CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;14 of 14 results for author: <span class="mathjax">Evans, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Evans%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Evans, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Evans%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Evans, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17744">arXiv:2402.17744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17744">pdf</a>, <a href="https://arxiv.org/format/2402.17744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ISBI56570.2024.10635467">10.1109/ISBI56570.2024.10635467 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analyzing Regional Organization of the Human Hippocampus in 3D-PLI Using Contrastive Learning and Geometric Unfolding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Oberstrass%2C+A">Alexander Oberstrass</a>, <a href="/search/cs?searchtype=author&amp;query=DeKraker%2C+J">Jordan DeKraker</a>, <a href="/search/cs?searchtype=author&amp;query=Palomero-Gallagher%2C+N">Nicola Palomero-Gallagher</a>, <a href="/search/cs?searchtype=author&amp;query=Muenzing%2C+S+E+A">Sascha E. A. Muenzing</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+A+C">Alan C. Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Axer%2C+M">Markus Axer</a>, <a href="/search/cs?searchtype=author&amp;query=Amunts%2C+K">Katrin Amunts</a>, <a href="/search/cs?searchtype=author&amp;query=Dickscheid%2C+T">Timo Dickscheid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17744v1-abstract-short" style="display: inline;"> Understanding the cortical organization of the human brain requires interpretable descriptors for distinct structural and functional imaging data. 3D polarized light imaging (3D-PLI) is an imaging modality for visualizing fiber architecture in postmortem brains with high resolution that also captures the presence of cell bodies, for example, to identify hippocampal subfields. The rich texture in 3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17744v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17744v1-abstract-full" style="display: none;"> Understanding the cortical organization of the human brain requires interpretable descriptors for distinct structural and functional imaging data. 3D polarized light imaging (3D-PLI) is an imaging modality for visualizing fiber architecture in postmortem brains with high resolution that also captures the presence of cell bodies, for example, to identify hippocampal subfields. The rich texture in 3D-PLI images, however, makes this modality particularly difficult to analyze and best practices for characterizing architectonic patterns still need to be established. In this work, we demonstrate a novel method to analyze the regional organization of the human hippocampus in 3D-PLI by combining recent advances in unfolding methods with deep texture features obtained using a self-supervised contrastive learning approach. We identify clusters in the representations that correspond well with classical descriptions of hippocampal subfields, lending validity to the developed methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17744v1-abstract-full').style.display = 'none'; document.getElementById('2402.17744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ISBI 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11805">arXiv:2312.11805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11805">pdf</a>, <a href="https://arxiv.org/format/2312.11805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Gemini: A Family of Highly Capable Multimodal Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemini+Team"> Gemini Team</a>, <a href="/search/cs?searchtype=author&amp;query=Anil%2C+R">Rohan Anil</a>, <a href="/search/cs?searchtype=author&amp;query=Borgeaud%2C+S">Sebastian Borgeaud</a>, <a href="/search/cs?searchtype=author&amp;query=Alayrac%2C+J">Jean-Baptiste Alayrac</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+J">Jiahui Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Soricut%2C+R">Radu Soricut</a>, <a href="/search/cs?searchtype=author&amp;query=Schalkwyk%2C+J">Johan Schalkwyk</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+A+M">Andrew M. Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Hauth%2C+A">Anja Hauth</a>, <a href="/search/cs?searchtype=author&amp;query=Millican%2C+K">Katie Millican</a>, <a href="/search/cs?searchtype=author&amp;query=Silver%2C+D">David Silver</a>, <a href="/search/cs?searchtype=author&amp;query=Johnson%2C+M">Melvin Johnson</a>, <a href="/search/cs?searchtype=author&amp;query=Antonoglou%2C+I">Ioannis Antonoglou</a>, <a href="/search/cs?searchtype=author&amp;query=Schrittwieser%2C+J">Julian Schrittwieser</a>, <a href="/search/cs?searchtype=author&amp;query=Glaese%2C+A">Amelia Glaese</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jilin Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Pitler%2C+E">Emily Pitler</a>, <a href="/search/cs?searchtype=author&amp;query=Lillicrap%2C+T">Timothy Lillicrap</a>, <a href="/search/cs?searchtype=author&amp;query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&amp;query=Firat%2C+O">Orhan Firat</a>, <a href="/search/cs?searchtype=author&amp;query=Molloy%2C+J">James Molloy</a>, <a href="/search/cs?searchtype=author&amp;query=Isard%2C+M">Michael Isard</a>, <a href="/search/cs?searchtype=author&amp;query=Barham%2C+P+R">Paul R. Barham</a>, <a href="/search/cs?searchtype=author&amp;query=Hennigan%2C+T">Tom