CINXE.COM
Search results for: cell death
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cell death</title> <meta name="description" content="Search results for: cell death"> <meta name="keywords" content="cell death"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cell death" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cell death"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4701</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cell death</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4461</span> Catalytic Study of Natural Gas Based Solid Oxide Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasir%20Iqbal">Nasir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Khurram%20Siraj"> Khurram Siraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Raza"> Rizwan Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid oxide fuel cell (SOFC) is the promising technology now days. SOFC can be operated with different types of fuels available. In this work catalytic anode is prepared with metal oxides i.e. Li, Ni, Zn and Sn and tested for catalytic activity with natural gas as a fuel. The operating temperature range is 170-750°C as observed with the help of TGA. Electrical conductivity and fuel cell performance has been observed for four different samples with varying composition of Sn and Zn. It is concluded that the sample having greater concentration of Zn shows better conductivity and power density results. All the results are promising and verified with different characterizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20activity" title="catalytic activity">catalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title=" solid oxide fuel cell"> solid oxide fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20material" title=" energy material"> energy material</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a> </p> <a href="https://publications.waset.org/abstracts/172581/catalytic-study-of-natural-gas-based-solid-oxide-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4460</span> Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chieh-Chung%20Tsou">Chieh-Chung Tsou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Min%20Lo"> Chun-Min Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeh-Shiu%20Chu"> Yeh-Shiu Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadherin" title="cadherin">cadherin</a>, <a href="https://publications.waset.org/abstracts/search?q=intercellular%20adhesion" title=" intercellular adhesion"> intercellular adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20micropattern" title=" protein micropattern"> protein micropattern</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20force%20microscopy" title=" traction force microscopy"> traction force microscopy</a> </p> <a href="https://publications.waset.org/abstracts/58816/force-measurement-for-e-cadherin-mediated-intercellular-adhesion-probed-by-protein-micropattern-and-traction-force-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4459</span> Continuum-Based Modelling Approaches for Cell Mechanics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20D.%20Bansod">Yogesh D. Bansod</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Bursa"> Jiri Bursa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20mechanics" title="cell mechanics">cell mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20models" title=" computational models"> computational models</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20approach" title=" continuum approach"> continuum approach</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20models" title=" mechanical models"> mechanical models</a> </p> <a href="https://publications.waset.org/abstracts/29027/continuum-based-modelling-approaches-for-cell-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4458</span> Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nawang%20Chhunid">Nawang Chhunid</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagnesh%20Kumar"> Gagnesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DRAM%20Cell" title="DRAM Cell">DRAM Cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Read%20Access%20Time" title=" Read Access Time"> Read Access Time</a>, <a href="https://publications.waset.org/abstracts/search?q=Retention%20Time" title=" Retention Time"> Retention Time</a>, <a href="https://publications.waset.org/abstracts/search?q=Average%20Power%20dissipation" title=" Average Power dissipation"> Average Power dissipation</a> </p> <a href="https://publications.waset.org/abstracts/52217/analysis-of-performance-of-3t1d-dynamic-random-access-memory-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4457</span> In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Dashti">A. Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Eskandari"> M. Eskandari</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Farahmand"> L. Farahmand</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Parvin"> P. Parvin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jafargholi"> A. Jafargholi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospun%20scaffold" title=" electrospun scaffold"> electrospun scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolacton" title=" polycaprolacton"> polycaprolacton</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20diode" title=" laser diode"> laser diode</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20treatment" title=" cancer treatment"> cancer treatment</a> </p> <a href="https://publications.waset.org/abstracts/102340/in-vitro-study-of-laser-diode-radiation-effect-on-the-photo-damage-of-mcf-7-and-mcf-10a-cell-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4456</span> Facile Synthesis of Novel Substituted Aryl-Thiazole (SAT) Analogs via One-Pot Multicomponent Reaction as Potent Cytotoxic Agents against Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Mirza">Salma Mirza</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Asma%20Naqvi"> Syeda Asma Naqvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Mohammed%20Khan"> Khalid Mohammed Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Iqbal%20Choudhary"> M. Iqbal Choudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study twenty-five (25) newly synthesized compounds substituted aryl thiazoles (SAT) 1-25 were synthesized, and in vitro cytotoxicity of these compounds was evaluated against four cancer cell lines namely, MCF-7 (ER+ve breast), MDA-MB-231 (ER-ve breast), HCT116 (colorectal), and, HeLa (cervical) and compared with the standard anticancer drug doxorubicin with IC50 value of 1.56 ± 0.05 μM. Among them, compounds 1, 4-8 and 19 were found to be active against all four cell lines. Compound 20 was found to be selectively active against MCF7 cells with IC50 value of 40.21 ± 4.15 µM, whereas compound 19 was active against only MCF7 and HeLa cells with IC50 values of 46.72 ± 1.8 and 19.86 ± 0.11 μM, respectively. These results suggest that aryl thiazoles 1 and 4 deserve to be investigated further in vivo as anti-cancer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer%20agents" title="anticancer agents">anticancer agents</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cell%20lines%20%28MCF7" title=" breast cancer cell lines (MCF7"> breast cancer cell lines (MCF7</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA-MB-231%29" title=" MDA-MB-231)"> MDA-MB-231)</a>, <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer%20cell%20line%20%28HCT-116%29" title=" colorectal cancer cell line (HCT-116)"> colorectal cancer cell line (HCT-116)</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer%20cell%20line%20%28HeLa%29" title=" cervical cancer cell line (HeLa)"> cervical cancer cell line (HeLa)</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiazole%20derivatives" title=" Thiazole derivatives"> Thiazole derivatives</a> </p> <a href="https://publications.waset.org/abstracts/53064/facile-synthesis-of-novel-substituted-aryl-thiazole-sat-analogs-via-one-pot-multicomponent-reaction-as-potent-cytotoxic-agents-against-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4455</span> In silico Repopulation Model of Various Tumour Cells during Treatment Breaks in Head and Neck Cancer Radiotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loredana%20G.%20Marcu">Loredana G. Marcu</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Marcu"> David Marcu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanda%20M.%20Filip"> Sanda M. Filip</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced head and neck cancers are aggressive tumours, which require aggressive treatment. Treatment efficiency is often hindered by cancer cell repopulation during radiotherapy, which is due to various mechanisms triggered by the loss of tumour cells and involves both stem and differentiated cells. The aim of the current paper is to present in silico simulations of radiotherapy schedules on a virtual head and neck tumour grown with biologically realistic kinetic parameters. Using the linear quadratic formalism of cell survival after radiotherapy, altered fractionation schedules employing various treatment breaks for normal tissue recovery are simulated and repopulation mechanism implemented in order to evaluate the impact of various cancer cell contribution on tumour behaviour during irradiation. The model has shown that the timing of treatment breaks is an important factor influencing tumour control in rapidly proliferating tissues such as squamous cell carcinomas of the head and neck. Furthermore, not only stem cells but also differentiated cells, via the mechanism of abortive division, can contribute to malignant cell repopulation during treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation" title="radiation">radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=tumour%20repopulation" title=" tumour repopulation"> tumour repopulation</a>, <a href="https://publications.waset.org/abstracts/search?q=squamous%20cell%20carcinoma" title=" squamous cell carcinoma"> squamous cell carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a> </p> <a href="https://publications.waset.org/abstracts/17943/in-silico-repopulation-model-of-various-tumour-cells-during-treatment-breaks-in-head-and-neck-cancer-radiotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4454</span> Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Djaafar">F. Djaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hadri"> B. Hadri</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bachir"> G. Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design parameters for a thin film 3J <em>InGaP/GaAs/Ge </em>solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction <em>InGaP/GaAs/Ge </em>cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterojunction" title="heterojunction">heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=Tcad%20Silvaco" title=" Tcad Silvaco"> Tcad Silvaco</a> </p> <a href="https://publications.waset.org/abstracts/66258/comparison-between-the-efficiency-of-heterojunction-thin-film-ingapgaasge-and-ingapgaas-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4453</span> Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassane%20Ben%20Slimane">Hassane Ben Slimane</a>, <a href="https://publications.waset.org/abstracts/search?q=Benmoussa%20Dennai"> Benmoussa Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahman%20Hemmani"> Abderrahman Hemmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrachid%20Helmaoui"> Abderrachid Helmaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multijunction%20solar%20cell" title="multijunction solar cell">multijunction solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=CIGS" title=" CIGS"> CIGS</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a> </p> <a href="https://publications.waset.org/abstracts/20170/numerical-simulation-of-multijunction-gaascigs-solar-cell-by-amps-1d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4452</span> A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20Tkacheva">Olga Tkacheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Arkhipov"> Pavel Arkhipov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Rudenko"> Alexey Rudenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Yurii%20Zaikov"> Yurii Zaikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm<sup>2</sup> in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13<sup>th</sup> hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na<sub>3</sub>AlF<sub>6</sub>, Na<sub>5</sub>Al<sub>3</sub>F<sub>14</sub>, Al<sub>2</sub>O<sub>3</sub>, and NaF<sup>.</sup>5CaF<sub>2</sub><sup>.</sup>AlF<sub>3</sub>. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20distribution" title="alumina distribution">alumina distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20electrolyzer" title=" aluminum electrolyzer"> aluminum electrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=cryolie-alumina%20electrolyte" title=" cryolie-alumina electrolyte"> cryolie-alumina electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20ledge" title=" side ledge"> side ledge</a> </p> <a href="https://publications.waset.org/abstracts/118301/a-study-of-the-alumina-distribution-in-the-lab-scale-cell-during-aluminum-electrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4451</span> Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanshan%20Guo">Shanshan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoying%20Zhu"> Xiaoying Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Ja%C5%84czewski"> Dominik Jańczewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Koon%20Gee%20Neoh"> Koon Gee Neoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20adhesion" title="cell adhesion">cell adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer" title=" layer-by-layer"> layer-by-layer</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge" title=" surface charge"> surface charge</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a> </p> <a href="https://publications.waset.org/abstracts/57245/independent-control-over-surface-charge-and-wettability-using-polyelectrolyte-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4450</span> Comparison of Fuel Cell Installation Methods at Large Commercial and Industrial Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masood%20Sattari">Masood Sattari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using fuel cell technology to generate electricity for large commercial and industrial sites is a growing segment in the fuel cell industry. The installation of these systems involves design, permitting, procurement of long-lead electrical equipment, and construction involving multiple utilities. The installation of each fuel cell system requires the same amount of coordination as the construction of a new structure requiring a foundation, gas, water, and electricity. Each of these components provide variables that can delay and possibly eliminate a new project. As the manufacturing process and efficiency of fuel cell systems improves, so must the installation methods to prevent a ‘bottle-neck’ in the installation phase of the deployment. Installation methodologies to install the systems vary among companies and this paper will examine the methodologies, describe the benefits and drawbacks for each, and provide guideline for the industry to improve overall installation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=installation" title=" installation"> installation</a>, <a href="https://publications.waset.org/abstracts/search?q=methodology" title=" methodology"> methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=procurement" title=" procurement "> procurement </a> </p> <a href="https://publications.waset.org/abstracts/78111/comparison-of-fuel-cell-installation-methods-at-large-commercial-and-industrial-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4449</span> Short-Term Physiological Evaluation of Augmented Reality System for Thanatophobia Psychotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kais%20Siala">Kais Siala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kharrat"> Mohamed Kharrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abid"> Mohamed Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exposure therapies encourage patients to gradually begin facing their painful memories of the trauma in order to reduce fear and anxiety. In this context, virtual reality techniques are widely used for treatment of different kinds of phobia. The particular case of fear of death phobia (thanataphobia) is addressed in this paper. For this purpose, we propose to make a simulation of Near Death Experience (NDE) using augmented reality techniques. We propose in particular to simulate the Out-of-Body experience (OBE) which is the first step of a Near-Death-Experience (NDE). In this paper, we present technical aspects of this simulation as well as short-term impact in terms of physiological measures. The non-linear Poincéré plot is used to describe the difference in Heart Rate Variability between In-Body and Out-Of-Body conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Out-of-Body%20simulation" title="Out-of-Body simulation">Out-of-Body simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20measure" title=" physiological measure"> physiological measure</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=phobia%20psychotherapy" title=" phobia psychotherapy"> phobia psychotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=HRV" title=" HRV"> HRV</a>, <a href="https://publications.waset.org/abstracts/search?q=Poincar%C3%A9%20plot" title=" Poincaré plot"> Poincaré plot</a> </p> <a href="https://publications.waset.org/abstracts/69242/short-term-physiological-evaluation-of-augmented-reality-system-for-thanatophobia-psychotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4448</span> Anti-Phosphorylcholine T Cell Dependent Antibody</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman">M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Liu"> A. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Frostegard"> A. Frostegard</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Frostegard"> J. Frostegard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human immune system plays an essential role in cardiovascular disease (CVD) and atherosclerosis. Our earlier studies showed that major immunocompetent cells including T cells are activated by phosphorylcholine epitope. Further, we have determined for the first time in a clinical cohort that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with the development of atherosclerosis and thus a low risk of cardiovascular diseases. It is still unknown whether activated T cells play a role in anti-PC production. Here we aim to clarify the role of T cells in anti-PC production. B cell alone, or with CD3 T, CD4 T or with CD8 T cells were cultured in polystyrene plates to examine anti-PC IgM production. In addition to mixed B cell with CD3 T cell culture, B cells with CD3 T cells were also cultured in transwell co-culture plates. Further, B cells alone and mixed B cell with CD3 T cell cultures with or without anti-HLA 2 antibody were cultured for 6 days. Anti-PC IgM was detected by ELISA in independent experiments. More than 8 fold higher levels of anti-PC IgM were detected by ELISA in mixed B cell with CD3 T cell cultures in comparison to B cells alone. After the co-culture of B and CD3 T cells in transwell plates, there were no increased antibody levels indicating that B and T cells need to interact to augment anti-PC IgM production. Furthermore, anti-PC IgM was abolished by anti-HLA 2 blocking antibody in mixed B and CD3 T cells culture. In addition, the lack of increased anti-PC IgM in mixed B with CD8 T cells culture and the increased levels of anti-PC in mixed B with CD4 T cells culture support the role of helper T cell for the anti-PC IgM production. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC IgM is a protection marker for atherosclerosis development. Understanding the mechanism involved in the anti-PC IgM regulation could play an important role in strategies to raise anti-PC IgM. Studies suggest that anti-PC is T-cell independent antibody, but our study shows the major role of T cell in anti-PC IgM production. Activation of helper T cells by immunization could be a possible mechanism for raising anti-PC levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-PC" title="anti-PC">anti-PC</a>, <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title=" atherosclerosis"> atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=aardiovascular%20diseases" title=" aardiovascular diseases"> aardiovascular diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorylcholine" title=" phosphorylcholine"> phosphorylcholine</a> </p> <a href="https://publications.waset.org/abstracts/33407/anti-phosphorylcholine-t-cell-dependent-antibody" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4447</span> Nafion Nanofiber Mat in a Single Fuel Cell Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chijioke%20Okafor">Chijioke Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Maaza"> Malik Maaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Touhami%20Mokrani"> Touhami Mokrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nafion" title=" nafion"> nafion</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/26100/nafion-nanofiber-mat-in-a-single-fuel-cell-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4446</span> Optimal Design of InGaP/GaAs Heterojonction Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djaafar%20F.">Djaafar F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadri%20B."> Hadri B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20G."> Bachir G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multijunction" title=" multijunction"> multijunction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=silvaco%20ATLAS" title=" silvaco ATLAS"> silvaco ATLAS</a> </p> <a href="https://publications.waset.org/abstracts/35670/optimal-design-of-ingapgaas-heterojonction-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4445</span> Association of Major Histocompatibility Complex with Cell Mediated Immunity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Esmailnejad">Atefeh Esmailnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Nikbakht%20Brujeni"> Gholamreza Nikbakht Brujeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major histocompatibility complex (MHC) is one of the best characterized genetic regions associated with immune responses and controlling disease resistance in chicken. Association of the MHC with a wide range of immune responses makes it a valuable predictive factor for the disease pathogenesis and outcome. In this study, the association of MHC with cell-mediated immune responses was analyzed in commercial broiler chicken. The tandem repeat LEI0258 was applied to investigate the MHC polymorphism. Cell-mediated immune response was evaluated by peripheral blood lymphocyte