CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–30 of 30 results for author: <span class="mathjax">Vinko, S M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Vinko%2C+S+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Vinko, S M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Vinko%2C+S+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Vinko, S M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16581">arXiv:2411.16581</a> <span> [<a href="https://arxiv.org/pdf/2411.16581">pdf</a>, <a href="https://arxiv.org/format/2411.16581">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Methods for energy dispersive x-ray spectroscopy with photon-counting and deconvolution techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Forte%2C+A">Alessandro Forte</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Humphries%2C+O+S">Oliver S. Humphries</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+T">Thomas Campbell</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuanfeng Shi</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16581v2-abstract-short" style="display: inline;"> Spectroscopic techniques are essential for studying material properties, but the small cross-sections of some methods may result in low signal-to-noise ratios (SNRs) in the collected spectra. In this article we present methods, based on combining Bragg spectroscopy with photon counting and deconvolution algorithms, which increase the SNRs, making the spectra better suited to further analysis. We a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16581v2-abstract-full').style.display = 'inline'; document.getElementById('2411.16581v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16581v2-abstract-full" style="display: none;"> Spectroscopic techniques are essential for studying material properties, but the small cross-sections of some methods may result in low signal-to-noise ratios (SNRs) in the collected spectra. In this article we present methods, based on combining Bragg spectroscopy with photon counting and deconvolution algorithms, which increase the SNRs, making the spectra better suited to further analysis. We aim to provide a comprehensive guide for constructing spectra from camera images. The efficacy of these methods is validated on synthetic and experimental data, the latter coming from the field of high-energy density (HED) science, where x-ray spectroscopy is essential for the understanding of materials under extreme thermodynamic conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16581v2-abstract-full').style.display = 'none'; document.getElementById('2411.16581v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08664">arXiv:2410.08664</a> <span> [<a href="https://arxiv.org/pdf/2410.08664">pdf</a>, <a href="https://arxiv.org/format/2410.08664">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Modelling of warm dense hydrogen via explicit real time electron dynamics: Electron transport properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Svensson%2C+P">Pontus Svensson</a>, <a href="/search/physics?searchtype=author&query=Hollebon%2C+P">Patrick Hollebon</a>, <a href="/search/physics?searchtype=author&query=Plummer%2C+D">Daniel Plummer</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">Gianluca Gregori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08664v1-abstract-short" style="display: inline;"> We extract electron transport properties from atomistic simulations of a two-component plasma, by mapping the long-wavelength behaviour to a two-fluid model. The mapping procedure is performed via Markov Chain Monte Carlo sampling over multiple spectra simultaneously. The free-electron dynamic structure factor and its properties have been investigated in the hydrodynamic formulation to justify its… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08664v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08664v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08664v1-abstract-full" style="display: none;"> We extract electron transport properties from atomistic simulations of a two-component plasma, by mapping the long-wavelength behaviour to a two-fluid model. The mapping procedure is performed via Markov Chain Monte Carlo sampling over multiple spectra simultaneously. The free-electron dynamic structure factor and its properties have been investigated in the hydrodynamic formulation to justify its application to the long-wavelength behaviour of warm dense matter. We have applied this method to warm dense hydrogen modelled with wave packet molecular dynamics, and showed that the inferred electron transport properties are in agreement with a variety of reference calculations, except for the electron viscosity, where a substantive decrease is observed when compared to classical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08664v1-abstract-full').style.display = 'none'; document.getElementById('2410.08664v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01078">arXiv:2409.01078</a> <span> [<a href="https://arxiv.org/pdf/2409.01078">pdf</a>, <a href="https://arxiv.org/format/2409.01078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.111.015204">10.1103/PhysRevE.111.015204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ionisation Calculations using Classical Molecular Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Plummer%2C+D">Daniel Plummer</a>, <a href="/search/physics?searchtype=author&query=Svensson%2C+P">Pontus Svensson</a>, <a href="/search/physics?searchtype=author&query=Gericke%2C+D+O">Dirk O. Gericke</a>, <a href="/search/physics?searchtype=author&query=Hollebon%2C+P">Patrick Hollebon</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">Gianluca Gregori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01078v2-abstract-short" style="display: inline;"> By performing an ensemble of molecular dynamics simulations, the model-dependent ionisation state is computed for strongly interacting systems self-consistently. This is accomplished through a free energy minimisation framework based on the technique of thermodynamic integration. To illustrate the method, two simple models applicable to partially ionised hydrogen plasma are presented in which pair… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01078v2-abstract-full').style.display = 'inline'; document.getElementById('2409.01078v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01078v2-abstract-full" style="display: none;"> By performing an ensemble of molecular dynamics simulations, the model-dependent ionisation state is computed for strongly interacting systems self-consistently. This is accomplished through a free energy minimisation framework based on the technique of thermodynamic integration. To illustrate the method, two simple models applicable to partially ionised hydrogen plasma are presented in which pair potentials are employed between ions and neutral particles. Within the models, electrons are either bound in the hydrogen ground state or distributed in a uniform charge-neutralising background. Particular attention is given to the transition between atomic gas and ionised plasma, where the effect of neutral interactions is explored beyond commonly used models in the chemical picture. Furthermore, pressure ionisation is observed when short range repulsion effects are included between neutrals. The developed technique is general, and we discuss the applicability to a variety of molecular dynamics models for partially ionised warm dense matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01078v2-abstract-full').style.display = 'none'; document.getElementById('2409.01078v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 111, 015204 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03693">arXiv:2408.03693</a> <span> [<a href="https://arxiv.org/pdf/2408.03693">pdf</a>, <a href="https://arxiv.org/format/2408.03693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A molecular dynamics framework coupled with smoothed particle hydrodynamics for quantum plasma simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Campbell%2C+T">Thomas Campbell</a>, <a href="/search/physics?searchtype=author&query=Svensson%2C+P">Pontus Svensson</a>, <a href="/search/physics?searchtype=author&query=Larder%2C+B">Brett Larder</a>, <a href="/search/physics?searchtype=author&query=Plummer%2C+D">Daniel Plummer</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">Gianluca Gregori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03693v2-abstract-short" style="display: inline;"> We present a novel scheme for modelling quantum plasmas in the warm dense matter (WDM) regime via a hybrid smoothed particle hydrodynamic - molecular dynamic treatment, here referred to as 'Bohm SPH'. This treatment is founded upon Bohm's interpretation of quantum mechanics for partially degenerate fluids, does not apply the Born-Oppenheimer approximation, and is computationally tractable, capable… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03693v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03693v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03693v2-abstract-full" style="display: none;"> We present a novel scheme for modelling quantum plasmas in the warm dense matter (WDM) regime via a hybrid smoothed particle hydrodynamic - molecular dynamic treatment, here referred to as 'Bohm SPH'. This treatment is founded upon Bohm's interpretation of quantum mechanics for partially degenerate fluids, does not apply the Born-Oppenheimer approximation, and is computationally tractable, capable of modelling dynamics over ionic timescales at electronic time resolution. Bohm SPH is also capable of modelling non-Gaussian electron wavefunctions. We present an overview of our methodology, validation tests of the single particle case including the hydrogen 1s wavefunction, and comparisons to simulations of a warm dense hydrogen system performed with wave packet molecular dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03693v2-abstract-full').style.display = 'none'; document.getElementById('2408.03693v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08875">arXiv:2407.08875</a> <span> [<a href="https://arxiv.org/pdf/2407.08875">pdf</a>, <a href="https://arxiv.org/format/2407.08875">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.110.055205">10.1103/PhysRevE.110.055205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling of warm dense hydrogen via explicit real time electron dynamics: Dynamic structure factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Svensson%2C+P">Pontus Svensson</a>, <a href="/search/physics?searchtype=author&query=Aziz%2C+Y">Yusuf Aziz</a>, <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Azadi%2C+S">Sam Azadi</a>, <a href="/search/physics?searchtype=author&query=Hollebon%2C+P">Patrick Hollebon</a>, <a href="/search/physics?searchtype=author&query=Skelt%2C+A">Amy Skelt</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">Gianluca Gregori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08875v2-abstract-short" style="display: inline;"> We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct comp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08875v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08875v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08875v2-abstract-full" style="display: none;"> We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave packet models are compared to PIMC and DFT-MD for the static and low-frequency behaviour. For the high-frequency behaviour the models recover the expected behaviour in the limits of small and large momentum transfers and show the characteristic flattening of the plasmon dispersion for intermediate momentum transfers due to interactions, in agreement with commonly used models for x-ray Thomson scattering. By modelling the electrons and ions on an equal footing, both the ion and free electron part of the spectrum can now be treated within a single framework where we simultaneously resolve the ion-acoustic and plasmon mode, with a self-consistent description of collisions and screening. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08875v2-abstract-full').style.display = 'none'; document.getElementById('2407.08875v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 110, 055205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04240">arXiv:2405.04240</a> <span> [<a href="https://arxiv.org/pdf/2405.04240">pdf</a>, <a href="https://arxiv.org/format/2405.04240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0217826">10.1063/5.0217826 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring relaxation dynamics in warm dense plasmas by tailoring non-thermal electron distributions with a free electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuanfeng Shi</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+S">Shenyuan Ren</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+H">Hyun-kyung Chung</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">Justin S. Wark</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04240v5-abstract-short" style="display: inline;"> Knowing the characteristic relaxation time of free electrons in a dense plasma is crucial to our understanding of plasma equilibration and transport. However, experimental investigations of electron relaxation dynamics have been hindered by the ultra-fast, sub-femtosecond time scales on which these interactions typically take place. Here we propose a novel approach that uses x-rays from a free ele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04240v5-abstract-full').style.display = 'inline'; document.getElementById('2405.04240v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04240v5-abstract-full" style="display: none;"> Knowing the characteristic relaxation time of free electrons in a dense plasma is crucial to our understanding of plasma equilibration and transport. However, experimental investigations of electron relaxation dynamics have been hindered by the ultra-fast, sub-femtosecond time scales on which these interactions typically take place. Here we propose a novel approach that uses x-rays from a free electron laser to generate well-defined non-thermal electron distributions, which can then be tracked via emission spectroscopy from radiative recombination as they thermalize. Collisional radiative simulations reveal how this method can enable the measurement of electron relaxation time scales {\it in situ}, shedding light on the applicability and accuracy of the Coulomb Logarithm framework for modelling collisions in dense plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04240v5-abstract-full').style.display = 'none'; document.getElementById('2405.04240v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00425">arXiv:2405.00425</a> <span> [<a href="https://arxiv.org/pdf/2405.00425">pdf</a>, <a href="https://arxiv.org/format/2405.00425">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Monte Carlo study of the phase diagram of the two-dimensional uniform electron liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azadi%2C+S">Sam Azadi</a>, <a href="/search/physics?searchtype=author&query=Drummond%2C+N+D">N. D. Drummond</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00425v1-abstract-short" style="display: inline;"> We present a study of spin-unpolarized and spin-polarized two-dimensional uniform electron liquids using variational and diffusion quantum Monte Carlo (VMC and DMC) methods with Slater-Jastrow-backflow trial wave functions. Ground-state VMC and DMC energies are obtained in the density range $1 \leq r_\text{s} \leq 40$. Single-particle and many-body finite-size errors are corrected using canonical-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00425v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00425v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00425v1-abstract-full" style="display: none;"> We present a study of spin-unpolarized and spin-polarized two-dimensional uniform electron liquids using variational and diffusion quantum Monte Carlo (VMC and DMC) methods with Slater-Jastrow-backflow trial wave functions. Ground-state VMC and DMC energies are obtained in the density range $1 \leq r_\text{s} \leq 40$. Single-particle and many-body finite-size errors are corrected using canonical-ensemble twist-averaged boundary conditions and extrapolation of twist-averaged energies to the thermodynamic limit of infinite system size. System-size-dependent errors in Slater-Jastrow-backflow DMC energies caused by partially converged VMC energy minimization calculations are discussed. We find that, for $1 \leq r_\text{s} \leq 5$, optimizing the backflow function at each twist lowers the twist-averaged DMC energy at finite system size. However, nonsystematic system-size-dependent effects remain in the DMC energies, which can be partially removed by extrapolation from multiple finite system sizes to infinite system size. We attribute these nonsystematic effects to the close competition between fluid and defected crystal phases at different system sizes at low density. The DMC energies in the thermodynamic limit are used to parameterize a local spin density approximation correlation functional for inhomogeneous electron systems. Our zero-temperature phase diagram shows a single transition from a paramagnetic fluid to a hexagonal Wigner crystal at $r_\text{s}=35(1)$, with no region of stability for a ferromagnetic fluid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00425v1-abstract-full').style.display = 'none'; document.getElementById('2405.00425v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00039">arXiv:2402.00039</a> <span> [<a href="https://arxiv.org/pdf/2402.00039">pdf</a>, <a href="https://arxiv.org/format/2402.00039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Resonant inelastic x-ray scattering in warm-dense Fe compounds beyond the SASE FEL resolution limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Forte%2C+A">Alessandro Forte</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=El-Din%2C+K+K+A">Karim K. Alaa El-Din</a>, <a href="/search/physics?searchtype=author&query=Humphries%2C+O+S">Oliver S. Humphries</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a>, <a href="/search/physics?searchtype=author&query=Cr%C3%A9pisson%2C+C">C茅line Cr茅pisson</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+T">Thomas Campbell</a>, <a href="/search/physics?searchtype=author&query=Svensson%2C+P">Pontus Svensson</a>, <a href="/search/physics?searchtype=author&query=Azadi%2C+S">Sam Azadi</a>, <a href="/search/physics?searchtype=author&query=Heighway%2C+P">Patrick Heighway</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuanfeng Shi</a>, <a href="/search/physics?searchtype=author&query=Chin%2C+D+A">David A. Chin</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+E">Ethan Smith</a>, <a href="/search/physics?searchtype=author&query=Baehtz%2C+C">Carsten Baehtz</a>, <a href="/search/physics?searchtype=author&query=Bouffetier%2C+V">Victorien Bouffetier</a>, <a href="/search/physics?searchtype=author&query=H%C3%B6ppner%2C+H">Hauke H枚ppner</a>, <a href="/search/physics?searchtype=author&query=McGonegle%2C+D">David McGonegle</a>, <a href="/search/physics?searchtype=author&query=Harmand%2C+M">Marion Harmand</a>, <a href="/search/physics?searchtype=author&query=Collins%2C+G+W">Gilbert W. Collins</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">Justin S. Wark</a>, <a href="/search/physics?searchtype=author&query=Polsin%2C+D+N">Danae N. Polsin</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00039v1-abstract-short" style="display: inline;"> Resonant inelastic x-ray scattering (RIXS) is a widely used spectroscopic technique, providing access to the electronic structure and dynamics of atoms, molecules, and solids. However, RIXS requires a narrow bandwidth x-ray probe to achieve high spectral resolution. The challenges in delivering an energetic