Hennigan</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+B">Benjamin Lee</a> , et al. (1325 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11805v4-abstract-short" style="display: inline;"> This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11805v4-abstract-full').style.display = 'inline'; document.getElementById('2312.11805v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11805v4-abstract-full" style="display: none;"> This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11805v4-abstract-full').style.display = 'none'; document.getElementById('2312.11805v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06321">arXiv:2211.06321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06321">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Sociodemographic inequalities in student achievement: An intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) with application to students in London, England </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Prior%2C+L">Lucy Prior</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+C">Clare Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Merlo%2C+J">Juan Merlo</a>, <a href="/search/cs?searchtype=author&amp;query=Leckie%2C+G">George Leckie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06321v2-abstract-short" style="display: inline;"> Sociodemographic inequalities in student achievement are a persistent concern for education systems and are increasingly recognized to be intersectional. Intersectionality considers the multidimensional nature of disadvantage, appreciating the interlocking social determinants which shape individual experience. Intersectional multilevel analysis of individual heterogeneity and discriminatory accura&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06321v2-abstract-full').style.display = 'inline'; document.getElementById('2211.06321v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06321v2-abstract-full" style="display: none;"> Sociodemographic inequalities in student achievement are a persistent concern for education systems and are increasingly recognized to be intersectional. Intersectionality considers the multidimensional nature of disadvantage, appreciating the interlocking social determinants which shape individual experience. Intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) is a new approach developed in population health but with limited application in educational research. In this study, we introduce and apply this approach to study sociodemographic inequalities in student achievement across two cohorts of students in London, England. We define 144 intersectional strata arising from combinations of student age, gender, free school meal status, special educational needs, and ethnicity. We find substantial strata-level variation in achievement composed primarily by additive rather than interactive effects with results stubbornly consistent across the cohorts. We conclude that policymakers should pay greater attention to multiply marginalized students and intersectional MAIHDA provides a useful approach to study their experiences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06321v2-abstract-full').style.display = 'none'; document.getElementById('2211.06321v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">63 pages (main text 39 pages), 10 figures, 10 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.06399">arXiv:2207.06399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.06399">pdf</a>, <a href="https://arxiv.org/format/2207.06399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06890-z">10.1038/s41586-023-06890-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Evans%2C+C+G">Constantine Glen Evans</a>, <a href="/search/cs?searchtype=author&amp;query=O%27Brien%2C+J">Jackson O&#39;Brien</a>, <a href="/search/cs?searchtype=author&amp;query=Winfree%2C+E">Erik Winfree</a>, <a href="/search/cs?searchtype=author&amp;query=Murugan%2C+A">Arvind Murugan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.06399v3-abstract-short" style="display: inline;"> Inspired by biology&#39;s most sophisticated computer, the brain, neural networks constitute a profound reformulation of computational principles. Remarkably, analogous high-dimensional, highly-interconnected computational architectures also arise within information-processing molecular systems inside living cells, such as signal transduction cascades and genetic regulatory networks. Might neuromorphi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06399v3-abstract-full').style.display = 'inline'; document.getElementById('2207.06399v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.06399v3-abstract-full" style="display: none;"> Inspired by biology&#39;s most sophisticated computer, the brain, neural networks constitute a profound reformulation of computational principles. Remarkably, analogous high-dimensional, highly-interconnected computational architectures also arise within information-processing molecular systems inside living cells, such as signal transduction cascades and genetic regulatory networks. Might neuromorphic collective modes be found more broadly in other physical and chemical processes, even those that ostensibly play non-information-processing roles such as protein synthesis, metabolism, or structural self-assembly? Here we examine nucleation during self-assembly of multicomponent structures, showing that high-dimensional patterns of concentrations can be