CINXE.COM
Search results for: loss minimization
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: loss minimization</title> <meta name="description" content="Search results for: loss minimization"> <meta name="keywords" content="loss minimization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="loss minimization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="loss minimization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3713</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: loss minimization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3713</span> Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Rashtchi">V. Rashtchi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bizhani"> H. Bizhani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20R.%20Tatari"> F. R. Tatari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20machine" title="induction machine">induction machine</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20minimization" title=" loss minimization"> loss minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetizing%20current" title=" magnetizing current"> magnetizing current</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/15437/using-of-particle-swarm-optimization-for-loss-minimization-of-vector-controlled-induction-motors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3712</span> Loss Minimization by Distributed Generation Allocation in Radial Distribution System Using Crow Search Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nageswara%20Rao">M. Nageswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20N.%20K.%20Chaitanya"> V. S. N. K. Chaitanya</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Amarendranath"> K. Amarendranath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an optimal allocation and sizing of Distributed Generation (DG) in Radial Distribution Network (RDN) for total power loss minimization and enhances the voltage profile of the system. The two main important part of this study first is to find optimal allocation and second is optimum size of DG. The locations of DGs are identified by Analytical expressions and crow search algorithm has been employed to determine the optimum size of DG. In this study, the DG has been placed on single and multiple allocations.CSA is a meta-heuristic algorithm inspired by the intelligent behavior of the crows. Crows stores their excess food in different locations and memorizes those locations to retrieve it when it is needed. They follow each other to do thievery to obtain better food source. This analysis is tested on IEEE 33 bus and IEEE 69 bus under MATLAB environment and the results are compared with existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20expression" title="analytical expression">analytical expression</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title=" distributed generation"> distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=crow%20search%20algorithm" title=" crow search algorithm"> crow search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss" title=" power loss"> power loss</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20profile" title=" voltage profile"> voltage profile</a> </p> <a href="https://publications.waset.org/abstracts/104210/loss-minimization-by-distributed-generation-allocation-in-radial-distribution-system-using-crow-search-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3711</span> Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Aboueldahab">Tarek Aboueldahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Farag"> Hanan Farag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20minimization" title="cost minimization">cost minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-vehicle%20routing%20problem" title=" multi-vehicle routing problem"> multi-vehicle routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20congregation" title=" passive congregation"> passive congregation</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20swarm" title=" discrete swarm"> discrete swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20congregation" title=" passive congregation"> passive congregation</a> </p> <a href="https://publications.waset.org/abstracts/157025/discrete-swarm-with-passive-congregation-for-cost-minimization-of-the-multiple-vehicle-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3710</span> Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20O.%20Nascimento">I. O. Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20T.%20Manzi"> J. T. Manzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20optimization" title="thermodynamic optimization">thermodynamic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20minimization" title=" entropy minimization"> entropy minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20dryers" title=" modeling dryers"> modeling dryers</a> </p> <a href="https://publications.waset.org/abstracts/45815/minimization-entropic-applied-to-rotary-dryers-to-reduce-the-energy-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3709</span> Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Aboueldahab">Tarek Aboueldahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Farag"> Hanan Farag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20job%20shop%20scheduling%20problem" title="parallel job shop scheduling problem">parallel job shop scheduling problem</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20breeding%20swarm" title=" discrete breeding swarm"> discrete breeding swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20sequencing%20and%20operator%20allocation" title=" car sequencing and operator allocation"> car sequencing and operator allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20minimization" title=" cost minimization"> cost minimization</a> </p> <a href="https://publications.waset.org/abstracts/132701/discrete-breeding-swarm-for-cost-minimization-of-parallel-job-shop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3708</span> Synthesis