CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–40 of 40 results for author: <span class="mathjax">Pendharkar, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Pendharkar%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pendharkar, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pendharkar%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pendharkar, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19469">arXiv:2406.19469</a> <span> [<a href="https://arxiv.org/pdf/2406.19469">pdf</a>, <a href="https://arxiv.org/format/2406.19469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effects of Strain Compensation on Electron Mobilities in InAs Quantum Wells Grown on InP(001) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">C. P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J+T">J. T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Rodriguez%2C+I+V">I. Villar Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&query=Gul%2C+Y">Y. Gul</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+S">S. Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Holmes%2C+S+N">S. N. Holmes</a>, <a href="/search/cond-mat?searchtype=author&query=Pepper%2C+M">M. Pepper</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19469v1-abstract-short" style="display: inline;"> InAs quantum wells (QWs) grown on InP substrates are interesting for their applications in devices with high spin-orbit coupling (SOC) and their potential role in creating topologically nontrivial hybrid heterostructures. The highest mobility QWs are limited by interfacial roughness scattering and alloy disorder scattering in the cladding and buffer layers. Increasing QW thickness has been shown t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19469v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19469v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19469v1-abstract-full" style="display: none;"> InAs quantum wells (QWs) grown on InP substrates are interesting for their applications in devices with high spin-orbit coupling (SOC) and their potential role in creating topologically nontrivial hybrid heterostructures. The highest mobility QWs are limited by interfacial roughness scattering and alloy disorder scattering in the cladding and buffer layers. Increasing QW thickness has been shown to reduce the effect of both of these scattering mechanisms. However, for current state-of-the-art devices with As-based cladding and barrier layers, the critical thickness is limited to $\leq7$ nm. In this report, we demonstrate the use of strain compensation techniques in the InGaAs cladding layers to extend the critical thickness well beyond this limit. We induce tensile strain in the InGaAs cladding layers by reducing the In concentration from In$_{0.81}$Ga$_{0.19}$As to In$_{0.70}$Ga$_{0.30}$As and we observe changes in both the critical thickness of the well and the maximum achievable mobility. The peak electron mobility at 2 K is $1.16\times10^6$ cm$^2/$Vs, with a carrier density of $4.2\times10^{11}$ /cm$^2$. Additionally, we study the quantum lifetime and Rashba spin splitting in the highest mobility device as these parameters are critical to determine if these structures can be used in topologically nontrivial devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19469v1-abstract-full').style.display = 'none'; document.getElementById('2406.19469v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08681">arXiv:2406.08681</a> <span> [<a href="https://arxiv.org/pdf/2406.08681">pdf</a>, <a href="https://arxiv.org/format/2406.08681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantitative determination of twist angle and strain in Van der Waals moir茅 superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S+J">Steven J. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Uslu%2C+J">Jan-Lucas Uslu</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Finney%2C+J">Joe Finney</a>, <a href="/search/cond-mat?searchtype=author&query=Sharpe%2C+A+L">Aaron L. Sharpe</a>, <a href="/search/cond-mat?searchtype=author&query=Hocking%2C+M">Marisa Hocking</a>, <a href="/search/cond-mat?searchtype=author&query=Bittner%2C+N+J">Nathan J. Bittner</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Kastner%2C+M+A">Marc A. Kastner</a>, <a href="/search/cond-mat?searchtype=author&query=Mannix%2C+A+J">Andrew J. Mannix</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08681v1-abstract-short" style="display: inline;"> Scanning probe techniques are popular, non-destructive ways to visualize the real space structure of Van der Waals moir茅s. The high lateral spatial resolution provided by these techniques enables extracting the moir茅 lattice vectors from a scanning probe image. We have found that the extracted values, while precise, are not necessarily accurate. Scan-to-scan variations in the behavior of the piezo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08681v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08681v1-abstract-full" style="display: none;"> Scanning probe techniques are popular, non-destructive ways to visualize the real space structure of Van der Waals moir茅s. The high lateral spatial resolution provided by these techniques enables extracting the moir茅 lattice vectors from a scanning probe image. We have found that the extracted values, while precise, are not necessarily accurate. Scan-to-scan variations in the behavior of the piezos which drive the scanning probe, and thermally-driven slow relative drift between probe and sample, produce systematic errors in the extraction of lattice vectors. In this Letter, we identify the errors and provide a protocol to correct for them. Applying this protocol to an ensemble of ten successive scans of near-magic-angle twisted bilayer graphene, we are able to reduce our errors in extracting lattice vectors to less than 1%. This translates to extracting twist angles with a statistical uncertainty less than 0.001掳 and uniaxial heterostrain with uncertainty on the order of 0.002%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08681v1-abstract-full').style.display = 'none'; document.getElementById('2406.08681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages including supplementary material and 3 main figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18588">arXiv:2405.18588</a> <span> [<a href="https://arxiv.org/pdf/2405.18588">pdf</a>, <a href="https://arxiv.org/format/2405.18588">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Deterministic fabrication of graphene hexagonal boron nitride moir茅 superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kamat%2C+R+V">Rupini V. Kamat</a>, <a href="/search/cond-mat?searchtype=author&query=Sharpe%2C+A+L">Aaron L. Sharpe</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jenny Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S+J">Steven J. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Zaborski%2C+G">Gregory Zaborski Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Hocking%2C+M">Marisa Hocking</a>, <a href="/search/cond-mat?searchtype=author&query=Finney%2C+J">Joe Finney</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Kastner%2C+M+A">Marc A. Kastner</a>, <a href="/search/cond-mat?searchtype=author&query=Mannix%2C+A+J">Andrew J. Mannix</a>, <a href="/search/cond-mat?searchtype=author&query=Heinz%2C+T">Tony Heinz</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18588v1-abstract-short" style="display: inline;"> The electronic properties of moir茅 heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided the first experimental observation of orbital fe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18588v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18588v1-abstract-full" style="display: none;"> The electronic properties of moir茅 heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided the first experimental observation of orbital ferromagnetism. To create samples with aligned graphene/hBN, researchers often align edges of exfoliated flakes that appear straight in optical micrographs. However, graphene or hBN can cleave along either zig-zag or armchair lattice directions, introducing a 30 degree ambiguity in the relative orientation of two flakes. By characterizing the crystal lattice orientation of exfoliated flakes prior to stacking using Raman and second-harmonic generation for graphene and hBN, respectively, we unambiguously align monolayer graphene to hBN at a near-0 degree, not 30 degree, relative twist angle. We confirm this alignment by torsional force microscopy (TFM) of the graphene/hBN moir茅 on an open-face stack, and then by cryogenic transport measurements, after full encapsulation with a second, non-aligned hBN layer. This work demonstrates a key step toward systematically exploring the effects of the relative twist angle between dissimilar materials within moir茅 heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18588v1-abstract-full').style.display = 'none'; document.getElementById('2405.18588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12901">arXiv:2403.12901</a> <span> [<a href="https://arxiv.org/pdf/2403.12901">pdf</a>, <a href="https://arxiv.org/format/2403.12901">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Automated Tabletop Exfoliation and Identification of Monolayer Graphene Flakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Courtney%2C+E+D+S">Elijah D. S. Courtney</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Bittner%2C+N+J">Nathan J. Bittner</a>, <a href="/search/cond-mat?searchtype=author&query=Sharpe%2C+A+L">Aaron L. Sharpe</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12901v2-abstract-short" style="display: inline;"> Over the past two decades, graphene has been intensively studied because of its remarkable mechanical, optical, and electronic properties. Initial studies were enabled by manual ``Scotch Tape'' exfoliation; nearly two decades later, this method is still widely used to obtain chemically-pristine flakes of graphene and other 2D van der Waals materials. Unfortunately, the yield of large, pristine fla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12901v2-abstract-full').style.display = 'inline'; document.getElementById('2403.12901v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12901v2-abstract-full" style="display: none;"> Over the past two decades, graphene has been intensively studied because of its remarkable mechanical, optical, and electronic properties. Initial studies were enabled by manual ``Scotch Tape'' exfoliation; nearly two decades later, this method is still widely used to obtain chemically-pristine flakes of graphene and other 2D van der Waals materials. Unfortunately, the yield of large, pristine flakes with uniform thickness is inconsistent. Thus, significant time and effort are required to exfoliate and locate flakes suitable for fabricating multilayer van der Waals heterostructures. Here, we describe a relatively affordable tabletop device (the ``eXfoliator'') that can reproducibly control key parameters and largely automate the exfoliation process. In a typical exfoliation run, the eXfoliator produces 3 or more large ($\ge400\ 渭$m$^2$) high-quality graphene monolayer flakes, allowing new users to produce such flakes at a rate comparable to manual exfoliation by an experienced user. We use an automated mapping system and a computer vision algorithm to locate candidate flakes. Our results provide a starting point for future research efforts to more precisely identify which parameters matter for the success of exfoliation, and to optimize them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12901v2-abstract-full').style.display = 'none'; document.getElementById('2403.12901v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09912">arXiv:2403.09912</a> <span> [<a href="https://arxiv.org/pdf/2403.09912">pdf</a>, <a href="https://arxiv.org/format/2403.09912">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermal relaxation of strain and twist in ferroelectric hexagonal boron nitride moir茅 interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hocking%2C+M">Marisa Hocking</a>, <a href="/search/cond-mat?searchtype=author&query=Henzinger%2C+C+E">Christina E. Henzinger</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Steven Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Bittner%2C+N+J">Nathan J. Bittner</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a>, <a href="/search/cond-mat?searchtype=author&query=Mannix%2C+A+J">Andrew J. Mannix</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09912v1-abstract-short" style="display: inline;"> New properties can arise at van der Waals (vdW) interfaces hosting a moir茅 pattern generated by interlayer twist and strain. However, achieving precise control of interlayer twist/strain remains an ongoing challenge in vdW heterostructure assembly, and even subtle variation in these structural parameters can create significant changes in the moir茅 period and emergent properties. Characterizing the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09912v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09912v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09912v1-abstract-full" style="display: none;"> New properties can arise at van der Waals (vdW) interfaces hosting a moir茅 pattern generated by interlayer twist and strain. However, achieving precise control of interlayer twist/strain remains an ongoing challenge in vdW heterostructure assembly, and even subtle variation in these structural parameters can create significant changes in the moir茅 period and emergent properties. Characterizing the rate of interlayer twist/strain relaxation during thermal annealing is critical to establish a thermal budget for vdW heterostructure construction and may provide a route to improve the homogeneity of the interface or to control its final state. Here, we characterize the spatial and temporal dependence of interfacial twist and strain relaxation in marginally-twisted hBN/hBN interfaces heated under conditions relevant to vdW heterostructure assembly and typical sample annealing. We find that the ferroelectric hBN/hBN moir茅 relaxes minimally during annealing in air at typical assembly temperatures of 170掳C. However, at 400掳C, twist angle relaxes significantly, accompanied by a decrease in spatial uniformity. Uniaxial heterostrain initially increases and then decreases over time, becoming increasingly non-uniform in direction. Structural irregularities such as step edges, contamination bubbles, or contact with the underlying substrate result in local inhomogeneity in the rate of relaxation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09912v1-abstract-full').style.display = 'none'; document.getElementById('2403.09912v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15562">arXiv:2312.15562</a> <span> [<a href="https://arxiv.org/pdf/2312.15562">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2024.171884">10.1016/j.jmmm.2024.171884 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of Mn-rich interfacial phases in Co2FexMn1-xSi thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Law%2C+K+M">Ka Ming Law</a>, <a href="/search/cond-mat?searchtype=author&query=Thind%2C+A+S">Arashdeep S. Thind</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Patel%2C+S+J">Sahil J. Patel</a>, <a href="/search/cond-mat?searchtype=author&query=Phillips%2C+J+J">Joshua J. Phillips</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+C+J">Chris J. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Gazquez%2C+J">Jaume Gazquez</a>, <a href="/search/cond-mat?searchtype=author&query=Borisevich%2C+A">Albina Borisevich</a>, <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+R">Rohan Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=Hauser%2C+A+J">Adam J. Hauser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15562v1-abstract-short" style="display: inline;"> We report the formation of Mn-rich regions at the interface of Co2FexMn1-xSi thin films grown on GaAs substrates by molecular beam epitaxy (MBE). Scanning transmission electron microscopy (STEM) with electron energy loss (EEL) spectrum imaging reveals that each interfacial region: (1) is 1-2 nm wide, (2) occurs irrespective of the Fe/Mn composition ratio and in both Co-rich and Co-poor films, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15562v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15562v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15562v1-abstract-full" style="display: none;"> We report the formation of Mn-rich regions at the interface of Co2FexMn1-xSi thin films grown on GaAs substrates by molecular beam epitaxy (MBE). Scanning transmission electron microscopy (STEM) with electron energy loss (EEL) spectrum imaging reveals that each interfacial region: (1) is 1-2 nm wide, (2) occurs irrespective of the Fe/Mn composition ratio and in both Co-rich and Co-poor films, and (3) displaces both Co and Fe indiscriminately. We also observe a Mn-depleted region in each film directly above each Mn-rich interfacial layer, roughly 3 nm in width in the x = 0 and x = 0.3 films, and 1 nm in the x = 0.7 (less Mn) film. We posit that growth energetics favor Mn diffusion to the interface even when there is no significant Ga interdiffusion into the epitaxial film. Element-specific X-ray magnetic circular dichroism (XMCD) measurements show larger Co, Fe, and Mn orbital to spin magnetic moment ratios compared to bulk values across the Co2FexMn1-xSi compositional range. The values lie between reported values for pure bulk and nanostructured Co, Fe, and Mn materials, corroborating the non-uniform, layered nature of the material on the nanoscale. Finally, SQUID magnetometry demonstrates that the films deviate from the Slater-Pauling rule for uniform films of both the expected and the measured composition. The results inform a need for care and increased scrutiny when forming Mn-based magnetic thin films on III-V semiconductors like GaAs, particularly when films are on the order of 5 nm or when interface composition is critical to spin transport or other device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15562v1-abstract-full').style.display = 'none'; document.getElementById('2312.15562v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08814">arXiv:2308.08814</a> <span> [<a href="https://arxiv.org/pdf/2308.08814">pdf</a>, <a href="https://arxiv.org/format/2308.08814">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2314083121">10.1073/pnas.2314083121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Torsional Force Microscopy of Van der Waals Moir茅s and Atomic Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S+J">Steven J. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Zaborski%2C+G">Gregory Zaborski Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Finney%2C+J">Joe Finney</a>, <a href="/search/cond-mat?searchtype=author&query=Sharpe%2C+A+L">Aaron L. Sharpe</a>, <a href="/search/cond-mat?searchtype=author&query=Kamat%2C+R+V">Rupini V. Kamat</a>, <a href="/search/cond-mat?searchtype=author&query=Kalantre%2C+S+S">Sandesh S. Kalantre</a>, <a href="/search/cond-mat?searchtype=author&query=Hocking%2C+M">Marisa Hocking</a>, <a href="/search/cond-mat?searchtype=author&query=Bittner%2C+N+J">Nathan J. Bittner</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Pittenger%2C+B">Bede Pittenger</a>, <a href="/search/cond-mat?searchtype=author&query=Newcomb%2C+C+J">Christina J. Newcomb</a>, <a href="/search/cond-mat?searchtype=author&query=Kastner%2C+M+A">Marc A. Kastner</a>, <a href="/search/cond-mat?searchtype=author&query=Mannix%2C+A+J">Andrew J. Mannix</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08814v2-abstract-short" style="display: inline;"> In a stack of atomically-thin Van der Waals layers, introducing interlayer twist creates a moir茅 superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult, hence determining that twist angle and mapping its s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08814v2-abstract-full').style.display = 'inline'; document.getElementById('2308.08814v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08814v2-abstract-full" style="display: none;"> In a stack of atomically-thin Van der Waals layers, introducing interlayer twist creates a moir茅 superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult, hence determining that twist angle and mapping its spatial variation is very important. Techniques have emerged to do this by imaging the moir茅, but most of these require sophisticated infrastructure, time-consuming sample preparation beyond stack synthesis, or both. In this work, we show that Torsional Force Microscopy (TFM), a scanning probe technique sensitive to dynamic friction, can reveal surface and shallow subsurface structure of Van der Waals stacks on multiple length scales: the moir茅s formed between bi-layers of graphene and between graphene and hexagonal boron nitride (hBN), and also the atomic crystal lattices of graphene and hBN. In TFM, torsional motion of an AFM cantilever is monitored as it is actively driven at a torsional resonance while a feedback loop maintains contact at a set force with the sample surface. TFM works at room temperature in air, with no need for an electrical bias between the tip and the sample, making it applicable to a wide array of samples. It should enable determination of precise structural information including twist angles and strain in moir茅 superlattices and crystallographic orientation of VdW flakes to support predictable moir茅 heterostructure fabrication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08814v2-abstract-full').style.display = 'none'; document.getElementById('2308.08814v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 14 figures and 1 table including supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 121 (10) e2314083121 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00146">arXiv:2306.00146</a> <span> [<a href="https://arxiv.org/pdf/2306.00146">pdf</a>, <a href="https://arxiv.org/format/2306.00146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Supercurrent through a single transverse mode in nanowire Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C">C. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">S. D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+C+J">C. J. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00146v3-abstract-short" style="display: inline;"> Hybrid superconductor-semiconductor materials are fueling research in mesoscopic physics and quantum technology. Recently demonstrated smooth $尾$-Sn superconductor shells, due to the increased induced gap, are expanding the available parameter space to new regimes. Fabricated on quasiballistic InSb nanowires, with careful control over the hybrid interface, Sn shells yield measurable switching curr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00146v3-abstract-full').style.display = 'inline'; document.getElementById('2306.00146v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00146v3-abstract-full" style="display: none;"> Hybrid superconductor-semiconductor materials are fueling research in mesoscopic physics and quantum technology. Recently demonstrated smooth $尾$-Sn superconductor shells, due to the increased induced gap, are expanding the available parameter space to new regimes. Fabricated on quasiballistic InSb nanowires, with careful control over the hybrid interface, Sn shells yield measurable switching currents even when nanowire resistance is of order 10kohm. In this regime Cooper pairs travel through a purely 1D quantum wire for at least part of their trajectory. Here, we focus on the evolution of proximity-induced supercurrent in magnetic field parallel to the nanowire. Long decay up to fields of 1T is observed. At the same time, the decay for higher occupied subbands is notably faster in some devices but not in others. We analyze this using a tight-binding numerical model that includes the Zeeman, orbital and spin-orbit effects. When the first subband is spin polarized, we observe a dramatic suppression of supercurrent, which is also confirmed by the model and suggests an absence of significant triplet supercurrent generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00146v3-abstract-full').style.display = 'none'; document.getElementById('2306.00146v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19970">arXiv:2305.19970</a> <span> [<a href="https://arxiv.org/pdf/2305.19970">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Zero-bias conductance peaks at zero applied magnetic field due to stray fields from integrated micromagnets in hybrid nanowire quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+M">M. Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=Riggert%2C+C">C. Riggert</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C">C. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">S. D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Pribiag%2C+V+S">V. S. Pribiag</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19970v1-abstract-short" style="display: inline;"> Many recipes for realizing topological superconductivity rely on broken time-reversal symmetry, which is often attained by applying a substantial external magnetic field. Alternatively, using magnetic materials can offer advantages through low-field operation and design flexibility on the nanoscale. Mechanisms for lifting spin degeneracy include exchange coupling, spin-dependent scattering, spin i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19970v1-abstract-full').style.display = 'inline'; document.getElementById('2305.19970v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19970v1-abstract-full" style="display: none;"> Many recipes for realizing topological superconductivity rely on broken time-reversal symmetry, which is often attained by applying a substantial external magnetic field. Alternatively, using magnetic materials can offer advantages through low-field operation and design flexibility on the nanoscale. Mechanisms for lifting spin degeneracy include exchange coupling, spin-dependent scattering, spin injection-all requiring direct contact between the bulk or induced superconductor and a magnetic material. Here, we implement locally broken time-reversal symmetry through dipolar coupling from nearby micromagnets to superconductor-semiconductor hybrid nanowire devices. Josephson supercurrent is hysteretic due to micromangets switching. At or around zero external magnetic field, we observe an extended presence of Andreev bound states near zero voltage bias. We also show a zero-bias peak plateau of a non-quantized value. Our findings largely reproduce earlier results where similar effects were presented in the context of topological superconductivity in a homogeneous wire, and attributed to more exotic time-reversal breaking mechanisms [1]. In contrast, our stray field profiles are not designed to create Majorana modes, and our data are compatible with a straightforward interpretation in terms of trivial states in quantum dots. At the same time, the use of micromagnets in hybrid superconductor-semiconductor devices shows promise for future experiments on topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19970v1-abstract-full').style.display = 'none'; document.getElementById('2305.19970v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.14648">arXiv:2305.14648</a> <span> [<a href="https://arxiv.org/pdf/2305.14648">pdf</a>, <a href="https://arxiv.org/format/2305.14648">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Competing Uniaxial Anisotropies in Epitaxial Fe Thin Films Grown on InAs(001) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Etheridge%2C+J+M">James M. Etheridge</a>, <a href="/search/cond-mat?searchtype=author&query=Dill%2C+J">Joseph Dill</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">Connor P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Garcia-Barriocanal%2C+J">Javier Garcia-Barriocanal</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+G">Guichuan Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Pribiag%2C+V+S">Vlad S. Pribiag</a>, <a href="/search/cond-mat?searchtype=author&query=Crowell%2C+P+A">Paul A. Crowell</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.14648v1-abstract-short" style="display: inline;"> We report on the interplay of two uniaxial magnetic anisotropies in epitaxial Fe thin films of varying thickness grown on InAs(001) as observed in ferromagnetic resonance experiments. One anisotropy originates from the Fe/InAs interface while the other originates from in-plane shear strain resulting from the anisotropic relaxation of the Fe film. X-ray diffraction was used to measure the in-plane… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14648v1-abstract-full').style.display = 'inline'; document.getElementById('2305.14648v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.14648v1-abstract-full" style="display: none;"> We report on the interplay of two uniaxial magnetic anisotropies in epitaxial Fe thin films of varying thickness grown on InAs(001) as observed in ferromagnetic resonance experiments. One anisotropy originates from the Fe/InAs interface while the other originates from in-plane shear strain resulting from the anisotropic relaxation of the Fe film. X-ray diffraction was used to measure the in-plane lattice constants of the Fe films, confirming the correlation between the onset of film relaxation and the corresponding shear strain inferred from ferromagnetic resonance data. These results are relevant for ongoing efforts to develop spintronic and quantum devices utilizing large spin-orbit coupling in III-V semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14648v1-abstract-full').style.display = 'none'; document.getElementById('2305.14648v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09234">arXiv:2302.09234</a> <span> [<a href="https://arxiv.org/pdf/2302.09234">pdf</a>, <a href="https://arxiv.org/format/2302.09234">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/6.0002606">10.1116/6.0002606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of InSb (001), (110), and (111)B surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J+T">Jason T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Inbar%2C+H+S">Hadass S. Inbar</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=van+Schijndel%2C+T+A+J">Teun A. J. van Schijndel</a>, <a href="/search/cond-mat?searchtype=author&query=Young%2C+E+C">Elliot C. Young</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">Connor P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Christopher J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09234v1-abstract-short" style="display: inline;"> The electronic structure of various (001), (110), and (111)B surfaces of n-type InSb were studied with scanning tunneling microscopy and spectroscopy. The InSb(111)B (3x1) surface reconstruction is determined to be a disordered (111)B (3x3) surface reconstruction. The surface Fermi-level of the In rich and the equal In:Sb (001), (110), and (111)B surface reconstructions was observed to be pinned n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09234v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09234v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09234v1-abstract-full" style="display: none;"> The electronic structure of various (001), (110), and (111)B surfaces of n-type InSb were studied with scanning tunneling microscopy and spectroscopy. The InSb(111)B (3x1) surface reconstruction is determined to be a disordered (111)B (3x3) surface reconstruction. The surface Fermi-level of the In rich and the equal In:Sb (001), (110), and (111)B surface reconstructions was observed to be pinned near the valence band edge. This observed pinning is consistent with a charge neutrality level lying near the valence band maximum. Sb termination was observed to shift the surface Fermi-level position by up to $254 \pm 35$ meV towards the conduction band on the InSb (001) surface and $60 \pm 35$ meV towards the conduction band on the InSb(111)B surface. The surface Sb on the (001) can shift the surface from electron depletion to electron accumulation. We propose the shift in the Fermi-level pinning is due to charge transfer from Sb clusters on the Sb terminated surfaces. Additionally, many sub-gap states were observed for the (111)B (3x1) surface, which are attributed to the disordered nature of this surface. This work demonstrates the tuning of the Fermi-level pinning position of InSb surfaces with Sb termination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09234v1-abstract-full').style.display = 'none'; document.getElementById('2302.09234v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12424">arXiv:2301.12424</a> <span> [<a href="https://arxiv.org/pdf/2301.12424">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Role of a capping layer on the crystalline structure of Sn thin films grown at cryogenic temperatures on InSb substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+A+-">A. -H. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">C. P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Sharma%2C+A">A. Sharma</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+S">S. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Bellon%2C+L">L. Bellon</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+C+J">C. J. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Bellet-Amalric%2C+E">E. Bellet-Amalric</a>, <a href="/search/cond-mat?searchtype=author&query=Hocevar%2C+M">M. Hocevar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12424v3-abstract-short" style="display: inline;"> Metal deposition with cryogenic cooling is widely utilized in the condensed matter community for producing ultra-thin epitaxial superconducting layers on semiconductors. However, a drawback arises when these films return to room temperature, as they tend to undergo dewetting. This issue is mitigated by capping the films with an amorphous layer. In this study, we examined the impact of different in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12424v3-abstract-full').style.display = 'inline'; document.getElementById('2301.12424v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12424v3-abstract-full" style="display: none;"> Metal deposition with cryogenic cooling is widely utilized in the condensed matter community for producing ultra-thin epitaxial superconducting layers on semiconductors. However, a drawback arises when these films return to room temperature, as they tend to undergo dewetting. This issue is mitigated by capping the films with an amorphous layer. In this study, we examined the impact of different in-situ fabricated caps on the structural characteristics of Sn thin films deposited at 80 K on InSb substrates. Regardless of the type of capping, we observed that the films remained smooth upon returning to room temperature and were epitaxial on InSb in the cubic Sn ($伪$-Sn) phase. However, we noted a correlation between alumina capping with an electron beam evaporator and an increased presence of tetragonal Sn ($尾$-Sn) grains. This suggests that heating from the alumina source may contribute to a partial phase transition in the Sn layer. The existence of the $尾$-Sn phase induced superconducting behavior of the films by percolation effect. This study highlights the potential for modifying the structural properties of cryogenic Sn thin films through in-situ capping, paving the way for precise control in the production of superconducting Sn films for integration into quantum computing platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12424v3-abstract-full').style.display = 'none'; document.getElementById('2301.12424v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00199">arXiv:2212.00199</a> <span> [<a href="https://arxiv.org/pdf/2212.00199">pdf</a>, <a href="https://arxiv.org/format/2212.00199">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.18.1.013">10.21468/SciPostPhys.18.1.013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of $蠁$0-Josephson junction from skewed diffraction patterns in Sn-InSb nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Aguilar%2C+V">V. Aguilar</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">P. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C">C. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">S. D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+S">S. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Meyer%2C+J+S">J. S. Meyer</a>, <a href="/search/cond-mat?searchtype=author&query=Houzet%2C+M">M. Houzet</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+C+J">C. J. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00199v5-abstract-short" style="display: inline;"> We study Josephson junctions based on InSb nanowires with Sn shells. We observe skewed critical current diffraction patterns: the maxima in forward and reverse current bias are at different magnetic flux, with a displacement of 20-40 mT. The skew is greatest when the external field is nearly perpendicular to the nanowire, in the substrate plane. This orientation suggests that spin-orbit interactio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00199v5-abstract-full').style.display = 'inline'; document.getElementById('2212.00199v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00199v5-abstract-full" style="display: none;"> We study Josephson junctions based on InSb nanowires with Sn shells. We observe skewed critical current diffraction patterns: the maxima in forward and reverse current bias are at different magnetic flux, with a displacement of 20-40 mT. The skew is greatest when the external field is nearly perpendicular to the nanowire, in the substrate plane. This orientation suggests that spin-orbit interaction plays a role. We develop a phenomenological model and perform tight-binding calculations, both methods reproducing the essential features of the experiment. The effect modeled is the $蠁$0-Josephson junction with higher-order Josephson harmonics. The system is of interest for Majorana studies: the effects are either precursor to or concomitant with topological superconductivity. Current-phase relations that lack inversion symmetry can also be used to design quantum circuits with engineered nonlinearity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00199v5-abstract-full').style.display = 'none'; document.getElementById('2212.00199v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 18, 013 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15806">arXiv:2211.15806</a> <span> [<a href="https://arxiv.org/pdf/2211.15806">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Tuning the Band Topology of GdSb by Epitaxial Strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Inbar%2C+H+S">Hadass S. Inbar</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+D+Q">Dai Q. Ho</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+S">Shouvik Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+A+N">Aaron N. Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalid%2C+S">Shoaib Khalid</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">Connor P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+Y+H">Yu Hao Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Nishihaya%2C+S">Shinichi Nishihaya</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">Alexei V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Read%2C+D">Dan Read</a>, <a href="/search/cond-mat?searchtype=author&query=Janotti%2C+A">Anderson Janotti</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Christopher J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15806v2-abstract-short" style="display: inline;"> Rare-earth monopnictide (RE-V) semimetal crystals subjected to hydrostatic pressure have shown interesting trends in magnetoresistance, magnetic ordering, and superconductivity, with theory predicting pressure-induced band inversion. Yet, thus far, there have been no direct experimental reports of interchanged band order in RE-Vs due to strain. This work studies the evolution of band topology in b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15806v2-abstract-full').style.display = 'inline'; document.getElementById('2211.15806v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15806v2-abstract-full" style="display: none;"> Rare-earth monopnictide (RE-V) semimetal crystals subjected to hydrostatic pressure have shown interesting trends in magnetoresistance, magnetic ordering, and superconductivity, with theory predicting pressure-induced band inversion. Yet, thus far, there have been no direct experimental reports of interchanged band order in RE-Vs due to strain. This work studies the evolution of band topology in biaxially strained GdSb (001) epitaxial films using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). We find that biaxial strain continuously tunes the electronic structure from topologically trivial to nontrivial, reducing the gap between the hole and the electron bands dispersing along the [001] direction. The conduction and valence band shifts seen in DFT and ARPES measurements are explained by a tight-binding model that accounts for the orbital symmetry of each band. Finally, we discuss the effect of biaxial strain on carrier compensation and magnetic ordering temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15806v2-abstract-full').style.display = 'none'; document.getElementById('2211.15806v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08710">arXiv:2211.08710</a> <span> [<a href="https://arxiv.org/pdf/2211.08710">pdf</a>, <a href="https://arxiv.org/format/2211.08710">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Missing odd-order Shapiro steps do not uniquely indicate fractional Josephson effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">P. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Mudi%2C+S">S. Mudi</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">C. P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=McFadden%2C+A+P">A. P. McFadden</a>, <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">S. D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J+T">J. T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+A+-">A. -H. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hocevar%2C+M">M. Hocevar</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08710v1-abstract-short" style="display: inline;"> Topological superconductivity is expected to spur Majorana zero modes -- exotic states that are also considered a quantum technology asset. Fractional Josephson effect is their manifestation in electronic transport measurements, often under microwave irradiation. A fraction of induced resonances, known as Shapiro steps, should vanish, in a pattern that signifies the presence of Majorana modes. Her… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08710v1-abstract-full').style.display = 'inline'; document.getElementById('2211.08710v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08710v1-abstract-full" style="display: none;"> Topological superconductivity is expected to spur Majorana zero modes -- exotic states that are also considered a quantum technology asset. Fractional Josephson effect is their manifestation in electronic transport measurements, often under microwave irradiation. A fraction of induced resonances, known as Shapiro steps, should vanish, in a pattern that signifies the presence of Majorana modes. Here we report patterns of Shapiro steps expected in topological Josephson junctions, such as the missing first Shapiro step, or several missing odd-order steps. But our junctions, which are InAs quantum wells with Al contacts, are studied near zero magnetic field, meaning that they are not in the topological regime. We also observe other patterns such as missing even steps and several missing steps in a row, not relevant to topological superconductivity. Potentially responsible for our observations is rounding of not fully developed steps superimposed on non-monotonic resistance versus voltage curves, but several origins may be at play. Our results demonstrate that any single pattern, even striking, cannot uniquely identify topological superconductivity, and a multifactor approach is necessary to unambiguously establish this important phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08710v1-abstract-full').style.display = 'none'; document.getElementById('2211.08710v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Written using The Block Method. Data on Zenodo DOI: https://zenodo.org/record/6416083</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07119">arXiv:2211.07119</a> <span> [<a href="https://arxiv.org/pdf/2211.07119">pdf</a>, <a href="https://arxiv.org/format/2211.07119">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.16.1.030">10.21468/SciPostPhys.16.1.030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Second-Order Josephson Effect in Planar Superconductor-Semiconductor Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">P. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zarassi%2C+A">A. Zarassi</a>, <a href="/search/cond-mat?searchtype=author&query=Jarjat%2C+L">L. Jarjat</a>, <a href="/search/cond-mat?searchtype=author&query=Van+de+Sande%2C+V">V. Van de Sande</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">C. P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=McFadden%2C+A+P">A. P. McFadden</a>, <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">S. D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J+T">J. T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+A+-">A. -H. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hocevar%2C+M">M. Hocevar</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07119v3-abstract-short" style="display: inline;"> We investigate the current-phase relations of Al/InAs-quantum well planar Josephson junctions fabricated using nanowire shadowing technique. Based on several experiments, we conclude that the junctions exhibit an unusually large second-order Josephson harmonic, the $\sin(2\varphi)$ term. First, superconducting quantum interference devices (dc-SQUIDs) show half-periodic oscillations, tunable by gat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07119v3-abstract-full').style.display = 'inline'; document.getElementById('2211.07119v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07119v3-abstract-full" style="display: none;"> We investigate the current-phase relations of Al/InAs-quantum well planar Josephson junctions fabricated using nanowire shadowing technique. Based on several experiments, we conclude that the junctions exhibit an unusually large second-order Josephson harmonic, the $\sin(2\varphi)$ term. First, superconducting quantum interference devices (dc-SQUIDs) show half-periodic oscillations, tunable by gate voltages as well as magnetic flux. Second, Josephson junction devices exhibit kinks near half-flux quantum in supercurrent diffraction patterns. Third, half-integer Shapiro steps are present in the junctions. Similar phenomena are observed in Sn/InAs quantum well devices. We perform data fitting to a numerical model with a two-component current phase relation. Analysis including a loop inductance suggests that the sign of the second harmonic term is negative. The microscopic origins of the observed effect remain to be understood. We consider alternative explanations which can account for some but not all of the evidence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07119v3-abstract-full').style.display = 'none'; document.getElementById('2211.07119v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Written using The Block Method. Data on Zenodo DOI: https://doi.org/10.5281/zenodo.6416083 v2: Added block "Non-identical negative and positive switching currents" and Figs.S4, S5. v3: Added Figs. 6, S6-S9, simulations with both inductive and second harmonic effects</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 16, 030 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04130">arXiv:2211.04130</a> <span> [<a href="https://arxiv.org/pdf/2211.04130">pdf</a>, <a href="https://arxiv.org/format/2211.04130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Planar Josephson Junctions Templated by Nanowire Shadowing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">P. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zarassi%2C+A">A. Zarassi</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Jarjat%2C+L">L. Jarjat</a>, <a href="/search/cond-mat?searchtype=author&query=Van+de+Sande%2C+V">V. Van de Sande</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Mudi%2C+S">S. Mudi</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+S">S. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">C. P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=McFadden%2C+A+P">A. P. McFadden</a>, <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">S. D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Shojaei%2C+B">B. Shojaei</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J+T">J. T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+A+-">A. -H. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hocevar%2C+M">M. Hocevar</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04130v1-abstract-short" style="display: inline;"> More and more materials, with a growing variety of properties, are built into electronic devices. This is motivated both by increased device performance and by the studies of materials themselves. An important type of device is a Josephson junction based on the proximity effect between a quantum material and a superconductor, useful for fundamental research as well as for quantum and other technol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04130v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04130v1-abstract-full" style="display: none;"> More and more materials, with a growing variety of properties, are built into electronic devices. This is motivated both by increased device performance and by the studies of materials themselves. An important type of device is a Josephson junction based on the proximity effect between a quantum material and a superconductor, useful for fundamental research as well as for quantum and other technologies. When both junction contacts are placed on the same surface, such as a two-dimensional material, the junction is called ``planar". One outstanding challenge is that not all materials are amenable to the standard planar junction fabrication. The device quality, rather than the intrinsic characteristics, may be defining the results. Here, we introduce a technique in which nanowires are placed on the surface and act as a shadow mask for the superconductor. The advantages are that the smallest dimension is determined by the nanowire diameter and does not require lithography, and that the junction is not exposed to chemicals such as etchants. We demonstrate this method with an InAs quantum well, using two superconductors - Al and Sn, and two semiconductor nanowires - InAs and InSb. The junctions exhibit critical current levels consistent with transparent interfaces and uniform width. We show that the template nanowire can be operated as a self-aligned electrostatic gate. Beyond single junctions, we create SQUIDs with two gate-tunable junctions. We suggest that our method can be used for a large variety of quantum materials including van der Waals layers, topological insulators, Weyl semimetals and future materials for which proximity effect devices is a promising research avenue. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04130v1-abstract-full').style.display = 'none'; document.getElementById('2211.04130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Written using The Block Method. Data on Zenodo DOI: https://doi.org/10.5281/zenodo.6416083</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02648">arXiv:2208.02648</a> <span> [<a href="https://arxiv.org/pdf/2208.02648">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.L121201">10.1103/PhysRevMaterials.6.L121201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial growth, magnetoresistance, and electronic band structure of GdSb magnetic semimetal films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Inbar%2C+H+S">Hadass S. Inbar</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+D+Q">Dai Q. Ho</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+S">Shouvik Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+A+N">Aaron N. Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J+T">Jason T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Khalid%2C+S">Shoaib Khalid</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+Y+H">Yu Hao Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+T">Taozhi Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">Alexei V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Read%2C+D">Dan Read</a>, <a href="/search/cond-mat?searchtype=author&query=Janotti%2C+A">Anderson Janotti</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Christopher J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02648v2-abstract-short" style="display: inline;"> Motivated by observations of extreme magnetoresistance (XMR) in bulk crystals of rare-earth monopnictide (RE-V) compounds and emerging applications in novel spintronic and plasmonic devices based on thin-film semimetals, we have investigated the electronic band structure and transport behavior of epitaxial GdSb thin films grown on III-V semiconductor surfaces. The Gd3+ ion in GdSb has a high spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02648v2-abstract-full').style.display = 'inline'; document.getElementById('2208.02648v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02648v2-abstract-full" style="display: none;"> Motivated by observations of extreme magnetoresistance (XMR) in bulk crystals of rare-earth monopnictide (RE-V) compounds and emerging applications in novel spintronic and plasmonic devices based on thin-film semimetals, we have investigated the electronic band structure and transport behavior of epitaxial GdSb thin films grown on III-V semiconductor surfaces. The Gd3+ ion in GdSb has a high spin S=7/2 and no orbital angular momentum, serving as a model system for studying the effects of antiferromagnetic order and strong exchange coupling on the resulting Fermi surface and magnetotransport properties of RE-Vs. We present a surface and structural characterization study mapping the optimal synthesis window of thin epitaxial GdSb films grown on III-V lattice-matched buffer layers via molecular beam epitaxy. To determine the factors limiting XMR in RE-V thin films and provide a benchmark for band structure predictions of topological phases of RE-Vs, the electronic band structure of GdSb thin films is studied, comparing carrier densities extracted from magnetotransport, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. ARPES shows hole-carrier rich topologically-trivial semi-metallic band structure close to complete electron-hole compensation, with quantum confinement effects in the thin films observed through the presence of quantum well states. DFT predicted Fermi wavevectors are in excellent agreement with values obtained from quantum oscillations observed in magnetic field-dependent resistivity measurements. An electron-rich Hall coefficient is measured despite the higher hole carrier density, attributed to the higher electron Hall mobility. The carrier mobilities are limited by surface and interface scattering, resulting in lower magnetoresistance than that measured for bulk crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02648v2-abstract-full').style.display = 'none'; document.getElementById('2208.02648v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. Materials 6, L121201 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 6, L121201 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.08471">arXiv:2206.08471</a> <span> [<a href="https://arxiv.org/pdf/2206.08471">pdf</a>, <a href="https://arxiv.org/format/2206.08471">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38856-0">10.1038/s41467-023-38856-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate-tunable Superconducting Diode Effect in a Three-terminal Josephson Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+M">Mohit Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=Graziano%2C+G+V">Gino V. Graziano</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J+T">Jason T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">Connor P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C">Chris Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Pribiag%2C+V+S">Vlad S. Pribiag</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.08471v4-abstract-short" style="display: inline;"> The phenomenon of non-reciprocal critical current in a Josephson device, termed the Josephson diode effect, has garnered much recent interest. Realization of the diode effect requires inversion symmetry breaking, typically obtained by spin-orbit interactions. Here we report observation of the Josephson diode effect in a three-terminal Josephson device based upon an InAs quantum well two-dimensiona… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08471v4-abstract-full').style.display = 'inline'; document.getElementById('2206.08471v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.08471v4-abstract-full" style="display: none;"> The phenomenon of non-reciprocal critical current in a Josephson device, termed the Josephson diode effect, has garnered much recent interest. Realization of the diode effect requires inversion symmetry breaking, typically obtained by spin-orbit interactions. Here we report observation of the Josephson diode effect in a three-terminal Josephson device based upon an InAs quantum well two-dimensional electron gas proximitized by an epitaxial aluminum superconducting layer. We demonstrate that the diode efficiency in our devices can be tuned by a small out-of-plane magnetic field or by electrostatic gating. We show that the Josephson diode effect in these devices is a consequence of the artificial realization of a current-phase relation that contains higher harmonics. We also show nonlinear DC intermodulation and simultaneous two-signal rectification, enabled by the multi-terminal nature of the devices. Furthermore, we show that the diode effect is an inherent property of multi-terminal Josephson devices, establishing an immediately scalable approach by which potential applications of the Josephson diode effect can be realized, agnostic to the underlying material platform. These Josephson devices may also serve as gate-tunable building blocks in designing topologically protected qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08471v4-abstract-full').style.display = 'none'; document.getElementById('2206.08471v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 3078 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01373">arXiv:2201.01373</a> <span> [<a href="https://arxiv.org/pdf/2201.01373">pdf</a>, <a href="https://arxiv.org/format/2201.01373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33682-2">10.1038/s41467-022-33682-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective Control of Conductance Modes in Multi-terminal Josephson Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Graziano%2C+G+V">Gino V. Graziano</a>, <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+M">Mohit Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+J+T">Jason T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">Connor P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C">Chris Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Pribiag%2C+V+S">Vlad S. Pribiag</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01373v2-abstract-short" style="display: inline;"> The Andreev bound state spectra of multi-terminal Josephson junctions form an artificial band structure, which is predicted to host tunable topological phases under certain conditions. However, the number of conductance modes between the terminals of multi-terminal Josephson junction must be few in order for this spectrum to be experimentally accessible. In this work we employ a quantum point cont… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01373v2-abstract-full').style.display = 'inline'; document.getElementById('2201.01373v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01373v2-abstract-full" style="display: none;"> The Andreev bound state spectra of multi-terminal Josephson junctions form an artificial band structure, which is predicted to host tunable topological phases under certain conditions. However, the number of conductance modes between the terminals of multi-terminal Josephson junction must be few in order for this spectrum to be experimentally accessible. In this work we employ a quantum point contact geometry in three-terminal Josephson devices. We demonstrate independent control of conductance modes between each pair of terminals and access to the single-mode regime coexistent with the presence of superconducting coupling. These results establish a full platform on which to realize tunable Andreev bound state spectra in multi-terminal Josephson junctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01373v2-abstract-full').style.display = 'none'; document.getElementById('2201.01373v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 13, 5933 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08466">arXiv:2107.08466</a> <span> [<a href="https://arxiv.org/pdf/2107.08466">pdf</a>, <a href="https://arxiv.org/format/2107.08466">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abm9896">10.1126/sciadv.abm9896 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supercurrent parity-meter in a nanowire Cooper-pair transistor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Ji-Yin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Schrade%2C+C">Constantin Schrade</a>, <a href="/search/cond-mat?searchtype=author&query=Levajac%2C+V">Vukan Levajac</a>, <a href="/search/cond-mat?searchtype=author&query=van+Driel%2C+D">David van Driel</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Kongyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gazibegovic%2C+S">Sasa Gazibegovic</a>, <a href="/search/cond-mat?searchtype=author&query=Badawy%2C+G">Ghada Badawy</a>, <a href="/search/cond-mat?searchtype=author&query=Veld%2C+R+L+M+O+h">Roy L. M. Op het Veld</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">Connor P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">Erik P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Kouwenhoven%2C+L+P">Leo