CINXE.COM
Altitude (triangle) - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Altitude (triangle) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"0951ed95-e3fc-4556-9714-cd429df80038","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Altitude_(triangle)","wgTitle":"Altitude (triangle)","wgCurRevisionId":1252387320,"wgRevisionId":1252387320,"wgArticleId":161241,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles with excerpts","Straight lines defined for a triangle"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Altitude_(triangle)","wgRelevantArticleId":161241,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":9000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q339495","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/9/97/Projection_formula_%283%29.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="888"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/9/97/Projection_formula_%283%29.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="592"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="474"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Altitude (triangle) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Altitude_(triangle)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Altitude_(triangle)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Altitude_(triangle)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Altitude_triangle rootpage-Altitude_triangle skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Altitude+%28triangle%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Altitude+%28triangle%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Altitude+%28triangle%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Altitude+%28triangle%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Theorems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Theorems"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Theorems</span> </div> </a> <button aria-controls="toc-Theorems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Theorems subsection</span> </button> <ul id="toc-Theorems-sublist" class="vector-toc-list"> <li id="toc-Orthocenter" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Orthocenter"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Orthocenter</span> </div> </a> <ul id="toc-Orthocenter-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Altitude_in_terms_of_the_sides" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Altitude_in_terms_of_the_sides"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Altitude in terms of the sides</span> </div> </a> <ul id="toc-Altitude_in_terms_of_the_sides-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inradius_theorems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inradius_theorems"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Inradius theorems</span> </div> </a> <ul id="toc-Inradius_theorems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Circumradius_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Circumradius_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Circumradius theorem</span> </div> </a> <ul id="toc-Circumradius_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interior_point" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interior_point"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Interior point</span> </div> </a> <ul id="toc-Interior_point-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Area_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Area_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6</span> <span>Area theorem</span> </div> </a> <ul id="toc-Area_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-General_point_on_an_altitude" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General_point_on_an_altitude"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.7</span> <span>General point on an altitude</span> </div> </a> <ul id="toc-General_point_on_an_altitude-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Triangle_inequality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Triangle_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8</span> <span>Triangle inequality</span> </div> </a> <ul id="toc-Triangle_inequality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special_cases" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Special_cases"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.9</span> <span>Special cases</span> </div> </a> <ul id="toc-Special_cases-sublist" class="vector-toc-list"> <li id="toc-Equilateral_triangle" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Equilateral_triangle"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.9.1</span> <span>Equilateral triangle</span> </div> </a> <ul id="toc-Equilateral_triangle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Right_triangle" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Right_triangle"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.9.2</span> <span>Right triangle</span> </div> </a> <ul id="toc-Right_triangle-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Altitude (triangle)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 37 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-37" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">37 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D8%B1%D8%AA%D9%81%D8%A7%D8%B9_(%D9%85%D8%AB%D9%84%D8%AB)" title="ارتفاع (مثلث) – Arabic" lang="ar" hreflang="ar" data-title="ارتفاع (مثلث)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D1%8B%D1%88%D1%8B%D0%BD%D1%8F_%D1%82%D1%80%D0%BE%D1%85%D0%B2%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D1%96%D0%BA%D0%B0" title="Вышыня трохвугольніка – Belarusian" lang="be" hreflang="be" data-title="Вышыня трохвугольніка" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%92%D1%8B%D1%88%D1%8B%D0%BD%D1%8F_%D1%82%D1%80%D1%8B%D0%BA%D1%83%D1%82%D0%BD%D1%96%D0%BA%D1%83" title="Вышыня трыкутніку – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Вышыня трыкутніку" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%92%D0%B8%D1%81%D0%BE%D1%87%D0%B8%D0%BD%D0%B0_(%D1%82%D1%80%D0%B8%D1%8A%D0%B3%D1%8A%D0%BB%D0%BD%D0%B8%D0%BA)" title="Височина (триъгълник) – Bulgarian" lang="bg" hreflang="bg" data-title="Височина (триъгълник)" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Visina_trougla" title="Visina