monochromated beam from an x-ray free electron laser (XFEL) thus limit its use in few-shot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00039v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00039v1-abstract-full" style="display: none;"> Resonant inelastic x-ray scattering (RIXS) is a widely used spectroscopic technique, providing access to the electronic structure and dynamics of atoms, molecules, and solids. However, RIXS requires a narrow bandwidth x-ray probe to achieve high spectral resolution. The challenges in delivering an energetic monochromated beam from an x-ray free electron laser (XFEL) thus limit its use in few-shot experiments, including for the study of high energy density systems. Here we demonstrate that by correlating the measurements of the self-amplified spontaneous emission (SASE) spectrum of an XFEL with the RIXS signal, using a dynamic kernel deconvolution with a neural surrogate, we can achieve electronic structure resolutions substantially higher than those normally afforded by the bandwidth of the incoming x-ray beam. We further show how this technique allows us to discriminate between the valence structures of Fe and Fe$_2$O$_3$, and provides access to temperature measurements as well as M-shell binding energies estimates in warm-dense Fe compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00039v1-abstract-full').style.display = 'none'; document.getElementById('2402.00039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03590">arXiv:2310.03590</a> <span> [<a href="https://arxiv.org/pdf/2310.03590">pdf</a>, <a href="https://arxiv.org/format/2310.03590">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.109.045204">10.1103/PhysRevE.109.045204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dielectronic satellite emission from a solid-density Mg plasma: relationship to models of ionisation potential depression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=P%C3%A9rez-Callejo%2C+G">G. P茅rez-Callejo</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T">T. Gawne</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">T. R. Preston</a>, <a href="/search/physics?searchtype=author&query=Hollebon%2C+P">P. Hollebon</a>, <a href="/search/physics?searchtype=author&query=Humphries%2C+O+S">O. S. Humphries</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+H+-">H. -K. Chung</a>, <a href="/search/physics?searchtype=author&query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/physics?searchtype=author&query=Krzywinski%2C+J">J. Krzywinski</a>, <a href="/search/physics?searchtype=author&query=Minitti%2C+M+P">M. P. Minitti</a>, <a href="/search/physics?searchtype=author&query=Burian%2C+T">T. Burian</a>, <a href="/search/physics?searchtype=author&query=Chalupsk%C3%BD%2C+J">J. Chalupsk媒</a>, <a href="/search/physics?searchtype=author&query=H%C3%A1jkov%C3%A1%2C+V">V. H谩jkov谩</a>, <a href="/search/physics?searchtype=author&query=Juha%2C+L">L. Juha</a>, <a href="/search/physics?searchtype=author&query=Vozda%2C+V">V. Vozda</a>, <a href="/search/physics?searchtype=author&query=Zastrau%2C+U">U. Zastrau</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Rose%2C+S+J">S. J. Rose</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">J. S. Wark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03590v2-abstract-short" style="display: inline;"> We report on experiments where solid-density Mg plasmas are created by heating with the focused output of the Linac Coherent Light Source x-ray free-electron-laser. We study the K-shell emission from the Helium and Lithium-like ions using Bragg crystal spectroscopy. Observation of the dielectronic satellites in Lithium-like ions confirms that the M-shell electrons appear bound for these high charg… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03590v2-abstract-full').style.display = 'inline'; document.getElementById('2310.03590v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03590v2-abstract-full" style="display: none;"> We report on experiments where solid-density Mg plasmas are created by heating with the focused output of the Linac Coherent Light Source x-ray free-electron-laser. We study the K-shell emission from the Helium and Lithium-like ions using Bragg crystal spectroscopy. Observation of the dielectronic satellites in Lithium-like ions confirms that the M-shell electrons appear bound for these high charge states. An analysis of the intensity of these satellites indicates that when modelled with an atomic-kinetics code, the ionisation potential depression model employed needs to produce depressions for these ions which lie between those predicted by the well known Stewart-Pyatt and Ecker-Kroll models. These results are largely consistent with recent Density Functional Theory calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03590v2-abstract-full').style.display = 'none'; document.getElementById('2310.03590v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09612">arXiv:2309.09612</a> <span> [<a href="https://arxiv.org/pdf/2309.09612">pdf</a>, <a href="https://arxiv.org/format/2309.09612">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantifying ionization in hot dense plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">Justin S. Wark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09612v3-abstract-short" style="display: inline;"> Ionization is a problematic quantity in that it does not have a well-defined thermodynamic definition, yet it is a key parameter within plasma modelling. One still therefore aims to find a consistent and unambiguous definition for the ionization state. Within this context we present finite-temperature density functional theory calculations of the ionization state of carbon in CH plasmas using two… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09612v3-abstract-full').style.display = 'inline'; document.getElementById('2309.09612v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09612v3-abstract-full" style="display: none;"> Ionization is a problematic quantity in that it does not have a well-defined thermodynamic definition, yet it is a key parameter within plasma modelling. One still therefore aims to find a consistent and unambiguous definition for the ionization state. Within this context we present finite-temperature density functional theory calculations of the ionization state of carbon in CH plasmas using two potential definitions: one based on counting the number of continuum electrons, and another based on the optical conductivity. Differences of up to 10\% are observed between the two methods. However, including "Pauli forbidden" transitions in the conductivity reproduces the counting definition, suggesting such transitions are important to evaluate the ionization state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09612v3-abstract-full').style.display = 'none'; document.getElementById('2309.09612v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages; 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13426">arXiv:2306.13426</a> <span> [<a href="https://arxiv.org/pdf/2306.13426">pdf</a>, <a href="https://arxiv.org/format/2306.13426">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Correlation energy of the spin-polarized electron liquid by quantum Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azadi%2C+S">Sam Azadi</a>, <a href="/search/physics?searchtype=author&query=Drummond%2C+N+D">N. D. Drummond</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13426v1-abstract-short" style="display: inline;"> Variational and diffusion quantum Monte Carlo (VMC and DMC) methods with Slater-Jastrow-backflow trial wave functions are used to study the spin-polarized three-dimensional uniform electron fluid. We report ground state VMC and DMC energies in the density range $0.5 \leq r_\text{s} \leq 20$. Finite-size errors are corrected using canonical-ensemble twist-averaged boundary conditions and extrapolat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13426v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13426v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13426v1-abstract-full" style="display: none;"> Variational and diffusion quantum Monte Carlo (VMC and DMC) methods with Slater-Jastrow-backflow trial wave functions are used to study the spin-polarized three-dimensional uniform electron fluid. We report ground state VMC and DMC energies in the density range $0.5 \leq r_\text{s} \leq 20$. Finite-size errors are corrected using canonical-ensemble twist-averaged boundary conditions and extrapolation of the twist-averaged energy per particle calculated at three system sizes (N=113, 259, and 387) to the thermodynamic limit of infinite system size. The DMC energies in the thermodynamic limit are used to parameterize a local spin density approximation correlation function for inhomogeneous electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13426v1-abstract-full').style.display = 'none'; document.getElementById('2306.13426v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2209.10227</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04079">arXiv:2302.04079</a> <span> [<a href="https://arxiv.org/pdf/2302.04079">pdf</a>, <a href="https://arxiv.org/format/2302.04079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.108.035210">10.1103/PhysRevE.108.035210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigating Mechanisms of State Localization in Highly-Ionized Dense Plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+T">Thomas Campbell</a>, <a href="/search/physics?searchtype=author&query=Forte%2C+A">Alessandro Forte</a>, <a href="/search/physics?searchtype=author&query=Hollebon%2C+P">Patrick Hollebon</a>, <a href="/search/physics?searchtype=author&query=Perez-Callejo%2C+G">Gabriel Perez-Callejo</a>, <a href="/search/physics?searchtype=author&query=Humphries%2C+O">Oliver Humphries</a>, <a href="/search/physics?searchtype=author&query=Karnbach%2C+O">Oliver Karnbach</a>, <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">Muhammad