials-and-challenges-of-using-prefabrication-technology-for-building-modern-houses-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6958</span> Soil Reinforcement by Stone Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saou%20Mohamed%20Amine">Saou Mohamed Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title="construction industry">construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20team%20attributes" title=" design team attributes"> design team attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20performance" title=" energy efficient performance"> energy efficient performance</a>, <a href="https://publications.waset.org/abstracts/search?q=refurbishment%20projects%20characteristics" title=" refurbishment projects characteristics"> refurbishment projects characteristics</a> </p> <a href="https://publications.waset.org/abstracts/23551/soil-reinforcement-by-stone-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6957</span> Classification of Opaque Exterior Walls of Buildings from a Sustainable Point of View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20S%C3%A1nchez%20de%20Le%C3%B3n%20Brajkovich">Michelle Sánchez de León Brajkovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuria%20Mart%C3%AD%20Audi"> Nuria Martí Audi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The envelope is one of the most important elements when one analyzes the operation of the building in terms of sustainability. Taking this into consideration, this research focuses on setting a classification system of the envelopes opaque systems, crossing the knowledge and parameters of construction systems with requirements in terms of sustainability that they may have, to have a better understanding of how these systems work with respect to their sustainable contribution to the building. Therefore, this paper evaluates the importance of the envelope design on the building sustainability. It analyses the parameters that make the construction systems behave differently in terms of sustainability. At the same time it explains the classification process generated from this analysis that results in a classification where all opaque vertical envelope construction systems enter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=exterior%20walls" title=" exterior walls"> exterior walls</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope" title=" envelope"> envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=facades" title=" facades"> facades</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20systems" title=" construction systems"> construction systems</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/13071/classification-of-opaque-exterior-walls-of-buildings-from-a-sustainable-point-of-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6956</span> A Preparatory Method for Building Construction Implemented in a Case Study in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aline%20Valverde%20Arroteia">Aline Valverde Arroteia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20Gondim%20do%20Amaral"> Tatiana Gondim do Amaral</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvio%20Burrattino%20Melhado"> Silvio Burrattino Melhado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last twenty years, the construction field in Brazil has evolved significantly in response to its market growing and competitiveness. However, this evolving path has faced many obstacles such as cultural barriers and the lack of efforts to achieve quality at the construction site. At the same time, the greatest amount of information generated on the designing or construction phases is lost due to the lack of an effective coordination of these activities. Face this problem, the aim of this research was to implement a French method named PEO which means preparation for building construction (in Portuguese) seeking to understand the design management process and its interface with the building construction phase. The research method applied was qualitative, and it was carried out through two case studies in the city of Goiania, in Goias, Brazil. The research was divided into two stages called pilot study at Company A and implementation of PEO at Company B. After the implementation; the results demonstrated the PEO method's effectiveness and feasibility while a booster on the quality improvement of design management. The analysis showed that the method has a purpose to improve the design and allow the reduction of failures, errors and rework commonly found in the production of buildings. Therefore, it can be concluded that the PEO is feasible to be applied to real estate and building companies. But, companies need to believe in the contribution they can make to the discovery of design failures in conjunction with other stakeholders forming a construction team. The result of PEO can be maximized when adopting the principles of simultaneous engineering and insertion of new computer technologies, which use a three-dimensional model of the building with BIM process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20and%20construction%20interface%20management" title=" design and construction interface management"> design and construction interface management</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation%20for%20building%20construction%20%28PEO%29" title=" preparation for building construction (PEO)"> preparation for building construction (PEO)</a>, <a href="https://publications.waset.org/abstracts/search?q=proactive%20coordination%20%28CPA%29" title=" proactive coordination (CPA)"> proactive coordination (CPA)</a> </p> <a href="https://publications.waset.org/abstracts/83285/a-preparatory-method-for-building-construction-implemented-in-a-case-study-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=232">232</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=233">233</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20of%20building&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>