trougla – Bosnian" lang="bs" hreflang="bs" data-title="Visina trougla" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%92%D0%B8%C3%A7%D0%BA%C4%95%D1%82%D0%B5%D1%81%D0%BB%C4%95%D1%85_%C3%A7%D3%B3%D0%BB%D0%BB%C4%95%D1%88%C4%95" title="Виçкĕтеслĕх çӳллĕшĕ – Chuvash" lang="cv" hreflang="cv" data-title="Виçкĕтеслĕх çӳллĕшĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/H%C3%B6he_(Geometrie)" title="Höhe (Geometrie) – German" lang="de" hreflang="de" data-title="Höhe (Geometrie)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%8E%CF%88%CE%BF%CF%82_%CF%84%CF%81%CE%B9%CE%B3%CF%8E%CE%BD%CE%BF%CF%85" title="Ύψος τριγώνου – Greek" lang="el" hreflang="el" data-title="Ύψος τριγώνου" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Altura_(tri%C3%A1ngulo)" title="Altura (triángulo) – Spanish" lang="es" hreflang="es" data-title="Altura (triángulo)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Alto_(triangulo)" title="Alto (triangulo) – Esperanto" lang="eo" hreflang="eo" data-title="Alto (triangulo)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%B1%D8%AA%D9%81%D8%A7%D8%B9_(%D9%85%D8%AB%D9%84%D8%AB)" title="ارتفاع (مثلث) – Persian" lang="fa" hreflang="fa" data-title="ارتفاع (مثلث)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Hauteur_d%27un_triangle" title="Hauteur d'un triangle – French" lang="fr" hreflang="fr" data-title="Hauteur d'un triangle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Altura_(tri%C3%A1ngulo)" title="Altura (triángulo) – Galician" lang="gl" hreflang="gl" data-title="Altura (triángulo)" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B5%D5%BC%D5%A1%D5%B6%D5%AF%D5%B5%D5%A1%D5%B6_%D5%A2%D5%A1%D6%80%D5%B1%D6%80%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Եռանկյան բարձրություն – Armenian" lang="hy" hreflang="hy" data-title="Եռանկյան բարձրություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B6%E0%A5%80%E0%A4%B0%E0%A5%8D%E0%A4%B7%E0%A4%B2%E0%A4%AE%E0%A5%8D%E0%A4%AC_(%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%AD%E0%A5%81%E0%A4%9C)" title="शीर्षलम्ब (त्रिभुज) – Hindi" lang="hi" hreflang="hi" data-title="शीर्षलम्ब (त्रिभुज)" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Garis_tinggi_segitiga" title="Garis tinggi segitiga – Indonesian" lang="id" hreflang="id" data-title="Garis tinggi segitiga" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%92%D7%95%D7%91%D7%94_(%D7%92%D7%90%D7%95%D7%9E%D7%98%D7%A8%D7%99%D7%94)" title="גובה (גאומטריה) – Hebrew" lang="he" hreflang="he" data-title="גובה (גאומטריה)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Trijst%C5%ABra_augstums" title="Trijstūra augstums – Latvian" lang="lv" hreflang="lv" data-title="Trijstūra augstums" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Auk%C5%A1tin%C4%97_(trikampis)" title="Aukštinė (trikampis) – Lithuanian" lang="lt" hreflang="lt" data-title="Aukštinė (trikampis)" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/H%C3%A1romsz%C3%B6g_magass%C3%A1ga" title="Háromszög magassága – Hungarian" lang="hu" hreflang="hu" data-title="Háromszög magassága" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%92%D0%B8%D1%81%D0%B8%D0%BD%D0%B0_%D0%BD%D0%B0_%D1%82%D1%80%D0%B8%D0%B0%D0%B3%D0%BE%D0%BB%D0%BD%D0%B8%D0%BA" title="Висина на триаголник – Macedonian" lang="mk" hreflang="mk" data-title="Висина на триаголник" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Hoogtelijn_(driehoek)" title="Hoogtelijn (driehoek) – Dutch" lang="nl" hreflang="nl" data-title="Hoogtelijn (driehoek)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%A0%82%E5%9E%82%E7%B7%9A_(%E4%B8%89%E8%A7%92%E5%BD%A2)" title="頂垂線 (三角形) – Japanese" lang="ja" hreflang="ja" data-title="頂垂線 (三角形)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%80%E1%9E%98%E1%9F%92%E1%9E%96%E1%9E%9F%E1%9F%8B%E1%9E%8F%E1%9F%92%E1%9E%9A%E1%9E%B8%E1%9E%80%E1%9F%84%E1%9E%8E" title="កម្ពស់ត្រីកោណ – Khmer" lang="km" hreflang="km" data-title="កម្ពស់ត្រីកោណ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wysoko%C5%9B%C4%87_tr%C3%B3jk%C4%85ta" title="Wysokość trójkąta – Polish" lang="pl" hreflang="pl" data-title="Wysokość trójkąta" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D1%8B%D1%81%D0%BE%D1%82%D0%B0_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0" title="Высота треугольника – Russian" lang="ru" hreflang="ru" data-title="Высота треугольника" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/V%C3%BD%C5%A1ka_trojuholn%C3%ADka" title="Výška trojuholníka – Slovak" lang="sk" hreflang="sk" data-title="Výška trojuholníka" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Vi%C5%A1ina_trikotnika" title="Višina trikotnika – Slovenian" lang="sl" hreflang="sl" data-title="Višina trikotnika" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Wy%C5%BCka_trzieka" title="Wyżka trzieka – Silesian" lang="szl" hreflang="szl" data-title="Wyżka trzieka" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A8%DB%95%D8%B1%D8%B2%DB%8C_(%D8%B3%DB%8E%DA%AF%DB%86%D8%B4%DB%95)" title="بەرزی (سێگۆشە) – Central Kurdish" lang="ckb" hreflang="ckb" data-title="بەرزی (سێگۆشە)" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%92%D0%B8%D1%81%D0%B8%D0%BD%D0%B0_%D1%82%D1%80%D0%BE%D1%83%D0%B3%D0%BB%D0%B0" title="Висина троугла – Serbian" lang="sr" hreflang="sr" data-title="Висина троугла" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Visina_trougla" title="Visina trougla – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Visina trougla" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AF%81%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%8B%E0%AE%9F%E0%AF%81_(%E0%AE%AE%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%8B%E0%AE%A3%E0%AE%AE%E0%AF%8D)" title="குத்துக்கோடு (முக்கோணம்) – Tamil" lang="ta" hreflang="ta" data-title="குத்துக்கோடு (முக்கோணம்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Y%C3%BCkseklik_(%C3%BC%C3%A7gen)" title="Yükseklik (üçgen) – Turkish" lang="tr" hreflang="tr" data-title="Yükseklik (üçgen)" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B8%D1%81%D0%BE%D1%82%D0%B0_%D1%82%D1%80%D0%B8%D0%BA%D1%83%D1%82%D0%BD%D0%B8%D0%BA%D0%B0" title="Висота трикутника – Ukrainian" lang="uk" hreflang="uk" data-title="Висота трикутника" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D8%B1%D8%AA%D9%81%D8%A7%D8%B9_(%D9%85%D8%AB%D9%84%D8%AB)" title="ارتفاع (مثلث) – Urdu" lang="ur" hreflang="ur" data-title="ارتفاع (مثلث)" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%C6%B0%E1%BB%9Dng_cao_(tam_gi%C3%A1c)" title="Đường cao (tam giác) – Vietnamese" lang="vi" hreflang="vi" data-title="Đường cao (tam giác)" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q339495#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Altitude_(triangle)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Altitude_(triangle)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Altitude_(triangle)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Altitude_(triangle)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Altitude_(triangle)&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Altitude_(triangle)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Altitude_(triangle)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Altitude_(triangle)&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Altitude_(triangle)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Altitude_(triangle)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Altitude_(triangle)&oldid=1252387320" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Altitude_(triangle)&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Altitude_%28triangle%29&id=1252387320&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAltitude_%28triangle%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAltitude_%28triangle%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Altitude_%28triangle%29&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Altitude_(triangle)&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Height_(triangle)" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q339495" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Perpendicular line segment from a triangle's side to opposite vertex</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Projection_formula_(3).png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Projection_formula_%283%29.png/220px-Projection_formula_%283%29.png" decoding="async" width="220" height="163" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/9/97/Projection_formula_%283%29.png 1.5x" data-file-width="250" data-file-height="185" /></a><figcaption>The altitude from A (dashed line segment) intersects the extended base at D (a point outside the triangle).</figcaption></figure> <p>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, an <b>altitude</b> of a <a href="/wiki/Triangle" title="Triangle">triangle</a> is a <a href="/wiki/Line_segment" title="Line segment">line segment</a> through a given <a href="/wiki/Vertex_(geometry)" title="Vertex (geometry)">vertex</a> (called <i><a href="/wiki/Apex_(geometry)" title="Apex (geometry)">apex</a></i>) and <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> to a <a href="/wiki/Line_(geometry)" title="Line (geometry)">line</a> containing the side or <a href="/wiki/Edge_(geometry)" title="Edge (geometry)">edge</a> opposite the apex. This (finite) edge and (infinite) line extension are called, respectively, the <i><a href="/wiki/Base_(geometry)" title="Base (geometry)">base</a></i> and <i><a href="/wiki/Extended_side" title="Extended side">extended base</a></i> of the altitude. The <a href="/wiki/Point_(geometry)" title="Point (geometry)">point</a> at the intersection of the extended base and the altitude is called the <i><b>foot</b></i> of the altitude. The length of the altitude, often simply called "the altitude" or "height", symbol <span class="texhtml mvar" style="font-style:italic;">h</span>, is the distance between the foot and the apex. The process of drawing the altitude from a vertex to the foot is known as <i>dropping the altitude</i> at that vertex. It is a special case of <a href="/wiki/Orthogonal_projection" class="mw-redirect" title="Orthogonal projection">orthogonal projection</a>. </p><p>Altitudes can be used in the computation of the <a href="/wiki/Area_of_a_triangle" title="Area of a triangle">area of a triangle</a>: one-half of the product of an altitude's length and its base's length (symbol <span class="texhtml mvar" style="font-style:italic;">b</span>) equals the triangle's area: <span class="texhtml mvar" style="font-style:italic;">A</span>=<span class="texhtml mvar" style="font-style:italic;">h</span><span class="texhtml mvar" style="font-style:italic;">b</span>/2. Thus, the longest altitude is perpendicular to the shortest side of the triangle. The altitudes are also related to the sides of the triangle through the <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a>. </p><p>In an <a href="/wiki/Isosceles_triangle" title="Isosceles triangle">isosceles triangle</a> (a triangle with two <a href="/wiki/Congruence_(geometry)" title="Congruence (geometry)">congruent</a> sides), the altitude having the incongruent side as its base will have the <a href="/wiki/Midpoint" title="Midpoint">midpoint</a> of that side as its foot. Also the altitude having the incongruent side as its base will be the <a href="/wiki/Angle_bisector" class="mw-redirect" title="Angle bisector">angle bisector</a> of the vertex angle. </p><p>In a <a href="/wiki/Right_triangle" title="Right triangle">right triangle</a>, the altitude drawn to the <a href="/wiki/Hypotenuse" title="Hypotenuse">hypotenuse</a> <span class="texhtml mvar" style="font-style:italic;">c</span> divides the hypotenuse into two segments of lengths <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span>. If we denote the length of the altitude by <span class="texhtml mvar" style="font-style:italic;">h<sub>c</sub></span>, we then have the relation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{c}={\sqrt {pq}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>p</mi> <mi>q</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{c}={\sqrt {pq}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c01553f63cacef2e55c7249e51a6a68edc82fac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.556ex; height:3.009ex;" alt="{\displaystyle h_{c}={\sqrt {pq}}}"></span>  (<a href="/wiki/Geometric_mean_theorem" title="Geometric mean theorem">Geometric mean theorem</a>; see <a href="#Right_triangle">Special Cases</a>, <a href="/wiki/Inverse_Pythagorean_theorem" title="Inverse Pythagorean theorem">inverse Pythagorean theorem</a>)</dd></dl> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Rtriangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Rtriangle.svg/220px-Rtriangle.svg.png" decoding="async" width="220" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Rtriangle.svg/330px-Rtriangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Rtriangle.svg/440px-Rtriangle.svg.png 2x" data-file-width="512" data-file-height="440" /></a><figcaption>In a right triangle, the altitude from each acute angle coincides with a leg and intersects the opposite side at (has its foot at) the right-angled vertex, which is the orthocenter.