F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H+J">Hae Ja Lee</a>, <a href="/search/physics?searchtype=author&query=Miscampbell%2C+A">Alan Miscampbell</a>, <a href="/search/physics?searchtype=author&query=Berg%2C+Q+Y+v+d">Quincy Y. van den Berg</a>, <a href="/search/physics?searchtype=author&query=Nagler%2C+B">Bob Nagler</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+S">Shenyuan Ren</a>, <a href="/search/physics?searchtype=author&query=Royle%2C+R+B">Ryan B. Royle</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">Justin S. Wark</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04079v3-abstract-short" style="display: inline;"> We present the first experimental observation of K$_尾$ emission from highly charged Mg ions at solid density, driven by intense x-rays from a free electron laser. The presence of K$_尾$ emission indicates the $n=3$ atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04079v3-abstract-full').style.display = 'inline'; document.getElementById('2302.04079v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04079v3-abstract-full" style="display: none;"> We present the first experimental observation of K$_尾$ emission from highly charged Mg ions at solid density, driven by intense x-rays from a free electron laser. The presence of K$_尾$ emission indicates the $n=3$ atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense plasmas from first principles using finite-temperature density functional theory alongside a wavefunction localization metric, and find excellent agreement with experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04079v3-abstract-full').style.display = 'none'; document.getElementById('2302.04079v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08560">arXiv:2211.08560</a> <span> [<a href="https://arxiv.org/pdf/2211.08560">pdf</a>, <a href="https://arxiv.org/format/2211.08560">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsta.2022.0325">10.1098/rsta.2022.0325 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a new quantum trajectory molecular dynamics framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Svensson%2C+P">Pontus Svensson</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+T">Thomas Campbell</a>, <a href="/search/physics?searchtype=author&query=Graziani%2C+F">Frank Graziani</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Lyu%2C+N">Ningyi Lyu</a>, <a href="/search/physics?searchtype=author&query=Batista%2C+V+S">Victor S. Batista</a>, <a href="/search/physics?searchtype=author&query=Richardson%2C+S">Scott Richardson</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">Gianluca Gregori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08560v3-abstract-short" style="display: inline;"> An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalised Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its num… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08560v3-abstract-full').style.display = 'inline'; document.getElementById('2211.08560v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08560v3-abstract-full" style="display: none;"> An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalised Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its numerical implementation with good parallel support and close to linear scaling in particle number, used for comparisons with the more common wave packet employing isotropic states. Ground state and thermal properties are compared between the models with differences occurring primarily in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is investigated where a 15% increase in DC conductivity can be seen in our wave packet model compared to other models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08560v3-abstract-full').style.display = 'none'; document.getElementById('2211.08560v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phil. Trans. R. Soc. A. 381:20220325 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10227">arXiv:2209.10227</a> <span> [<a href="https://arxiv.org/pdf/2209.10227">pdf</a>, <a href="https://arxiv.org/format/2209.10227">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L121105">10.1103/PhysRevB.107.L121105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation energy of the paramagnetic electron gas at the thermodynamic limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azadi%2C+S">Sam Azadi</a>, <a href="/search/physics?searchtype=author&query=Drummond%2C+N+D">N. D. Drummond</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10227v2-abstract-short" style="display: inline;"> The variational and diffusion quantum Monte Carlo methods are used to calculate the correlation energy of the paramagnetic three-dimensional homogeneous electron gas at intermediate to high density. Ground state energies in finite cells are determined using Slater-Jastrow-backflow trial wave functions, and finite-size errors are removed using twist-averaged boundary conditions and extrapolation of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10227v2-abstract-full').style.display = 'inline'; document.getElementById('2209.10227v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10227v2-abstract-full" style="display: none;"> The variational and diffusion quantum Monte Carlo methods are used to calculate the correlation energy of the paramagnetic three-dimensional homogeneous electron gas at intermediate to high density. Ground state energies in finite cells are determined using Slater-Jastrow-backflow trial wave functions, and finite-size errors are removed using twist-averaged boundary conditions and extrapolation of the energy per particle to the thermodynamic limit of infinite system size. Our correlation energies in the thermodynamic limit are lower (i.e., more negative, and therefore more accurate according to the variational principle) than previous results, and can be used for the parameterization of density functionals to be applied to high-density systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10227v2-abstract-full').style.display = 'none'; document.getElementById('2209.10227v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00573">arXiv:2208.00573</a> <span> [<a href="https://arxiv.org/pdf/2208.00573">pdf</a>, <a href="https://arxiv.org/format/2208.00573">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Non-thermal evolution of dense plasmas driven by intense x-ray fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ren%2C+S">Shenyuan Ren</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuanfeng Shi</a>, <a href="/search/physics?searchtype=author&query=Berg%2C+Q+Y+v+d">Quincy Y. van den Berg</a>, <a href="/search/physics?searchtype=author&query=Firmansyah%2C+M">Muhammad Firmansyah</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+H">Hyun-Kyung Chung</a>, <a href="/search/physics?searchtype=author&query=Fernandez-Tello%2C+E+V">Elisa V. Fernandez-Tello</a>, <a href="/search/physics?searchtype=author&query=Velarde%2C+P">Pedro Velarde</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">Justin S. Wark</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00573v3-abstract-short" style="display: inline;"> The advent of x-ray free-electron lasers (XFELs) has enabled a range of new experimental investigations into the properties of matter driven to extreme conditions via intense x-ray-matter interactions. The femtosecond timescales of these interactions lead to the creation of transient high-energy-density plasmas, where both the electrons and the ions may be far from local thermodynamic equilibrium… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00573v3-abstract-full').style.display = 'inline'; document.getElementById('2208.00573v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00573v3-abstract-full" style="display: none;"> The advent of x-ray free-electron lasers (XFELs) has enabled a range of new experimental investigations into the properties of matter driven to extreme conditions via intense x-ray-matter interactions. The femtosecond timescales of these interactions lead to the creation of transient high-energy-density plasmas, where both the electrons and the ions may be far from local thermodynamic equilibrium (LTE). Predictive modelling of such systems remains challenging because of the substantially different timescales on which electrons and ions thermalize, and because of the vast number of atomic configurations that are required to describe the resulting highly-ionized plasmas. Here we explore the evolution of systems driven to high energy densities using CCFLY, a non-LTE, Fokker-Planck collisional-radiative code. We use CCFLY to investigate the evolution dynamics of a solid-density plasma driven by an XFEL, and explore the relaxation of the plasma to local thermodynamic equilibrium on femtosecond timescales in terms of the charge state distribution, electron density, and temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00573v3-abstract-full').style.display = 'none'; document.getElementById('2208.00573v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14361">arXiv:2110.14361</a> <span> [<a href="https://arxiv.org/pdf/2110.14361">pdf</a>, <a href="https://arxiv.org/format/2110.14361">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0072790">10.1063/5.0072790 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A feasibility study of using X-ray Thomson Scattering to diagnose the in-flight plasma conditions of DT cryogenic implosions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Poole%2C+H">H. Poole</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&query=Epstein%2C+R">R. Epstein</a>, <a href="/search/physics?searchtype=author&query=Golovkin%2C+I">I. Golovkin</a>, <a href="/search/physics?searchtype=author&query=Walton%2C+T">T. Walton</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+S+X">S. X. Hu</a>, <a href="/search/physics?searchtype=author&query=Kasim%2C+M">M. Kasim</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Rygg%2C+J+R">J. R. Rygg</a>, <a