CINXE.COM
Search results for: sodium hydroxide
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sodium hydroxide</title> <meta name="description" content="Search results for: sodium hydroxide"> <meta name="keywords" content="sodium hydroxide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sodium hydroxide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sodium hydroxide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1059</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sodium hydroxide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1059</span> The Different Roles between Sodium and Potassium Ions in Ion Exchange of WO3/SiO2 Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritsada%20Pipitthapan">Kritsada Pipitthapan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WO3/SiO2 catalysts were modified by an ion exchange method with sodium hydroxide or potassium hydroxide solution. The performance of the modified catalysts was tested in the metathesis of ethylene and trans-2-butene to propylene. During ion exchange, sodium and potassium ions played different roles. Sodium modified catalysts revealed constant trans-2-butene conversion and propylene selectivity when the concentrations of sodium in the solution were varied. In contrast, potassium modified catalysts showed reduction of the conversion and increase of the selectivity. From these results, potassium hydroxide may affect the transformation of tungsten oxide active species, resulting in the decrease in conversion whereas sodium hydroxide did not. Moreover, the modification of catalysts by this method improved the catalyst stability by lowering the amount of coke deposited on the catalyst surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20sites" title="acid sites">acid sites</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20metal" title=" alkali metal"> alkali metal</a>, <a href="https://publications.waset.org/abstracts/search?q=isomerization" title=" isomerization"> isomerization</a>, <a href="https://publications.waset.org/abstracts/search?q=metathesis" title=" metathesis "> metathesis </a> </p> <a href="https://publications.waset.org/abstracts/25493/the-different-roles-between-sodium-and-potassium-ions-in-ion-exchange-of-wo3sio2-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1058</span> Fluoride as Obturating Material in Primary Teeth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ameer%20Haider%20Jafri">Syed Ameer Haider Jafri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary goal of a root canal treatment in deciduous teeth is to eliminate infection and to retain the tooth in a functional state until it gets physiologically exfoliated and replaced by permanent successor. Important requisite of a root canal filling material for primary teeth is that, it should resorb at a similar rate as the roots of primary tooth, be harmless to the periapical tissue and to the permanent tooth germ, resorb readily if pushed beyond the apex, be antiseptic, radio-opaque, should not shrink, adhere to the walls, not discolor the tooth and easy to fill & remove, if required at any stage. Presently available, commonly used obturating materials for primary teeth are zinc oxide eugenol, calcium hydroxide and iodoform based pastes. None of these materials so far meet the ideal requirement of root canal filling material. So in search of ideal obturating material, this study was planed, in which mixture of calcium hydroxide, zinc oxide & sodium fluoride and mixture of calcium hydroxide & sodium fluoride was compared clinically and radiographically with calcium hydroxide for the obturation of root canals of 75 carious exposed primary mandibular second molars of 59 children aged 4-9 years. All the three material shows good results, but after a follow-up of 9 months mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide powder closely follow the resorption of root, mixture of calcium hydroxide, two percent sodium fluoride follow resorption of root in the beginning but later on majority of cases shows faster resorption whereas calcium hydroxide starts depleting from the canal from the beginning even as early as 3 months. Thus mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide found to be best obturaring material for primary tooth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obturating%20material" title="obturating material">obturating material</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20teeth" title=" primary teeth"> primary teeth</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20canal%20treatment" title=" root canal treatment"> root canal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=success%20rate" title=" success rate"> success rate</a> </p> <a href="https://publications.waset.org/abstracts/58937/fluoride-as-obturating-material-in-primary-teeth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1057</span> Effect of Zinc Oxide Nanoparticles along with Sodium Hydroxide on Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mirjalili">Mohammad Mirjalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Mohammdi"> Maryam Mohammdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Loghman%20Karimi"> Loghman Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of Polyethylene terephthalate using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at ultrasound bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The self-cleaning property of treated polyethylene terephthalate was evaluated through discoloring methylene blue stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyethylene terephthalate improved significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20terephthalate" title=" polyethylene terephthalate"> polyethylene terephthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/57213/effect-of-zinc-oxide-nanoparticles-along-with-sodium-hydroxide-on-self-cleaning-and-antibacterial-properties-of-polyethylene-terephthalate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1056</span> Flow Performance of Hybrid Cement Based Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdollahnejad">Z. Abdollahnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kheradmand"> M. Kheradmand</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pacheco%20Torgal"> F. Pacheco Torgal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20reuse" title="waste reuse">waste reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cement" title=" hybrid cement"> hybrid cement</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=polycarboxylate" title=" polycarboxylate"> polycarboxylate</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a> </p> <a href="https://publications.waset.org/abstracts/65025/flow-performance-of-hybrid-cement-based-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1055</span> Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashikant%20Kumar">Shashikant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandraraj%20K."> Chandraraj K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napier%20grass" title="Napier grass">Napier grass</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/152783/optimization-of-pretreatment-process-of-napier-grass-for-improved-sugar-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1054</span> Pretreatment of Aquatic Weed Typha latifolia with Sodium Bisulphate for Enhanced Acid and Enzyme Hydrolysis for Production of Xylitol and Bioethanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyosthna%20Khanna%20Goli">Jyosthna Khanna Goli</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Naseeruddin"> Shaik Naseeruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hameeda%20Bee"> Hameeda Bee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Employing lignocellulosic biomass in fermentative production of xylitol and bioethanol is gaining interest as it is renewable, cheap, and abundantly available. Xylitol is a polyol, gaining its importance in the food and pharmacological industry due to its low calorific value and anti-cariogenic nature. Bioethanol from lignocellulosic biomass is widely accepted as an alternative fuel for transportation with reduced CO₂ emissions, thus reducing the greenhouse effect. Typha latifolia, an aquatic weed, was found to be promising lignocellulosic substrate as it posses a high amount of sugars and does not compete with arable lands and interfere with food and feed competition. In the present study, xylose from hemicellulosic fraction of typha is converted to xylitol by isolate Jfh5 (Candida. tropicalis) and cellulose part to ethanol using Saccharomyces cerevisiaeVS3. Initially, alkali pretreatment of typha using sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, sodium bisulphate and sodium dithionate for overnight (18h) at room temperature (28 ± 2°C), resulted in maximum delignification of 75% with 2% (v/v) sodium bisulphate. Later, pretreated biomass was subjected to acid hydrolysis with 1%, 1.5%, 2%, and 3% H₂SO₄ at 110 °C and 121°C for 30 and 60 min, respectively. 2% H₂SO₄ at 121°C for 60 min was found to release 13.5 g /l sugars, which on detoxification and fermentation produced 8.1g/l xylitol with yield and productivity of 0.65g/g and 0.112g/l/h respectively. Further enzymatic hydrolysis of the residual substrate obtained after acid hydrolysis released 11g/l sugar, which on fermentation with VS3 produced 4.9g/l ethanol with yield and productivity of 0.22g/g and 0.136g/l/h respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delignification" title="delignification">delignification</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20hydrolysis" title=" acid hydrolysis"> acid hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20hydrolysis" title=" enzyme hydrolysis"> enzyme hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/121313/pretreatment-of-aquatic-weed-typha-latifolia-with-sodium-bisulphate-for-enhanced-acid-and-enzyme-hydrolysis-for-production-of-xylitol-and-bioethanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1053</span> Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bal%20Deep%20Sharma">Bal Deep Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Ray%20Yadav"> Suresh Ray Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization%20technique" title="soil stabilization technique">soil stabilization technique</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil%20treatment" title=" soft soil treatment"> soft soil treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/183467/effect-of-sodium-hydroxide-on-geotechnical-properties-of-soft-soil-in-kathmandu-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1052</span> Improving Flotation Separation of Apatite Ore Using Calcium Lignosulphonate and Tannin as Combined Depressant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Sok%20Jong">Kwang Sok Jong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apatite is separated from carbonate minerals via direct flotation by using lignosulphonate as a depressant, but its dosage is high, and its inhibition ability is insufficient. Therefore a combination of depressant calcium lignosulphonate and depressant tannin was considered to improve flotation selectivity and decrease the dosage of depressant. In the present work, the effects of several reagents- pH regulators (sodium carbonate and sodium hydroxide), combined depressant (calcium lignosulphonate and tannin) and collector (fatty acid amide soap) on the flotation performance of apatite ore were investigated using Design Expert software. Flotation results showed that the combined depressant had not