</figcaption></figure> <p>For acute triangles, the feet of the altitudes all fall on the triangle's sides (not extended). In an obtuse triangle (one with an <a href="/wiki/Obtuse_angle" class="mw-redirect" title="Obtuse angle">obtuse angle</a>), the foot of the altitude to the obtuse-angled vertex falls in the interior of the opposite side, but the feet of the altitudes to the acute-angled vertices fall on the opposite <a href="/wiki/Extended_side" title="Extended side">extended side</a>, exterior to the triangle. This is illustrated in the adjacent diagram: in this obtuse triangle, an altitude dropped perpendicularly from the top vertex, which has an acute angle, intersects the extended horizontal side outside the triangle. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Theorems">Theorems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=1" title="Edit section: Theorems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Orthocenter">Orthocenter</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=2" title="Edit section: Orthocenter"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="excerpt-block"><style data-mw-deduplicate="TemplateStyles:r1066933788">.mw-parser-output .excerpt-hat .mw-editsection-like{font-style:normal}</style><style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable dablink excerpt-hat selfref">This section is an excerpt from <a href="/wiki/Orthocenter" title="Orthocenter">Orthocenter</a>.<span class="mw-editsection-like plainlinks"><span class="mw-editsection-bracket">[</span><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Orthocenter&action=edit">edit</a><span class="mw-editsection-bracket">]</span></span></div><div class="excerpt"> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Triangle.Orthocenter.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Triangle.Orthocenter.svg/220px-Triangle.Orthocenter.svg.png" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Triangle.Orthocenter.svg/330px-Triangle.Orthocenter.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/Triangle.Orthocenter.svg/440px-Triangle.Orthocenter.svg.png 2x" data-file-width="182" data-file-height="146" /></a><figcaption>The three altitudes of a triangle intersect at the orthocenter, which for an <a href="/wiki/Acute_and_obtuse_triangles" title="Acute and obtuse triangles">acute triangle</a> is inside the triangle.</figcaption></figure> The <a href="/wiki/Orthocenter" title="Orthocenter">orthocenter</a> of a <a href="/wiki/Triangle" title="Triangle">triangle</a>, usually denoted by <span class="texhtml mvar" style="font-style:italic;">H</span>, is the <a href="/wiki/Point_(geometry)" title="Point (geometry)">point</a> where the three (possibly extended) altitudes intersect.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Orthocenter_BG118_2-0" class="reference"><a href="#cite_note-Orthocenter_BG118-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> The orthocenter lies inside the triangle <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> the triangle is <a href="/wiki/Acute_triangle" class="mw-redirect" title="Acute triangle">acute</a>. For a <a href="/wiki/Right_triangle" title="Right triangle">right triangle</a>, the orthocenter coincides with the <a href="/wiki/Vertex_(geometry)" title="Vertex (geometry)">vertex</a> at the right angle.<sup id="cite_ref-Orthocenter_BG118_2-1" class="reference"><a href="#cite_note-Orthocenter_BG118-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></div></div> <div class="mw-heading mw-heading3"><h3 id="Altitude_in_terms_of_the_sides">Altitude in terms of the sides</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=3" title="Edit section: Altitude in terms of the sides"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any triangle with sides <span class="texhtml mvar" style="font-style:italic;">a, b, c</span> and <a href="/wiki/Semiperimeter" title="Semiperimeter">semiperimeter</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s={\tfrac {1}{2}}(a+b+c),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s={\tfrac {1}{2}}(a+b+c),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f21e731a2e138840d60863a820d6a5cc4e3b18d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.218ex; height:3.509ex;" alt="{\displaystyle s={\tfrac {1}{2}}(a+b+c),}"></span> the altitude from side <span class="texhtml mvar" style="font-style:italic;">a</span> (the base) is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{a}={\frac {2{\sqrt {s(s-a)(s-b)(s-c)}}}{a}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>s</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{a}={\frac {2{\sqrt {s(s-a)(s-b)(s-c)}}}{a}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76991db8cb127b50175bcd1228093fb9526a0075" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.054ex; height:6.176ex;" alt="{\displaystyle h_{a}={\frac {2{\sqrt {s(s-a)(s-b)(s-c)}}}{a}}.