of Balanced 3-RRR Planar Parallel Manipulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arakelian%20Vigen">Arakelian Vigen</a>, <a href="https://publications.waset.org/abstracts/search?q=Geng%20Jing"> Geng Jing</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Baron%20Jean-Paul"> Le Baron Jean-Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the design of parallel manipulators with balanced inertia forces and moments. The balancing of the resultant of the inertia forces of 3-RRR planar parallel manipulators is carried out through mass redistribution and centre of mass acceleration minimization. The proposed balancing technique is achieved in two steps: at first, optimal redistribution of the masses of input links is accomplished, which ensures the similarity of the end-effector trajectory and the manipulator’s common centre of mass trajectory, then, optimal trajectory planning of the end-effector by 'bang-bang' profile is reached. In such a way, the minimization of the magnitude of the acceleration of the centre of mass of the manipulator brings about a minimization of shaking force. To minimize the resultant of the inertia moments (shaking moment), the active balancing via inertia flywheel is applied. However, in this case, the active balancing is quite different from previous applications because it provides only a partial cancellation of the shaking moment due to the incomplete balancing of shaking force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balancing" title="dynamic balancing">dynamic balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia%20force%20minimization" title=" inertia force minimization"> inertia force minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia%20moment%20minimization" title=" inertia moment minimization"> inertia moment minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=3-RRR%20planar%20parallel%20manipulator" title=" 3-RRR planar parallel manipulator"> 3-RRR planar parallel manipulator</a> </p> <a href="https://publications.waset.org/abstracts/70145/synthesis-of-balanced-3-rrr-planar-parallel-manipulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3707</span> A Family of Distributions on Learnable Problems without Uniform Convergence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20Garza">César Garza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20learning%20theory" title="statistical learning theory">statistical learning theory</a>, <a href="https://publications.waset.org/abstracts/search?q=learnability" title=" learnability"> learnability</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20convergence" title=" uniform convergence"> uniform convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=regularized%20loss%20minimization" title=" regularized loss minimization"> regularized loss minimization</a> </p> <a href="https://publications.waset.org/abstracts/151038/a-family-of-distributions-on-learnable-problems-without-uniform-convergence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3706</span> Evaluation of Minimization of Moment Ratio Method by Physical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Eslami">Amin Eslami</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Bolouri%20Bazaz"> Jafar Bolouri Bazaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever%20retaining%20wall" title="cantilever retaining wall">cantilever retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modeling" title=" physical modeling"> physical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=minimization%20of%20moment%20ratio%20method" title=" minimization of moment ratio method"> minimization of moment ratio method</a>, <a href="https://publications.waset.org/abstracts/search?q=pivot%20point" title=" pivot point "> pivot point </a> </p> <a href="https://publications.waset.org/abstracts/26383/evaluation-of-minimization-of-moment-ratio-method-by-physical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3705</span> Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Satish%20Kumar">P. Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ramakrishna"> K. Ramakrishna</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Lokeshwar%20Reddy"> Ch. Lokeshwar Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sridhar"> G. Sridhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-Frequency Pulse Width Modulation (FFPWM) and Multilevel Sinusoidal-Modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase Opposition Disposition (APOD), Phase Shifted Carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascaded%20multilevel%20inverters" title="cascaded multilevel inverters">cascaded multilevel inverters</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20modulation" title=" hybrid modulation"> hybrid modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss%20analysis" title=" power loss analysis"> power loss analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation" title=" pulse width modulation"> pulse width modulation</a> </p> <a href="https://publications.waset.org/abstracts/7094/minimization-of-switching-losses-in-cascaded-multilevel-inverters-using-efficient-sequential-switching-hybrid-modulation-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3704</span> An Improved Approach to Solve Two-Level Hierarchical Time Minimization Transportation Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalpana%20Dahiya">Kalpana Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a two-level hierarchical time minimization transportation problem, which is an important class of transportation problems arising in industries. This problem has been studied by various researchers, and a number of polynomial time iterative algorithms are available to find its solution. All the existing algorithms, though efficient, have some shortcomings. The current study proposes