only more excellent inhibition ability compared with the individual depressant respectively, but also lower dosage. In the raw ore containing 6.65% P₂O₅, a concentrate containing 32.93% P₂O₅ with 93.24% recovery was obtained using 3.5kg/t sodium carbonate, 0.75kg/t sodium hydroxide, 1kg/t calcium lignosulphonate, 50g/t tannin and 100g/t fatty acid amide soap in the rougher flotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite%20flotation" title="apatite flotation">apatite flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20depressant" title=" combined depressant"> combined depressant</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20lignosulphonate" title=" calcium lignosulphonate"> calcium lignosulphonate</a>, <a href="https://publications.waset.org/abstracts/search?q=tannin" title=" tannin"> tannin</a> </p> <a href="https://publications.waset.org/abstracts/187062/improving-flotation-separation-of-apatite-ore-using-calcium-lignosulphonate-and-tannin-as-combined-depressant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1051</span> Mass Transfer Studies of Carbon Dioxide Absorption in Sodium Hydroxide in Millichannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Durgadevi">A. Durgadevi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pushpavanam"> S. Pushpavanam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, absorption studies are done by conducting experiments of 99.9 (v/v%) pure CO₂ with various concentrations of sodium hydroxide solutions in a T-junction glass circular milli-channel. The gas gets absorbed in the aqueous phase resulting in the shrinking of slugs. This phenomenon is used to develop a lumped parameter model. Using this model, the chemical dissolution dynamics and the mass transfer characteristics of the CO₂-NaOH system is analysed. The liquid side mass transfer coefficient is determined with the help of the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution%20dynamics" title=" dissolution dynamics"> dissolution dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20parameter%20model" title=" lumped parameter model"> lumped parameter model</a>, <a href="https://publications.waset.org/abstracts/search?q=milli-channel" title=" milli-channel"> milli-channel</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer%20coefficient" title=" mass transfer coefficient"> mass transfer coefficient</a> </p> <a href="https://publications.waset.org/abstracts/75631/mass-transfer-studies-of-carbon-dioxide-absorption-in-sodium-hydroxide-in-millichannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> The Effects of Gas Metal Arc Welding Parameters on the Corrosion Behaviour of Austenitic Stainless Steel Immersed in Aqueous Sodium Hydroxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20B.%20Omiogbemi">I. M. B. Omiogbemi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Yawas"> D. S. Yawas</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Dagwa"> I. M. Dagwa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20G.%20Okibe"> F. G. Okibe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work present the effects of some gas metal arc welding parameters on the corrosion behavior of austenitic stainless steel, exposed to 0.5M sodium hydroxide at ambient temperatures (298K) using conventional weight loss determination, together with surface morphology evaluation by scanning electron microscopy and the application of factorial design of experiment to determine welding conditions which enhance the integrity of the welded stainless steel. The welding variables evaluated include speed, voltage and current. Different samples of the welded stainless steels were immersed in the corrosion environment for 8, 16, 24, 32 and 40 days and weight loss determined. From the results, it was found that increase in welding current and speed at constant voltage gave the optimum performance of the austenitic stainless steel in the environment. At a of speed 40cm/min, 110Amp current and voltage of 230 volt the welded stainless steel showed only a 0.0015mg loss in weight after 40 days. Pit-like openings were observed on the surface of the metals indicating corrosion but were minimal at the optimum conditions. It was concluded from the research that relatively high welding speed and current at a constant voltage gives a good welded austenitic stainless steel with better integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding" title="welding">welding</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/41028/the-effects-of-gas-metal-arc-welding-parameters-on-the-corrosion-behaviour-of-austenitic-stainless-steel-immersed-in-aqueous-sodium-hydroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Dembovska">Laura Dembovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Pundiene"> Ina Pundiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Bajare"> Diana Bajare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20activated%20materials" title=" alkali activated materials"> alkali activated materials</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature%20application" title=" elevated temperature application"> elevated temperature application</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20resistance" title=" heat resistance"> heat resistance</a> </p> <a href="https://publications.waset.org/abstracts/82266/comparison-of-different-activators-impact-on-the-alkali-activated-aluminium-silicate-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Effect of Fiber Content and Chemical Treatment on Hardness of Bagasse Fiber Reinforced Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varun%20Mittal">Varun Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Sinha"> Shishir Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study focused on the hardness behavior of