}"></span></dd></dl> <p>This follows from combining <a href="/wiki/Heron%27s_formula" title="Heron's formula">Heron's formula</a> for the area of a triangle in terms of the sides with the area formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}\times {\text{base}}\times {\text{height}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>base</mtext> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>height</mtext> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}\times {\text{base}}\times {\text{height}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d26c84bda1f25d87d5a00d454a8708eac57ce1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:18.721ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}\times {\text{base}}\times {\text{height}},}"></span> where the base is taken as side <span class="texhtml mvar" style="font-style:italic;">a</span> and the height is the altitude from the vertex <span class="texhtml mvar" style="font-style:italic;">A</span> (opposite side <span class="texhtml mvar" style="font-style:italic;">a</span>). </p><p>By exchanging <span class="texhtml mvar" style="font-style:italic;">a</span> with <span class="texhtml mvar" style="font-style:italic;">b</span> or <span class="texhtml mvar" style="font-style:italic;">c</span>, this equation can also used to find the altitudes <span class="texhtml mvar" style="font-style:italic;">h<sub>b</sub></span> and <span class="texhtml mvar" style="font-style:italic;">h<sub>c</sub></span>, respectively. </p> <div class="mw-heading mw-heading3"><h3 id="Inradius_theorems">Inradius theorems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=4" title="Edit section: Inradius theorems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider an arbitrary triangle with sides <span class="texhtml mvar" style="font-style:italic;">a, b, c</span> and with corresponding altitudes <span class="texhtml mvar" style="font-style:italic;">h<sub>a</sub>, h<sub>b</sub>, h<sub>c</sub></span>. The altitudes and the <a href="/wiki/Incircle" class="mw-redirect" title="Incircle">incircle</a> radius <span class="texhtml mvar" style="font-style:italic;">r</span> are related by<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: Lemma 1">: Lemma 1 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle {\frac {1}{r}}={\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mfrac> </mrow> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle {\frac {1}{r}}={\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9073ab19eb65c82abcb7d82ae84b2f68ef8f0ee4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.934ex; height:5.676ex;" alt="{\displaystyle \displaystyle {\frac {1}{r}}={\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Circumradius_theorem">Circumradius theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=5" title="Edit section: Circumradius theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Denoting the altitude from one side of a triangle as <span class="texhtml mvar" style="font-style:italic;">h<sub>a</sub></span>, the other two sides as <span class="texhtml mvar" style="font-style:italic;">b</span> and <span class="texhtml mvar" style="font-style:italic;">c</span>, and the triangle's <a href="/wiki/Circumradius" class="mw-redirect" title="Circumradius">circumradius</a> (radius of the triangle's circumscribed circle) as <span class="texhtml mvar" style="font-style:italic;">R</span>, the altitude is given by<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{a}={\frac {bc}{2R}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mi>c</mi> </mrow> <mrow> <mn>2</mn> <mi>R</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{a}={\frac {bc}{2R}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba626037c0fa7d48be7a27aa61b5d7000b5e30f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.949ex; height:5.509ex;" alt="{\displaystyle h_{a}={\frac {bc}{2R}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Interior_point">Interior point</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=6" title="Edit section: Interior point"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, <i>p</i><sub>3</sub></span> are the perpendicular distances from any point <span class="texhtml mvar" style="font-style:italic;">P</span> to the sides, and <span class="texhtml"><i>h</i><sub>1</sub>, <i>h</i><sub>2</sub>, <i>h</i><sub>3</sub></span> are the altitudes to the respective sides, then<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {p_{1}}{h_{1}}}+{\frac {p_{2}}{h_{2}}}+{\frac {p_{3}}{h_{3}}}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {p_{1}}{h_{1}}}+{\frac {p_{2}}{h_{2}}}+{\frac {p_{3}}{h_{3}}}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e44ece9a3c8c35e3955ee5c4be71a7917aa25dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.277ex; height:5.343ex;" alt="{\displaystyle {\frac {p_{1}}{h_{1}}}+{\frac {p_{2}}{h_{2}}}+{\frac {p_{3}}{h_{3}}}=1.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Area_theorem">Area theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=7" title="Edit section: Area theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Denoting the altitudes of any triangle from sides <span class="texhtml mvar" style="font-style:italic;">a, b, c</span> respectively as <span class="texhtml mvar" style="font-style:italic;">h<sub>a</sub>, h<sub>b</sub>, h<sub>c</sub></span>, and denoting the semi-sum of the reciprocals of the altitudes as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H={\tfrac {h_{a}^{-1}+h_{b}^{-1}+h_{c}^{-1}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H={\tfrac {h_{a}^{-1}+h_{b}^{-1}+h_{c}^{-1}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b30d3d8253b140cfbd6d31e7a5bcdf8b140f31c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.004ex; height:4.676ex;" alt="{\displaystyle H={\tfrac {h_{a}^{-1}+h_{b}^{-1}+h_{c}^{-1}}{2}}}"></span> we have<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Area} ^{-1}=4{\sqrt {H(H-h_{a}^{-1})(H-h_{b}^{-1})(H-h_{c}^{-1})}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>H</mi> <mo stretchy="false">(</mo> <mi>H</mi> <mo>−<!-- − --></mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>H</mi> <mo>−<!-- − --></mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>H</mi> <mo>−<!-- − --></mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Area} ^{-1}=4{\sqrt {H(H-h_{a}^{-1})(H-h_{b}^{-1})(H-h_{c}^{-1})}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/446b34aa14e2484a2965630930634e0b1edd1203" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:47.633ex; height:4.843ex;" alt="{\displaystyle \mathrm {Area} ^{-1}=4{\sqrt {H(H-h_{a}^{-1})(H-h_{b}^{-1})(H-h_{c}^{-1})}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="General_point_on_an_altitude">General point on an altitude</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=8" title="Edit section: General point on an altitude"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml mvar" style="font-style:italic;">E</span> is any point on an altitude <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AD</span></span> of any triangle <span class="texhtml">△<i>ABC</i></span>, then<sup id="cite_ref-Posamentier_7-0" class="reference"><a href="#cite_note-Posamentier-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 77–78">: 77–78 