CINXE.COM
Residuo (analisi complessa) - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Residuo (analisi complessa) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"d7d0beae-0759-4862-bc0f-d686777ac47d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Residuo_(analisi_complessa)","wgTitle":"Residuo (analisi complessa)","wgCurRevisionId":124424267,"wgRevisionId":124424267,"wgArticleId":1220557,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Senza fonti - matematica","Senza fonti - luglio 2017","P1417 letta da Wikidata","P2812 letta da Wikidata","Analisi complessa"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"Residuo_(analisi_complessa)","wgRelevantArticleId":1220557,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject" :"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":9000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q753375","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.coloriDarkMode-default":"ready", "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=it&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.gadget.coloriDarkMode-default&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=it&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Residuo (analisi complessa) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Residuo_(analisi_complessa)"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Residuo_(analisi_complessa)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Residuo_analisi_complessa rootpage-Residuo_analisi_complessa skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L'enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&returnto=Residuo+%28analisi+complessa%29" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&returnto=Residuo+%28analisi+complessa%29" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&returnto=Residuo+%28analisi+complessa%29" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&returnto=Residuo+%28analisi+complessa%29" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Definizione" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definizione"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definizione</span> </div> </a> <ul id="toc-Definizione-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrali_di_contorno" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrali_di_contorno"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Integrali di contorno</span> </div> </a> <ul id="toc-Integrali_di_contorno-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calcolo_del_residuo" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Calcolo_del_residuo"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Calcolo del residuo</span> </div> </a> <ul id="toc-Calcolo_del_residuo-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Residuo_all'infinito" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Residuo_all'infinito"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Residuo all'infinito</span> </div> </a> <ul id="toc-Residuo_all'infinito-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Esempi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Esempi"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Esempi</span> </div> </a> <button aria-controls="toc-Esempi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Esempi</span> </button> <ul id="toc-Esempi-sublist" class="vector-toc-list"> <li id="toc-Esempio_1" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Esempio_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Esempio 1</span> </div> </a> <ul id="toc-Esempio_1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Esempio_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Esempio_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Esempio 2</span> </div> </a> <ul id="toc-Esempio_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Esempio_3" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Esempio_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Esempio 3</span> </div> </a> <ul id="toc-Esempio_3-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l'indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l'indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Residuo (analisi complessa)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un'altra lingua. Disponibile in 24 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-24" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">24 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B1%D8%A7%D8%B3%D8%A8_(%D8%AA%D8%AD%D9%84%D9%8A%D9%84_%D9%85%D8%B1%D9%83%D8%A8)" title="راسب (تحليل مركب) - arabo" lang="ar" hreflang="ar" data-title="راسب (تحليل مركب)" data-language-autonym="العربية" data-language-local-name="arabo" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Residu_(an%C3%A0lisi_complexa)" title="Residu (anàlisi complexa) - catalano" lang="ca" hreflang="ca" data-title="Residu (anàlisi complexa)" data-language-autonym="Català" data-language-local-name="catalano" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Reziduum_(matematika)" title="Reziduum (matematika) - ceco" lang="cs" hreflang="cs" data-title="Reziduum (matematika)" data-language-autonym="Čeština" data-language-local-name="ceco" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Residuum_(Funktionentheorie)" title="Residuum (Funktionentheorie) - tedesco" lang="de" hreflang="de" data-title="Residuum (Funktionentheorie)" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Residue_(complex_analysis)" title="Residue (complex analysis) - inglese" lang="en" hreflang="en" data-title="Residue (complex analysis)" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Residuo_(an%C3%A1lisis_complejo)" title="Residuo (análisis complejo) - spagnolo" lang="es" hreflang="es" data-title="Residuo (análisis complejo)" data-language-autonym="Español" data-language-local-name="spagnolo" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D9%86%D8%AF%D9%87_(%D8%A2%D9%86%D8%A7%D9%84%DB%8C%D8%B2_%D9%85%D8%AE%D8%AA%D9%84%D8%B7)" title="مانده (آنالیز مختلط) - persiano" lang="fa" hreflang="fa" data-title="مانده (آنالیز مختلط)" data-language-autonym="فارسی" data-language-local-name="persiano" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Residy" title="Residy - finlandese" lang="fi" hreflang="fi" data-title="Residy" data-language-autonym="Suomi" data-language-local-name="finlandese" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/R%C3%A9sidu_(analyse_complexe)" title="Résidu (analyse complexe) - francese" lang="fr" hreflang="fr" data-title="Résidu (analyse complexe)" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%90%D7%A8%D7%99%D7%AA_(%D7%90%D7%A0%D7%9C%D7%99%D7%96%D7%94_%D7%9E%D7%A8%D7%95%D7%9B%D7%91%D7%AA)" title="שארית (אנליזה מרוכבת) - ebraico" lang="he" hreflang="he" data-title="שארית (אנליזה מרוכבת)" data-language-autonym="עברית" data-language-local-name="ebraico" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Reziduum" title="Reziduum - ungherese" lang="hu" hreflang="hu" data-title="Reziduum" data-language-autonym="Magyar" data-language-local-name="ungherese" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%B6%D5%A1%D6%81%D6%84_(%D5%AF%D5%B8%D5%B4%D5%BA%D5%AC%D5%A5%D6%84%D5%BD_%D5%A1%D5%B6%D5%A1%D5%AC%D5%AB%D5%A6)" title="Մնացք (կոմպլեքս անալիզ) - armeno" lang="hy" hreflang="hy" data-title="Մնացք (կոմպլեքս անալիզ)" data-language-autonym="Հայերեն" data-language-local-name="armeno" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%95%99%E6%95%B0" title="留数 - giapponese" lang="ja" hreflang="ja" data-title="留数" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9C%A0%EC%88%98_(%EB%B3%B5%EC%86%8C%ED%95%B4%EC%84%9D%ED%95%99)" title="유수 (복소해석학) - coreano" lang="ko" hreflang="ko" data-title="유수 (복소해석학)" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Residu_(functietheorie)" title="Residu (functietheorie) - olandese" lang="nl" hreflang="nl" data-title="Residu (functietheorie)" data-language-autonym="Nederlands" data-language-local-name="olandese" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Residuum_funkcji_holomorficznej" title="Residuum funkcji holomorficznej - polacco" lang="pl" hreflang="pl" data-title="Residuum funkcji holomorficznej" data-language-autonym="Polski" data-language-local-name="polacco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Res%C3%ADduo_(an%C3%A1lise_complexa)" title="Resíduo (análise complexa) - portoghese" lang="pt" hreflang="pt" data-title="Resíduo (análise complexa)" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D1%8B%D1%87%D0%B5%D1%82_(%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7)" title="Вычет (комплексный анализ) - russo" lang="ru" hreflang="ru" data-title="Вычет (комплексный анализ)" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Residy" title="Residy - svedese" lang="sv" hreflang="sv" data-title="Residy" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Kal%C4%B1nt%C4%B1_(karma%C5%9F%C4%B1k_analiz)" title="Kalıntı (karmaşık analiz) - turco" lang="tr" hreflang="tr" data-title="Kalıntı (karmaşık analiz)" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A7%D0%B8%D0%B3%D0%B5%D1%80%D0%B5%D1%88_(%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7)" title="Чигереш (комплекс анализ) - tataro" lang="tt" hreflang="tt" data-title="Чигереш (комплекс анализ)" data-language-autonym="Татарча / tatarça" data-language-local-name="tataro" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D0%B8%D1%88%D0%BE%D0%BA" title="Лишок - ucraino" lang="uk" hreflang="uk" data-title="Лишок" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Th%E1%BA%B7ng_d%C6%B0_(gi%E1%BA%A3i_t%C3%ADch_ph%E1%BB%A9c)" title="Thặng dư (giải tích phức) - vietnamita" lang="vi" hreflang="vi" data-title="Thặng dư (giải tích phức)" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%95%99%E6%95%B0" title="留数 - cinese" lang="zh" hreflang="zh" data-title="留数" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q753375#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Residuo_(analisi_complessa)" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Residuo_(analisi_complessa)" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Residuo_(analisi_complessa)"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Residuo_(analisi_complessa)"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Residuo_(analisi_complessa)" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Residuo_(analisi_complessa)" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&oldid=124424267" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&page=Residuo_%28analisi_complessa%29&id=124424267&wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlShortener&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FResiduo_%28analisi_complessa%29"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrCode&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FResiduo_%28analisi_complessa%29"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&bookcmd=book_creator&referer=Residuo+%28analisi+complessa%29"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&page=Residuo_%28analisi_complessa%29&action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Residuo_(analisi_complessa)&printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q753375" title="Collegamento all'elemento connesso dell'archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l'enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r133964453">.mw-parser-output .avviso .mbox-text-div>div,.mw-parser-output .avviso .mbox-text-full-div>div{font-size:90%}.mw-parser-output .avviso .mbox-image{flex-basis:52px;flex-grow:0;flex-shrink:0}.mw-parser-output .avviso .mbox-text-full-div .hide-when-compact{display:block}</style><div style="" class="ambox metadata plainlinks avviso avviso-contenuto"> <div class="avviso-immagine mbox-image noprint"><span typeof="mw:File"><a href="/wiki/File:Question_book-4.svg" class="mw-file-description" title="Niente fonti!"><img alt="Niente fonti!" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Question_book-4.svg/45px-Question_book-4.svg.png" decoding="async" width="45" height="35" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Question_book-4.svg/68px-Question_book-4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Question_book-4.svg/90px-Question_book-4.svg.png 2x" data-file-width="262" data-file-height="204" /></a></span></div> <div class="avviso-testo mbox-text"> <div class="mbox-text-div"><b>Questa voce o sezione  sull'argomento matematica <a href="/wiki/Wikipedia:Uso_delle_fonti" title="Wikipedia:Uso delle fonti">non cita le fonti necessarie</a> o quelle presenti sono insufficienti</b>. <div class="hide-when-compact"> <div class="noprint"><hr />Puoi <a class="external text" href="https://it.wikipedia.org/w/index.php?title=Residuo_(analisi_complessa)&action=edit">migliorare questa voce</a> aggiungendo citazioni da <a href="/wiki/Wikipedia:Fonti_attendibili" title="Wikipedia:Fonti attendibili">fonti attendibili</a> secondo le <a href="/wiki/Wikipedia:Uso_delle_fonti" title="Wikipedia:Uso delle fonti">linee guida sull'uso delle fonti</a>. Segui i suggerimenti del <a href="/wiki/Progetto:Matematica" title="Progetto:Matematica">progetto di riferimento</a>.</div> </div> </div> </div> </div> <p>In <a href="/wiki/Analisi_complessa" title="Analisi complessa">analisi complessa</a>, il <b>residuo</b> è un <a href="/wiki/Numero_complesso" title="Numero complesso">numero complesso</a> che descrive il comportamento degli <a href="/wiki/Integrale_di_contorno" class="mw-redirect" title="Integrale di contorno">integrali di contorno</a> di una <a href="/wiki/Funzione_olomorfa" title="Funzione olomorfa">funzione olomorfa</a> intorno ad una <a href="/wiki/Singolarit%C3%A0_isolata" title="Singolarità isolata">singolarità isolata</a>. </p><p>I residui vengono calcolati facilmente e sono uno strumento potente dell'analisi complessa, poiché permettono di valutare numerosi integrali attraverso il calcolo (generalmente più semplice) di alcune <a href="/wiki/Derivata" title="Derivata">derivate</a>, tramite il <a href="/wiki/Teorema_dei_residui" title="Teorema dei residui">teorema dei residui</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definizione">Definizione</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=1" title="Modifica la sezione Definizione" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=1" title="Edit section's source code: Definizione"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> un <a href="/wiki/Insieme_aperto" title="Insieme aperto">aperto</a> del <a href="/wiki/Piano_complesso" title="Piano complesso">piano complesso</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>, e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> un punto di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>. Sia </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\Omega \setminus \{z_{0}\}\to \mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\Omega \setminus \{z_{0}\}\to \mathbb {C} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da12a7e8a1e8f9aa84b2a3b1f37de6b28cd1b1ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.488ex; height:2.843ex;" alt="{\displaystyle f:\Omega \setminus \{z_{0}\}\to \mathbb {C} ,}"></span></dd></dl> <p>una <a href="/wiki/Funzione_olomorfa" title="Funzione olomorfa">funzione olomorfa</a> che in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> ha una <a href="/wiki/Singolarit%C3%A0_isolata" title="Singolarità isolata">singolarità isolata</a> e quindi un unico sviluppo locale in <a href="/wiki/Serie_di_Laurent" title="Serie di Laurent">serie di Laurent</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=\sum \limits _{n=-\infty }^{\infty }a_{n}(z-z_{0})^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=\sum \limits _{n=-\infty }^{\infty }a_{n}(z-z_{0})^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1dc6deded6f8380c2b2530cfa8317d6fce959fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.035ex; height:6.843ex;" alt="{\displaystyle f(z)=\sum \limits _{n=-\infty }^{\infty }a_{n}(z-z_{0})^{n}.