href="/search/physics?searchtype=author&query=Goncharov%2C+V+N">V. N. Goncharov</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">G. Gregori</a>, <a href="/search/physics?searchtype=author&query=Regan%2C+S+P">S. P. Regan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14361v1-abstract-short" style="display: inline;"> The design of inertial confinement fusion (ICF) ignition targets requires radiation-hydrodynamics simulations with accurate models of the fundamental material properties (i.e., equation of state, opacity, and conductivity). Validation of these models are required via experimentation. A feasibility study of using spatially-integrated, spectrally-resolved, X-ray Thomson scattering (XRTS) measurement… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14361v1-abstract-full').style.display = 'inline'; document.getElementById('2110.14361v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14361v1-abstract-full" style="display: none;"> The design of inertial confinement fusion (ICF) ignition targets requires radiation-hydrodynamics simulations with accurate models of the fundamental material properties (i.e., equation of state, opacity, and conductivity). Validation of these models are required via experimentation. A feasibility study of using spatially-integrated, spectrally-resolved, X-ray Thomson scattering (XRTS) measurements to diagnose the temperature, density, and ionization of the compressed DT shell and hot spot of a laser direct-drive implosion at two-thirds convergence was conducted. Synthetic scattering spectra were generated using 1-D implosion simulations from the LILAC code that were post processed with the X-ray Scattering (XRS) model which is incorporated within SPECT3D. Analysis of two extreme adiabat capsule conditions showed that the plasma conditions for both compressed DT shells could be resolved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14361v1-abstract-full').style.display = 'none'; document.getElementById('2110.14361v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11678">arXiv:2110.11678</a> <span> [<a href="https://arxiv.org/pdf/2110.11678">pdf</a>, <a href="https://arxiv.org/format/2110.11678">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0076202">10.1063/5.0076202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DQC: a Python program package for Differentiable Quantum Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">Muhammad F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Lehtola%2C+S">Susi Lehtola</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11678v1-abstract-short" style="display: inline;"> Automatic differentiation represents a paradigm shift in scientific programming, where evaluating both functions and their derivatives is required for most applications. By removing the need to explicitly derive expressions for gradients, development times can be be shortened, and calculations simplified. For these reasons, automatic differentiation has fueled the rapid growth of a variety of soph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11678v1-abstract-full').style.display = 'inline'; document.getElementById('2110.11678v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11678v1-abstract-full" style="display: none;"> Automatic differentiation represents a paradigm shift in scientific programming, where evaluating both functions and their derivatives is required for most applications. By removing the need to explicitly derive expressions for gradients, development times can be be shortened, and calculations simplified. For these reasons, automatic differentiation has fueled the rapid growth of a variety of sophisticated machine learning techniques over the past decade, but is now also increasingly showing its value to support {\it ab initio} simulations of quantum systems, and enhance computational quantum chemistry. Here we present an open-source differentiable quantum chemistry simulation code, DQC, and explore applications facilitated by automatic differentiation: (1) calculating molecular perturbation properties; (2) reoptimizing a basis set for hydrocarbons; (3) checking the stability of self-consistent field wave functions; and (4) predicting molecular properties via alchemical perturbations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11678v1-abstract-full').style.display = 'none'; document.getElementById('2110.11678v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 156, 084801 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04229">arXiv:2102.04229</a> <span> [<a href="https://arxiv.org/pdf/2102.04229">pdf</a>, <a href="https://arxiv.org/format/2102.04229">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.126403">10.1103/PhysRevLett.127.126403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Learning the exchange-correlation functional from nature with fully differentiable density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">Muhammad F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04229v4-abstract-short" style="display: inline;"> Improving the predictive capability of molecular properties in ab initio simulations is essential for advanced material discovery. Despite recent progress making use of machine learning, utilizing deep neural networks to improve quantum chemistry modelling remains severely limited by the scarcity and heterogeneity of appropriate experimental data. Here we show how training a neural network to repl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04229v4-abstract-full').style.display = 'inline'; document.getElementById('2102.04229v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04229v4-abstract-full" style="display: none;"> Improving the predictive capability of molecular properties in ab initio simulations is essential for advanced material discovery. Despite recent progress making use of machine learning, utilizing deep neural networks to improve quantum chemistry modelling remains severely limited by the scarcity and heterogeneity of appropriate experimental data. Here we show how training a neural network to replace the exchange-correlation functional within a fully-differentiable three-dimensional Kohn-Sham density functional theory (DFT) framework can greatly improve simulation accuracy. Using only eight experimental data points on diatomic molecules, our trained exchange-correlation networks enable improved prediction accuracy of atomization energies across a collection of 104 molecules containing new bonds and atoms that are not present in the training dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04229v4-abstract-full').style.display = 'none'; document.getElementById('2102.04229v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 126403 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01921">arXiv:2010.01921</a> <span> [<a href="https://arxiv.org/pdf/2010.01921">pdf</a>, <a href="https://arxiv.org/format/2010.01921">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> $尉$-torch: differentiable scientific computing library </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">Muhammad F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01921v1-abstract-short" style="display: inline;"> Physics-informed learning has shown to have a better generalization than learning without physical priors. However, training physics-informed deep neural networks requires some aspect of physical simulations to be written in a differentiable manner. Unfortunately, some operations and functionals commonly used in physical simulations are scattered, hard to integrate, and lack higher order deriv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01921v1-abstract-full').style.display = 'inline'; document.getElementById('2010.01921v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01921v1-abstract-full" style="display: none;"> Physics-informed learning has shown to have a better generalization than learning without physical priors. However, training physics-informed deep neural networks requires some aspect of physical simulations to be written in a differentiable manner. Unfortunately, some operations and functionals commonly used in physical simulations are scattered, hard to integrate, and lack higher order derivatives which are needed in physical simulations. In this work, we present $尉$-torch, a library of differentiable functionals for scientific simulations. Example functionals are a root finder and an initial value problem solver, among others. The gradient of functionals in $尉$-torch are written based on their analytical expression to improve numerical stability and reduce memory requirements. $尉$-torch also provides second and higher order derivatives of the functionals which are rarely available in existing packages. We show two applications of this library in optimizing parameters in physics simulations. The library and all test cases in this work can be found at https://github.com/xitorch/xitorch/ and the documentation at https://xitorch.readthedocs.io. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01921v1-abstract-full').style.display = 'none'; document.getElementById('2010.01921v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.10410">arXiv:2007.10410</a> <span> [<a href="https://arxiv.org/pdf/2007.10410">pdf</a>, <a href="https://arxiv.org/format/2007.10410">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Volumetric heating of nanowire arrays to keV temperatures using kilojoule-scale petawatt laser interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hill%2C+M+P">M. P. Hill</a>, <a href="/search/physics?searchtype=author&query=Humphries%2C+O">O. Humphries</a>, <a href="/search/physics?searchtype=author&query=Royle%2C+R">R. Royle</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+B">B. Williams</a>, <a href="/search/physics?searchtype=author&query=Ramsay%2C+M+G">M. G. Ramsay</a>, <a href="/search/physics?searchtype=author&query=Miscampbell%2C+A">A. Miscampbell</a>, <a href="/search/physics?searchtype=author&query=Allan%2C+P">P. Allan</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+C+R+D">C. R. D. Brown</a>, <a href="/search/physics?searchtype=author&query=Hobbs%2C+L+M+R">L. M. R. Hobbs</a>, <a href="/search/physics?searchtype=author&query=James%2C+S+F">S. F. James</a>, <a href="/search/physics?searchtype=author&query=Hoarty%2C+D+J">D. J. Hoarty</a>, <a href="/search/physics?searchtype=author&query=Marjoribanks%2C+R+S">R. S. Marjoribanks</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">J. Park</a>, <a href="/search/physics?searchtype=author&query=London%2C+R+A">R. A. London</a>, <a href="/search/physics?searchtype=author&query=Tommasini%2C+R">R. Tommasini</a>, <a href="/search/physics?searchtype=author&query=Pukhov%2C+A">A. Pukhov</a>, <a href="/search/physics?searchtype=author&query=Bargsten%2C+C">C. Bargsten</a>, <a href="/search/physics?searchtype=author&query=Hollinger%2C+R">R. Hollinger</a>, <a href="/search/physics?searchtype=author&query=Shlyaptsev%2C+V+N">V. N. Shlyaptsev</a>, <a href="/search/physics?searchtype=author&query=Capeluto%2C+M+G">M. G. Capeluto</a>, <a href="/search/physics?searchtype=author&query=Rocca%2C+J+J">J. J. Rocca</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.10410v1-abstract-short" style="display: inline;"> We present picosecond-resolution streaked K-shell spectra from 400 nm-diameter nickel nanowire arrays, demonstrating the ability to generate large volumes of high energy density plasma when combined with the longer pulses typical of the largest short pulse lasers. After irradiating the wire array with 100 J, 600 fs ultra-high-contrast laser pulses focussed to $>10^{20}$ W/cm$^{2}$ at the Orion las… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10410v1-abstract-full').style.display = 'inline'; document.getElementById('2007.10410v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.10410v1-abstract-full" style="display: none;"> We present picosecond-resolution streaked K-shell spectra from 400 nm-diameter nickel nanowire arrays, demonstrating the ability to generate large volumes of high energy density plasma when combined with the longer pulses typical of the largest short pulse lasers. After irradiating the wire array with 100 J, 600 fs ultra-high-contrast laser pulses focussed to $>10^{20}$ W/cm$^{2}$ at the Orion laser facility, we combine atomic kinetics modeling of the streaked spectra with 2D collisional particle-in-cell simulations to describe the evolution of material conditions within these samples for the first time. We observe a three-fold enhancement of helium-like emission compared to a flat foil in a near-solid-density plasma sustaining keV temperatures for tens of picoseconds, the result of strong electric return currents heating the wires and causing them to explode and collide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10410v1-abstract-full').style.display = 'none'; document.getElementById('2007.10410v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.08055">arXiv:2001.08055</a> <span> [<a href="https://arxiv.org/pdf/2001.08055">pdf</a>, <a href="https://arxiv.org/format/2001.08055">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/ac3ffa">10.1088/2632-2153/ac3ffa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Building high accuracy emulators for scientific simulations with deep neural architecture search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">M. F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Watson-Parris%2C+D">D. Watson-Parris</a>, <a href="/search/physics?searchtype=author&query=Deaconu%2C+L">L. Deaconu</a>, <a href="/search/physics?searchtype=author&query=Oliver%2C+S">S. Oliver</a>, <a href="/search/physics?searchtype=author&query=Hatfield%2C+P">P. Hatfield</a>, <a href="/search/physics?searchtype=author&query=Froula%2C+D+H">D. H. Froula</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">G. Gregori</a>, <a href="/search/physics?searchtype=author&query=Jarvis%2C+M">M. Jarvis</a>, <a href="/search/physics?searchtype=author&query=Khatiwala%2C+S">S. Khatiwala</a>, <a href="/search/physics?searchtype=author&query=Korenaga%2C+J">J. Korenaga</a>, <a href="/search/physics?searchtype=author&query=Topp-Mugglestone%2C+J">J. Topp-Mugglestone</a>, <a href="/search/physics?searchtype=author&query=Viezzer%2C+E">E. Viezzer</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.08055v2-abstract-short" style="display: inline;"> Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08055v2-abstract-full').style.display = 'inline'; document.getElementById('2001.08055v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.08055v2-abstract-full" style="display: none;"> Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibitively expensive to obtain with slow simulations. Here we present a method based on neural architecture search to build accurate emulators even with a limited number of training data. The method successfully accelerates simulations by up to 2 billion times in 10 scientific cases including astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach also inherently provides emulator uncertainty estimation, adding further confidence in their use. We anticipate this work will accelerate research involving expensive simulations, allow more extensive parameters exploration, and enable new, previously unfeasible computational discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08055v2-abstract-full').style.display = 'none'; document.getElementById('2001.08055v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mach. Learn.: Sci. Technol. 3 (2022) 015013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06639">arXiv:2001.06639</a> <span> [<a href="https://arxiv.org/pdf/2001.06639">pdf</a>, <a href="https://arxiv.org/format/2001.06639">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.225002">10.1103/PhysRevLett.124.225002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-resolved XUV Opacity Measurements of Warm-Dense Aluminium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Vozda%2C+V">V. Vozda</a>, <a href="/search/physics?searchtype=author&query=Andreasson%2C+J">J. Andreasson</a>, <a href="/search/physics?searchtype=author&query=Bajt%2C+S">S. Bajt</a>, <a href="/search/physics?searchtype=author&query=Bielecki%2C+J">J. Bielecki</a>, <a href="/search/physics?searchtype=author&query=Burian%2C+T">T. Burian</a>, <a href="/search/physics?searchtype=author&query=Chalupsky%2C+J">J. Chalupsky</a>, <a href="/search/physics?searchtype=author&query=Ciricosta%2C+O">O. Ciricosta</a>, <a href="/search/physics?searchtype=author&query=Desjarlais%2C+M+P">M. P. Desjarlais</a>, <a href="/search/physics?searchtype=author&query=Fleckenstein%2C+H">H. Fleckenstein</a>, <a href="/search/physics?searchtype=author&query=Hajdu%2C+J">J. Hajdu</a>, <a href="/search/physics?searchtype=author&query=Hajkova%2C+V">V. Hajkova</a>, <a href="/search/physics?searchtype=author&query=Hollebon%2C+P">P. Hollebon</a>, <a href="/search/physics?searchtype=author&query=Juha%2C+L">L. Juha</a>, <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">M. F. Kasim</a>, <a href="/search/physics?searchtype=author&query=McBride%2C+E+E">E. E. McBride</a>, <a href="/search/physics?searchtype=author&query=Muehlig%2C+K">K. Muehlig</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">T. R. Preston</a>, <a href="/search/physics?searchtype=author&query=Rackstraw%2C+D+S">D. S. Rackstraw</a>, <a href="/search/physics?searchtype=author&query=Roling%2C+S">S. Roling</a>, <a href="/search/physics?searchtype=author&query=Toleikis%2C+S">S. Toleikis</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">J. S. Wark</a>, <a href="/search/physics?searchtype=author&query=Zacharias%2C+H">H. Zacharias</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06639v1-abstract-short" style="display: inline;"> The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06639v1-abstract-full').style.display = 'inline'; document.getElementById('2001.06639v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06639v1-abstract-full" style="display: none;"> The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order the Fermi energy. Plasma heating and opacity-enhancement is observed on ultrafast time scales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm-dense matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06639v1-abstract-full').style.display = 'none'; document.getElementById('2001.06639v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 225002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.05813">arXiv:2001.05813</a> <span> [<a href="https://arxiv.org/pdf/2001.05813">pdf</a>, <a href="https://arxiv.org/format/2001.05813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.195001">10.1103/PhysRevLett.125.195001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mapping the Electronic Structure of Warm Dense Nickel via Resonant Inelastic X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Humphries%2C+O+S">O. S. Humphries</a>, <a href="/search/physics?searchtype=author&query=Marjoribanks%2C+R+S">R. S. Marjoribanks</a>, <a href="/search/physics?searchtype=author&query=Berg%2C+Q+v+d">Q. van den Berg</a>, <a href="/search/physics?searchtype=author&query=Galtier%2C+E+C">E. C. Galtier</a>, <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">M. F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H+J">H. J. Lee</a>, <a href="/search/physics?searchtype=author&query=Miscampbell%2C+A+J+F">A. J. F. Miscampbell</a>, <a href="/search/physics?searchtype=author&query=Nagler%2C+B">B. Nagler</a>, <a href="/search/physics?searchtype=author&query=Royle%2C+R">R. Royle</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">J. S. Wark</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.05813v2-abstract-short" style="display: inline;"> The development of high-brightness free-electron lasers (FEL) has revolutionised our ability to create and study matter in the high-energy-density (HED) regime. Current