P. Kouwenhoven</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jie Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08466v1-abstract-short" style="display: inline;"> We study a Cooper-pair transistor realized by two Josephson weak links that enclose a superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject to a magnetic field, isolated subgap levels arise in the superconducting island and, due to the Coulomb blockade,mediate a supercurrent by coherent co-tunneling of Cooper pairs. We show that the supercurrent resulting from such co-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08466v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08466v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08466v1-abstract-full" style="display: none;"> We study a Cooper-pair transistor realized by two Josephson weak links that enclose a superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject to a magnetic field, isolated subgap levels arise in the superconducting island and, due to the Coulomb blockade,mediate a supercurrent by coherent co-tunneling of Cooper pairs. We show that the supercurrent resulting from such co-tunneling events exhibits, for low to moderate magnetic fields, a phase offset that discriminates even and odd charge ground states on the superconducting island. Notably,this phase offset persists when a subgap state approaches zero energy and, based on theoretical considerations, permits parity measurements of subgap states by supercurrent interferometry. Such supercurrent parity measurements could, in a new series of experiments, provide an alternative approach for manipulating and protecting quantum information stored in the isolated subgap levels of superconducting islands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08466v1-abstract-full').style.display = 'none'; document.getElementById('2107.08466v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 8, eabm9896 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06793">arXiv:2103.06793</a> <span> [<a href="https://arxiv.org/pdf/2103.06793">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-020-0324-4">10.1038/s42005-020-0324-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-plane selective area InSb-Al nanowire quantum networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Veld%2C+R+L+M+O+h">Roy L. M. Op het Veld</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Di Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Schaller%2C+V">Vanessa Schaller</a>, <a href="/search/cond-mat?searchtype=author&query=Verheijen%2C+M+A">Marcel A. Verheijen</a>, <a href="/search/cond-mat?searchtype=author&query=Peters%2C+S+M+E">Stan M. E. Peters</a>, <a href="/search/cond-mat?searchtype=author&query=Jung%2C+J">Jason Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Tong%2C+C">Chuyao Tong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qingzhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=de+Moor%2C+M+W+A">Michiel W. A. de Moor</a>, <a href="/search/cond-mat?searchtype=author&query=Hesselmann%2C+B">Bart Hesselmann</a>, <a href="/search/cond-mat?searchtype=author&query=Vermeulen%2C+K">Kiefer Vermeulen</a>, <a href="/search/cond-mat?searchtype=author&query=Bommer%2C+J+D+S">Jouri D. S. Bommer</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Sarikov%2C+A">Andrey Sarikov</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Marzegalli%2C+A">Anna Marzegalli</a>, <a href="/search/cond-mat?searchtype=author&query=Koelling%2C+S">Sebastian Koelling</a>, <a href="/search/cond-mat?searchtype=author&query=Kouwenhoven%2C+L+P">Leo P. Kouwenhoven</a>, <a href="/search/cond-mat?searchtype=author&query=Miglio%2C+L">Leo Miglio</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">Erik P. A. M. Bakkers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06793v1-abstract-short" style="display: inline;"> Strong spin-orbit semiconductor nanowires coupled to a superconductor are predicted to host Majorana zero modes. Exchange (braiding) operations of Majorana modes form the logical gates of a topological quantum computer and require a network of nanowires. Here, we develop an in-plane selective-area growth technique for InSb-Al semiconductor-superconductor nanowire networks with excellent quantum tr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06793v1-abstract-full').style.display = 'inline'; document.getElementById('2103.06793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06793v1-abstract-full" style="display: none;"> Strong spin-orbit semiconductor nanowires coupled to a superconductor are predicted to host Majorana zero modes. Exchange (braiding) operations of Majorana modes form the logical gates of a topological quantum computer and require a network of nanowires. Here, we develop an in-plane selective-area growth technique for InSb-Al semiconductor-superconductor nanowire networks with excellent quantum transport properties. Defect-free transport channels in InSb nanowire networks are realized on insulating, but heavily mismatched InP substrates by 1) full relaxation of the lattice mismatch at the nanowire/substrate interface on a (111)B substrate orientation, 2) nucleation of a complete network from a single nucleation site, which is accomplished by optimizing the surface diffusion length of the adatoms. Essential quantum transport phenomena for topological quantum computing are demonstrated in these structures including phase-coherent transport up to 10 $渭$m and a hard superconducting gap accompanied by 2$e$-periodic Coulomb oscillations with an Al-based Cooper pair island integrated in the nanowire network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06793v1-abstract-full').style.display = 'none'; document.getElementById('2103.06793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data repository is available at https://doi.org/10.5281/zenodo.4589484 . Author version of the text before peer review, while see DOI for the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 3, 59 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11456">arXiv:2101.11456</a> <span> [<a href="https://arxiv.org/pdf/2101.11456">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Large zero-bias peaks in InSb-Al hybrid semiconductor-superconductor nanowire devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=de+Moor%2C+M+W+A">Michiel W. A. de Moor</a>, <a href="/search/cond-mat?searchtype=author&query=Bommer%2C+J+D+S">Jouri D. S. Bommer</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Di Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guanzhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=van+Loo%2C+N">Nick van Loo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chun-Xiao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gazibegovic%2C+S">Sasa Gazibegovic</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+J+A">John A. Logan</a>, <a href="/search/cond-mat?searchtype=author&query=Car%2C+D">Diana Car</a>, <a href="/search/cond-mat?searchtype=author&query=Veld%2C+R+L+M+O+h">Roy L. M. Op het Veld</a>, <a href="/search/cond-mat?searchtype=author&query=van+Veldhoven%2C+P+J">Petrus J. van Veldhoven</a>, <a href="/search/cond-mat?searchtype=author&query=Koelling%2C+S">Sebastian Koelling</a>, <a href="/search/cond-mat?searchtype=author&query=Verheijen%2C+M+A">Marcel A. Verheijen</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Pennachio%2C+D+J">Daniel J. Pennachio</a>, <a href="/search/cond-mat?searchtype=author&query=Shojaei%2C+B">Borzoyeh Shojaei</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">Erik P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Sarma%2C+S+D">S. Das Sarma</a>, <a href="/search/cond-mat?searchtype=author&query=Kouwenhoven%2C+L+P">Leo P. Kouwenhoven</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11456v1-abstract-short" style="display: inline;"> We report electron transport studies on InSb-Al hybrid semiconductor-superconductor nanowire devices. Tunnelling spectroscopy is used to measure the evolution of subgap states while varying magnetic field and voltages applied to various nearby gates. At magnetic fields between 0.7 and 0.9 T, the differential conductance contains large zero bias peaks (ZBPs) whose height reaches values on the order… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11456v1-abstract-full').style.display = 'inline'; document.getElementById('2101.11456v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11456v1-abstract-full" style="display: none;"> We report electron transport studies on InSb-Al hybrid semiconductor-superconductor nanowire devices. Tunnelling spectroscopy is used to measure the evolution of subgap states while varying magnetic field and voltages applied to various nearby gates. At magnetic fields between 0.7 and 0.9 T, the differential conductance contains large zero bias peaks (ZBPs) whose height reaches values on the order 2e2/h. We investigate these ZBPs for large ranges of gate voltages in different devices. We discuss possible interpretations in terms of disorder-induced subgap states, Andreev bound states and Majorana zero modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11456v1-abstract-full').style.display = 'none'; document.getElementById('2101.11456v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This manuscript replaces "Quantized Majorana conductance" Nature 556, 74 (2018). Technical errors in Nature 556, 74 (2018) are corrected and the original claims now have a wider interpretation. A Retraction Note (in preparation) on Nature 556, 74 (2018) will include a detailed description of errors and the corrected data analyses</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10118">arXiv:2012.10118</a> <span> [<a href="https://arxiv.org/pdf/2012.10118">pdf</a>, <a href="https://arxiv.org/format/2012.10118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.045422">10.1103/PhysRevB.104.045422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Full parity phase diagram of a proximitized nanowire island </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">J. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Winkler%2C+G+W">G. W. Winkler</a>, <a href="/search/cond-mat?searchtype=author&query=Borsoi%2C+F">F. Borsoi</a>, <a href="/search/cond-mat?searchtype=author&query=Heedt%2C+S">S. Heedt</a>, <a href="/search/cond-mat?searchtype=author&query=Levajac%2C+V">V. Levajac</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J+Y">J. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=van+Driel%2C+D">D. van Driel</a>, <a href="/search/cond-mat?searchtype=author&query=Bouman%2C+D">D. Bouman</a>, <a href="/search/cond-mat?searchtype=author&query=Gazibegovic%2C+S">S. Gazibegovic</a>, <a href="/search/cond-mat?searchtype=author&query=Veld%2C+R+L+M+O+H">R. L. M. Op Het Veld</a>, <a href="/search/cond-mat?searchtype=author&query=Car%2C+D">D. Car</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+J+A">J. A. Logan</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+C+J">C. J. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">E. P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Kouwenhoven%2C+L+P">L. P. Kouwenhoven</a>, <a href="/search/cond-mat?searchtype=author&query=van+Heck%2C+B">B. van Heck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10118v4-abstract-short" style="display: inline;"> We measure the charge periodicity of Coulomb blockade conductance oscillations of a hybrid InSb-Al island as a function of gate voltage and parallel magnetic field. The periodicity changes from $2e$ to $1e$ at a gate-dependent value of the magnetic field, $B^*$, decreasing from a high to a low limit upon increasing the gate voltage. In the gate voltage region between the two limits, which our nume… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10118v4-abstract-full').style.display = 'inline'; document.getElementById('2012.10118v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10118v4-abstract-full" style="display: none;"> We measure the charge periodicity of Coulomb blockade conductance oscillations of a hybrid InSb-Al island as a function of gate voltage and parallel magnetic field. The periodicity changes from $2e$ to $1e$ at a gate-dependent value of the magnetic field, $B^*$, decreasing from a high to a low limit upon increasing the gate voltage. In the gate voltage region between the two limits, which our numerical simulations indicate to be the most promising for locating Majorana zero modes, we observe correlated oscillations of peak spacings and heights. For positive gate voltages, the $2e$-$1e$ transition with low $B^*$ is due to the presence of non-topological states whose energy quickly disperses below the charging energy due to the orbital effect of the magnetic field. Our measurements demonstrate the importance of a careful exploration of the entire available phase space of a proximitized nanowire as a prerequisite to define future topological qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10118v4-abstract-full').style.display = 'none'; document.getElementById('2012.10118v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures plus supplementary. v2: improved manuscript. v3: published version. Raw data and source code available at https://doi.org/10.4121/13333451.v4</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 045422 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06071">arXiv:1912.06071</a> <span> [<a href="https://arxiv.org/pdf/1912.06071">pdf</a>, <a href="https://arxiv.org/format/1912.06071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Parity-preserving and magnetic field resilient superconductivity in indium antimonide nanowires with tin shells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zarassi%2C+A">A. Zarassi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">P. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dempsey%2C+C+P">C. P. Dempsey</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">S. D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Badawy%2C+G">G. Badawy</a>, <a href="/search/cond-mat?searchtype=author&query=Gazibegovic%2C+S">S. Gazibegovic</a>, <a href="/search/cond-mat?searchtype=author&query=Jung%2C+J">J. Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+A+-">A. -H. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Verheijen%2C+M+A">M. A. Verheijen</a>, <a href="/search/cond-mat?searchtype=author&query=Hocevar%2C+M">M. Hocevar</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">E. P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06071v1-abstract-short" style="display: inline;"> We study bottom-up grown semiconductor indium antimonide nanowires that are coated with shells of tin. The shells are uniform in thickness. The interface between Sn and InSb is abrupt and without interdiffusion. Devices for transport are prepared by in-situ shadowing of nanowires using nearby nanowires as well as flakes, resulting in etch-free junctions. Tin is found to induce a hard superconducti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06071v1-abstract-full').style.display = 'inline'; document.getElementById('1912.06071v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06071v1-abstract-full" style="display: none;"> We study bottom-up grown semiconductor indium antimonide nanowires that are coated with shells of tin. The shells are uniform in thickness. The interface between Sn and InSb is abrupt and without interdiffusion. Devices for transport are prepared by in-situ shadowing of nanowires using nearby nanowires as well as flakes, resulting in etch-free junctions. Tin is found to induce a hard superconducting gap in the range 600-700 micro-eV. Superconductivity persists up to 4 T in magnetic field. A tin island exhibits the coveted two-electron charging effect, a hallmark of charge parity stability. The findings open avenues for superconducting and topological quantum circuits based on new superconductor-semiconductor combinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06071v1-abstract-full').style.display = 'none'; document.getElementById('1912.06071v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.12487">arXiv:1909.12487</a> <span> [<a href="https://arxiv.org/pdf/1909.12487">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface Reconstructions of Heusler Compounds in the Ni-Ti-Sn (001) System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rice%2C+A+D">Anthony D. Rice</a>, <a href="/search/cond-mat?searchtype=author&query=Sharan%2C+A">Abhishek Sharan</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+N+S">Nathaniel S. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">Sean D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Janotti%2C+A">Anderson Janotti</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.12487v1-abstract-short" style="display: inline;"> As progress is made on thin-film synthesis of Heusler compounds, a more complete understanding of the surface will be required to control their properties, especially as functional heterostructures are explored. Here, the surface reconstructions of semiconducting half-Heusler NiTiSn(001), and Ni1+xTiSn(001) (x=0.0-1.0) are explored as a way to optimize growth conditions during molecular beam epita… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12487v1-abstract-full').style.display = 'inline'; document.getElementById('1909.12487v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.12487v1-abstract-full" style="display: none;"> As progress is made on thin-film synthesis of Heusler compounds, a more complete understanding of the surface will be required to control their properties, especially as functional heterostructures are explored. Here, the surface reconstructions of semiconducting half-Heusler NiTiSn(001), and Ni1+xTiSn(001) (x=0.0-1.0) are explored as a way to optimize growth conditions during molecular beam epitaxy. Density functional theory (DFT) calculations were carried out to guide the interpretation of the experimental results. For NiTiSn(001) a c(2x2) surface reconstruction was observed for Sn rich samples, while a (1x1) unreconstructed surface was observed for Ti-rich samples. A narrow range around 1:1:1 stoichiometry exhibited a (2x1) surface reconstruction. Electrical transport is used to relate the observed reflection high energy electron diffraction (RHEED) pattern during and after growth with carrier concentration and stoichiometry. Scanning tunneling microscopy and RHEED were used to examine surface reconstructions, the results of which are in good agreement with density functional calculations. X-ray photoelectron spectroscopy was used to determine surface termination and stoichiometry. Atomic surface models are proposed, which suggest Sn-dimers form in reconstructed Ni1+xTiSn(001) half-Heusler surfaces (x<0.25) with a transition to Ni terminated surfaces for x > 0.25. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12487v1-abstract-full').style.display = 'none'; document.getElementById('1909.12487v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08690">arXiv:1909.08690</a> <span> [<a href="https://arxiv.org/pdf/1909.08690">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.066003">10.1103/PhysRevMaterials.4.066003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanism for Embedded In-plane Self Assembled Nanowire Formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+N+S">Nathaniel S Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Kraemer%2C+S">Stephan Kraemer</a>, <a href="/search/cond-mat?searchtype=author&query=Pennachio%2C+D+J">Daniel J. Pennachio</a>, <a href="/search/cond-mat?searchtype=author&query=Callahan%2C+P">Patrick Callahan</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Christopher J Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08690v1-abstract-short" style="display: inline;"> We report a novel growth mechanism that produces in-plane [1-10] oriented ErSb nanowires formed during codeposition of Er0.3Ga0.7Sb via molecular beam epitaxy (MBE). Nanowires are characterized by in-situ scanning tunneling microscopy (STM), as well as ex-situ transmission electron microscopy (TEM) and electron channeling contrast imaging (ECCI). We show that complexes of macrosteps with step heig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08690v1-abstract-full').style.display = 'inline'; document.getElementById('1909.08690v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08690v1-abstract-full" style="display: none;"> We report a novel growth mechanism that produces in-plane [1-10] oriented ErSb nanowires formed during codeposition of Er0.3Ga0.7Sb via molecular beam epitaxy (MBE). Nanowires are characterized by in-situ scanning tunneling microscopy (STM), as well as ex-situ transmission electron microscopy (TEM) and electron channeling contrast imaging (ECCI). We show that complexes of macrosteps with step heights on the order of 7 nm form during nanowire growth. The macrosteps are shown to be part of the in-plane nanowire growth process and are directly responsible for the observed stratified distribution of in-plane nanowires. TEM indicates that initial growth results in out-of-plane nanowires transitioning to in-plane nanowires after a critical film thickness. A surface energy model is put forward that shows the critical thickness is due to minimization of the GaSb{110} surfaces formed during out-of-plane nanowire growth. Kinetics of the transition are discussed with respect to observed features in STM, along with the material parameters needed to achieve in-plane nanowire growth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08690v1-abstract-full').style.display = 'none'; document.getElementById('1909.08690v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 066003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.05549">arXiv:1908.05549</a> <span> [<a href="https://arxiv.org/pdf/1908.05549">pdf</a>, <a href="https://arxiv.org/format/1908.05549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.205412">10.1103/PhysRevB.100.205412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> End-to-end correlated subgap states in hybrid nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Anselmetti%2C+G+L+R">G. L. R. Anselmetti</a>, <a href="/search/cond-mat?searchtype=author&query=Martinez%2C+E+A">E. A. Martinez</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%A9nard%2C+G+C">G. C. M茅nard</a>, <a href="/search/cond-mat?searchtype=author&query=Puglia%2C+D">D. Puglia</a>, <a href="/search/cond-mat?searchtype=author&query=Malinowski%2C+F+K">F. K. Malinowski</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+S">S. Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Marcus%2C+C+M">C. M. Marcus</a>, <a href="/search/cond-mat?searchtype=author&query=Casparis%2C+L">L. Casparis</a>, <a href="/search/cond-mat?searchtype=author&query=Higginbotham%2C+A+P">A. P. Higginbotham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.05549v2-abstract-short" style="display: inline;"> End-to-end correlated bound states are investigated in superconductor-semiconductor hybrid nanowires at zero magnetic field. Peaks in subgap conductance are independently identified from each wire end, and a cross-correlation function is computed that counts end-to-end coincidences, averaging over thousands of subgap features. Strong correlations in a short, $300~\mathrm{nm}$ device are reduced by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05549v2-abstract-full').style.display = 'inline'; document.getElementById('1908.05549v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.05549v2-abstract-full" style="display: none;"> End-to-end correlated bound states are investigated in superconductor-semiconductor hybrid nanowires at zero magnetic field. Peaks in subgap conductance are independently identified from each wire end, and a cross-correlation function is computed that counts end-to-end coincidences, averaging over thousands of subgap features. Strong correlations in a short, $300~\mathrm{nm}$ device are reduced by a factor of four in a long, $900~\mathrm{nm}$ device. In addition, subgap conductance distributions are investigated, and correlations between the left and right distributions are identified based on their mutual information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05549v2-abstract-full').style.display = 'none'; document.getElementById('1908.05549v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+4 pages, 4+4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI QDEV CMT 2019 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 205412 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11730">arXiv:1905.11730</a> <span> [<a href="https://arxiv.org/pdf/1905.11730">pdf</a>, <a href="https://arxiv.org/format/1905.11730">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.054510">10.1103/PhysRevB.101.054510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport Studies in a Gate-Tunable Three-Terminal Josephson Junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Graziano%2C+G+V">Gino V. Graziano</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C">Chris Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Pribiag%2C+V+S">Vlad S. Pribiag</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11730v2-abstract-short" style="display: inline;"> Josephson junctions with three or more superconducting leads have been predicted to exhibit topological effects in the presence of few conducting modes within the interstitial normal material. Such behavior, of relevance for topologically-protected quantum bits, would lead to specific transport features measured between terminals, with topological phase transitions occurring as a function of phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11730v2-abstract-full').style.display = 'inline'; document.getElementById('1905.11730v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11730v2-abstract-full" style="display: none;"> Josephson junctions with three or more superconducting leads have been predicted to exhibit topological effects in the presence of few conducting modes within the interstitial normal material. Such behavior, of relevance for topologically-protected quantum bits, would lead to specific transport features measured between terminals, with topological phase transitions occurring as a function of phase and voltage bias. Although conventional, two-terminal Josephson junctions have been studied extensively, multi-terminal devices have received relatively little attention to date. Motivated in part by the possibility to ultimately observe topological phenomena in multi-terminal Josephson devices, as well as their potential for coupling gatemon qubits, here we describe the superconducting features of a top-gated mesoscopic three-terminal Josephson device. The device is based on an InAs two-dimensional electron gas (2DEG) proximitized by epitaxial aluminum. We map out the transport properties of the device as a function of bias currents, top gate voltage and magnetic field. We find a very good agreement between the zero-field experimental phase diagram and a resistively and capacitively shunted junction (RCSJ) computational model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11730v2-abstract-full').style.display = 'none'; document.getElementById('1905.11730v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 054510 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.05505">arXiv:1905.05505</a> <span> [<a href="https://arxiv.org/pdf/1905.05505">pdf</a>, <a href="https://arxiv.org/format/1905.05505">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.036802">10.1103/PhysRevLett.124.036802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conductance-matrix symmetries of a three-terminal hybrid device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=M%C3%A9nard%2C+G+C">G. C. M茅nard</a>, <a href="/search/cond-mat?searchtype=author&query=Anselmetti%2C+G+L+R">G. L. R. Anselmetti</a>, <a href="/search/cond-mat?searchtype=author&query=Martinez%2C+E+A">E. A. Martinez</a>, <a href="/search/cond-mat?searchtype=author&query=Puglia%2C+D">D. Puglia</a>, <a href="/search/cond-mat?searchtype=author&query=Malinowski%2C+F+K">F. K. Malinowski</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+S">S. Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Flensberg%2C+K">K. Flensberg</a>, <a href="/search/cond-mat?searchtype=author&query=Marcus%2C+C+M">C. M. Marcus</a>, <a href="/search/cond-mat?searchtype=author&query=Casparis%2C+L">L. Casparis</a>, <a href="/search/cond-mat?searchtype=author&query=Higginbotham%2C+A+P">A. P. Higginbotham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.05505v1-abstract-short" style="display: inline;"> We present conductance-matrix measurements of a three-terminal superconductor-semiconductor hybrid device consisting of two normal leads and one superconducting lead. Using a symmetry decomposition of the conductance, we find that the antisymmetric components of pairs of local and nonlocal conductances match at energies below the superconducting gap, consistent with expectations based on a non-int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05505v1-abstract-full').style.display = 'inline'; document.getElementById('1905.05505v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.05505v1-abstract-full" style="display: none;"> We present conductance-matrix measurements of a three-terminal superconductor-semiconductor hybrid device consisting of two normal leads and one superconducting lead. Using a symmetry decomposition of the conductance, we find that the antisymmetric components of pairs of local and nonlocal conductances match at energies below the superconducting gap, consistent with expectations based on a non-interacting scattering matrix approach. Further, the local charge character of Andreev bound states is extracted from the symmetry-decomposed conductance data and is found to be similar at both ends of the device and tunable with gate voltage. Finally, we measure the conductance matrix as a function of magnetic field and identify correlated splittings in low-energy features, demonstrating how conductance-matrix measurements can complement traditional tunneling-probe measurements in the search for Majorana zero modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05505v1-abstract-full').style.display = 'none'; document.getElementById('1905.05505v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 + 2 pages, 4 + 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI QDEV CMT 2019 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 036802 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06971">arXiv:1809.06971</a> <span> [<a href="https://arxiv.org/pdf/1809.06971">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.014603">10.1103/PhysRevMaterials.3.014603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Contribution of top barrier materials to high mobility in near-surface InAs quantum wells grown on GaSb(001) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Shojaei%2C+B">Borzoyeh Shojaei</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Feldman%2C+M">Mayer Feldman</a>, <a href="/search/cond-mat?searchtype=author&query=Mukherjee%2C+K">Kunal Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06971v1-abstract-short" style="display: inline;"> Near-surface InAs two-dimensional electron gas (2DEG) systems have great potential for realizing networks of multiple Majorana zero modes towards a scalable topological quantum computer. Improving