}"></span></dd></dl> <p>Il <b>residuo</b> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> è l'integrale di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> lungo la circonferenza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{r}=\left\{z:|z-z_{0}|=r\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>z</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>r</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{r}=\left\{z:|z-z_{0}|=r\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa05695e47d9dd35c46a5ca66d85a9d582f884c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.131ex; height:2.843ex;" alt="{\displaystyle \gamma _{r}=\left\{z:|z-z_{0}|=r\right\}}"></span> diviso per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f5715af49984c5b33961d55f532d14497b0cbae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.297ex; height:2.176ex;" alt="{\displaystyle 2\pi i}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f,z_{0})={1 \over 2\pi i}\oint _{\gamma _{r}}f(z)\,\mathrm {d} z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> </mrow> </mfrac> </mrow> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f,z_{0})={1 \over 2\pi i}\oint _{\gamma _{r}}f(z)\,\mathrm {d} z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5f79ce0fb12b7f376350875c647d4757c93034e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:28.008ex; height:6.176ex;" alt="{\displaystyle \operatorname {Res} (f,z_{0})={1 \over 2\pi i}\oint _{\gamma _{r}}f(z)\,\mathrm {d} z}"></span></dd></dl> <p>dove il raggio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> è preso sufficientemente piccolo da non contenere altre singolarità isolate. In modo equivalente, il residuo di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> è il coefficiente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2238e179fc0f9004707cbfdf6f42510b3c89ee3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.563ex; height:2.009ex;" alt="{\displaystyle a_{-1}}"></span> della <a href="/wiki/Serie_di_Laurent" title="Serie di Laurent">serie di Laurent</a>, e viene indicato con </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Res</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e416a100bb1f6a3953f58cb539267f9754db1ac2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.359ex; height:3.009ex;" alt="{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}.}"></span></dd></dl> <p>Il valore del residuo non dipende dal raggio del cerchio lungo il quale avviene l'integrazione, ma solo dal comportamento della funzione nel punto di singolarità. </p> <div class="mw-heading mw-heading2"><h2 id="Integrali_di_contorno">Integrali di contorno</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=2" title="Modifica la sezione Integrali di contorno" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=2" title="Edit section's source code: Integrali di contorno"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r130657691">body:not(.skin-minerva) .mw-parser-output .vedi-anche{font-size:95%}</style><style data-mw-deduplicate="TemplateStyles:r139142988">.mw-parser-output .hatnote-content{align-items:center;display:flex}.mw-parser-output .hatnote-icon{flex-shrink:0}.mw-parser-output .hatnote-icon img{display:flex}.mw-parser-output .hatnote-text{font-style:italic}body:not(.skin-minerva) .mw-parser-output .hatnote{border:1px solid #CCC;display:flex;margin:.5em 0;padding:.2em .5em}body:not(.skin-minerva) .mw-parser-output .hatnote-text{padding-left:.5em}body.skin-minerva .mw-parser-output .hatnote-icon{padding-right:8px}body.skin-minerva .mw-parser-output .hatnote-icon img{height:auto;width:16px}body.skin--responsive .mw-parser-output .hatnote a.new{color:#d73333}body.skin--responsive .mw-parser-output .hatnote a.new:visited{color:#a55858}</style> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Teorema_dei_residui" title="Teorema dei residui">Teorema dei residui</a></b>.</span></div> </div> <p>Il residuo è importante perché determina l'<a href="/wiki/Integrale_di_linea" title="Integrale di linea">integrale</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> lungo una curva chiusa che abbia <a href="/wiki/Indice_di_avvolgimento" title="Indice di avvolgimento">indice di avvolgimento</a> uno intorno alla singolarità. Ad esempio, la curva </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (t)=z_{0}+re^{2\pi it}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (t)=z_{0}+re^{2\pi it}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faaf64e3c96cb6a6f4827e9fc22ad128eb5ebbf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:17.662ex; height:3.176ex;" alt="{\displaystyle \gamma (t)=z_{0}+re^{2\pi it}\,\!}"></span></dd></dl> <p>definita su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span>, per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> sufficientemente piccolo in modo che il suo supporto sia effettivamente in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>. Vale quindi </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}={\frac {1}{2\pi \mathrm {i} }}\oint _{\gamma }f(z)\,\mathrm {d} z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Res</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> </mrow> </mfrac> </mrow> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}={\frac {1}{2\pi \mathrm {i} }}\oint _{\gamma }f(z)\,\mathrm {d} z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ff896a53c0bdbd3f29626785f7b4a13be9b6ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.923ex; height:6.009ex;" alt="{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}={\frac {1}{2\pi \mathrm {i} }}\oint _{\gamma }f(z)\,\mathrm {d} z}"></span></dd></dl> <p>Infatti valgono le uguaglianze </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\oint _{\gamma }f(z)\,\mathrm {d} z&=\oint _{\gamma }\sum \limits _{n=-\infty }^{\infty }a_{n}(z-z_{0})^{n}\,\mathrm {d} z\\&=\sum \limits _{n=-\infty }^{\infty }\oint _{\gamma }a_{n}(z-z_{0})^{n}\,\mathrm {d} z\\&=\oint _{\gamma }a_{-1}(z-z_{0})^{-1}\,\mathrm {d} z\\&=2\pi ia_{-1}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\oint _{\gamma }f(z)\,\mathrm {d} z&=\oint _{\gamma }\sum \limits _{n=-\infty }^{\infty }a_{n}(z-z_{0})^{n}\,\mathrm {d} z\\&=\sum \limits _{n=-\infty }^{\infty }\oint _{\gamma }a_{n}(z-z_{0})^{n}\,\mathrm {d} z\\&=\oint _{\gamma }a_{-1}(z-z_{0})^{-1}\,\mathrm {d} z\\&=2\pi ia_{-1}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37d823b6730d44e9f1add0e8a64e80d4157826ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.171ex; width:36.284ex; height:23.509ex;" alt="{\displaystyle {\begin{aligned}\oint _{\gamma }f(z)\,\mathrm {d} z&=\oint _{\gamma }\sum \limits _{n=-\infty }^{\infty }a_{n}(z-z_{0})^{n}\,\mathrm {d} z\\&=\sum \limits _{n=-\infty }^{\infty }\oint _{\gamma }a_{n}(z-z_{0})^{n}\,\mathrm {d} z\\&=\oint _{\gamma }a_{-1}(z-z_{0})^{-1}\,\mathrm {d} z\\&=2\pi ia_{-1}\end{aligned}}}"></span></dd></dl> <p>Tutti i termini diversi da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29e4adfef8131b59aa818f2877c061297f01272c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.464ex; height:2.343ex;" alt="{\displaystyle n=-1}"></span> infatti non contribuiscono all'integrale, poiché la funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (z-z_{0})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (z-z_{0})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd846daf4b0a87a83cd78e573f768b483c68fdd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.092ex; height:2.843ex;" alt="{\displaystyle (z-z_{0})^{n}}"></span> ha una primitiva ben definita per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> maggiore di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span>, data da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (z-z_{0})^{n+1}/(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (z-z_{0})^{n+1}/(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69a14af824ee443d0263a47cc7ef75094b2e1918" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.562ex; height:3.176ex;" alt="{\displaystyle (z-z_{0})^{n+1}/(n+1)}"></span> mentre per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> minore di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> l'integrale su linea chiusa è nullo anche se non ben definito per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z_{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=z_{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0525b32971d2d5001dc828ca8b1efba1e4c709c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.969ex; height:2.009ex;" alt="{\displaystyle z=z_{0}.}"></span> L'ultima uguaglianza può essere calcolata direttamente, traslando in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6015a6c1d9f7912952d18c0ddc01d7a4b901483" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.396ex; height:2.509ex;" alt="{\displaystyle z_{0}=0}"></span> per comodità: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\oint _{\gamma }{\frac {1}{z}}\mathrm {d} z&=\int _{0}^{1}{\frac {1}{re^{2\pi it}}}re^{2\pi it}\cdot 2\pi i\,\mathrm {d} t\\&=\int _{0}^{1}2\pi i\,\mathrm {d} t\\&=2\pi i.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>t</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>t</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\oint _{\gamma }{\frac {1}{z}}\mathrm {d} z&=\int _{0}^{1}{\frac {1}{re^{2\pi it}}}re^{2\pi it}\cdot 2\pi i\,\mathrm {d} t\\&=\int _{0}^{1}2\pi i\,\mathrm {d} t\\&=2\pi i.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0500e0545e78f79a4faad0ac5a54caae4aa0fa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:33.849ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}\oint _{\gamma }{\frac {1}{z}}\mathrm {d} z&=\int _{0}^{1}{\frac {1}{re^{2\pi it}}}re^{2\pi it}\cdot 2\pi i\,\mathrm {d} t\\&=\int _{0}^{1}2\pi i\,\mathrm {d} t\\&=2\pi i.\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Calcolo_del_residuo">Calcolo del residuo</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=3" title="Modifica la sezione Calcolo del residuo" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=3" title="Edit section's source code: Calcolo del residuo"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Il calcolo del residuo di una funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dd568d570b390c337c0a911f0a1c5c214e8240" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.176ex; height:2.843ex;" alt="{\displaystyle f(z)}"></span> in un punto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> risulta particolarmente semplice nel caso in cui la <a href="/wiki/Singolarit%C3%A0_isolata" title="Singolarità isolata">singolarità isolata</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> sia eliminabile o un <a href="/wiki/Polo_(analisi_complessa)" title="Polo (analisi complessa)">polo</a>. Se la singolarità è eliminabile allora il residuo è automaticamente zero, mentre se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> è un polo di ordine <i>k</i> il residuo è: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{-1}={\frac {1}{(k-1)!}}\lim _{z\to z_{0}}{\frac {\mathrm {d} ^{k-1}}{\mathrm {d} z^{k-1}}}\left[(z-z_{0})^{k}\cdot f(z)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{-1}={\frac {1}{(k-1)!}}\lim _{z\to z_{0}}{\frac {\mathrm {d} ^{k-1}}{\mathrm {d} z^{k-1}}}\left[(z-z_{0})^{k}\cdot f(z)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bd7f5d714dda6c422bebbaa4b6a333f3ec8cfa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.502ex; height:6.676ex;" alt="{\displaystyle a_{-1}={\frac {1}{(k-1)!}}\lim _{z\to z_{0}}{\frac {\mathrm {d} ^{k-1}}{\mathrm {d} z^{k-1}}}\left[(z-z_{0})^{k}\cdot f(z)\right]}"></span></dd></dl> <p>e in particolare, se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> è un polo semplice (cioè se <i>k</i> = 1), allora il residuo è semplicemente: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{-1}=\lim _{z\to z_{0}}[(z-z_{0})\cdot f(z)].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </munder> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{-1}=\lim _{z\to z_{0}}[(z-z_{0})\cdot f(z)].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8eb570dc783c5f99867f81f6babeab5b13a0d9ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:26.339ex; height:4.176ex;" alt="{\displaystyle a_{-1}=\lim _{z\to z_{0}}[(z-z_{0})\cdot f(z)].}"></span></dd></dl> <p>Infatti la serie di Laurent si scrive come </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=\sum \limits _{n=-k}^{\infty }a_{n}(z-z_{0})^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=\sum \limits _{n=-k}^{\infty }a_{n}(z-z_{0})^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e612b3aaa42ae83510eeb26cc4566d0267cc8b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.248ex; height:7.009ex;" alt="{\displaystyle f(z)=\sum \limits _{n=-k}^{\infty }a_{n}(z-z_{0})^{n},}"></span></dd></dl> <p>ove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> è l'ordine del polo. Ponendo </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(z)=(z-z_{0})^{k}f(z)=\sum _{n=0}^{\infty }a_{n-k}(z-z_{0})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(z)=(z-z_{0})^{k}f(z)=\sum _{n=0}^{\infty }a_{n-k}(z-z_{0})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1067d1bc943fe38e84778505e38634fe773011a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.765ex; height:6.843ex;" alt="{\displaystyle g(z)=(z-z_{0})^{k}f(z)=\sum _{n=0}^{\infty }a_{n-k}(z-z_{0})^{n}}"></span>,</dd></dl> <p>si ottiene una funzione analitica in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> con <a href="/wiki/Serie_di_Taylor" title="Serie di Taylor">sviluppo di Taylor</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(z)=\sum \limits _{n=0}^{\infty }{\frac {g^{(n)}(z_{0})}{n!}}(z-z_{0})^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(z)=\sum \limits _{n=0}^{\infty }{\frac {g^{(n)}(z_{0})}{n!}}(z-z_{0})^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/314ccc68ee77e508bcdfb31f8e478ad0db49f5dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.989ex; height:7.176ex;" alt="{\displaystyle g(z)=\sum \limits _{n=0}^{\infty }{\frac {g^{(n)}(z_{0})}{n!}}(z-z_{0})^{n}.}"></span></dd></dl> <p>Confrontando il coefficiente del termine di grado <i>k</i>-1 delle due serie per <i>g</i> (<i>z</i>), risulta quindi </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}={\frac {1}{(k-1)!