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {AC}}^{2}+{\overline {EB}}^{2}={\overline {AB}}^{2}+{\overline {CE}}^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>C</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>E</mi> <mi>B</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>C</mi> <mi>E</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {AC}}^{2}+{\overline {EB}}^{2}={\overline {AB}}^{2}+{\overline {CE}}^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9ac04e0caf3e437f9e4bfcdf6db4fdbbbe94240" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:28.308ex; height:3.676ex;" alt="{\displaystyle {\overline {AC}}^{2}+{\overline {EB}}^{2}={\overline {AB}}^{2}+{\overline {CE}}^{2}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Triangle_inequality">Triangle inequality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=9" title="Edit section: Triangle inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since the area of the triangle is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}ah_{a}={\tfrac {1}{2}}bh_{b}={\tfrac {1}{2}}ch_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>a</mi> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>b</mi> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>c</mi> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}ah_{a}={\tfrac {1}{2}}bh_{b}={\tfrac {1}{2}}ch_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/406c7e5e06edacaee589d099e6bc86226e67c782" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:21.406ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}ah_{a}={\tfrac {1}{2}}bh_{b}={\tfrac {1}{2}}ch_{c}}"></span>, the triangle inequality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a<b+c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo><</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a<b+c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f13ead6cae57cf97fab76ad2f250b6f9a8ed04b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.173ex; height:2.343ex;" alt="{\displaystyle a<b+c}"></span> implies<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{h_{a}}}<{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mfrac> </mrow> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{h_{a}}}<{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c44ba0dd00ec70bef05eab7372d9d7f61bebdfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.448ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{h_{a}}}<{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Special_cases">Special cases</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=10" title="Edit section: Special cases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Equilateral_triangle">Equilateral triangle</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=11" title="Edit section: Equilateral triangle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From any point <span class="texhtml mvar" style="font-style:italic;">P</span> within an <a href="/wiki/Equilateral_triangle" title="Equilateral triangle">equilateral triangle</a>, the sum of the perpendiculars to the three sides is equal to the altitude of the triangle. This is <a href="/wiki/Viviani%27s_theorem" title="Viviani's theorem">Viviani's theorem</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Right_triangle">Right triangle</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=12" title="Edit section: Right triangle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Right_angle_altitude.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Right_angle_altitude.svg/220px-Right_angle_altitude.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Right_angle_altitude.svg/330px-Right_angle_altitude.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Right_angle_altitude.svg/440px-Right_angle_altitude.svg.png 2x" data-file-width="512" data-file-height="384" /></a><figcaption>The altitude of a right triangle from its right angle to its hypotenuse is the geometric mean of the lengths of the segments the hypotenuse is split into. Using <a href="/wiki/Pythagoras%27_theorem" class="mw-redirect" title="Pythagoras' theorem">Pythagoras' theorem</a> on the 3 triangles of sides <span class="nowrap">(<i>p</i> + <i>q</i>, <i>r</i>, <i>s</i> )</span>, <span class="nowrap">(<i>r</i>, <i>p</i>, <i>h</i> )</span> and <span class="nowrap">(<i>s</i>, <i>h</i>, <i>q</i> )</span>,<br style="margin-bottom:1ex;" /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(p+q)^{2}\;\;&=\quad r^{2}\;\;\,+\quad s^{2}\\p^{2}\!\!+\!2pq\!+\!q^{2}&=\overbrace {p^{2}\!\!+\!h^{2}} +\overbrace {h^{2}\!\!+\!q^{2}} \\2pq\quad \;\;\;&=2h^{2}\;\therefore h\!=\!{\sqrt {pq}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> </mtd> <mtd> <mi></mi> <mo>=</mo> <mspace width="1em" /> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="1em" /> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>+</mo> <mspace width="negativethinmathspace" /> <mn>2</mn> <mi>p</mi> <mi>q</mi> <mspace width="negativethinmathspace" /> <mo>+</mo> <mspace width="negativethinmathspace" /> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>+</mo> <mspace width="negativethinmathspace" /> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>+</mo> <mspace width="negativethinmathspace" /> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mi>p</mi> <mi>q</mi> <mspace width="1em" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mo>∴<!-- ∴ --></mo> <mi>h</mi> <mspace width="negativethinmathspace" /> <mo>=</mo> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>p</mi> <mi>q</mi> </msqrt> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(p+q)^{2}\;\;&=\quad r^{2}\;\;\,+\quad s^{2}\\p^{2}\!\!+\!2pq\!+\!q^{2}&=\overbrace {p^{2}\!\!+\!h^{2}} +\overbrace {h^{2}\!\!+\!q^{2}} \\2pq\quad \;\;\;&=2h^{2}\;\therefore h\!=\!{\sqrt {pq}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d87f5b679df7d7f6ff6273b75534348653e00a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:30.438ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}(p+q)^{2}\;\;&=\quad r^{2}\;\;\,+\quad s^{2}\\p^{2}\!\!+\!2pq\!+\!q^{2}&=\overbrace {p^{2}\!\!+\!h^{2}} +\overbrace {h^{2}\!\!+\!q^{2}} \\2pq\quad \;\;\;&=2h^{2}\;\therefore h\!=\!{\sqrt {pq}}\\\end{aligned}}}"></span></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Inverse_pythagorean_theorem.