proliferation assay using MTT method. Association study revealed a significant influence of MHC alleles on cellular immune responses in this population. Alleles 385 and 448 bp were associated with elevated cell-mediated immunity. Haplotypes associated with improved immune responses could be considered as candidate markers for disease resistance and applied to breeding strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHC" title="MHC">MHC</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-mediated%20immunity" title=" cell-mediated immunity"> cell-mediated immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken" title=" chicken"> chicken</a> </p> <a href="https://publications.waset.org/abstracts/97236/association-of-major-histocompatibility-complex-with-cell-mediated-immunity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4444</span> Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Rahimnejad">Maedeh Rahimnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahman%20Vahidi"> Bahman Vahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahman%20Ebrahimi%20Hoseinzadeh"> Bahman Ebrahimi Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Yazdian"> Fatemeh Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=Puria%20Motamed%20Fath"> Puria Motamed Fath</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghieh%20Jamjah"> Roghieh Jamjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20drug" title="anti-cancer drug">anti-cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20mass" title=" center of mass"> center of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a> </p> <a href="https://publications.waset.org/abstracts/73338/understanding-nanocarrier-efficacy-in-drug-delivery-systems-using-molecular-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4443</span> Intelligent CRISPR Design for Bone Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Chen%20Hu">Yu-Chen Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20therapy" title="gene therapy">gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR" title=" CRISPR"> CRISPR</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a> </p> <a href="https://publications.waset.org/abstracts/168750/intelligent-crispr-design-for-bone-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4442</span> Identification of Functional T Cell Receptors Reactive to Tumor Antigens from the T Cell Repertoire of Healthy Donors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Quiros-Fernandez">Isaac Quiros-Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Cid-Arregui"> Angel Cid-Arregui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor-reactive T cell receptors (TCRs) are being subject of intense investigation since they offer great potential in adoptive cell therapies against cancer. However, the identification of tumor-specific TCRs has proven challenging, for instance, due to the limited expansion capacity of tumor-infiltrating T cells (TILs) and the extremely low frequencies of tumor-reactive T cells in the repertoire of patients and healthy donors. We have developed an approach for rapid identification and characterization of neoepitope-reactive TCRs from the T cell repertoire of healthy donors. CD8 T cells isolated from multiple donors are subjected to a first sorting step after staining with HLA multimers carrying the peptide of interest. The isolated cells are expanded for two weeks, after which a second sorting is performed using the same peptide-HLA multimers. The cells isolated in this way are then processed for single-cell sequencing of their TCR alpha and beta chains. Newly identified TCRs are cloned in appropriate expression vectors for functional analysis on Jurkat, NK92, and primary CD8 T cells and tumor cells expressing the appropriate antigen. We have identified TCRs specifically binding HLA-A2 presenting epitopes of tumor antigens, which are capable of inducing TCR-mediated cell activation and cytotoxicity in target cancer cell lines. This method allows the identification of tumor-reactive TCRs in about two to three weeks, starting from peripheral blood samples of readily available healthy donors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=TCR" title=" TCR"> TCR</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20antigens" title=" tumor antigens"> tumor antigens</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a> </p> <a href="https://publications.waset.org/abstracts/153990/identification-of-functional-t-cell-receptors-reactive-to-tumor-antigens-from-the-t-cell-repertoire-of-healthy-donors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4441</span> Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parag%20Katira">Parag Katira</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederika%20Rentzeperis"> Frederika Rentzeperis</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzanna%20Nowicka"> Zuzanna Nowicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Giada%20Fiandaca"> Giada Fiandaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Veith"> Thomas Veith</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Farinhas"> Jack Farinhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Noemi%20Andor"> Noemi Andor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor%20evolution" title="tumor evolution">tumor evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=intra-tumor%20heterogeneity" title=" intra-tumor heterogeneity"> intra-tumor heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=whole-genome%20doubling" title=" whole-genome doubling"> whole-genome doubling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a> </p> <a href="https://publications.waset.org/abstracts/162686/modeling-competition-between-subpopulations-with-variable-dna-content-in-resource-limited-microenvironments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4440</span> Hexane