}}g^{(k-1)}(z_{0}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Res</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}={\frac {1}{(k-1)!}}g^{(k-1)}(z_{0}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/671e22cb252fc3891e19e1dd1fc08a81915b843e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:38.495ex; height:6.009ex;" alt="{\displaystyle \operatorname {Res} _{z_{0}}f(z)=a_{-1}={\frac {1}{(k-1)!}}g^{(k-1)}(z_{0}).}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Residuo_all'infinito"><span id="Residuo_all.27infinito"></span>Residuo all'infinito</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=4" title="Modifica la sezione Residuo all'infinito" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=4" title="Edit section's source code: Residuo all'infinito"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Una funzione olomorfa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\Omega \to \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\Omega \to \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52902261281f9ec775a0a08924268e286ead034c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.186ex; height:2.509ex;" alt="{\displaystyle f:\Omega \to \mathbb {C} }"></span> è definita in un <i>intorno dell'infinito</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> se esiste un <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57914127d03a5cea02c60a32cfbb22f34904f00d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.025ex; height:2.176ex;" alt="{\displaystyle R>0}"></span> tale che l'aperto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> contenga tutti gli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> con modulo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|>R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|>R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1df003a0a3ea3279f5f3de1a5a6a0463e703f3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.244ex; height:2.843ex;" alt="{\displaystyle |z|>R}"></span>. In questo caso, è definito il <b>residuo all'infinito</b> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dd568d570b390c337c0a911f0a1c5c214e8240" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.176ex; height:2.843ex;" alt="{\displaystyle f(z)}"></span> come </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} _{\infty }f(z)=-{\frac {1}{2\pi \mathrm {i} }}\oint _{\gamma }f(z)\,\mathrm {d} z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Res</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> </mrow> </mfrac> </mrow> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} _{\infty }f(z)=-{\frac {1}{2\pi \mathrm {i} }}\oint _{\gamma }f(z)\,\mathrm {d} z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55b433faeb59f4215e2061615a335f5bd3d8decf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.117ex; height:6.009ex;" alt="{\displaystyle \operatorname {Res} _{\infty }f(z)=-{\frac {1}{2\pi \mathrm {i} }}\oint _{\gamma }f(z)\,\mathrm {d} z}"></span></dd></dl> <p>dove </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (t)=R'e^{2\pi it}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>R</mi> <mo>′</mo> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (t)=R'e^{2\pi it}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7083995101dd0557621e45c18ef062a9aa1b8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.699ex; height:3.176ex;" alt="{\displaystyle \gamma (t)=R'e^{2\pi it}}"></span></dd></dl> <p>è una curva qualsiasi con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R'>R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mo>′</mo> </msup> <mo>></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R'>R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3f2d8231276e2ebc6f3f46f72a75d6872d38899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.311ex; height:2.509ex;" alt="{\displaystyle R'>R}"></span> (il risultato non dipende da questa scelta). </p><p>In particolare, il residuo all'infinito può essere determinato come </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} _{\infty }f(z)=-\operatorname {Res} _{\omega =0}{\frac {1}{\omega ^{2}}}f\left({\frac {1}{\omega }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Res</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>Res</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ω<!-- ω --></mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ω<!-- ω --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} _{\infty }f(z)=-\operatorname {Res} _{\omega =0}{\frac {1}{\omega ^{2}}}f\left({\frac {1}{\omega }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae0bb0bbd6670bf3d60bc46aef821066e24971c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.498ex; height:6.176ex;" alt="{\displaystyle \operatorname {Res} _{\infty }f(z)=-\operatorname {Res} _{\omega =0}{\frac {1}{\omega ^{2}}}f\left({\frac {1}{\omega }}\right)}"></span></dd></dl> <p>Tale relazione discende da un semplice cambio di variabile (o <a href="/wiki/Trasformazione_conforme" class="mw-redirect" title="Trasformazione conforme">trasformazione conforme</a>) che manda la variabile <i>z</i> nella sua inversa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =z^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>=</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =z^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad9f112a20694cb73744d4149976a3e7ab7c7de4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.967ex; height:2.676ex;" alt="{\displaystyle \omega =z^{-1}}"></span>. Segue allora che </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\oint f(z)\,\mathrm {d} z&=-\oint _{\tilde {\gamma }}f\left({\frac {1}{\omega }}\right)\,\mathrm {d} \left({\frac {1}{\omega }}\right)\\&=\oint _{\tilde {\gamma }}{\frac {1}{\omega ^{2}}}f\left({\frac {1}{\omega }}\right)\,\mathrm {d} \omega ,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo>∮<!-- ∮ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>γ<!-- γ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ω<!-- ω --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ω<!-- ω --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>γ<!-- γ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ω<!-- ω --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>ω<!-- ω --></mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\oint f(z)\,\mathrm {d} z&=-\oint _{\tilde {\gamma }}f\left({\frac {1}{\omega }}\right)\,\mathrm {d} \left({\frac {1}{\omega }}\right)\\&=\oint _{\tilde {\gamma }}{\frac {1}{\omega ^{2}}}f\left({\frac {1}{\omega }}\right)\,\mathrm {d} \omega ,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ee990a09185a49deff8ea8b6b8922f8d3f71539" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:33.9ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}\oint f(z)\,\mathrm {d} z&=-\oint _{\tilde {\gamma }}f\left({\frac {1}{\omega }}\right)\,\mathrm {d} \left({\frac {1}{\omega }}\right)\\&=\oint _{\tilde {\gamma }}{\frac {1}{\omega ^{2}}}f\left({\frac {1}{\omega }}\right)\,\mathrm {d} \omega ,\end{aligned}}}"></span></dd></dl> <p>ove </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\gamma }}(t)={\frac {1}{R'}}e^{-2\pi it}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>γ<!-- γ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>R</mi> <mo>′</mo> </msup> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>t</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\gamma }}(t)={\frac {1}{R'}}e^{-2\pi it}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13155c2e1ae5f7071b81746f8143f3f9227d7974" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.461ex; height:5.343ex;" alt="{\displaystyle {\tilde {\gamma }}(t)={\frac {1}{R'}}e^{-2\pi it}.