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d0/Inverse_pythagorean_theorem.svg/220px-Inverse_pythagorean_theorem.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d0/Inverse_pythagorean_theorem.svg/330px-Inverse_pythagorean_theorem.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d0/Inverse_pythagorean_theorem.svg/440px-Inverse_pythagorean_theorem.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Comparison of the inverse Pythagorean theorem with the Pythagorean theorem</figcaption></figure> <p>In a right triangle with legs <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> and hypotenuse <span class="texhtml mvar" style="font-style:italic;">c</span>, each of the legs is also an altitude: <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{a}=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{a}=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27c903b2c7ce86550f305e74a56cc9f9e75e1db3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.537ex; height:2.509ex;" alt="{\displaystyle h_{a}=b}"></span>⁠</span> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{b}=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{b}=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b15d371c92a6fee23e02e93e337c67393e04822" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.605ex; height:2.509ex;" alt="{\displaystyle h_{b}=a}"></span>⁠</span>. The third altitude can be found by the relation<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{h_{c}^{2}}}={\frac {1}{h_{a}^{2}}}+{\frac {1}{h_{b}^{2}}}={\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{h_{c}^{2}}}={\frac {1}{h_{a}^{2}}}+{\frac {1}{h_{b}^{2}}}={\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00d74badea7da854e5a405247a7cf1218f76bb5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.268ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{h_{c}^{2}}}={\frac {1}{h_{a}^{2}}}+{\frac {1}{h_{b}^{2}}}={\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}.}"></span></dd></dl> <p>This is also known as the <a href="/wiki/Inverse_Pythagorean_theorem" title="Inverse Pythagorean theorem">inverse Pythagorean theorem</a>. </p><p>Note in particular: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\tfrac {1}{2}}AC\cdot BC&={\tfrac {1}{2}}AB\cdot CD\\[4pt]CD&={\tfrac {AC\cdot BC}{AB}}\\[4pt]\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>A</mi> <mi>C</mi> <mo>⋅<!-- ⋅ --></mo> <mi>B</mi> <mi>C</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>A</mi> <mi>B</mi> <mo>⋅<!-- ⋅ --></mo> <mi>C</mi> <mi>D</mi> </mtd> </mtr> <mtr> <mtd> <mi>C</mi> <mi>D</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>A</mi> <mi>C</mi> <mo>⋅<!-- ⋅ --></mo> <mi>B</mi> <mi>C</mi> </mrow> <mrow> <mi>A</mi> <mi>B</mi> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\tfrac {1}{2}}AC\cdot BC&={\tfrac {1}{2}}AB\cdot CD\\[4pt]CD&={\tfrac {AC\cdot BC}{AB}}\\[4pt]\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3568e8b4c2f2792d3e08b8f06654c6530eab06cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:24.762ex; height:8.509ex;" alt="{\displaystyle {\begin{aligned}{\tfrac {1}{2}}AC\cdot BC&={\tfrac {1}{2}}AB\cdot CD\\[4pt]CD&={\tfrac {AC\cdot BC}{AB}}\\[4pt]\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=13" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Median_(geometry)" title="Median (geometry)">Median (geometry)</a></li></ul> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=14" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFSmart1998">Smart 1998</a>, p. 156</span> </li> <li id="cite_note-Orthocenter_BG118-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Orthocenter_BG118_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Orthocenter_BG118_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBereleGoldman2001">Berele & Goldman 2001</a>, p. 118</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Dorin Andrica and Dan S ̧tefan Marinescu. "New Interpolation Inequalities to Euler's R ≥ 2r". <i>Forum Geometricorum</i>, Volume 17 (2017), pp. 149–156. <a rel="nofollow" class="external free" href="http://forumgeom.fau.edu/FG2017volume17/FG201719.pdf">http://forumgeom.fau.edu/FG2017volume17/FG201719.pdf</a></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFJohnson2007">Johnson 2007</a>, p. 71, Section 101a</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFJohnson2007">Johnson 2007</a>, p. 74, Section 103c</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Mitchell, Douglas W., "A Heron-type formula for the reciprocal area of a triangle," <i>Mathematical Gazette</i> 89, November 2005, 494.</span> </li> <li id="cite_note-Posamentier-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Posamentier_7-0">^</a></b></span> <span class="reference-text"><a href="/wiki/Alfred_S._Posamentier" title="Alfred S. Posamentier">Alfred S. Posamentier</a> and Charles T. Salkind, <i>Challenging Problems in Geometry</i>, Dover Publishing Co., second revised edition, 1996.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Mitchell, Douglas W., "A Heron-type formula for the reciprocal area of a triangle", <i>Mathematical Gazette</i> 89 (November 2005), 494.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Voles, Roger, "Integer solutions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-2}+b^{-2}=d^{-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-2}+b^{-2}=d^{-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f55d29f73f243e4019ebdb067821df3e40672d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.383ex; height:2.843ex;" alt="{\displaystyle a^{-2}+b^{-2}=d^{-2}}"></span>," <i>Mathematical Gazette</i> 83, July 1999, 269–271.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Richinick, Jennifer, "The upside-down Pythagorean Theorem," <i>Mathematical Gazette</i> 92, July 2008, 313–317.