Extract of Thymus serpyllum L.: GC-MS Profile, Antioxidant Potential and Anticancer Impact on HepG2 (Liver Carcinoma) Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Baig">Salma Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakrudeen%20Ali%20Ahmad"> Bakrudeen Ali Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainnul%20Hamidah%20Syahadah%20Azizan"> Ainnul Hamidah Syahadah Azizan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hapipah%20Mohd%20Ali"> Hapipah Mohd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Rouhollahi"> Elham Rouhollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Ameen%20Abdulla"> Mahmood Ameen Abdulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free radical damage induced by reactive oxygen species (ROS) contributes to etiology of many chronic diseases, cancer being one of them. Recent studies have been successful in ROS targeted therapies via antioxidants using mouse models in cancer therapeutics. The present study was designed to scrutinize anticancer activity, antioxidant activity of 5 different extracts of Thymus serpyllum in MDA-MB-231, MCF-7, HepG2, HCT-116, PC3, and A549. Identification of the phytochemicals present in the most active extract of Thymus serpyllum was conducted using gas chromatography coupled with mass spectrophotometry and antioxidant activity was measured by using DPPH radical scavenging and FRAP assay. Anticancer impact of the extract in terms of IC50 was evaluated using MTT cell viability assay. Results revealed that the hexane extract showed the best anticancer activity in HepG2 (Liver Carcinoma Cell Line) with an IC50 value of 23 ± 0.14 µg/ml followed by 25 µg/ml in HCT-116 (Colon Cancer Cell Line), 30 µm/ml in MCF-7 (Breast Cancer Cell Line), 35 µg/ml in MDA-MB-231 (Breast Cancer Cell Line), 57 µg/ml in PC3 (Prostate Cancer Cell Line) and 60 µg/ml in A549 (Lung Carcinoma Cell Line). GC-MS profile of the hexane extract showed the presence of 31 compounds with carvacrol, thymol and thymoquione being the major compounds. Phenolics such as Vitamin E, terpinen-4-ol, borneol and phytol were also identified. Hence, here we present the first report on cytotoxicity of hexane extract of Thymus serpyllum extract in HepG2 cell line with a robust anticancer activity with an IC50 of 23 ± 0.14 µg/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thymus%20serpyllum%20L." title="Thymus serpyllum L.">Thymus serpyllum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=hexane%20extract" title=" hexane extract"> hexane extract</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20profile" title=" GC-MS profile"> GC-MS profile</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title=" anticancer activity"> anticancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=HepG2%20cell%20line" title=" HepG2 cell line"> HepG2 cell line</a> </p> <a href="https://publications.waset.org/abstracts/13474/hexane-extract-of-thymus-serpyllum-l-gc-ms-profile-antioxidant-potential-and-anticancer-impact-on-hepg2-liver-carcinoma-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4439</span> Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20AliReza%20Mirghasemi">S. AliReza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zameer%20Hussain"> Zameer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saleh%20Sadeghi"> Mohammad Saleh Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Rahimi%20Gabaran"> Narges Rahimi Gabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamadreza%20Baghaban%20Eslaminejad"> Mohamadreza Baghaban Eslaminejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20bone%20allograft" title="structural bone allograft">structural bone allograft</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20demineralization" title=" partial demineralization"> partial demineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20perforation" title=" laser perforation"> laser perforation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a> </p> <a href="https://publications.waset.org/abstracts/34775/biological-optimization-following-bm-msc-seeding-of-partially-demineralized-and-partially-demineralized-laser-perforated-structural-bone-allografts-implanted-in-critical-femoral-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4438</span> Safety Assessment and Prophylactic Efficacy of Moringa stenopetala Leaf Extract Through Mitigation of Oxidative Stress in BV-2 Microglial Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Adeniyi%20Adefegha">Stephen Adeniyi Adefegha</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20Mostardeiro"> Vitor Mostardeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Maria%20Morsch"> Vera Maria Morsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Ademir%20F.%20Morel"> Ademir F. Morel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Beatrice%20Manica%20Da%20Cruz"> Ivana Beatrice Manica Da Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Somacal%20Maria%20Rosa%20Chitolina%20Schetinger"> Sabrina Somacal Maria Rosa Chitolina Schetinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moringa stenopetala is often consumed as food and used in folkloric medicine for the management of several diseases. Purpose: This study was set up in order to assess the effect of aqueous extract of Moringa stenopetala on cell viability and oxidative stress biomarkers in BV-2 microglial cells. Aqueous extracts of M. stenopetala were prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with M. stenopetala extracts (0.1 - 100 µg/ml) for cell viability and nitric oxide (NO) production tests. However, M. stenopetala extract (50 µg/ml) was used in the treatment of cells for the determination