discriminated and classified in a manner similar to neural network computation. Specifically, we design a set of 917 DNA tiles that can self-assemble in three alternative ways such that competitive nucleation depends sensitively on the extent of co-localization of high-concentration tiles within the three structures. The system was trained in-silico to classify a set of 18 grayscale 30 x 30 pixel images into three categories. Experimentally, fluorescence and atomic force microscopy monitoring during and after a 150-hour anneal established that all trained images were correctly classified, while a test set of image variations probed the robustness of the results. While slow compared to prior biochemical neural networks, our approach is surprisingly compact, robust, and scalable. This success suggests that ubiquitous physical phenomena, such as nucleation, may hold powerful information processing capabilities when scaled up as high-dimensional multicomponent systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06399v3-abstract-full').style.display = 'none'; document.getElementById('2207.06399v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 + 12 pages, 6 + 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 625, 500-507, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09649">arXiv:2109.09649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.09649">pdf</a>, <a href="https://arxiv.org/format/2109.09649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Data Augmentation Through Monte Carlo Arithmetic Leads to More Generalizable Classification in Connectomics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kiar%2C+G">Gregory Kiar</a>, <a href="/search/cs?searchtype=author&amp;query=Chatelain%2C+Y">Yohan Chatelain</a>, <a href="/search/cs?searchtype=author&amp;query=Salari%2C+A">Ali Salari</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+A+C">Alan C. Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Glatard%2C+T">Tristan Glatard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09649v1-abstract-short" style="display: inline;"> Machine learning models are commonly applied to human brain imaging datasets in an effort to associate function or structure with behaviour, health, or other individual phenotypes. Such models often rely on low-dimensional maps generated by complex processing pipelines. However, the numerical instabilities inherent to pipelines limit the fidelity of these maps and introduce computational bias. Mon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09649v1-abstract-full').style.display = 'inline'; document.getElementById('2109.09649v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09649v1-abstract-full" style="display: none;"> Machine learning models are commonly applied to human brain imaging datasets in an effort to associate function or structure with behaviour, health, or other individual phenotypes. Such models often rely on low-dimensional maps generated by complex processing pipelines. However, the numerical instabilities inherent to pipelines limit the fidelity of these maps and introduce computational bias. Monte Carlo Arithmetic, a technique for introducing controlled amounts of numerical noise, was used to perturb a structural connectome estimation pipeline, ultimately producing a range of plausible networks for each sample. The variability in the perturbed networks was captured in an augmented dataset, which was then used for an age classification task. We found that resampling brain networks across a series of such numerically perturbed outcomes led to improved performance in all tested classifiers, preprocessing strategies, and dimensionality reduction techniques. Importantly, we find that this benefit does not hinge on a large number of perturbations, suggesting that even minimally perturbing a dataset adds meaningful variance which can be captured in the subsequently designed models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09649v1-abstract-full').style.display = 'none'; document.getElementById('2109.09649v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04083">arXiv:2109.04083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.04083">pdf</a>, <a href="https://arxiv.org/format/2109.04083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3600211.3604669">10.1145/3600211.3604669 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> User Tampering in Reinforcement Learning Recommender Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Evans%2C+C">Charles Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Kasirzadeh%2C+A">Atoosa Kasirzadeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04083v3-abstract-short" style="display: inline;"> In this paper, we introduce new formal methods and provide empirical evidence to highlight a unique safety concern prevalent in reinforcement learning (RL)-based recommendation algorithms -- &#39;user tampering.&#39; User tampering is a situation where an RL-based recommender system may manipulate a media user&#39;s opinions through its suggestions as part of a policy to maximize long-term user engagement. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04083v3-abstract-full').style.display = 'inline'; document.getElementById('2109.04083v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04083v3-abstract-full" style="display: none;"> In this paper, we introduce new formal methods and provide empirical evidence to highlight a unique safety concern prevalent in reinforcement learning (RL)-based recommendation algorithms -- &#39;user tampering.