}"></span></dd></dl> <p>Risulta allora che la funzione ha un punto singolare isolato nella nuova variabile ω dove essa vale 0. Ad essa si applica allora il <a href="/wiki/Teorema_dei_residui" title="Teorema dei residui">teorema dei residui</a>, da cui discende la formula per il residuo all'infinito. Da notare che la rappresentazione sulla <a href="/wiki/Sfera_di_Riemann" title="Sfera di Riemann">sfera di Riemann</a> fornisce una rappresentazione potente della situazione matematica descritta. </p> <div class="mw-heading mw-heading2"><h2 id="Esempi">Esempi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=5" title="Modifica la sezione Esempi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=5" title="Edit section's source code: Esempi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Esempio_1">Esempio 1</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=6" title="Modifica la sezione Esempio 1" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=6" title="Edit section's source code: Esempio 1"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {C} \setminus \left\{-1\right\}\rightarrow \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mrow> <mo>{</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {C} \setminus \left\{-1\right\}\rightarrow \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a31bb892e18ff08516bb73db952d081bb3740a11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.676ex; height:2.843ex;" alt="{\displaystyle f:\mathbb {C} \setminus \left\{-1\right\}\rightarrow \mathbb {C} }"></span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)={\frac {1}{1+z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)={\frac {1}{1+z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f2094813a080515720f7cf7ccd2abc5ce658739" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.202ex; height:5.343ex;" alt="{\displaystyle f(z)={\frac {1}{1+z}}}"></span>. </p><p>Poiché <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> è olomorfa intorno a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span>, per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\neq -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>≠<!-- ≠ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\neq -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc7a44c15cc1e5cac5f3dfd42135f1ed8b97ec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.733ex; height:2.676ex;" alt="{\displaystyle w\neq -1}"></span>, lo sviluppo di Laurent di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> è lo sviluppo di Taylor, dunque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{-1}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{-1}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20eb4d264abc49edfa17b2d9ae8c80181364b36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.824ex; height:2.509ex;" alt="{\displaystyle a_{-1}=0}"></span> e dunque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),w)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),w)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80cb939f77f12ca50d56292e067fef716be81f8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.604ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),w)=0}"></span> se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\neq -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>≠<!-- ≠ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\neq -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc7a44c15cc1e5cac5f3dfd42135f1ed8b97ec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.733ex; height:2.676ex;" alt="{\displaystyle w\neq -1}"></span>. </p><p>Lo sviluppo di Laurent di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> è </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{1+z}}={\frac {1}{z-(-1)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{1+z}}={\frac {1}{z-(-1)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/524024bc88fced516473630a5db57c051559195e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.57ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{1+z}}={\frac {1}{z-(-1)}}}"></span> </p><p>dunque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{-1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{-1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a91fd7a9da8208ca0a31c8060dae9b23c4ebc495" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.824ex; height:2.509ex;" alt="{\displaystyle a_{-1}=1}"></span> e allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),-1)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),-1)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24cb21a0fe450ea1ec4f5374899b0010e6982f9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.91ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),-1)=1}"></span>. Per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d46cad72cecacc5589e98dd8f487e7723a112ceb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.925ex; height:2.676ex;" alt="{\displaystyle w\neq 0}"></span>, considero la </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}-{\frac {1}{w^{2}}}{\frac {1}{1+{\frac {1}{w}}}}&=-{\frac {1}{w}}{\frac {1}{1+w}}\\&={\frac {-1}{w}}\,(1-w+w^{2}-w^{3}+\cdots )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>w</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>w</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>w</mi> <mo>+</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}-{\frac {1}{w^{2}}}{\frac {1}{1+{\frac {1}{w}}}}&=-{\frac {1}{w}}{\frac {1}{1+w}}\\&={\frac {-1}{w}}\,(1-w+w^{2}-w^{3}+\cdots )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51d2d77efe275d1d45301d55b4805794c2e37004" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.196ex; margin-bottom: -0.308ex; width:44.416ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}-{\frac {1}{w^{2}}}{\frac {1}{1+{\frac {1}{w}}}}&=-{\frac {1}{w}}{\frac {1}{1+w}}\\&={\frac {-1}{w}}\,(1-w+w^{2}-w^{3}+\cdots )\end{aligned}}}"></span> </p><p>e dunque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),\infty )=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),\infty )=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b6f121f03ec96aedcbf527f43638f646d39fc8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.071ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),\infty )=-1}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Esempio_2">Esempio 2</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=7" title="Modifica la sezione Esempio 2" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=7" title="Edit section's source code: Esempio 2"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {C} \setminus \left\{-1\right\}\rightarrow \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mrow> <mo>{</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {C} \setminus \left\{-1\right\}\rightarrow \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a31bb892e18ff08516bb73db952d081bb3740a11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.676ex; height:2.843ex;" alt="{\displaystyle f:\mathbb {C} \setminus \left\{-1\right\}\rightarrow \mathbb {C} }"></span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)={\frac {z}{1+z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)={\frac {z}{1+z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d895d2fc6d062fd3a16ed242c7ee4c0a28a0be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.202ex; height:4.843ex;" alt="{\displaystyle f(z)={\frac {z}{1+z}}}"></span>. </p><p>Mostrare che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),z_{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),z_{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce9c4a9b7805c87fc65d0b842bb3ab482a486fab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.075ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),z_{0})=0}"></span> se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}\neq -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>≠<!