of protein carbonyl content and reactive oxygen species (ROS) level. Incubation of BV-2 microglia cell with M. stenopetala extract maintained cell viability, diminished NO and ROS levels, and reduced protein carbonyl contents Chlorogenic acid, rutin, kaempferol and quercetin derivatives were the main phenolic compounds identified in M. stenopetala leaf extract. These phenolic compounds present in M. stenopetala may be responsible for the mitigation of oxidative stress in BV-2 microglial cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title="oxidative stress">oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=BV-2%20microglial%20cell" title=" BV-2 microglial cell"> BV-2 microglial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20stenopetala" title=" Moringa stenopetala"> Moringa stenopetala</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20viability" title=" cell viability"> cell viability</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/157189/safety-assessment-and-prophylactic-efficacy-of-moringa-stenopetala-leaf-extract-through-mitigation-of-oxidative-stress-in-bv-2-microglial-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4437</span> Effect of Coronary Insulators in Increasing the Lifespan of Electrolytic Cells: Short-circuit and Heat Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20P.%20Dufresne">Robert P. Dufresne</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Arabzadeh"> Hamid Arabzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigates the effectiveness of a new form of permanent baseboard insulators with an umbrella action, hereinafter referred to as Coronary Insulator, in supporting and protecting the assembly of electrodes immersed in an electrolytic cell and in increasing the lifespan of the lateral sides of the electrolytic cell, in both electro-winning and electro-refinery method. The advantages of using a coronary insulator in addition to the top capping board (equipotential insulator) were studied compared to the conventional assembly of an electrolytic cell. Then, a thermal imaging technique was utilized during high-temperature thermal (heat transfer) tests for sample cell walls with and without coronary insulators in their assembly to show the effectiveness of coronary insulators in protecting the cell wall under extreme conditions. It was shown that, unlike the conventional assembly, which is highly prone to damages to the cell wall under thermal shocks, the presence of coronary insulator can significantly increase the level of protection of the cell due to their ultra-high thermal and chemical resistance, as well as decreasing the replacement frequency of insulators to almost zero. Besides, the results of the study showed that the test assembly with the coronary insulator provides better consistency in positioning and, subsequently, better contact, compared to the conventional method, which reduces the chance of electric short-circuit in the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capping%20board" title="capping board">capping board</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20insulator" title=" coronary insulator"> coronary insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytic%20cell" title=" electrolytic cell"> electrolytic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20shock." title=" thermal shock."> thermal shock.</a> </p> <a href="https://publications.waset.org/abstracts/139198/effect-of-coronary-insulators-in-increasing-the-lifespan-of-electrolytic-cells-short-circuit-and-heat-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4436</span> The Application of Insects in Forensic Investigations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Jalili">Shirin Jalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Shirzad"> Hadi Shirzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nabavi"> Samaneh Nabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Khanjani"> Somayeh Khanjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forensic entomology is the science of study and analysis of insects evidences to aid in criminal investigation. Being aware of the distribution, biology, ecology and behavior of insects, which are founded at crime scene can provide information about when, where and how the crime has been committed. It has many application in criminal investigations. Its main use is estimation of the minimum time after death in suspicious death. The close association between insects and corpses and the use of insects in criminal investigations is the subject of forensic entomology. Because insects attack to the decomposing corpse and spawning on it from the initial stages. Forensic scientists can estimate the postmortem index by studying the insects population and the developing larval stages.In addition, toxicological and molecular studies of these insects can reveal the cause of death or even the identity of a victim. It also be used to detect drugs and poisons, and determination of incident location. Gathering robust entomological evidences is made possible for experts by recent Techniques. They can provide vital information about death, corpse movement or burial, submersion interval, time of decapitation, identification of specific sites of trauma, post-mortem artefacts on the body, use of drugs, linking a suspect to the scene of a crime, sexual molestations and the identification of suspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Forensic%20entomology" title="Forensic entomology">Forensic entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20mortem%20interval" title=" post mortem interval"> post mortem interval</a>, <a href="https://publications.waset.org/abstracts/search?q=insects" title=" insects"> insects</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae" title=" larvae"> larvae</a> </p> <a