&#39; User tampering is a situation where an RL-based recommender system may manipulate a media user&#39;s opinions through its suggestions as part of a policy to maximize long-term user engagement. We use formal techniques from causal modeling to critically analyze prevailing solutions proposed in the literature for implementing scalable RL-based recommendation systems, and we observe that these methods do not adequately prevent user tampering. Moreover, we evaluate existing mitigation strategies for reward tampering issues, and show that these methods are insufficient in addressing the distinct phenomenon of user tampering within the context of recommendations. We further reinforce our findings with a simulation study of an RL-based recommendation system focused on the dissemination of political content. Our study shows that a Q-learning algorithm consistently learns to exploit its opportunities to polarize simulated users with its early recommendations in order to have more consistent success with subsequent recommendations that align with this induced polarization. Our findings emphasize the necessity for developing safer RL-based recommendation systems and suggest that achieving such safety would require a fundamental shift in the design away from the approaches we have seen in the recent literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04083v3-abstract-full').style.display = 'none'; document.getElementById('2109.04083v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In proceedings of the 6th AAAI/ACM Conference on Artificial Intelligence, Ethics and Society (AIES &#39;23)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12857">arXiv:2011.12857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.12857">pdf</a>, <a href="https://arxiv.org/format/2011.12857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.neuroimage.2021.118327">10.1016/j.neuroimage.2021.118327 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Convolutional Neural Networks for cytoarchitectonic brain mapping at large scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Schiffer%2C+C">Christian Schiffer</a>, <a href="/search/cs?searchtype=author&amp;query=Spitzer%2C+H">Hannah Spitzer</a>, <a href="/search/cs?searchtype=author&amp;query=Kiwitz%2C+K">Kai Kiwitz</a>, <a href="/search/cs?searchtype=author&amp;query=Unger%2C+N">Nina Unger</a>, <a href="/search/cs?searchtype=author&amp;query=Wagstyl%2C+K">Konrad Wagstyl</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+A+C">Alan C. Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Harmeling%2C+S">Stefan Harmeling</a>, <a href="/search/cs?searchtype=author&amp;query=Amunts%2C+K">Katrin Amunts</a>, <a href="/search/cs?searchtype=author&amp;query=Dickscheid%2C+T">Timo Dickscheid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12857v1-abstract-short" style="display: inline;"> Human brain atlases provide spatial reference systems for data characterizing brain organization at different levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of changes in connectivity and function. Automated scanning procedures a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12857v1-abstract-full').style.display = 'inline'; document.getElementById('2011.12857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12857v1-abstract-full" style="display: none;"> Human brain atlases provide spatial reference systems for data characterizing brain organization at different levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of changes in connectivity and function. Automated scanning procedures and observer-independent methods are prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation. Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between. The model learns to create all missing annotations in between with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts. It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain areas, introducing CNNs to identify borders of brain areas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12857v1-abstract-full').style.display = 'none'; document.getElementById('2011.12857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint submitted to NeuroImage</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.06129">arXiv:2002.06129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.06129">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> Deploying large fixed file datasets with SquashFS and Singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Rioux%2C+P">Pierre Rioux</a>, <a href="/search/cs?searchtype=author&amp;query=Kiar%2C+G">Gregory Kiar</a>, <a href="/search/cs?searchtype=author&amp;query=Hutton%2C+A">Alexandre Hutton</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+A+C">Alan C. Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Brown%2C+S+T">Shawn T. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.06129v1-abstract-short" style="display: inline;"> Shared high-performance computing (HPC) platforms, such as those provided by XSEDE and Compute Canada, enable researchers to carry out large-scale computational experiments at a fraction of the cost of the cloud. Most systems require the use of distributed filesystems (e.g. Lustre) for providing a highly multi-user, large capacity storage environment. These suffer performance penalties as the numb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06129v1-abstract-full').style.display = 'inline'; document.getElementById('2002.06129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.06129v1-abstract-full" style="display: none;"> Shared high-performance computing (HPC) platforms, such as those provided by XSEDE and Compute Canada, enable researchers to carry out large-scale computational experiments at a fraction of the cost of the cloud. Most systems require the use of distributed filesystems (e.g. Lustre) for providing a highly multi-user, large capacity storage environment. These suffer performance penalties as the number of files increases due to network contention and metadata performance. We demonstrate how a combination of two technologies, Singularity and SquashFS, can help developers, integrators, architects, and scientists deploy large datasets (O(10M) files) on these shared systems with minimal performance limitations. The proposed integration enables more efficient access and indexing than normal file-based dataset installations, while providing transparent file access to users and processes. Furthermore, the approach does not require administrative privileges on the target system. While the examples studied here have been taken from the field of neuroimaging, the technologies adopted are not specific to that field. Currently, this solution is limited to read-only datasets. We propose the adoption of this technology for the consumption and dissemination of community datasets across shared computing resources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06129v1-abstract-full').style.display = 'none'; document.getElementById('2002.06129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, 2 tables. Submitted to PEARC 2020 conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07693">arXiv:1809.07693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07693">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> A Serverless Tool for Platform Agnostic Computational Experiment Management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kiar%2C+G">Gregory Kiar</a>, <a href="/search/cs?searchtype=author&amp;query=Brown%2C+S+T">Shawn T Brown</a>, <a href="/search/cs?searchtype=author&amp;query=Glatard%2C+T">Tristan Glatard</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+A+C">Alan C Evans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07693v1-abstract-short" style="display: inline;"> Neuroscience has been carried into the domain of big data and high performance computing (HPC) on the backs of initiatives in data collection and an increasingly compute-intensive tools. While managing HPC experiments requires considerable technical acumen, platforms and standards have been developed to ease this burden on scientists. While web-portals make resources widely accessible, data organi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07693v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07693v1-abstract-full" style="display: none;"> Neuroscience has been carried into the domain of big data and high performance computing (HPC) on the backs of initiatives in data collection and an increasingly compute-intensive tools. While managing HPC experiments requires considerable technical acumen, platforms and standards have been developed to ease this burden on scientists. While web-portals make resources widely accessible, data organizations such as the Brain Imaging Data Structure and tool description languages such as Boutiques provide researchers with a foothold to tackle these problems using their own datasets, pipelines, and environments. While these standards lower the barrier to adoption of HPC and cloud systems for neuroscience applications, they still require the consolidation of disparate domain-specific knowledge. We present Clowdr, a lightweight tool to launch experiments on HPC systems and clouds, record rich execution records, and enable the accessible sharing of experimental summaries and results. Clowdr uniquely sits between web platforms and bare-metal applications for experiment management by preserving the flexibility of do-it-yourself solutions while providing a low barrier for developing, deploying and disseminating neuroscientific analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07693v1-abstract-full').style.display = 'none'; document.getElementById('1809.07693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, 1 tool</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.09713">arXiv:1711.09713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.09713">pdf</a>, <a href="https://arxiv.org/format/1711.09713">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Boutiques: a flexible framework for automated application integration in computing platforms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Glatard%2C+T">Tristan Glatard</a>, <a href="/search/cs?searchtype=author&amp;query=Kiar%2C+G">Gregory Kiar</a>, <a href="/search/cs?searchtype=author&amp;query=Aumentado-Armstrong%2C+T">Tristan Aumentado-Armstrong</a>, <a href="/search/cs?searchtype=author&amp;query=Beck%2C+N">Natacha Beck</a>, <a href="/search/cs?searchtype=author&amp;query=Bellec%2C+P">Pierre Bellec</a>, <a href="/search/cs?searchtype=author&amp;query=Bernard%2C+R">R茅mi Bernard</a>, <a href="/search/cs?searchtype=author&amp;query=Bonnet%2C+A">Axel Bonnet</a>, <a href="/search/cs?searchtype=author&amp;query=Camarasu-Pop%2C+S">Sorina Camarasu-Pop</a>, <a href="/search/cs?searchtype=author&amp;query=Cervenansky%2C+F">Fr茅d茅ric Cervenansky</a>, <a