diagnostic techniques have been very successful in yielding information on fundamental thermodynamic plasma properties, but provide only limited or indirect information on the detailed quantum structure of these systems, and on how… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05813v2-abstract-full').style.display = 'inline'; document.getElementById('2001.05813v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.05813v2-abstract-full" style="display: none;"> The development of high-brightness free-electron lasers (FEL) has revolutionised our ability to create and study matter in the high-energy-density (HED) regime. Current diagnostic techniques have been very successful in yielding information on fundamental thermodynamic plasma properties, but provide only limited or indirect information on the detailed quantum structure of these systems, and on how it is affected by ionization dynamics. Here we show how the electronic structure of solid-density nickel, heated to temperatures of 10's of eV on femtosecond timescales, can be studied by resonant (Raman) inelastic x-ray scattering (RIXS) using the Linac Coherent Light Source FEL. We present single-shot measurements of the valence density of states in the x-ray-heated transient system, and extract simultaneously electron temperatures, ionization, and ionization potential energies. The RIXS spectrum provides a wealth of information on the valence structure of the HED system that goes beyond what can be extracted from x-ray absorption or emission spectroscopy alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05813v2-abstract-full').style.display = 'none'; document.getElementById('2001.05813v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 195001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.12934">arXiv:1905.12934</a> <span> [<a href="https://arxiv.org/pdf/1905.12934">pdf</a>, <a href="https://arxiv.org/format/1905.12934">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.100.033208">10.1103/PhysRevE.100.033208 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Retrieving fields from proton radiography without source profiles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">M. F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Bott%2C+A+F+A">A. F. A. Bott</a>, <a href="/search/physics?searchtype=author&query=Tzeferacos%2C+P">P. Tzeferacos</a>, <a href="/search/physics?searchtype=author&query=Lamb%2C+D+Q">D. Q. Lamb</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">G. Gregori</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.12934v2-abstract-short" style="display: inline;"> Proton radiography is a technique in high energy density science to diagnose magnetic and/or electric fields in a plasma by firing a proton beam and detecting its modulated intensity profile on a screen. Current approaches to retrieve the integrated field from the modulated intensity profile require the unmodulated beam intensity profile before the interaction, which is rarely available experiment… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12934v2-abstract-full').style.display = 'inline'; document.getElementById('1905.12934v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.12934v2-abstract-full" style="display: none;"> Proton radiography is a technique in high energy density science to diagnose magnetic and/or electric fields in a plasma by firing a proton beam and detecting its modulated intensity profile on a screen. Current approaches to retrieve the integrated field from the modulated intensity profile require the unmodulated beam intensity profile before the interaction, which is rarely available experimentally due to shot-to-shot variability. In this paper, we present a statistical method to retrieve the integrated field without needing to know the exact source profile. We apply our method to experimental data, showing the robustness of our approach. Our proposed technique allows not only for the retrieval of the path-integrated fields, but also of the statistical properties of the fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12934v2-abstract-full').style.display = 'none'; document.getElementById('1905.12934v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 100, 033208 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02726">arXiv:1806.02726</a> <span> [<a href="https://arxiv.org/pdf/1806.02726">pdf</a>, <a href="https://arxiv.org/format/1806.02726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.100.043207">10.1103/PhysRevE.100.043207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab-initio simulations and measurements of the free-free opacity in Aluminum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hollebon%2C+P">P. Hollebon</a>, <a href="/search/physics?searchtype=author&query=Ciricosta%2C+O">O. Ciricosta</a>, <a href="/search/physics?searchtype=author&query=Desjarlais%2C+M+P">M. P. Desjarlais</a>, <a href="/search/physics?searchtype=author&query=Cacho%2C+C">C. Cacho</a>, <a href="/search/physics?searchtype=author&query=Spindloe%2C+C">C. Spindloe</a>, <a href="/search/physics?searchtype=author&query=Springate%2C+E">E. Springate</a>, <a href="/search/physics?searchtype=author&query=Turcu%2C+I+C+E">I. C. E. Turcu</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">J. S. Wark</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02726v1-abstract-short" style="display: inline;"> The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02726v1-abstract-full').style.display = 'inline'; document.getElementById('1806.02726v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02726v1-abstract-full" style="display: none;"> The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of x-ray to ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, and find good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02726v1-abstract-full').style.display = 'none'; document.getElementById('1806.02726v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 100, 043207 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.08301">arXiv:1805.08301</a> <span> [<a href="https://arxiv.org/pdf/1805.08301">pdf</a>, <a href="https://arxiv.org/format/1805.08301">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5125979">10.1063/1.5125979 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inverse Problem Instabilities in Large-Scale Plasma Modelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">M. F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Galligan%2C+T+P">T. P. Galligan</a>, <a href="/search/physics?searchtype=author&query=Topp-Mugglestone%2C+J">J. Topp-Mugglestone</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">G. Gregori</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.08301v2-abstract-short" style="display: inline;"> Our understanding of physical systems generally depends on our ability to match complex computational modelling with measured experimental outcomes. However, simulations with large parameter spaces suffer from inverse problem instabilities, where similar simulated outputs can map back to very different sets of input parameters. While of fundamental importance, such instabilities are seldom resolve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.08301v2-abstract-full').style.display = 'inline'; document.getElementById('1805.08301v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.08301v2-abstract-full" style="display: none;"> Our understanding of physical systems generally depends on our ability to match complex computational modelling with measured experimental outcomes. However, simulations with large parameter spaces suffer from inverse problem instabilities, where similar simulated outputs can map back to very different sets of input parameters. While of fundamental importance, such instabilities are seldom resolved due to the intractably large number of simulations required to comprehensively explore parameter space. Here we show how Bayesian machine learning can be used to address inverse problem instabilities, and apply it to two popular experimental diagnostics in plasma physics. We find that the extraction of information from measurements simply on the basis of agreement with simulations is unreliable, and leads to a significant underestimation of uncertainties. We describe how to statistically quantify the effect of unstable inverse models, and describe an approach to experimental design that mitigates its impact. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.08301v2-abstract-full').style.display = 'none'; document.getElementById('1805.08301v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.01234">arXiv:1802.01234</a> <span> [<a href="https://arxiv.org/pdf/1802.01234">pdf</a>, <a href="https://arxiv.org/format/1802.01234">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-018-24410-2">10.1038/s41598-018-24410-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Validating Continuum Lowering Models via Multi-Wavelength Measurements of Integrated X-ray Emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kasim%2C+M+F">M. F. Kasim</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">J. S. Wark</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.01234v1-abstract-short" style="display: inline;"> X-ray emission spectroscopy is a well-established technique used to study continuum lowering in dense plasmas. It relies on accurate atomic physics models to robustly reproduce high-resolution emission spectra, and depends on our ability to identify spectroscopic signatures such as emission lines or ionization edges of individual charge states within the plasma. Here we describe a method that forg… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.01234v1-abstract-full').style.display = 'inline'; document.getElementById('1802.01234v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.01234v1-abstract-full" style="display: none;"> X-ray emission spectroscopy is a well-established technique used to study continuum lowering in dense plasmas. It relies on