CINXE.COM

{"title":"Mixed Convection in a 2D-channel with a Co- Flowing Fluid Injection: Influence of the Jet Position","authors":"Ameni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot","volume":27,"journal":"International Journal of Aerospace and Mechanical Engineering","pagesStart":307,"pagesEnd":313,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/5585","abstract":"Numerical study of a plane jet occurring in a vertical\nheated channel is carried out. The aim is to explore the influence of\nthe forced flow, issued from a flat nozzle located in the entry section\nof a channel, on the up-going fluid along the channel walls. The\nReynolds number based on the nozzle width and the jet velocity\nranges between 3 103 and 2.104; whereas, the Grashof number based\non the channel length and the wall temperature difference is 2.57\n1010. Computations are established for a symmetrically heated\nchannel and various nozzle positions. The system of governing\nequations is solved with a finite volumes method. The obtained\nresults show that the jet-wall interactions activate the heat transfer,\nthe position variation modifies the heat transfer especially for low\nReynolds numbers: the heat transfer is enhanced for the adjacent\nwall; however it is decreased for the opposite one. The numerical\nvelocity and temperature fields are post-processed to compute the\nquantities of engineering interest such as the induced mass flow rate,\nand the Nusselt number along the plates.","references":"[1] O. Manca, B. Morrone, S. Nardini, V. Naso, Natural convection in open\nchannels, in: B. Sunden, G. Comini (Eds.), Computational Analysis of\nConvection Heat Transfer, WIT Press, Southampton, UK, 2000, pp.\n235- 278.\n[2] S.J. Kim, S.W. Lee, Air Cooling Technology for Electronic Equipment,\nCRC Press, Boca Raton, FL, 1996.\n[3] A. Bejan, Shape and Structure from Engineering to Nature, Cambridge\nUniversity Press, New York, 2000.\n[4] G.A. Ledezma, A. Bejan, Optimal geometric arrangement of staggered\nvertical plates in natural convection, ASME J. Heat Transfer 119 (1997)\n700-708.\n[5] S. Sathe, B. Sammakia, A review of recent developments in some\npractical aspects of air-cooled electronic packages, ASME J. Heat\nTransfer 120 (1998) 830-839.\n[6] A. Bejan, A.K. da Silva, S. Lorente, Maximal heat transfer density in\nvertical morphing channels with natural convection, Numer. Heat\nTransfer A 45 (2004) 135-152.\n[7] A. Auletta, O.Manca, B. Morrone, V. Naso, Heat transfer enhancement\nby the chimney effect in a vertical isoflux channel, Int. J. Heat Mass\nTransfer 44 (2001) 4345-4357.\n[8] A.K. da Silva, L. Gosselin, Optimal geometry of L- and C-shaped\nchannels for maximum heat transfer rate in natural convection, Int. J.\nHeat Mass Transfer 48 (2005) 609-620.\n[9] A. Andreozzi, A. Campo, O. Manca, Compounded natural convection\nenhancement in a vertical parallel-plate channel, Int. J. Thermal Sciences\n47 (6) (2008) 742-748.\n[10] W.B. Hall, J.D. Jackson, Laminarization of a turbulent pipe flow by\nbuoyancy forces, ASME paper, ASME paper no. 69-HT-55 (1969).\n[11] J.D. Jackson, W.B. Hall, Influence of buoyancy on heat transfer to fluids\nflowing in vertical tubes under turbulent conditions, in: S. Kakac, D.B.\nSpalding (Eds.), Turbulent Forced Convection in Channels and\nBundles,Hemisphere Publishing, USA, 1979, pp. 613-640.\n[12] Jiulei Wang, Jiankang Li, J.D. Jackson, A study of the influence of\nbuoyancy on turbulent flow in a vertical plane passage, Int. J. Heat Fluid\nFlow 25 (2004) 420-430.\n[13] K. Nakajima, K. Fukui, H. Ueda, T. Mizushina, Buoyancy effects on\nturbulent transport in combined free and forced convection between\nverticalparallel plates, Int. J. Heat Mass Transfer 23 (1980) 1325-1336.\n[14] M. Miyamoto, Y. Katoh, J. Kurima, H. Saki, Turbulent free convection\nheat transfer from vertical parallel plates. In Heat Transfer, Vol. 4. (eds\nC. L. Tien, V. P.Carey and J. K. Ferrell) Hemisphere, Washington DC,\n1986, pp. 1593- l598.\n[15] A. Auletta, O. Manca, Heat and fluid flow resulting from the chimney\neffect in a symmetrically heated vertical channel with adiabatic\nextensions, International Journal of Thermal Sciences, 41 (2002), pp.\n1101-1111.\n[16] A.G. Fedorov and R.Vskanta, Turbulent natural convection heat transfer\nin an asymmetrically heated vertical parallel plate channel; International\nJournal of Heat Mass Transfer, 40 (1997), 16, pp. 3849-3860.\n[17] T.A.M. Versteegh, F.T.M. Nieuwstadt., Turbulent budgets of natural\nconvection in an infinite, differentially heated, vertical channel.\nInternational Journal of Heat and Fluid Flow, 19 (1998), pp.135-149.\n[18] T.A.M. Versteegh, F.T.M. Nieuwstadt., A direct numerical simulation of\nnatural convection between two infinite vertical differentially heated\nwalls scaling laws and wall functions, International Journal of Heat and\nMass Transfer, 42 (1999), pp.3673-3693.\n[19] A.M. Dalbert, F.Penot, JL.Peube, convection naturelle laminaire dans\nun canal vertical chauff\u00e9 \u251c\u00e1 flux constant, International Journal of Heat\nand Mass Transfer, 24 (1981), 9, pp. 1463-1473.\n[20] F. Penot, A.M.Dalbert, convection naturelle mixte et forc\u00e9e dans un\nthermosiphon vertical chauff\u00e9 \u251c\u00e1 flux constant, International Journal of\nHeat and Mass Transfer,.26 (1983), 11, pp. 1639-1647.\n[21] M. Najam, M. El Almi, M. Hasnaoui, A. Amahamid, Etude num\u00e9rique\nde la convection mixte dans une cavit\u00e9 en forme de T soumis \u251c\u00e1 un flux\nde chaleur constant et ventil\u00e9 par le bas \u251c\u00e1 l-aide d- un jet d-air vertical,\nCompte Rendu de Mecanique 330 (2002) 461-467.\n[22] A. Auletta, O. Manca, Heat and fluid flow resulting from the chimney\neffect in a symmetrically heated vertical channel with adiabatic\nextensions, International Journal of Thermal Sciences 41 (2002) 1101-\n1111","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 27, 2009"}