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=15" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAltshiller-Court2007" class="citation cs2"><a href="/wiki/Nathan_Altshiller_Court" title="Nathan Altshiller Court">Altshiller-Court, Nathan</a> (2007) [1952], <i>College Geometry</i>, Dover</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=College+Geometry&rft.pub=Dover&rft.date=2007&rft.aulast=Altshiller-Court&rft.aufirst=Nathan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AAltitude+%28triangle%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBereleGoldman2001" class="citation cs2">Berele, Allan; Goldman, Jerry (2001), <i>Geometry: Theorems and Constructions</i>, Prentice Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-13-087121-4" title="Special:BookSources/0-13-087121-4"><bdi>0-13-087121-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry%3A+Theorems+and+Constructions&rft.pub=Prentice+Hall&rft.date=2001&rft.isbn=0-13-087121-4&rft.aulast=Berele&rft.aufirst=Allan&rft.au=Goldman%2C+Jerry&rfr_id=info%3Asid%2Fen.wikipedia.org%3AAltitude+%28triangle%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBogomolny" class="citation web cs1"><a href="/wiki/Alexander_Bogomolny" title="Alexander Bogomolny">Bogomolny, Alexander</a>. <a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/triangle/altitudes.shtml">"Existence of the Orthocenter"</a>. <i>Cut the Knot</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Cut+the+Knot&rft.atitle=Existence+of+the+Orthocenter&rft.aulast=Bogomolny&rft.aufirst=Alexander&rft_id=http%3A%2F%2Fwww.cut-the-knot.org%2Ftriangle%2Faltitudes.shtml&rfr_id=info%3Asid%2Fen.wikipedia.org%3AAltitude+%28triangle%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson2007" class="citation cs2">Johnson, Roger A. (2007) [1960], <i>Advanced Euclidean Geometry</i>, Dover, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-46237-0" title="Special:BookSources/978-0-486-46237-0"><bdi>978-0-486-46237-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Advanced+Euclidean+Geometry&rft.pub=Dover&rft.date=2007&rft.isbn=978-0-486-46237-0&rft.aulast=Johnson&rft.aufirst=Roger+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AAltitude+%28triangle%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmart1998" class="citation cs2">Smart, James R. (1998), <i>Modern Geometries</i> (5th ed.), Brooks/Cole, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-534-35188-3" title="Special:BookSources/0-534-35188-3"><bdi>0-534-35188-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Modern+Geometries&rft.edition=5th&rft.pub=Brooks%2FCole&rft.date=1998&rft.isbn=0-534-35188-3&rft.aulast=Smart&rft.aufirst=James+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AAltitude+%28triangle%29" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Altitude_(triangle)&action=edit&section=16" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="citation mathworld" id="Reference-Mathworld-Altitude"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Altitude.html">"Altitude"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Altitude&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FAltitude.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AAltitude+%28triangle%29" class="Z3988"></span></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐lsb4r Cached time: 20241122143505 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.398 seconds Real time usage: 0.577 seconds Preprocessor visited node count: 1799/1000000 Post‐expand include size: 19007/2097152 bytes Template argument size: 1730/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 19963/5000000 bytes Lua time usage: 0.228/10.000 seconds Lua memory usage: 5686554/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 423.338 1 -total 23.96% 101.446 1 Template:Short_description 22.29% 94.345 4 Template:Citation 21.51% 91.058 1 Template:Excerpt 14.97% 63.378 2 Template:Pagetype 10.80% 45.701 1 Template:Reflist 7.15% 30.251 4 Template:Harvnb 6.47% 27.411 2 Template:Rp 5.72% 24.223 6 Template:Main_other 5.35% 22.654 2 Template:R/superscript --> <!-- Saved in parser cache with key enwiki:pcache:idhash:161241-0!canonical and timestamp 20241122143505 and revision id 1252387320. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Altitude_(triangle)&oldid=1252387320">https://en.wikipedia.org/w/index.php?title=Altitude_(triangle)&oldid=1252387320</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Straight_lines_defined_for_a_triangle" title="Category:Straight lines defined for a triangle">Straight lines defined for a triangle</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_with_excerpts" title="Category:Articles with excerpts">Articles with excerpts</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 October 2024, at 03:22<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Altitude_(triangle)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-m5gcf","wgBackendResponseTime":172,"wgPageParseReport":{"limitreport":{"cputime":"0.398","walltime":"0.577","ppvisitednodes":{"value":1799,"limit":1000000},"postexpandincludesize":{"value":19007,"limit":2097152},"templateargumentsize":{"value":1730,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":19963,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 423.338 1 -total"," 23.96% 101.446 1 Template:Short_description"," 22.29% 94.345 4 Template:Citation"," 21.51% 91.058 1 Template:Excerpt"," 14.97% 63.378 2 Template:Pagetype"," 10.80% 45.701 1 Template:Reflist"," 7.15% 30.251 4 Template:Harvnb"," 6.47% 27.411 2 Template:Rp"," 5.72% 24.223 6 Template:Main_other"," 5.35% 22.654 2 Template:R/superscript"]},"scribunto":{"limitreport-timeusage":{"value":"0.228","limit":"10.000"},"limitreport-memusage":{"value":5686554,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAltshiller-Court2007\"] = 1,\n [\"CITEREFBereleGoldman2001\"] = 1,\n [\"CITEREFBogomolny\"] = 1,\n [\"CITEREFJohnson2007\"] = 1,\n [\"CITEREFSmart1998\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 1,\n [\"Citation\"] = 4,\n [\"Cite web\"] = 1,\n [\"Clear\"] = 1,\n [\"Excerpt\"] = 1,\n [\"Harvnb\"] = 2,\n [\"Math\"] = 3,\n [\"MathWorld\"] = 1,\n [\"Mvar\"] = 35,\n [\"Overline\"] = 1,\n [\"Reflist\"] = 1,\n [\"Right_angle_altitude.svg\"] = 1,\n [\"Rp\"] = 2,\n [\"Short description\"] = 1,\n [\"Sub\"] = 14,\n [\"Tmath\"] = 2,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-lsb4r","timestamp":"20241122143505","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Altitude (triangle)","url":"https:\/\/en.wikipedia.org\/wiki\/Altitude_(triangle)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q339495","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q339495","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-12-24T06:11:40Z","dateModified":"2024-10-21T03:22:58Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/97\/Projection_formula_%283%29.png","headline":"line segment in a triangle"}</script> </body> </html>