mobility in the near-surface 2DEGs is beneficial for stable topological superconducting states as well as for correlation of multiple Majorana zero modes in a complex network. Here, we investigate near-s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06971v1-abstract-full').style.display = 'inline'; document.getElementById('1809.06971v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06971v1-abstract-full" style="display: none;"> Near-surface InAs two-dimensional electron gas (2DEG) systems have great potential for realizing networks of multiple Majorana zero modes towards a scalable topological quantum computer. Improving mobility in the near-surface 2DEGs is beneficial for stable topological superconducting states as well as for correlation of multiple Majorana zero modes in a complex network. Here, we investigate near-surface InAs 2DEGs (13 nm away from the surface) grown on GaSb(001) substrates, whose lattice constant is closely matched to InAs, by molecular beam epitaxy. The effect of 10-nm-thick top barrier to the mobility is studied by comparing Al$_{0.9}$Ga$_{0.1}$Sb and In$_{0.75}$Ga$_{0.25}$As as a top barrier on otherwise identical InAs quantum wells grown with identical bottom barrier and buffer layers. A 3-nm-thick capping layer on Al$_{0.9}$Ga$_{0.1}$Sb top barrier also affects the 2DEG electronic transport properties by modifying scattering from 2D remote ionized impurities at the surface. The highest transport mobility of 650,000 cm$^2$/Vs with an electron density of 3.81 $\times$ 10$^{11}$ cm$^{-2}$ was observed in an InAs 2DEG with an Al$_{0.9}$Ga$_{0.1}$Sb top barrier and an In$_{0.75}$Ga$_{0.25}$As capping layer. Analysis of Shubnikov-de Haas oscillations in the high mobility sample suggests that long-range scattering, such as remote ionized impurity scattering, is the dominant scattering mechanism in the InAs 2DEGs grown on GaSb(001) substrates. In comparison to InAs quantum wells grown on lattice-mismatched InP, the ones grown on GaSb show smoother surface morphology and higher quantum mobility. However, In$_{0.75}$Ga$_{0.25}$As top barrier in InAs quantum well grown on GaSb limits the transport mobility by charged dislocations formed in it, in addition to the major contribution to scattering from the alloy scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06971v1-abstract-full').style.display = 'none'; document.getElementById('1809.06971v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 014603 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.04563">arXiv:1808.04563</a> <span> [<a href="https://arxiv.org/pdf/1808.04563">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.084606">10.1103/PhysRevMaterials.3.084606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111)B, and InP(110) surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+S">Sukgeun Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Pennachio%2C+D+J">Dan J. Pennachio</a>, <a href="/search/cond-mat?searchtype=author&query=Markman%2C+B">Brian Markman</a>, <a href="/search/cond-mat?searchtype=author&query=Seas%2C+M">Micheal Seas</a>, <a href="/search/cond-mat?searchtype=author&query=Koelling%2C+S">Sebastian Koelling</a>, <a href="/search/cond-mat?searchtype=author&query=Verheijen%2C+M+A">Marcel A. Verheijen</a>, <a href="/search/cond-mat?searchtype=author&query=Casparis%2C+L">Lucas Casparis</a>, <a href="/search/cond-mat?searchtype=author&query=Petersson%2C+K+D">Karl D. Petersson</a>, <a href="/search/cond-mat?searchtype=author&query=Petkovic%2C+I">Ivana Petkovic</a>, <a href="/search/cond-mat?searchtype=author&query=Schaller%2C+V">Vanessa Schaller</a>, <a href="/search/cond-mat?searchtype=author&query=Rodwell%2C+M+J+W">Mark J. W. Rodwell</a>, <a href="/search/cond-mat?searchtype=author&query=Marcus%2C+C+M">Charles M. Marcus</a>, <a href="/search/cond-mat?searchtype=author&query=Krogstrup%2C+P">Peter Krogstrup</a>, <a href="/search/cond-mat?searchtype=author&query=Kouwenhoven%2C+L+P">Leo P. Kouwenhoven</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">Erik P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.04563v2-abstract-short" style="display: inline;"> We report on the selective-area chemical beam epitaxial growth of InAs in-plane, one-dimensional (1-D) channels using patterned SiO$_{2}$-coated InP(001), InP(111)B, and InP(110) substrates to establish a scalable platform for topological superconductor networks. Top-view scanning electron micrographs show excellent surface selectivity and dependence of major facet planes on the substrate orientat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.04563v2-abstract-full').style.display = 'inline'; document.getElementById('1808.04563v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.04563v2-abstract-full" style="display: none;"> We report on the selective-area chemical beam epitaxial growth of InAs in-plane, one-dimensional (1-D) channels using patterned SiO$_{2}$-coated InP(001), InP(111)B, and InP(110) substrates to establish a scalable platform for topological superconductor networks. Top-view scanning electron micrographs show excellent surface selectivity and dependence of major facet planes on the substrate orientations and ridge directions, and the ratios of the surface energies of the major facet planes were estimated. Detailed structural properties and defects in the InAs nanowires (NWs) were characterized by transmission electron microscopic analysis of cross-sections perpendicular to the NW ridge direction and along the NW ridge direction. Electrical transport properties of the InAs NWs were investigated using Hall bars, a field effect mobility device, a quantum dot, and an Aharonov-Bohm loop device, which reflect the strong spin-orbit interaction and phase-coherent transport characteristic in the selectively grown InAs systems. This study demonstrates that selective-area chemical beam epitaxy is a scalable approach to realize semiconductor 1-D channel networks with the excellent surface selectivity and this material system is suitable for quantum transport studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.04563v2-abstract-full').style.display = 'none'; document.getElementById('1808.04563v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 084606 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00988">arXiv:1806.00988</a> <span> [<a href="https://arxiv.org/pdf/1806.00988">pdf</a>, <a href="https://arxiv.org/format/1806.00988">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aae61d">10.1088/1367-2630/aae61d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric field tunable superconductor-semiconductor coupling in Majorana nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=de+Moor%2C+M+W+A">Michiel W. A. de Moor</a>, <a href="/search/cond-mat?searchtype=author&query=Bommer%2C+J+D+S">Jouri D. S. Bommer</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Di Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Winkler%2C+G+W">Georg W. Winkler</a>, <a href="/search/cond-mat?searchtype=author&query=Antipov%2C+A+E">Andrey E. Antipov</a>, <a href="/search/cond-mat?searchtype=author&query=Bargerbos%2C+A">Arno Bargerbos</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guanzhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=van+Loo%2C+N">Nick van Loo</a>, <a href="/search/cond-mat?searchtype=author&query=Veld%2C+R+L+M+O+h">Roy L. M. Op het Veld</a>, <a href="/search/cond-mat?searchtype=author&query=Gazibegovic%2C+S">Sasa Gazibegovic</a>, <a href="/search/cond-mat?searchtype=author&query=Car%2C+D">Diana Car</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+J+A">John A. Logan</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">Erik P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&query=Lutchyn%2C+R+M">Roman M. Lutchyn</a>, <a href="/search/cond-mat?searchtype=author&query=Kouwenhoven%2C+L+P">Leo P. Kouwenhoven</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00988v1-abstract-short" style="display: inline;"> We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify the coupling strength, which has consequences for the proximity induced superconducting gap, effective g-factor, and sp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00988v1-abstract-full').style.display = 'inline'; document.getElementById('1806.00988v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00988v1-abstract-full" style="display: none;"> We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify the coupling strength, which has consequences for the proximity induced superconducting gap, effective g-factor, and spin-orbit coupling, which all play a key role in understanding Majorana physics. We further show that level repulsion due to spin-orbit coupling in a finite size system can lead to seemingly stable zero bias conductance peaks, which mimic the behavior of Majorana zero modes. Our results improve the understanding of realistic Majorana nanowire systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00988v1-abstract-full').style.display = 'none'; document.getElementById('1806.00988v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, supplemental information as ancillary file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2018 New J. Phys. 20 103049 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04289">arXiv:1805.04289</a> <span> [<a href="https://arxiv.org/pdf/1805.04289">pdf</a>, <a href="https://arxiv.org/format/1805.04289">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.127705">10.1103/PhysRevLett.121.127705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mirage Andreev spectra generated by mesoscopic leads in nanowire quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Su%2C+Z">Z. Su</a>, <a href="/search/cond-mat?searchtype=author&query=Zarassi%2C+A">A. Zarassi</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+J+-">J. -F. Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=San-Jose%2C+P">P. San-Jose</a>, <a href="/search/cond-mat?searchtype=author&query=Prada%2C+E">E. Prada</a>, <a href="/search/cond-mat?searchtype=author&query=Aguado%2C+R">R. Aguado</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+E+J+H">E. J. H. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Gazibegovic%2C+S">S. Gazibegovic</a>, <a href="/search/cond-mat?searchtype=author&query=Veld%2C+R+O+h">R. Op het Veld</a>, <a href="/search/cond-mat?searchtype=author&query=Car%2C+D">D. Car</a>, <a href="/search/cond-mat?searchtype=author&query=Plissard%2C+S+R">S. R. Plissard</a>, <a href="/search/cond-mat?searchtype=author&query=Hocevar%2C+M">M. Hocevar</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">J. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+J+A">J. A. Logan</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+C+J">C. J. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">E. P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+S+M">S. M. Frolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04289v1-abstract-short" style="display: inline;"> We study transport mediated by Andreev bound states formed in InSb nanowire quantum dots. Two kinds of superconducting source and drain contacts are used: epitaxial Al/InSb devices exhibit a doubling of tunneling resonances, while in NbTiN/InSb devices Andreev spectra of the dot appear to be replicated multiple times at increasing source-drain bias voltages. In both devices, a mirage of a crowded… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04289v1-abstract-full').style.display = 'inline'; document.getElementById('1805.04289v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04289v1-abstract-full" style="display: none;"> We study transport mediated by Andreev bound states formed in InSb nanowire quantum dots. Two kinds of superconducting source and drain contacts are used: epitaxial Al/InSb devices exhibit a doubling of tunneling resonances, while in NbTiN/InSb devices Andreev spectra of the dot appear to be replicated multiple times at increasing source-drain bias voltages. In both devices, a mirage of a crowded spectrum is created. To describe the observations a model is developed that combines the effects of a soft induced gap and of additional Andreev bound states both in the quantum dot and in the finite regions of the nanowire adjacent to the quantum dot. Understanding of Andreev spectroscopy is important for the correct interpretation of Majorana experiments done on the same structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04289v1-abstract-full').style.display = 'none'; document.getElementById('1805.04289v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 127705 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.08405">arXiv:1804.08405</a> <span> [<a href="https://arxiv.org/pdf/1804.08405">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-07279-7">10.1038/s41467-018-07279-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parity transitions in the superconducting ground state of hybrid InSb-Al Coulomb islands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Heedt%2C+S">Sebastian Heedt</a>, <a href="/search/cond-mat?searchtype=author&query=Borsoi%2C+F">Francesco Borsoi</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Heck%2C+B">Bernard Van Heck</a>, <a href="/search/cond-mat?searchtype=author&query=Gazibegovic%2C+S">Sasa Gazibegovic</a>, <a href="/search/cond-mat?searchtype=author&query=Veld%2C+R+L+M+O+h">Roy L. M. Op het Veld</a>, <a href="/search/cond-mat?searchtype=author&query=Car%2C+D">Diana Car</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+J+A">John A. Logan</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Ramakers%2C+S+J+J">Senja J. J. Ramakers</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guanzhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Di Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Bouman%2C+D">Daniel Bouman</a>, <a href="/search/cond-mat?searchtype=author&query=Geresdi%2C+A">Attila Geresdi</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+C+J">Chris J. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">Erik P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Kouwenhoven%2C+L+P">Leo P. Kouwenhoven</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.08405v3-abstract-short" style="display: inline;"> The number of electrons in small metallic or semiconducting islands is quantized. When tunnelling is enabled via opaque barriers this number can change by an integer. In superconductors the addition is in units of two electron charges (2e), reflecting that the Cooper pair condensate must have an even parity. This ground state (GS) is foundational for all superconducting qubit devices. Here, we stu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08405v3-abstract-full').style.display = 'inline'; document.getElementById('1804.08405v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.08405v3-abstract-full" style="display: none;"> The number of electrons in small metallic or semiconducting islands is quantized. When tunnelling is enabled via opaque barriers this number can change by an integer. In superconductors the addition is in units of two electron charges (2e), reflecting that the Cooper pair condensate must have an even parity. This ground state (GS) is foundational for all superconducting qubit devices. Here, we study a hybrid superconducting-semiconducting island and find three typical GS evolutions in a parallel magnetic field: a robust 2e-periodic even-parity GS, a transition to a 2e-periodic odd-parity GS,and a transition from a 2e- to a 1e-periodic GS. The 2e-periodic odd-parity GS persistent in gate-voltage occurs when a spin-resolved subgap state crosses zero energy. For our 1e-periodic GSs we explicitly show the origin being a single zero-energy state gapped from the continuum, i.e. compatible with an Andreev bound states stabilized at zero energy or the presence of Majorana zero modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08405v3-abstract-full').style.display = 'none'; document.getElementById('1804.08405v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communicationsvolume 9, Article number: 4801 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.05320">arXiv:1711.05320</a> <span> [<a href="https://arxiv.org/pdf/1711.05320">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.014406">10.1103/PhysRevMaterials.2.014406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth, electrical, structural, and magnetic properties of half-Heusler CoTi$_{1-x}$Fe$_x$Sb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">Sean D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Rice%2C+A+D">Anthony D. Rice</a>, <a href="/search/cond-mat?searchtype=author&query=Brown-Heft%2C+T">Tobias Brown-Heft</a>, <a href="/search/cond-mat?searchtype=author&query=Bonef%2C+B">Bastien Bonef</a>, <a href="/search/cond-mat?searchtype=author&query=Sharan%2C+A">Abhishek Sharan</a>, <a href="/search/cond-mat?searchtype=author&query=McFadden%2C+A+P">Anthony P. McFadden</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+J+A">John A. Logan</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Feldman%2C+M+M">Mayer M. Feldman</a>, <a href="/search/cond-mat?searchtype=author&query=Mercan%2C+O">Ozge Mercan</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">Andre G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Janotti%2C+A">Anderson Janotti</a>, <a href="/search/cond-mat?searchtype=author&query=Arslan%2C+L+%C3%87">Leyla 脟olakerol Arslan</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.05320v1-abstract-short" style="display: inline;"> Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi$_{1-x}$Fe$_x$Sb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0$\leq$x$\leq$1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05320v1-abstract-full').style.display = 'inline'; document.getElementById('1711.05320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.05320v1-abstract-full" style="display: none;"> Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi$_{1-x}$Fe$_x$Sb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0$\leq$x$\leq$1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x$\leq$0.5. For films with x$\geq$0.05, ferromagnetism is observed in SQUID magnetometry with a saturation magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x$\leq$0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi$_{1-x}$Fe$_x$Sb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05320v1-abstract-full').style.display = 'none'; document.getElementById('1711.05320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 014406 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10701">arXiv:1710.10701</a> <span> [<a href="https://arxiv.org/pdf/1710.10701">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature26142">10.1038/nature26142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantized Majorana conductance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chun-Xiao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gazibegovic%2C+S">Sasa Gazibegovic</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Di Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+J+A">John A. Logan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guanzhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=van+Loo%2C+N">Nick van Loo</a>, <a href="/search/cond-mat?searchtype=author&query=Bommer%2C+J+D+S">Jouri D. S. Bommer</a>, <a href="/search/cond-mat?searchtype=author&query=de+Moor%2C+M+W+A">Michiel W. A. de Moor</a>, <a href="/search/cond-mat?searchtype=author&query=Car%2C+D">Diana Car</a>, <a href="/search/cond-mat?searchtype=author&query=Veld%2C+R+L+M+O+h">Roy L. M. Op het Veld</a>, <a href="/search/cond-mat?searchtype=author&query=van+Veldhoven%2C+P+J">Petrus J. van Veldhoven</a>, <a href="/search/cond-mat?searchtype=author&query=Koelling%2C+S">Sebastian Koelling</a>, <a href="/search/cond-mat?searchtype=author&query=Verheijen%2C+M+A">Marcel A. Verheijen</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Pennachio%2C+D+J">Daniel J. Pennachio</a>, <a href="/search/cond-mat?searchtype=author&query=Shojaei%2C+B">Borzoyeh Shojaei</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+C+J">Chris J. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Bakkers%2C+E+P+A+M">Erik P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&query=Sarma%2C+S+D">S. Das Sarma</a>, <a href="/search/cond-mat?searchtype=author&query=Kouwenhoven%2C+L+P">Leo P. Kouwenhoven</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10701v1-abstract-short" style="display: inline;"> Majorana zero-modes hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool to identify the presence of Majorana zero-modes, for instance as a zero-bias peak (ZBP) in differential-conductance. The Majorana ZBP-height is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature. Interestingly, this qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10701v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10701v1-abstract-full" style="display: none;"> Majorana zero-modes hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool to identify the presence of Majorana zero-modes, for instance as a zero-bias peak (ZBP) in differential-conductance. The Majorana ZBP-height is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature. Interestingly, this quantization is a direct consequence of the famous Majorana symmetry, 'particle equals antiparticle'. The Majorana symmetry protects the quantization against disorder, interactions, and variations in the tunnel coupling. Previous experiments, however, have shown ZBPs much smaller than 2e2/h, with a recent observation of a peak-height close to 2e2/h. Here, we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in InSb semiconductor nanowires covered with an Al superconducting shell. Our ZBP-height remains constant despite changing parameters such as the magnetic field and tunnel coupling, i.e. a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins, by investigating its robustness on electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of non-Abelian Majorana zero-modes in the system, consequently paving the way for future braiding experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10701v1-abstract-full').style.display = 'none'; document.getElementById('1710.10701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10095">arXiv:1710.10095</a> <span> [<a href="https://arxiv.org/pdf/1710.10095">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.064603">10.1103/PhysRevMaterials.2.064603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Materials considerations for forming the topological insulator phase in InAs/GaSb heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shojaei%2C+B">Borzoyeh Shojaei</a>, <a href="/search/cond-mat?searchtype=author&query=McFadden%2C+A+P">Anthony P. McFadden</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Flatt%C3%A9%2C+M+E">Michael E. Flatt茅</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10095v1-abstract-short" style="display: inline;"> In an ideal InAs/GaSb bilayer of appropriate dimension in-plane electron and hole bands overlap and hybridize, and a topologically non-trivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10095v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10095v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10095v1-abstract-full" style="display: none;"> In an ideal InAs/GaSb bilayer of appropriate dimension in-plane electron and hole bands overlap and hybridize, and a topologically non-trivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electronic structure of InAs/GaSb bilayers was studied by the temperature and magnetic field dependence of the resistance of a dual-gated heterostructures gate-tuned through the inverted to normal gap regimes. Conduction in the inverted (predicted topological) regime was qualitatively similar to behavior in a disordered two-dimensional system. The impact of charged impurities and interface roughness on the formation of topologically protected edge states and an insulating bulk was estimated. The experimental evidence and estimates of disorder in the potential landscape indicated the potential fluctuations in state-of-the-art films are sufficiently strong such that conduction in the predicted topological insulator (TI) regime was dominated by a symplectic metal phase rather than a TI phase. The implications are that future efforts must address disorder in this system and focus must be placed on the reduction of defects and disorder in these heterostructures if a TI regime is to be achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10095v1-abstract-full').style.display = 'none'; document.getElementById('1710.10095v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, including 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 064603 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05049">arXiv:1705.05049</a> <span> [<a href="https://arxiv.org/pdf/1705.05049">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b00494">10.1021/acs.nanolett.9b00494 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport studies of epi-Al/InAs 2DEG systems for required building-blocks in topological superconductor networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Shojaei%2C+B">Borzoyeh Shojaei</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=McFadden%2C+A+P">Anthony P. McFadden</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y">Younghyun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Suominen%2C+H+J">Henri J. Suominen</a>, <a href="/search/cond-mat?searchtype=author&query=Kjaergaard%2C+M">Morten Kjaergaard</a>, <a href="/search/cond-mat?searchtype=author&query=Nichele%2C+F">Fabrizio Nichele</a>, <a href="/search/cond-mat?searchtype=author&query=Marcus%2C+C+M">Charles M. Marcus</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05049v1-abstract-short" style="display: inline;"> One-dimensional (1D) electronic transport and induced superconductivity in semiconductor nano-structures are crucial ingredients to realize topological superconductivity. Our approach for topological superconductivity employs a two-dimensional electron gas (2DEG) formed by an InAs quantum well, cleanly interfaced with a superconductor (epitaxial Al). This epi-Al/InAs quantum well heterostructure i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05049v1-abstract-full').style.display = 'inline'; document.getElementById('1705.05049v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05049v1-abstract-full" style="display: none;"> One-dimensional (1D) electronic transport and induced superconductivity in semiconductor nano-structures are crucial ingredients to realize topological superconductivity. Our approach for topological superconductivity employs a two-dimensional electron gas (2DEG) formed by an InAs quantum well, cleanly interfaced with a superconductor (epitaxial Al). This epi-Al/InAs quantum well heterostructure is advantageous for fabricating large-scale nano-structures consisting of multiple Majorana zero modes. Here, we demonstrate building-block transport studies using a high-quality epi-Al/InAs 2DEG heterostructure, which could be put together to realize the proposed 1D nanowire-based nano-structures and 2DEG-based networks that could host multiple Majorana zero modes: 1D transport using 1) quantum point contacts and 2) gate-defined quasi-1D channels in the InAs 2DEG as well as induced superconductivity in 3) a ballistic Al-InAs 2DEG-Al Josephson junction. From 1D transport, systematic evolution of conductance plateaus in half-integer conductance quanta are observed as a result of strong spin-orbit coupling in the InAs 2DEG. Large IcRn, a product of critical current and normal state resistance from the Josephson junction, indicates that the interface between the epitaxial Al and the InAs 2DEG is highly transparent. Our results of electronic transport studies based on the 2D approach suggest that the epitaxial superconductor/2D semiconductor system is suitable for realizing large-scale nano-structures for quantum computing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05049v1-abstract-full').style.display = 'none'; document.getElementById('1705.05049v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 19, 3083 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.03785">arXiv:1610.03785</a> <span> [<a href="https://arxiv.org/pdf/1610.03785">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.245306">10.1103/PhysRevB.94.245306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the limits to mobility in InAs quantum wells with nearly lattice-matched barriers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shojaei%2C+B">B. Shojaei</a>, <a href="/search/cond-mat?searchtype=author&query=Drachmann%2C+A+C+C">A. C. C. Drachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">M. Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Pennachio%2C+D+J">D. J. Pennachio</a>, <a href="/search/cond-mat?searchtype=author&query=Echlin%2C+M+P">M. P. Echlin</a>, <a href="/search/cond-mat?searchtype=author&query=Callahan%2C+P+G">P. G. Callahan</a>, <a href="/search/cond-mat?searchtype=author&query=Kraemer%2C+S">S. Kraemer</a>, <a href="/search/cond-mat?searchtype=author&query=Pollock%2C+T+M">T. M. Pollock</a>, <a href="/search/cond-mat?searchtype=author&query=Marcus%2C+C+M">C. M. Marcus</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">C. J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.03785v2-abstract-short" style="display: inline;"> The growth and the density dependence of the low temperature mobility of a series of two-dimensional electron systems confined to un-intentionally doped, low extended defect density InAs quantum wells with Al$_{1-x}$Ga$_{x}$Sb barriers are reported. The electron mobility limiting scattering mechanisms were determined by utilizing dual-gated devices to study the dependence of mobility on carrier de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.03785v2-abstract-full').style.display = 'inline'; document.getElementById('1610.03785v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.03785v2-abstract-full" style="display: none;"> The growth and the density dependence of the low temperature mobility of a series of two-dimensional electron systems confined to un-intentionally doped, low extended defect density InAs quantum wells with Al$_{1-x}$Ga$_{x}$Sb barriers are reported. The electron mobility limiting scattering mechanisms were determined by utilizing dual-gated devices to study the dependence of mobility on carrier density and electric field independently. Analysis of the possible scattering mechanisms indicate the mobility was limited primarily by rough interfaces in narrow quantum wells and a combination of alloy disorder and interface roughness in wide wells at high carrier density within the first occupied electronic sub-band. At low carrier density the functional dependence of the mobility on carrier density provided evidence of coulombic scattering from charged defects. A gate-tuned electron mobility exceeding 750,000 cm$^{2}$/Vs was achieved at a sample temperature of 2 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.03785v2-abstract-full').style.display = 'none'; document.getElementById('1610.03785v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> QDEV 2016 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 245306 (2016) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>