-- ≠ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}\neq -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7876f95475a8c770b6c62d2b535fc58884a0cbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.204ex; height:2.676ex;" alt="{\displaystyle z_{0}\neq -1}"></span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),-1)=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),-1)=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c75d211d7ac1cc4ea462833dcd2fe432c7a234b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.718ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),-1)=-1}"></span> e </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),\infty )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),\infty )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de6736742d36ef80b14663b34fdce63543dc8d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.263ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),\infty )=1}"></span>. </p><p>Poiché <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)={\frac {z}{1+z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)={\frac {z}{1+z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d895d2fc6d062fd3a16ed242c7ee4c0a28a0be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.202ex; height:4.843ex;" alt="{\displaystyle f(z)={\frac {z}{1+z}}}"></span> è olomorfa intorno a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span>, per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}\neq -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>≠<!-- ≠ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}\neq -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7876f95475a8c770b6c62d2b535fc58884a0cbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.204ex; height:2.676ex;" alt="{\displaystyle z_{0}\neq -1}"></span>, lo sviluppo di Laurent di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> è lo sviluppo di Taylor, dunque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{-1}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{-1}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20eb4d264abc49edfa17b2d9ae8c80181364b36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.824ex; height:2.509ex;" alt="{\displaystyle a_{-1}=0}"></span> e dunque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),z_{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),z_{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce9c4a9b7805c87fc65d0b842bb3ab482a486fab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.075ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),z_{0})=0}"></span> se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}\neq -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>≠<!-- ≠ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}\neq -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7876f95475a8c770b6c62d2b535fc58884a0cbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.204ex; height:2.676ex;" alt="{\displaystyle z_{0}\neq -1}"></span>, come nel caso precedente. </p><p>Lo sviluppo di Laurent di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> è </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {z}{1+z}}&={\frac {1+z-1}{1+z}}\\&=1-{\frac {1}{1+z}}\\&=1+{\frac {-1}{z-(-1)}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {z}{1+z}}&={\frac {1+z-1}{1+z}}\\&=1-{\frac {1}{1+z}}\\&=1+{\frac {-1}{z-(-1)}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebd4aaa2978e16b3a32b8b9ee69c7e2c07a988d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.77ex; margin-bottom: -0.235ex; width:23.324ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {z}{1+z}}&={\frac {1+z-1}{1+z}}\\&=1-{\frac {1}{1+z}}\\&=1+{\frac {-1}{z-(-1)}}\end{aligned}}}"></span> </p><p>dunque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{-1}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{-1}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c82a4148226e9dad6e31de4bbf74535353064ae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.632ex; height:2.509ex;" alt="{\displaystyle a_{-1}=-1}"></span> e allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),-1)=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),-1)=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c75d211d7ac1cc4ea462833dcd2fe432c7a234b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.718ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),-1)=-1}"></span>. Per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d46cad72cecacc5589e98dd8f487e7723a112ceb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.925ex; height:2.676ex;" alt="{\displaystyle w\neq 0}"></span>, considero la </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}-{\frac {1}{w^{2}}}{\frac {\frac {1}{w}}{1+{\frac {1}{w}}}}&=-{\frac {1}{w^{2}}}{\frac {1}{1+w}}\\&={\frac {-1}{w^{2}}}\,(1-w+w^{2}-w^{3}+\cdots )\\&=-{\frac {1}{w^{2}}}+{\frac {1}{w}}-1+w-\cdots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>w</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>w</mi> <mo>+</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mo>+</mo> <mi>w</mi> <mo>−<!-- − --></mo> <mo>⋯<!-- ⋯ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}-{\frac {1}{w^{2}}}{\frac {\frac {1}{w}}{1+{\frac {1}{w}}}}&=-{\frac {1}{w^{2}}}{\frac {1}{1+w}}\\&={\frac {-1}{w^{2}}}\,(1-w+w^{2}-w^{3}+\cdots )\\&=-{\frac {1}{w^{2}}}+{\frac {1}{w}}-1+w-\cdots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52e152805e35a0570402a53b3867473b0d1831c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.652ex; margin-bottom: -0.186ex; width:44.416ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}-{\frac {1}{w^{2}}}{\frac {\frac {1}{w}}{1+{\frac {1}{w}}}}&=-{\frac {1}{w^{2}}}{\frac {1}{1+w}}\\&={\frac {-1}{w^{2}}}\,(1-w+w^{2}-w^{3}+\cdots )\\&=-{\frac {1}{w^{2}}}+{\frac {1}{w}}-1+w-\cdots \end{aligned}}}"></span> </p><p>e dunque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),\infty )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),\infty )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de6736742d36ef80b14663b34fdce63543dc8d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.263ex; height:2.843ex;" alt="{\displaystyle \operatorname {Res} (f(z),\infty )=1}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Esempio_3">Esempio 3</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=8" title="Modifica la sezione Esempio 3" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=8" title="Edit section's source code: Esempio 3"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {C} \setminus \left\{\pm i\right\}\rightarrow \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mrow> <mo>{</mo> <mrow> <mo>±<!