an alternate solution algorithm for the problem that is more efficient in terms of computational time than the existing algorithms. The results justifying the underlying theory of the proposed algorithm are given. Further, a detailed comparison of the computational behaviour of all the algorithms for randomly generated instances of this problem of different sizes validates the efficiency of the proposed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20optimization" title="global optimization">global optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20optimization" title=" hierarchical optimization"> hierarchical optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20problem" title=" transportation problem"> transportation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=concave%20minimization" title=" concave minimization"> concave minimization</a> </p> <a href="https://publications.waset.org/abstracts/122713/an-improved-approach-to-solve-two-level-hierarchical-time-minimization-transportation-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3703</span> Effect of DG Installation in Distribution System for Voltage Monitoring Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20A.%20Rahim">S. R. A. Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Musirin"> I. Musirin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Othman"> M. M. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Hussain"> M. H. Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Loss minimization is a long progressing issue mainly in distribution system. Nevertheless, its effect led to temperature rise due to significant voltage drop through the distribution line. Thus, compensation scheme should be proper scheduled in the attempt to alleviate the voltage drop phenomenon. Distributed generation has been profoundly known for voltage profile improvement provided that over-compensation or under-compensation phenomena are avoided. This paper addresses the issue of voltage improvement through different type DG installation. In ensuring optimal sizing and location of the DGs, predeveloped EMEFA technique was made to be used for this purpose. Incremental loading condition subjected to the system is the concern such that it is beneficial to the power system operator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=EMEFA" title=" EMEFA"> EMEFA</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss" title=" power loss"> power loss</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20profile" title=" voltage profile"> voltage profile</a> </p> <a href="https://publications.waset.org/abstracts/3286/effect-of-dg-installation-in-distribution-system-for-voltage-monitoring-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3702</span> Optimization of Line Loss Minimization Using Distributed Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sambath">S. Sambath</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Palanivel"> P. Palanivel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research conducted in the last few decades has proven that an inclusion of Distributed Genaration (DG) into distribution systems considerably lowers the level of power losses and the power quality improved. Moreover, the choice of DG is even more attractive since it provides not only benefits in power loss minimisation, but also a wide range of other advantages including environment, economic, power qualities and technical issues. This paper is an intent to quantify and analyse the impact of distributed generation (DG) in Tamil Nadu, India to examine what the benefits of decentralized generation would be for meeting rural loads. We used load flow analysis to simulate and quantify the loss reduction and power quality enhancement by having decentralized generation available line conditions for actual rural feeders in Tamil Nadu, India. Reactive and voltage profile was considered. This helps utilities to better plan their system in rural areas to meet dispersed loads, while optimizing the renewable and decentralised generation sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title=" distribution system"> distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20flow%20analysis" title=" load flow analysis"> load flow analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20location" title=" optimal location"> optimal location</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a> </p> <a href="https://publications.waset.org/abstracts/4401/optimization-of-line-loss-minimization-using-distributed-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3701</span> Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Sindareh%20Esfahani">Peyman Sindareh Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffery%20Kurt%20Pieper"> Jeffery Kurt Pieper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the <em>l</em><sub>2</sub>-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20fractional%20transformation" title="linear fractional transformation">linear fractional transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequality" title=" linear matrix inequality"> linear matrix inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20model%20predictive%20control" title=" robust model predictive control"> robust model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control" title=" state feedback control"> state feedback control</a> </p> <a href="https://publications.waset.org/abstracts/69466/online-robust-model-predictive-control-for-linear-fractional-transformation-systems-using-linear-matrix-inequalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3700</span> Proximal Method of Solving Split System of Minimization Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Getachew%20Gebrie">Anteneh Getachew Gebrie</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabian%20Wangkeeree"> Rabian Wangkeeree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilbert%20Space" title="Hilbert