bagasse fiber-epoxy composites. The relationship between bagasse fiber content and effect of chemical treatment on bagasse fiber as a function of Brinell hardness of bagasse fiber epoxy was investigated. Bagasse fiber was treated with sodium hydroxide followed by acrylic acid before they were reinforced with epoxy resin. Compared hardness properties with the untreated bagasse filled epoxy composites. It was observed that Brinell hardness increased up to 15 wt% fiber content and further decreases, however, chemical treatment also improved the hardness properties of composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse%20fiber" title="bagasse fiber">bagasse fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/52160/effect-of-fiber-content-and-chemical-treatment-on-hardness-of-bagasse-fiber-reinforced-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> The Determination of the Potassium Nitrate, Sodium Hydroxide and Boric Acid Molar Ratio in the Synthesis of Potassium Borates via Hydrothermal Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yildirim">M. Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber"> F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Asensio"> M. O. Asensio</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Derun"> E. M. Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potassium borates, which are widely used in welding and metal refining industry, as a lubricating oil additive, cement additive, fiberglass additive and insulation compound, are one of the important groups of borate minerals. In this study the production of a potassium borate mineral via hydrothermal method is aimed. The potassium source of potassium nitrate (KNO3) was used along with a sodium source of sodium hydroxide (NaOH) and boron source of boric acid (H3BO3). The constant parameters of reaction temperature and reaction time were determined as 80°C and 1 h, respectively. The molar ratios of 1:1:3 (as KNO3:NaOH:H3BO3), 1:1:4, 1:1:5, 1:1:6 and 1:1:7 were used. Following the synthesis the identifications of the produced products were conducted by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The results of the experiments and analysis showed in the ratio of 1:1:6, the Santite mineral with powder diffraction file number (pdf no.) of 01-072-1688, which is known as potassium pentaborate (KB5O8•4H2O) was synthesized as best. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title="hydrothermal synthesis">hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20borate" title=" potassium borate"> potassium borate</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20nitrate" title=" potassium nitrate"> potassium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=santite" title=" santite"> santite</a> </p> <a href="https://publications.waset.org/abstracts/25561/the-determination-of-the-potassium-nitrate-sodium-hydroxide-and-boric-acid-molar-ratio-in-the-synthesis-of-potassium-borates-via-hydrothermal-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> In-Situ LDH Formation of Sodium Aluminate Activated Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Liu">Tao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingliang%20Yu"> Qingliang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20H.%20Brouwers"> H. J. H. Brouwers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the reaction products in the alkali-activated ground granulated blast furnace slag (AAS), the layered double hydroxides (LDHs) have a remarkable capacity of chloride and heavy metal ions absorption. The promotion of LDH phases in the AAS matrix can increase chloride resistance. The objective of this study is that use the different dosages of sodium aluminate to activate slag, consequently promoting the formation of in-situ LDH. The hydration kinetics of the sodium aluminate activated slag (SAAS) was tested by the isothermal calorimetry. Meanwhile, the reaction products were determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The sodium hydroxide-activated slag is selected as the reference. The results of XRD, TGA, and FTIR showed that the formation of LDH in SAAS was increased by the aluminate dosages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20granulated%20blast%20furnace%20slag" title="ground granulated blast furnace slag">ground granulated blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20aluminate%20activated%20slag" title=" sodium aluminate activated slag"> sodium aluminate activated slag</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20LDH%20formation" title=" in-situ LDH formation"> in-situ LDH formation</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride%20absorption" title=" chloride absorption"> chloride absorption</a> </p> <a href="https://publications.waset.org/abstracts/143331/in-situ-ldh-formation-of-sodium-aluminate-activated-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shihab%20Ibrahim">Shihab Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title="construction and demolition waste">construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20brick" title=" clay brick"> clay brick</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength." title=" compressive strength."> compressive strength.