-- ± --></mo> <mi>i</mi> </mrow> <mo>}</mo> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {C} \setminus \left\{\pm i\right\}\rightarrow \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce62300a3810f0a03e6b6dd108c06e01d486555" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.316ex; height:2.843ex;" alt="{\displaystyle f:\mathbb {C} \setminus \left\{\pm i\right\}\rightarrow \mathbb {C} }"></span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)={\frac {1}{z^{2}+1}}={\frac {1}{(z+i)(z-i)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)={\frac {1}{z^{2}+1}}={\frac {1}{(z+i)(z-i)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046be030cdffad012565a570f4225f20028b5570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.273ex; height:6.009ex;" alt="{\displaystyle f(z)={\frac {1}{z^{2}+1}}={\frac {1}{(z+i)(z-i)}}}"></span>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Res} (f(z),i)=\lim _{z\rightarrow i}{\frac {z-i}{z^{2}+1}}=\lim _{z\rightarrow i}{\frac {1}{z+i}}={\frac {1}{2i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Res</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">→<!-- → --></mo> <mi>i</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> <mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">→<!-- → --></mo> <mi>i</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>z</mi> <mo>+</mo> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Res} (f(z),i)=\lim _{z\rightarrow i}{\frac {z-i}{z^{2}+1}}=\lim _{z\rightarrow i}{\frac {1}{z+i}}={\frac {1}{2i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9b27c2ff650a15a4311c28abcf8992cd0abd0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:43.361ex; height:5.676ex;" alt="{\displaystyle \operatorname {Res} (f(z),i)=\lim _{z\rightarrow i}{\frac {z-i}{z^{2}+1}}=\lim _{z\rightarrow i}{\frac {1}{z+i}}={\frac {1}{2i}}}"></span> </p><p>perché <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{2}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{2}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74261e1a2745545257965d1289a444de614e5419" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.147ex; height:2.843ex;" alt="{\displaystyle z^{2}+1}"></span> ha grado 2 ma i due poli in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>±<!-- ± --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1b7df63745bc6839de7b7df413c192f5816ff2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.611ex; height:2.176ex;" alt="{\displaystyle \pm i}"></span> hanno ciascuno molteplicità 1. </p> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=9" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=9" title="Edit section's source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Teorema_dei_residui" title="Teorema dei residui">Teorema dei residui</a></li> <li><a href="/wiki/Singolarit%C3%A0_isolata" title="Singolarità isolata">Singolarità isolata</a></li> <li><a href="/wiki/Polo_(analisi_complessa)" title="Polo (analisi complessa)">Polo (analisi complessa)</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Residuo_(analisi_complessa)&veaction=edit&section=10" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Residuo_(analisi_complessa)&action=edit&section=10" title="Edit section's source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li class="mw-empty-elt"></li> <li><cite id="CITEREFBritannica.com" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://www.britannica.com/topic/residue"><span style="font-style:italic;">residue</span></a>, su <span style="font-style:italic;"><a href="/wiki/Enciclopedia_Britannica" title="Enciclopedia Britannica">Enciclopedia Britannica</a></span>, Encyclopædia Britannica, Inc.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q753375#P1417" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFMathWorld" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Eric W. Weisstein, <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/ComplexResidue.html"><span style="font-style:italic;">Residuo</span></a>, su <span style="font-style:italic;"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span>, Wolfram Research.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q753375#P2812" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li></ul> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-grow: 1"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span> <b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b>: accedi alle voci di Wikipedia che trattano di matematica</div></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐864bbfd546‐q7v9d Cached time: 20241130091946 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.299 seconds Real time usage: 0.524 seconds Preprocessor visited node count: 4348/1000000 Post‐expand include size: 7556/2097152 bytes Template argument size: 1685/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 4/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 6052/5000000 bytes Lua time usage: 0.139/10.000 seconds Lua memory usage: 4644728/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 293.620 1 -total 60.54% 177.763 1 Template:Collegamenti_esterni 15.17% 44.542 1 Template:F 14.38% 42.212 1 Template:Avviso 13.53% 39.737 1 Template:Vedi_anche 9.78% 28.730 1 Template:Portale 9.54% 28.014 1 Template:Categorie_avviso 7.57% 22.227 3 Template:Rp 4.92% 14.456 1 Template:Icona_argomento 0.73% 2.143 1 Template:Icona_lavoro --> <!-- Saved in parser cache with key itwiki:pcache:1220557:|#|:idhash:canonical and timestamp 20241130091946 and revision id 124424267. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Residuo_(analisi_complessa)&oldid=124424267">https://it.wikipedia.org/w/index.php?title=Residuo_(analisi_complessa)&oldid=124424267</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categoria</a>: <ul><li><a href="/wiki/Categoria:Analisi_complessa" title="Categoria:Analisi complessa">Analisi complessa</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:Senza_fonti_-_matematica" title="Categoria:Senza fonti - matematica">Senza fonti - matematica</a></li><li><a href="/wiki/Categoria:Senza_fonti_-_luglio_2017" title="Categoria:Senza fonti - luglio 2017">Senza fonti - luglio 2017</a></li><li><a href="/wiki/Categoria:P1417_letta_da_Wikidata" title="Categoria:P1417 letta da Wikidata">P1417 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P2812_letta_da_Wikidata" title="Categoria:P2812 letta da Wikidata">P2812 letta da Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta l'8 dic 2021 alle 10:52.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Residuo_(analisi_complessa)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5857dfdcd6-6dz9k","wgBackendResponseTime":177,"wgPageParseReport":{"limitreport":{"cputime":"0.299","walltime":"0.524","ppvisitednodes":{"value":4348,"limit":1000000},"postexpandincludesize":{"value":7556,"limit":2097152},"templateargumentsize":{"value":1685,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":6052,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 293.620 1 -total"," 60.54% 177.763 1 Template:Collegamenti_esterni"," 15.17% 44.542 1 Template:F"," 14.38% 42.212 1 Template:Avviso"," 13.53% 39.737 1 Template:Vedi_anche"," 9.78% 28.730 1 Template:Portale"," 9.54% 28.014 1 Template:Categorie_avviso"," 7.57% 22.227 3 Template:Rp"," 4.92% 14.456 1 Template:Icona_argomento"," 0.73% 2.143 1 Template:Icona_lavoro"]},"scribunto":{"limitreport-timeusage":{"value":"0.139","limit":"10.000"},"limitreport-memusage":{"value":4644728,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-864bbfd546-q7v9d","timestamp":"20241130091946","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Residuo (analisi complessa)","url":"https:\/\/it.wikipedia.org\/wiki\/Residuo_(analisi_complessa)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q753375","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q753375","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-07-07T10:02:07Z","dateModified":"2021-12-08T09:52:16Z"}</script> </body> </html>