Space">Hilbert Space</a>, <a href="https://publications.waset.org/abstracts/search?q=minimization%20problems" title=" minimization problems"> minimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Moreau-Yosida%20approximate" title=" Moreau-Yosida approximate"> Moreau-Yosida approximate</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20feasibility%20problem" title=" split feasibility problem"> split feasibility problem</a> </p> <a href="https://publications.waset.org/abstracts/119147/proximal-method-of-solving-split-system-of-minimization-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3699</span> A Priority Based Imbalanced Time Minimization Assignment Problem: An Iterative Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekta%20Jain">Ekta Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpana%20Dahiya"> Kalpana Dahiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanita%20Verma"> Vanita Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a priority based imbalanced time minimization assignment problem dealing with the allocation of n jobs to m < n persons in which the project is carried out in two stages, viz. Stage-I and Stage-II. Stage-I consists of n1 ( < m) primary jobs and Stage-II consists of remaining (n-n1) secondary jobs which are commenced only after primary jobs are finished. Each job is to be allocated to exactly one person, and each person has to do at least one job. It is assumed that nature of the Stage-I jobs is such that one person can do exactly one primary job whereas a person can do more than one secondary job in Stage-II. In a particular stage, all persons start doing the jobs simultaneously, but if a person is doing more than one job, he does them one after the other in any order. The aim of the proposed study is to find the feasible assignment which minimizes the total time for the two stage execution of the project. For this, an iterative algorithm is proposed, which at each iteration, solves a constrained imbalanced time minimization assignment problem to generate a pair of Stage-I and Stage-II times. For solving this constrained problem, an algorithm is developed in the current paper. Later, alternate combinations based method to solve the priority based imbalanced problem is also discussed and a comparative study is carried out. Numerical illustrations are provided in support of the theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assignment" title="assignment">assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalanced" title=" imbalanced"> imbalanced</a>, <a href="https://publications.waset.org/abstracts/search?q=priority" title=" priority"> priority</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20minimization" title=" time minimization"> time minimization</a> </p> <a href="https://publications.waset.org/abstracts/75198/a-priority-based-imbalanced-time-minimization-assignment-problem-an-iterative-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3698</span> Loss Allocation in Radial Distribution Networks for Loads of Composite Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Banerjee">Sumit Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Kumar%20Chanda"> Chandan Kumar Chanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20type" title="composite type">composite type</a>, <a href="https://publications.waset.org/abstracts/search?q=deregulation" title=" deregulation"> deregulation</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20allocation" title=" loss allocation"> loss allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20distribution%20networks" title=" radial distribution networks"> radial distribution networks</a> </p> <a href="https://publications.waset.org/abstracts/42700/loss-allocation-in-radial-distribution-networks-for-loads-of-composite-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3697</span> Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sani%20M.%20Lawal">Sani M. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Idris%20Musa"> Idris Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20D.%20Usman"> Aliyu D. Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=pareto" title=" pareto"> pareto</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss" title=" power loss"> power loss</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20deviation" title=" voltage deviation"> voltage deviation</a> </p> <a href="https://publications.waset.org/abstracts/54635/pareto-system-of-optimal-placement-and-sizing-of-distributed-generation-in-radial-distribution-networks-using-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3696</span> A Holistic Approach for Technical Product Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harald%20Lang">Harald Lang</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Bader"> Michael Bader</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Buchroithner"> A. Buchroithner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Holistic methods covering the development process as a whole – e.g. systems engineering – have established themselves in product design. However, technical product optimization, representing improvements in efficiency and/or minimization of loss, usually applies to single components of a system. A holistic approach is being defined based on a hierarchical point of view of systems engineering. This is subsequently presented using the example of an electromechanical flywheel energy storage system for automotive applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20development" title=" product development"> product development</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20optimization" title=" product optimization"> product optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/35380/a-holistic-approach-for-technical-product-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">624</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3695</span> MapReduce