</a> </p> <a href="https://publications.waset.org/abstracts/43106/mechanical-properties-of-waste-clay-brick-based-geopolymer-cured-at-various-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> Production of Biodiesel from Melon Seed Oil Using Sodium Hydroxide as a Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ene%20Rosemary%20Ndidiamaka">Ene Rosemary Ndidiamaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nwangwu%20Florence%20Chinyere"> Nwangwu Florence Chinyere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physiochemical properties of the melon seed oil was studied to determine its potentials as viable feed stock for biodisel production. The melon seed was extracted by solvent extraction using n-hexane as the extracting solvent. In this research, methanol was the alcohol used in the production of biodiesel, although alcohols like ethanol, propanol may also be used. Sodium hydroxide was employed for the catalysis. The melon seed oil was characterized for specific gravity, pH, ash content, iodine value, acid value, saponification value, peroxide value, free fatty acid value, flash point, viscosity, and refractive index using standard methods. The melon seed oil had very high oil content. Specific gravity and flash point of the oil is satisfactory. However, moisture content of the oil exceeded the stipulated ASRTM standard for biodiesel production. The overall results indicates that the melon seed oil is suitable for single-stage transesterification process to biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=melon%20seed" title=" melon seed"> melon seed</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/31589/production-of-biodiesel-from-melon-seed-oil-using-sodium-hydroxide-as-a-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> Comparison of Acid and Base Pretreatment of Switchgrass (Panicum virgatum L.) for Bioethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20%C3%9Cmi%CC%87t%20%C3%9Cnal">Mustafa Ümi̇t Ünal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafi%CC%87z%20%C3%87eli%CC%87kta%C5%9F"> Nafi̇z Çeli̇ktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysun%20%C5%9Eener"> Aysun Şener</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Bet%C3%BCl%20Dolgun"> Sara Betül Dolgun</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Keser"> Duygu Keser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to compare acid and base pretreatment of switchgrass for bioethanol production. Switchgrass was pretreated with sulfuric acid and sodium hydroxide at 0.5, 1.0 and 1.5% (v/v) at 120, 140, 180 °C for 10, 60 and 90. Optimization of enzymatic hydrolysis of the pretreated switchgrass samples were carried out using three different enzyme mixtures (22.5 mg cellulase and 75 mg cellobiase /g biomass; 45 mg cellulase and 150 mg cellobiase /g biomass; 90 mg cellulase and 300 mg cellobiase /g biomass). Samples were removed at 24-h interval for fermentable sugar analyses with HPLC. The results showed that use of 90 mg cellulase and 300 mg cellobiase/g biomass resulted in the highest fermentable sugar formation. Furthermore, the highest fermentable sugar yield was obtained by pretreatment at 120 °C for 10 min using 1.0 % sodium hydroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=switchgrass" title="switchgrass">switchgrass</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20pretreatment" title=" acid pretreatment"> acid pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%0D%0Ahydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20pretreatment" title=" base pretreatment"> base pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20production" title=" ethanol production"> ethanol production</a> </p> <a href="https://publications.waset.org/abstracts/46361/comparison-of-acid-and-base-pretreatment-of-switchgrass-panicum-virgatum-l-for-bioethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Effect of Mercerization on Coconut Fiber Surface Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sphiwe%20Simelane">Sphiwe Simelane</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Madyira"> Daniel Madyira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural fibers requires that they should be treated in preparation for their use in Natural Fiber-reinforced polymer composites. This paper reports on the effects of sodium hydroxide (NaOH) treatment on the surface of coconut fibers. The fibers were subjected to 5%, 10%, 15% and 20% NaOH concentrations and soaked for 4 hours and thoroughly rinsed and allowed to dry in the open air for seven days, after which time they were dried in an oven for 30 minutes. Untreated and treated coconut fibers were observed under the Scanning Electron Microscope and it was noted that the surface structure of the fibers was modified differently by the different NaOH concentrations, and the resultant colour of the treated fibers got darker as the solution concentration increased, and the texture felt rougher to the touch as a result of the erosion of the fiber surface. Further, the increase in alkali concentration striped the surface of more constituents, thus exposing “pits” and other surface components rendering the surface rough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title="coconut fiber">coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a> </p> <a href="https://publications.waset.org/abstracts/138059/effect-of-mercerization-on-coconut-fiber-surface-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20P.%20L.%20Wijayarathne">U. P. L. Wijayarathne</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Wasalathilake"> K. C. Wasalathilake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng-Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspen%20plus" title="aspen plus">aspen plus</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20flow%20reactor" title=" plug flow reactor"> plug flow reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/16114/aspen-plus-simulation-of-saponification-of-ethyl-acetate-in-the-presence-of-sodium-hydroxide-in-a-plug-flow-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamadi%20Cherif">Hamadi Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Coquelet"> Christophe Coquelet</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Stringari"> Paolo Stringari</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Clodic"> Denis