href="/search/cs?searchtype=author&amp;query=Das%2C+S">Samir Das</a>, <a href="/search/cs?searchtype=author&amp;query=da+Silva%2C+R+F">Rafael Ferreira da Silva</a>, <a href="/search/cs?searchtype=author&amp;query=Flandin%2C+G">Guillaume Flandin</a>, <a href="/search/cs?searchtype=author&amp;query=Girard%2C+P">Pascal Girard</a>, <a href="/search/cs?searchtype=author&amp;query=Gorgolewski%2C+K+J">Krzysztof J. Gorgolewski</a>, <a href="/search/cs?searchtype=author&amp;query=Guttmann%2C+C+R+G">Charles R. G. Guttmann</a>, <a href="/search/cs?searchtype=author&amp;query=Hayot-Sasson%2C+V">Val茅rie Hayot-Sasson</a>, <a href="/search/cs?searchtype=author&amp;query=Quirion%2C+P">Pierre-Olivier Quirion</a>, <a href="/search/cs?searchtype=author&amp;query=Rioux%2C+P">Pierre Rioux</a>, <a href="/search/cs?searchtype=author&amp;query=Rousseau%2C+M">Marc-Eienne Rousseau</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+A+C">Alan C. Evans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.09713v1-abstract-short" style="display: inline;"> We present Boutiques, a system to automatically publish, integrate and execute applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitate the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.09713v1-abstract-full').style.display = 'inline'; document.getElementById('1711.09713v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.09713v1-abstract-full" style="display: none;"> We present Boutiques, a system to automatically publish, integrate and execute applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitate the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.09713v1-abstract-full').style.display = 'none'; document.getElementById('1711.09713v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.08409">arXiv:1702.08409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.08409">pdf</a>, <a href="https://arxiv.org/format/1702.08409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> Query Combinators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Evans%2C+C+C">Clark C. Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Simonov%2C+K">Kyrylo Simonov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.08409v1-abstract-short" style="display: inline;"> We introduce Rabbit, a combinator-based query language. Rabbit is designed to let data analysts and other accidental programmers query complex structured data. We combine the functional data model and the categorical semantics of computations to develop denotational semantics of database queries. In Rabbit, a query is modeled as a Kleisli arrow for a monadic container determined by the query car&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.08409v1-abstract-full').style.display = 'inline'; document.getElementById('1702.08409v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.08409v1-abstract-full" style="display: none;"> We introduce Rabbit, a combinator-based query language. Rabbit is designed to let data analysts and other accidental programmers query complex structured data. We combine the functional data model and the categorical semantics of computations to develop denotational semantics of database queries. In Rabbit, a query is modeled as a Kleisli arrow for a monadic container determined by the query cardinality. In this model, monadic composition can be used to navigate the database, while other query combinators can aggregate, filter, sort and paginate data; construct compound data; connect self-referential data; and reorganize data with grouping and data cube operations. A context-aware query model, with the input context represented as a comonadic container, can express query parameters and window functions. Rabbit semantics enables pipeline notation, encouraging its users to construct database queries as a series of distinct steps, each individually crafted and tested. We believe that Rabbit can serve as a practical tool for data analytics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.08409v1-abstract-full').style.display = 'none'; document.getElementById('1702.08409v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.07012">arXiv:1603.07012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.07012">pdf</a>, <a href="https://arxiv.org/format/1603.07012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Semi-supervised Word Sense Disambiguation with Neural Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+D">Dayu Yuan</a>, <a href="/search/cs?searchtype=author&amp;query=Richardson%2C+J">Julian Richardson</a>, <a href="/search/cs?searchtype=author&amp;query=Doherty%2C+R">Ryan Doherty</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+C">Colin Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Altendorf%2C+E">Eric Altendorf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.07012v2-abstract-short" style="display: inline;"> Determining the intended sense of words in text - word sense disambiguation (WSD) - is a long standing problem in natural language processing. Recently, researchers have shown promising results using word vectors extracted from a neural network language model as features in WSD algorithms. However, a simple average or concatenation of word vectors for each word in a text loses the sequential and s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07012v2-abstract-full').style.display = 'inline'; document.getElementById('1603.07012v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.07012v2-abstract-full" style="display: none;"> Determining the