Logistic Regression Algorithms with RHadoop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byung%20Ho%20Jung">Byung Ho Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lim"> Dong Hoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=RHadoop" title=" RHadoop"> RHadoop</a> </p> <a href="https://publications.waset.org/abstracts/41569/mapreduce-logistic-regression-algorithms-with-rhadoop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3694</span> Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Rashidul%20Hasan">Md. Rashidul Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Atikur%20Rahman%20Baizid"> Atikur Rahman Baizid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayes%20estimator" title="Bayes estimator">Bayes estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimator%20%28MLE%29" title=" maximum likelihood estimator (MLE)"> maximum likelihood estimator (MLE)</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20linear%20exponential%20%28MLINEX%29%20loss%20function" title=" modified linear exponential (MLINEX) loss function"> modified linear exponential (MLINEX) loss function</a>, <a href="https://publications.waset.org/abstracts/search?q=Squared%20Error%20%28SE%29%20loss%20function" title=" Squared Error (SE) loss function"> Squared Error (SE) loss function</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20exponential%20%28NLINEX%29%20loss%20function" title=" non-linear exponential (NLINEX) loss function"> non-linear exponential (NLINEX) loss function</a> </p> <a href="https://publications.waset.org/abstracts/53902/bayesian-estimation-under-different-loss-functions-using-gamma-prior-for-the-case-of-exponential-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3693</span> Hybrid PWM Techniques for the Reduction of Switching Losses and Voltage Harmonics in Cascaded Multilevel Inverters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Reddy%20Kota">Venkata Reddy Kota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These days, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements. Also, it is difficult to connect the traditional converters to the high and medium voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Different modulation topologies like Sinusoidal Pulse Width Modulation (SPWM), Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) are available for multilevel inverters. In this work, different hybrid modulation techniques which are combination of fundamental frequency modulation and multilevel sinusoidal-modulation are compared. The main characteristic of these modulations are reduction of switching losses with good harmonic performance and balanced power loss dissipation among the device. The proposed hybrid modulation schemes are developed and simulated in Matlab/Simulink for cascaded H-bridge inverter. The results validate the applicability of the proposed schemes for cascaded multilevel inverter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20PWM%20techniques" title="hybrid PWM techniques">hybrid PWM techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=cascaded%20multilevel%20inverters" title=" cascaded multilevel inverters"> cascaded multilevel inverters</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20loss%20minimization" title=" switching loss minimization"> switching loss minimization</a> </p> <a href="https://publications.waset.org/abstracts/12634/hybrid-pwm-techniques-for-the-reduction-of-switching-losses-and-voltage-harmonics-in-cascaded-multilevel-inverters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3692</span> Steepest Descent Method with New Step Sizes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bib%20Paruhum%20Silalahi">Bib Paruhum Silalahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Djihad%20Wungguli"> Djihad Wungguli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sugi%20Guritman"> Sugi Guritman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steepest%20descent" title="steepest descent">steepest descent</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20search" title=" line search"> line search</a>, <a href="https://publications.waset.org/abstracts/search?q=iteration" title=" iteration"> iteration</a>, <a href="https://publications.waset.org/abstracts/search?q=running%20time" title=" running time"> running time</a>, <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20optimization" title=" unconstrained optimization"> unconstrained optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a> </p> <a href="https://publications.waset.org/abstracts/29734/steepest-descent-method-with-new-step-sizes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3691</span> Economic Loss due to Ganoderma Disease in Oil Palm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Assis">K. Assis</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Chong"> K. P. Chong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Idris"> A. S. Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Ho"> C. M. Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ganoderma" title="ganoderma">ganoderma</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20loss" title=" yield loss"> yield loss</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20loss" title=" economic loss"> economic loss</a> </p> <a href="https://publications.waset.org/abstracts/42978/economic-loss-due-to-ganoderma-disease-in-oil-palm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3690</span> Cubical Representation of Prime and Essential Prime Implicants of Boolean Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Rawat">Saurabh Rawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Anushree%20Sah"> Anushree Sah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> K Maps are generally and ideally, thought to be simplest form for obtaining solution of Boolean equations. Cubical Representation of Boolean equations is an alternate pick to incur a