accurate atomic physics models to robustly reproduce high-resolution emission spectra, and depends on our ability to identify spectroscopic signatures such as emission lines or ionization edges of individual charge states within the plasma. Here we describe a method that forgoes these requirements, enabling the validation of different continuum lowering models based solely on the total intensity of plasma emission in systems driven by narrow-bandwidth x-ray pulses across a range of wavelengths. The method is tested on published Al spectroscopy data and applied to the new case of solid-density partially-ionized Fe plasmas, where extracting ionization edges directly is precluded by the significant overlap of emission from a wide range of charge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.01234v1-abstract-full').style.display = 'none'; document.getElementById('1802.01234v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.4724">arXiv:1105.4724</a> <span> [<a href="https://arxiv.org/pdf/1105.4724">pdf</a>, <a href="https://arxiv.org/format/1105.4724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2011.08.028">10.1016/j.nima.2011.08.028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vibrational excitation induced by electron beam and cosmic rays in normal and superconductive aluminum bars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bassan%2C+M">M. Bassan</a>, <a href="/search/physics?searchtype=author&query=Buonomo%2C+B">B. Buonomo</a>, <a href="/search/physics?searchtype=author&query=Cavallari%2C+G">G. Cavallari</a>, <a href="/search/physics?searchtype=author&query=Coccia%2C+E">E. Coccia</a>, <a href="/search/physics?searchtype=author&query=D%27Antonio%2C+S">S. D'Antonio</a>, <a href="/search/physics?searchtype=author&query=Fafone%2C+V">V. Fafone</a>, <a href="/search/physics?searchtype=author&query=Foggetta%2C+L+G">L. G. Foggetta</a>, <a href="/search/physics?searchtype=author&query=Ligi%2C+C">C. Ligi</a>, <a href="/search/physics?searchtype=author&query=Marini%2C+A">A. Marini</a>, <a href="/search/physics?searchtype=author&query=Mazzitelli%2C+G">G. Mazzitelli</a>, <a href="/search/physics?searchtype=author&query=Modestino%2C+G">G. Modestino</a>, <a href="/search/physics?searchtype=author&query=Pizzella%2C+G">G. Pizzella</a>, <a href="/search/physics?searchtype=author&query=Quintieri%2C+L">L. Quintieri</a>, <a href="/search/physics?searchtype=author&query=Ronga%2C+F">F. Ronga</a>, <a href="/search/physics?searchtype=author&query=Valente%2C+P">P. Valente</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.4724v2-abstract-short" style="display: inline;"> We report new measurements of the acoustic excitation of an Al5056 superconductive bar when hit by an electron beam, in a previously unexplored temperature range, down to 0.35 K. These data, analyzed together with previous results of the RAP experiment obtained for T > 0.54 K, show a vibrational response enhanced by a factor 4.9 with respect to that measured in the normal state. This enhancement e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4724v2-abstract-full').style.display = 'inline'; document.getElementById('1105.4724v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.4724v2-abstract-full" style="display: none;"> We report new measurements of the acoustic excitation of an Al5056 superconductive bar when hit by an electron beam, in a previously unexplored temperature range, down to 0.35 K. These data, analyzed together with previous results of the RAP experiment obtained for T > 0.54 K, show a vibrational response enhanced by a factor 4.9 with respect to that measured in the normal state. This enhancement explains the anomalous large signals due to cosmic rays previously detected in the NAUTILUS gravitational wave detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4724v2-abstract-full').style.display = 'none'; document.getElementById('1105.4724v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0904.0100">arXiv:0904.0100</a> <span> [<a href="https://arxiv.org/pdf/0904.0100">pdf</a>, <a href="https://arxiv.org/ps/0904.0100">ps</a>, <a href="https://arxiv.org/format/0904.0100">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> XUV Opacity of Aluminum between the Cold-Solid to Warm-Plasma Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">G. Gregori</a>, <a href="/search/physics?searchtype=author&query=Nagler%2C+B">B. Nagler</a>, <a href="/search/physics?searchtype=author&query=Whitcher%2C+T+J">T. J. Whitcher</a>, <a href="/search/physics?searchtype=author&query=Desjarlais%2C+M+P">M. P. Desjarlais</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+R+W">R. W. Lee</a>, <a href="/search/physics?searchtype=author&query=Audebert%2C+P">P. Audebert</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">J. S. Wark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0904.0100v1-abstract-short" style="display: inline;"> We present calculations of the free-free XUV opacity of warm, solid-density aluminum at photon energies between the plasma frequency at 15 eV and the L-edge at 73 eV, using both density functional theory combined with molecular dynamics and a semi-analytical model in the RPA framework with the inclusion of local field corrections. As the temperature is increased from room temperature to 10 eV, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.0100v1-abstract-full').style.display = 'inline'; document.getElementById('0904.0100v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0904.0100v1-abstract-full" style="display: none;"> We present calculations of the free-free XUV opacity of warm, solid-density aluminum at photon energies between the plasma frequency at 15 eV and the L-edge at 73 eV, using both density functional theory combined with molecular dynamics and a semi-analytical model in the RPA framework with the inclusion of local field corrections. As the temperature is increased from room temperature to 10 eV, with the ion and electron temperatures equal, we calculate an increase in the opacity in the range over which the degree of ionization is constant. The effect is less pronounced if only the electron temperature is allowed to increase. The physical significance of these increases is discussed in terms of intense XUV-laser matter interactions on both femtosecond and picosecond time-scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.0100v1-abstract-full').style.display = 'none'; document.getElementById('0904.0100v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0901.1220">arXiv:0901.1220</a> <span> [<a href="https://arxiv.org/pdf/0901.1220">pdf</a>, <a href="https://arxiv.org/format/0901.1220">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2009.03.043">10.1016/j.physleta.2009.03.043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental study of high energy electron interactions in a superconducting aluminum alloy resonant bar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Barucci%2C+M">M. Barucci</a>, <a href="/search/physics?searchtype=author&query=Bassan%2C+M">M. Bassan</a>, <a href="/search/physics?searchtype=author&query=Buonomo%2C+B">B. Buonomo</a>, <a href="/search/physics?searchtype=author&query=Cavallari%2C+G">G. Cavallari</a>, <a href="/search/physics?searchtype=author&query=Coccia%2C+E">E. Coccia</a>, <a href="/search/physics?searchtype=author&query=D%27Antonio%2C+S">S. D'Antonio</a>, <a href="/search/physics?searchtype=author&query=Fafone%2C+V">V. Fafone</a>, <a href="/search/physics?searchtype=author&query=Ligi%2C+C">C. Ligi</a>, <a href="/search/physics?searchtype=author&query=Lolli%2C+L">L. Lolli</a>, <a href="/search/physics?searchtype=author&query=Marini%2C+A">A. Marini</a>, <a href="/search/physics?searchtype=author&query=Mazzitelli%2C+G">G. Mazzitelli</a>, <a href="/search/physics?searchtype=author&query=Modestino%2C+G">G. Modestino</a>, <a href="/search/physics?searchtype=author&query=Pizzella%2C+G">G. Pizzella</a>, <a href="/search/physics?searchtype=author&query=Quintieri%2C+L">L. Quintieri</a>, <a href="/search/physics?searchtype=author&query=Risegari%2C+L">L. Risegari</a>, <a href="/search/physics?searchtype=author&query=Rocchi%2C+A">A. Rocchi</a>, <a href="/search/physics?searchtype=author&query=Ronga%2C+F">F. Ronga</a>, <a href="/search/physics?searchtype=author&query=Valente%2C+P">P. Valente</a>, <a href="/search/physics?searchtype=author&query=Ventura%2C+G">G. Ventura</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">S. M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0901.1220v1-abstract-short" style="display: inline;"> Peak amplitude measurements of the fundamental mode of oscillation of a suspended aluminum alloy bar hit by an electron beam show that the amplitude is enhanced by a factor ~3.5 when the material is in the superconducting state. This result is consistent with the cosmic ray observations made by the resonant gravitational wave detector NAUTILUS, made of the same alloy, when operated in the superc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.1220v1-abstract-full').style.display = 'inline'; document.getElementById('0901.1220v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0901.1220v1-abstract-full" style="display: none;"> Peak amplitude measurements of the fundamental mode of oscillation of a suspended aluminum alloy bar hit by an electron beam show that the amplitude is enhanced by a factor ~3.5 when the material is in the superconducting state. This result is consistent with the cosmic ray observations made by the resonant gravitational wave detector NAUTILUS, made of the same alloy, when operated in the superconducting state. A comparison of the experimental data with the predictions of the model describing the underlying physical process is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.1220v1-abstract-full').style.display = 'none'; document.getElementById('0901.1220v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.A373:1801-1806,2009 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>