Clodic</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Pellegrini"> Laura Pellegrini</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefania%20Moioli"> Stefania Moioli</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Lang%C3%A8"> Stefano Langè</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sulfide" title=" hydrogen sulfide"> hydrogen sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20absorption" title=" reactive absorption"> reactive absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20packed%20column" title=" structured packed column"> structured packed column</a> </p> <a href="https://publications.waset.org/abstracts/44298/experimental-and-simulation-results-for-the-removal-of-h2s-from-biogas-by-means-of-sodium-hydroxide-in-structured-packed-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> Mechanical Performance of Geopolymeric Mortars Based on Natural Clay, Fly Ash and Metakaolin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Tahri">W. Tahri</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Samet"> B. Samet</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pacheco-Torgal"> F. Pacheco-Torgal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Barroso%20de%20Aguiar"> J. L. Barroso de Aguiar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Baklouti"> S. Baklouti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrastructure rehabilitation represents a multitrillion dollar opportunity for the construction industry. Since the majority of the existent infrastructures are Portland cement concrete based this means that concrete infrastructure rehabilitation is a hot issue to be dealt with. Geopolymers are novel inorganic binders with high potential to replace Portland cement based ones. So far very few studies in the geopolymer field have addressed the rehabilitation of deteriorated concrete structures. This paper discloses results of an investigation concerning the development geopolymeric repair mortars. The mortars are based on Tunisian natural clay plus calcium hydroxide, sodium silicate and sodium hydroxide. Results show that the geopolymeric mortar has a high compressive strength and a lower unrestrained shrinkage performance as long as partial replacement by metakaolin is carried out. The results also show that Tunisian calcined clay based mortars have hydration products with typical geopolymeric phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymeric%20mortars" title="geopolymeric mortars">geopolymeric mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20repair" title=" infrastructure repair"> infrastructure repair</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a> </p> <a href="https://publications.waset.org/abstracts/38503/mechanical-performance-of-geopolymeric-mortars-based-on-natural-clay-fly-ash-and-metakaolin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> Some Observations on the Preparation of Zinc Hydroxide Nitrate Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Nguyen"> Nguyen Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Peltekov"> Alexander Peltekov</a>, <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova"> Violina Angelova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanosized zinc hydroxide nitrate has been recently estimated as perspective foliar fertilizer, which has improved zinc solubility, but low phytotoxicity, in comparison with ZnO and other Zn containing compounds. The main problem is obtaining of stable particles with dimensions less than 100 nm. This work studies the effect of preparation conditions on the chemical compositions and particle size of the zinc hydroxide nitrates, prepared by precipitation. Zn(NO3)2.6H2O and NaOH with concentrations, ranged from 0.2 to 3.2M and the initial OH/Zn ratio from 0.5 to 1.6 were used at temperatures from 20 to 60 °C. All samples were characterized in detail by X-ray diffraction, scanning electron microscopy, differential thermal analysis and ICP. Stability and distribution of the zinc hydroxide nitrate particles were estimated too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20hydroxide%20nitrate" title="zinc hydroxide nitrate">zinc hydroxide nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation" title=" preparation"> preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20fertilizer" title=" foliar fertilizer"> foliar fertilizer</a> </p> <a href="https://publications.waset.org/abstracts/53436/some-observations-on-the-preparation-of-zinc-hydroxide-nitrate-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1037</span> Corrosion Characterization of Al6061, Quartz Metal Matrix Composites in Alkali Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radha%20H.%20R.">Radha H. R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Krupakara%20P.%20V."> Krupakara P. V.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal matrix composites are attracting today's manufacturers of many automobile parts so that they lost longer and their properties can be tailored according to the requirement. In this paper an attempt has been made to study the corrosion characteristics of Aluminium 6061 / quartz metal matrix composites in alkali medium like sodium hydroxide solutions. Metal matrix composites are heterogeneous mixtures of a matrix and reinforcement. In this work the matrix selected is Aluminium 6061 alloy which is commercially available and the reinforcement selected is quartz particulates of 50-80 micron size which is available in plenty in and around Bangalore district, India. Composites containing Aluminium 6061 with 2, 4 and 6 weight percent of quartz are manufactured by liquid melt metallurgy technique using vortex method. Corrosion tests like static weight loss and open circuit potential tests are conducted in different concentrated