intended sense of words in text - word sense disambiguation (WSD) - is a long standing problem in natural language processing. Recently, researchers have shown promising results using word vectors extracted from a neural network language model as features in WSD algorithms. However, a simple average or concatenation of word vectors for each word in a text loses the sequential and syntactic information of the text. In this paper, we study WSD with a sequence learning neural net, LSTM, to better capture the sequential and syntactic patterns of the text. To alleviate the lack of training data in all-words WSD, we employ the same LSTM in a semi-supervised label propagation classifier. We demonstrate state-of-the-art results, especially on verbs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07012v2-abstract-full').style.display = 'none'; document.getElementById('1603.07012v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.02215">arXiv:1602.02215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.02215">pdf</a>, <a href="https://arxiv.org/format/1602.02215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Swivel: Improving Embeddings by Noticing What&#39;s Missing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Shazeer%2C+N">Noam Shazeer</a>, <a href="/search/cs?searchtype=author&amp;query=Doherty%2C+R">Ryan Doherty</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+C">Colin Evans</a>, <a href="/search/cs?searchtype=author&amp;query=Waterson%2C+C">Chris Waterson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.02215v1-abstract-short" style="display: inline;"> We present Submatrix-wise Vector Embedding Learner (Swivel), a method for generating low-dimensional feature embeddings from a feature co-occurrence matrix. Swivel performs approximate factorization of the point-wise mutual information matrix via stochastic gradient descent. It uses a piecewise loss with special handling for unobserved co-occurrences, and thus makes use of all the information in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02215v1-abstract-full').style.display = 'inline'; document.getElementById('1602.02215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.02215v1-abstract-full" style="display: none;"> We present Submatrix-wise Vector Embedding Learner (Swivel), a method for generating low-dimensional feature embeddings from a feature co-occurrence matrix. Swivel performs approximate factorization of the point-wise mutual information matrix via stochastic gradient descent. It uses a piecewise loss with special handling for unobserved co-occurrences, and thus makes use of all the information in the matrix. While this requires computation proportional to the size of the entire matrix, we make use of vectorized multiplication to process thousands of rows and columns at once to compute millions of predicted values. Furthermore, we partition the matrix into shards in order to parallelize the computation across many nodes. This approach results in more accurate embeddings than can be achieved with methods that consider only observed co-occurrences, and can scale to much larger corpora than can be handled with sampling methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02215v1-abstract-full').style.display = 'none'; document.getElementById('1602.02215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.3874">arXiv:1311.3874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.3874">pdf</a>, <a href="https://arxiv.org/ps/1311.3874">ps</a>, <a href="https://arxiv.org/format/1311.3874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Discrete Mathematics">cs.DM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> An Algorithm to Solve the Equal-Sum-Product Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nyblom%2C+M+A">M. A. Nyblom</a>, <a href="/search/cs?searchtype=author&amp;query=Evans%2C+C+D">C. D. Evans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.3874v1-abstract-short" style="display: inline;"> A recursive algorithm is constructed which finds all solutions to a class of Diophantine equations connected to the problem of determining ordered n-tuples of positive integers satisfying the property that their sum is equal to their product. An examination of the use of Binary Search Trees in implementing the algorithm into a working program is given. In addition an application of the algorithm f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3874v1-abstract-full').style.display = 'inline'; document.getElementById('1311.3874v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.3874v1-abstract-full" style="display: none;"> A recursive algorithm is constructed which finds all solutions to a class of Diophantine equations connected to the problem of determining ordered n-tuples of positive integers satisfying the property that their sum is equal to their product. An examination of the use of Binary Search Trees in implementing the algorithm into a working program is given. In addition an application of the algorithm for searching possible extra exceptional values of the equal-sum-product problem is explored after demonstrating a link between these numbers and the Sophie Germain primes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3874v1-abstract-full').style.display = 'none'; document.getElementById('1311.3874v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 11D99 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.1 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10