solution, otherwise to be meted out with Truth Tables, Boolean Laws, and different traits of Karnaugh Maps. Largest possible k- cubes that exist for a given function are equivalent to its prime implicants. A technique of minimization of Logic functions is tried to be achieved through cubical methods. The main purpose is to make aware and utilise the advantages of cubical techniques in minimization of Logic functions. All this is done with an aim to achieve minimal cost solution.r <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=K-maps" title="K-maps">K-maps</a>, <a href="https://publications.waset.org/abstracts/search?q=don%E2%80%99t%20care%20conditions" title=" don’t care conditions"> don’t care conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=Boolean%20equations" title=" Boolean equations"> Boolean equations</a>, <a href="https://publications.waset.org/abstracts/search?q=cubes" title=" cubes"> cubes</a> </p> <a href="https://publications.waset.org/abstracts/6866/cubical-representation-of-prime-and-essential-prime-implicants-of-boolean-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3689</span> A Model for Solid Transportation Problem with Three Hierarchical Objectives under Uncertain Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wajahat%20Ali">Wajahat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakeel%20Javaid"> Shakeel Javaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we have developed a mathematical programming model for a solid transportation problem with three objective functions arranged in hierarchical order. The mathematical programming models with more than one objective function to be solved in hierarchical order is termed as a multi-level programming model. Our study explores a Multi-Level Solid Transportation Problem with Uncertain Parameters (MLSTPWU). The proposed MLSTPWU model consists of three objective functions, viz. minimization of transportation cost, minimization of total transportation time, and minimization of deterioration during transportation. These three objective functions are supposed to be solved by decision-makers at three consecutive levels. Three constraint functions are added to the model, restricting the total availability, total demand, and capacity of modes of transportation. All the parameters involved in the model are assumed to be uncertain in nature. A solution method based on fuzzy logic is also discussed to obtain the compromise solution for the proposed model. Further, a simulated numerical example is discussed to establish the efficiency and applicability of the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20transportation%20problem" title="solid transportation problem">solid transportation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level%20programming" title=" multi-level programming"> multi-level programming</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20variable" title=" uncertain variable"> uncertain variable</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20environment" title=" uncertain environment"> uncertain environment</a> </p> <a href="https://publications.waset.org/abstracts/162056/a-model-for-solid-transportation-problem-with-three-hierarchical-objectives-under-uncertain-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3688</span> Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekin%20Nurba%C5%9F">Ekin Nurbaş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=direction%20of%20arrival%20esitmation" title=" direction of arrival esitmation"> direction of arrival esitmation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20criteria%20decision%20making" title=" multi criteria decision making"> multi criteria decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20sensing" title=" compressive sensing"> compressive sensing</a> </p> <a href="https://publications.waset.org/abstracts/154971/genetic-algorithm-and-multi-criteria-decision-making-approach-for-compressive-sensing-based-direction-of-arrival-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3687</span> Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujing%20Wang">Sujing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Wang"> Song Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zhang"> Jian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Xu"> Qiang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flare%20minimization" title="flare minimization">flare minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20modeling%20and%20simulation" title=" large-scale modeling and simulation"> large-scale modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20shut-down" title=" plant shut-down"> plant shut-down</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20start-up" title=" plant start-up"> plant start-up</a> </p> <a href="https://publications.waset.org/abstracts/49832/computer-modeling-and-plant-wide-dynamic-simulation-for-industrial-flare-minimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3686</span> Harnessing the Power of Loss: On the Discriminatory Dynamic of Non-Emancipatory Organization Identity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rickard%20Grassman">Rickard Grassman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Lacanian theory will be used to illustrate the way discourses interact with the material by way of reifying antagonisms to shape our sense of identities in and around organizations. The ability to ‘sustain the loss’ is, in this view, the common structure here discerned in the very texture of a discourse, which reifies ‘lack’ as an ontological condition into something contingently absent (loss) that the subject hopes to overcome (desire). These fundamental human tendencies of identification are illustrated in the paper by examples drawn from history, cinema, and literature. Turning to a select sample of empirical accounts from a management consultancy firm, it is argued that this ‘sustaining the loss’ operates in discourse to enact identification in an organizational context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lacan" title="Lacan">Lacan</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=discourse" title=" discourse"> discourse</a>, <a href="https://publications.waset.org/abstracts/search?q=desire" title=" desire"> desire</a>, <a href="https://publications.waset.org/abstracts/search?q=loss" title=" loss"> loss</a> </p> <a href="https://publications.waset.org/abstracts/166485/harnessing-the-power-of-loss-on-the-discriminatory-dynamic-of-non-emancipatory-organization-identity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3685</span> In-Situ Sludge Minimization Using Integrated Moving Bed Biofilm Reactor for Industrial Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Sodhi">Vijay Sodhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Charanjit%20Singh"> Charanjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Sodhi"> Neelam Sodhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20P.%20S.%20Cheema"> Puneet P. S. Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Reena%20Sharma"> Reena Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithilesh%20K.%20Jha"> Mithilesh K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management and secure disposal of the biosludge generated from widely commercialized conventional activated sludge (CAS) treatments become a potential environmental issue. Thus, a sustainable technological upgradation to the CAS for sludge yield minimization has recently been gained serious attention of the scientific community. A number of recently reported studies effectively addressed the remedial technological advancements that in monopoly limited to the municipal wastewater. Moreover, the critical review of the literature signifies side-stream sludge minimization as a complex task to maintain. In this work, therefore, a hybrid moving bed biofilm reactor (MBBR) configuration (named as AMOMOX process) for in-situ minimization of the excess biosludge generated from high organic strength tannery wastewater has been demonstrated. The AMOMOX collectively stands for anoxic MBBR (as AM), aerobic MBBR (OM) and an oxic CAS (OX). The AMOMOX configuration involved a combined arrangement of an anoxic MBBR and oxic MBBR coupled with the aerobic CAS. The AMOMOX system was run in parallel with an identical CAS reactor. Both system configurations were fed with same influent to judge the real-time operational changes. For the AMOMOX process, the strict maintenance of operational strategies resulted about 95% removal of NH4-N and SCOD from tannery wastewater. Here, the nourishment of filamentous microbiota and purposeful promotion of cell-lysis effectively sustained sludge yield (Yobs) lowering upto 0.51 kgVSS/kgCOD. As a result, the volatile sludge scarcity apparent in the AMOMOX system succeeded upto 47% reduction of the excess biosludge. The corroborated was further supported by FE-SEM imaging and thermogravimetric analysis. However, the detection of microbial strains habitat underlying extended SRT (23-26 days) of the AMOMOX system would be the matter of further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tannery%20wastewater" title="tannery wastewater">tannery wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor" title=" moving bed biofilm reactor"> moving bed biofilm reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=sludhe%20yield" title=" sludhe yield"> sludhe yield</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20minimization" title=" sludge minimization"> sludge minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20retention%20time" title=" solids retention time"> solids retention time</a> </p> <a href="https://publications.waset.org/abstracts/167992/in-situ-sludge-minimization-using-integrated-moving-bed-biofilm-reactor-for-industrial-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3684</span> Influence of Prestress Loss on Mechanical Performance of Fabricated Girder Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Xiaoguang">Wu Xiaoguang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Jiaxin"> Liu Jiaxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Miaomiao"> Fang Miaomiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Saidong"> Wei Saidong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many prestressed concrete prefabricated girder Bridges with small and medium span and the damage is serious. This paper mainly study the effect of prestress loss of prefabricated bridge bearing performance, through the establishment of ANSYS finite element model, from the condition of different prestress loss research, get the stress and strain data, draw curve, finally get the following conclusion: loss of prestress can reduce the ultimate bearing capacity of Bridges, the side span across the deflection value than the influence of times side span, the influence of the deflection in the midspan cross value. Therefore, the prestress loss and the effective prestress should be strictly considered in the design and construction process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=across%20the%20deflection" title="across the deflection">across the deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20of%20prestress" title=" loss of prestress"> loss of prestress</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20girder%20bridge" title=" prefabricated girder bridge"> prefabricated girder bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20main%20tensile%20stress" title=" the main tensile stress"> the main tensile stress</a> </p> <a href="https://publications.waset.org/abstracts/138614/influence-of-prestress-loss-on-mechanical-performance-of-fabricated-girder-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=124">124</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=loss%20minimization&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>