solutions of sodium hydroxide. To compare the results the matrix Aluminium 6061 is also casted in the same way. Specimens for the test are prepared according to ASTM standards. In all the tests the metal matrix composites showed better corrosion resistance than matrix alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%206061" title="aluminium 6061">aluminium 6061</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=quartz" title=" quartz"> quartz</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex "> vortex </a> </p> <a href="https://publications.waset.org/abstracts/24586/corrosion-characterization-of-al6061-quartz-metal-matrix-composites-in-alkali-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1036</span> Chemical Durability of Textured Glass-coat Suitable for Building Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adejo%20Andrew%20Ojonugwa">Adejo Andrew Ojonugwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jomboh%20Jeff%20Kator"> Jomboh Jeff Kator</a>, <a href="https://publications.waset.org/abstracts/search?q=Garkida%20Adele%20Dzikwi"> Garkida Adele Dzikwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the behaviour of textured glass coat to chemical reactions upon application. Samples of textured glass coat developed from mixed post consumer glass were subjected to pH test (ASTM D5464), Chemical resistance test (ASTM D3260 and D1308), Adhesion test (ASTM D3359), and Abrasion test (ASTM D4060). Results shows a pH of 8.50, Chemical resistance of 5% flick rate when reacted with Sodium hydroxide (NaOH), a 3%, 5%, 10%, and 15% discolouration when reacted with Magnesium hydroxide (Mg(OH)2), Hydrogen fluoride (HF), Potassium hydroxide (KOH) and NaOH respectively, an adhesion of 4A and abrasion of 0.2g. The results confirm that the developed textured glass coat is in line with the standard pH range of 8-9, resistant to acid and base except for HF, NaOH, and Mg(OH)₂, good adhesion and abrasion properties, thereby making the coat resistant to chemical degradation and a good engineering material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20durability" title="chemical durability">chemical durability</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-coat" title=" glass-coat"> glass-coat</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/157990/chemical-durability-of-textured-glass-coat-suitable-for-building-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1035</span> Design of a Plant to Produce 100,000 MTPY of Green Hydrogen from Brine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazak%20Jinadu%20Otaru">Abdulrazak Jinadu Otaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Almulhim"> Ahmed Almulhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Alhassan"> Hassan Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sabri"> Mohammed Sabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saudi Arabia is host to a state-owned oil and gas corporation, known as Saudi ARAMCO, that is responsible for the highest emissions of carbon dioxide (CO₂) due to the heavy reliance on fossil fuels as an energy source for various sectors such as transportation, aerospace, manufacturing, and residential use. Unfortunately, the detrimental consequences of CO₂ emissions include escalating temperatures in the Middle East region, posing significant obstacles in terms of food security and water scarcity for the Kingdom of Saudi Arabia. As part of the Saudi Vision 2030 initiative, which aims to reduce the country's reliance on fossil fuels by 50 %, this study focuses on designing a plant that will produce approximately 100,000 metric tons per year (MTPY) of green hydrogen (H₂) using brine as the primary feedstock. The proposed facility incorporates a double electrolytic technology that first separates brine or sodium chloride (NaCl) into sodium hydroxide, hydrogen gas, and chlorine gas. The sodium hydroxide is then used as an electrolyte in the splitting of water molecules through the supply of electrical energy in a second-stage electrolyser to produce green hydrogen. The study encompasses a comprehensive analysis of process descriptions and flow diagrams, as well as materials and energy balances. It also includes equipment design and specification, cost analysis, and considerations for safety and environmental impact. The design capitalizes on the abundant brine supply, a byproduct of the world's largest desalination plant located in Al Jubail, Saudi Arabia. Additionally, the design incorporates the use of available renewable energy sources, such as solar and wind power, to power the proposed plant. This approach not only helps reduce carbon emissions but also aligns with Saudi Arabia's energy transition policy. Furthermore, it supports the United Nations Sustainable Development Goals on Sustainable Cities and Communities (Goal 11) and Climate Action (Goal 13), benefiting not only Saudi Arabia but also other countries in the Middle East. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20design" title="plant design">plant design</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolysis" title=" electrolysis"> electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=brine" title=" brine"> brine</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorine%20gas" title=" chlorine gas"> chlorine gas</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20hydrogen" title=" green hydrogen"> green hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/186278/design-of-a-plant-to-produce-100000-mtpy-of-green-hydrogen-from-brine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1034</span> Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hoi%20Heo">Ji Hoi Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Seong%20Park"> Jun Seong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Kim"> Hyo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO<sub>2 </sub>and Al<sub>2</sub>O<sub>3</sub>. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash%20based%20geopolymer" title=" fly ash based geopolymer"> fly ash based geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20development" title=" microstructure development"> microstructure development</a>, <a href="https://publications.waset.org/abstracts/search?q=Na-aluminate" title=" Na-aluminate"> Na-aluminate</a> </p> <a href="https://publications.waset.org/abstracts/106660/effect-of-sodium-aluminate-on-compressive-strength-of-geopolymer-at-elevated-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1033</span> The Determination of Sodium/Potassium Ion Ratio in Selected Edible Leafy Vegetables in North-Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20D.%20Uzoh">Raymond D. Uzoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20K.%20Shallsuku"> Philip K. Shallsuku</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20S.%20Vaachia"> Christopher S. Vaachia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selected edible leafy vegetables from North-eastern Nigeria were analysed for their sodium and potassium content in mg/100 g and the ratio Na+/K+ worked out. From experimental results, Venonia amydalina (bitter leaf) contained 150 mg (0.15 g) of sodium and 20500 mg (20.5 g) potassium with a ratio of 0.007, Brassica oleracea var capitata (cabbage) contained 300 mg (0.3 g) of sodium and 19000 mg (19 g) of potassium with a ration of 0.012. Others are Telfairia occidentalis (fluted pumpkin) with 400 mg (0.45 g) of sodium and 19500 mg (19.5 g) of potassium with a ratio of 0.020; Hibiscus sabdriffa (sorrel) has 200 mg (0.2 g) of sodium and 600 mg (0.6 g) of potassium with a ratio of 0.300; and Amarantus caudatus (spinach) contained 450 mg (0.45 g) of sodium and 23000 mg (23 g) of potassium with a ratio of 0.020. The presence of sodium and potassium in foods has become increasingly important as recent studies and dietary information gathered in this research has shown that sodium intake is not the sole consideration in elevated blood pressure but its considered as a ratio Na+/K+ fixed at 0.6. This ratio has been found to be a more important factor, suggesting that our diet should contain 67 % more potassium than sodium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vegetables" title="vegetables">vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium" title=" sodium"> sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=foods" title=" foods "> foods </a> </p> <a href="https://publications.waset.org/abstracts/11091/the-determination-of-sodiumpotassium-ion-ratio-in-selected-edible-leafy-vegetables-in-north-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1032</span> The Oxidative Damage Marker for Sodium Formate Exposure on Lymphocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malinee%20Pongsavee">Malinee Pongsavee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sodium formate is the chemical substance used for food additive. Catalase is the important antioxidative enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). The resultant level of oxidative stress in sodium formatetreated lymphocytes was investigated. The sodium formate concentrations of 0.05, 0.1, 0.2, 0.4 and 0.6 mg/mL were treated in human lymphocytes for 12 hours. After 12 treated hours, catalase activity change was measured in sodium formate-treated lymphocytes. The results showed that the sodium formate concentrations of 0.4 and 0.6 mg/mL significantly decreased catalase activities in lymphocytes (P < 0.05). The change of catalase activity in sodium formate-treated lymphocytes may be the oxidative damage marker for detect sodium formate exposure in human. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20formate" title="sodium formate">sodium formate</a>, <a href="https://publications.waset.org/abstracts/search?q=catalase%20activity" title=" catalase activity"> catalase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20damage%20marker" title=" oxidative damage marker"> oxidative damage marker</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/31219/the-oxidative-damage-marker-for-sodium-formate-exposure-on-lymphocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1031</span> Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20Silva">André C. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20N.%20Sousa"> Débora N. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Elenice%20M.%20S.%20Silva"> Elenice M. S. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Thales%20P.%20Fontes"> Thales P. Fontes</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20S.%20Tomaz"> Raphael S. Tomaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 <sup>o</sup>C. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title="froth flotation">froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatinization" title=" gelatinization"> gelatinization</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=starches%20and%20flours" title=" starches and flours"> starches and flours</a> </p> <a href="https://publications.waset.org/abstracts/50896/optimal-consume-of-naoh-in-starches-gelatinization-for-froth-flotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1030</span> Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20O.%20Osifo">Peter O. Osifo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hein%20W.%20J.%20P.%20Neomagus"> Hein W. J. P. Neomagus</a>, <a href="https://publications.waset.org/abstracts/search?q=Hein%20V.%20D.%20Merwe"> Hein V. D. Merwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/42027/optimization-of-chitosan-membrane-production-parameters-for-zinc-ion-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>