href="https://publications.waset.org/abstracts/28080/the-application-of-insects-in-forensic-investigations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4435</span> The Choicest Design of InGaP/GaAs Heterojunction Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djaafar%20Fatiha">Djaafar Fatiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghalem%20Bachir"> Ghalem Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadri%20Bagdad"> Hadri Bagdad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multijunction" title=" multijunction"> multijunction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco%20ATLAS" title=" Silvaco ATLAS"> Silvaco ATLAS</a> </p> <a href="https://publications.waset.org/abstracts/37022/the-choicest-design-of-ingapgaas-heterojunction-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4434</span> A Mimetic Textuality in Robert Frost's 'Nothing Gold Can Stay'</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kurt%20S.%20Candilas">Kurt S. Candilas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is a critical analysis of the work of Robert Frost, 'Nothing Gold Can Stay'. It subjects the literary piece into a qualitative analysis using the critical theory of mimesis. In effect, this study is proposed to find out and shed light on the mimetic feature of the poem’s textuality. Generally, it aims to analyze the poem’s deeper meaning in the context of the reality of life from birth to death. For the most part, this critical analysis discerns, investigates, and highlights the features which present the imitation of life in detail and from a deeper view. Based on the result of analysis, it shows that Frost has portrayed the cycle of life from birth to midst life as about proving oneself to others as far as achievements and accomplishments are concerned; secondly, at some point of one’s life, successes and achievements are just one’s perfect signature of living. As Frost discloses his poem, his message of the reality of life from birth to death is clear enough, that nothing is going to last forever. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nothing%20Gold%20Can%20Stay" title="Nothing Gold Can Stay">Nothing Gold Can Stay</a>, <a href="https://publications.waset.org/abstracts/search?q=mimesis" title=" mimesis"> mimesis</a>, <a href="https://publications.waset.org/abstracts/search?q=birth" title=" birth"> birth</a>, <a href="https://publications.waset.org/abstracts/search?q=death" title=" death"> death</a> </p> <a href="https://publications.waset.org/abstracts/77123/a-mimetic-textuality-in-robert-frosts-nothing-gold-can-stay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4433</span> Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanina%20Iymia%20Jeffree">Amanina Iymia Jeffree</a>, <a href="https://publications.waset.org/abstracts/search?q=Reena%20Thriumani"> Reena Thriumani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Iqbal%20Omar"> Mohammad Iqbal Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Zakaria"> Ammar Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Yumi%20Zuhanis%20Has-Yun%20Hashim"> Yumi Zuhanis Has-Yun Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yeon%20Md%20Shakaff"> Ali Yeon Md Shakaff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20cancer%20cell%20line" title="in vitro cancer cell line">in vitro cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolite%20profiling" title=" metabolite profiling"> metabolite profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/66519/pattern-recognition-approach-based-on-metabolite-profiling-using-in-vitro-cancer-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4432</span> Twist2 Is a Key Regulator of Cell Proliferation in Acute Lymphoblastic Leukaemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Rusady%20Goey">Magdalena Rusady Goey</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordon%20Strathdee"> Gordon Strathdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Perkins"> Neil Perkins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Acute lymphoblastic leukaemia (ALL) is the most frequent type of childhood malignancy, accounting for 25% of all cases. TWIST2, a basic helix-loop-helix transcription factor, has been implicated in ALL development. Prior studies found that TWIST2 undergoes epigenetic silencing in more than 50% cases of ALL through promoter hypermethylation and suggested that re-expression of TWIST2 may inhibit cell growth/survival of leukaemia cell lines. TWIST2 has also been implicated as a regulator of NF-kappaB activity, which is constitutively active in leukaemia. Here, we use a lentiviral transductions system to confirm the importance of TWIST2 in controlling leukaemia cell growth and to investigate whether this is achieved through altered regulation of NF-kappaB activity. Method: Re-expression of TWIST2 in leukaemia cell lines was achieved using lentiviral-based transduction. The lentiviral vector also expresses enhanced green fluorescent protein (eGFP), allowing transduced cells to be tracked using flow cytometry. Analysis of apoptosis and cell proliferation were done using annexinV and VPD450 staining, respectively. Result and Discussion: TWIST2-expressing cells were rapidly depleted from a mixed population in ALL cell lines (NALM6 and Reh), indicating that TWIST2 inhibited cell growth/survival of ALL cells. In contrast, myeloid cell lines (HL60 and K562) were comparatively insensitive to TWIST2 re-expression. Analysis of apoptosis and cell proliferation found no significant induction of apoptosis, but did find a rapid induction of proliferation arrest in TWIST2-expressing Reh and NALM6 cells. Initial experiment with NF-kappaB inhibitor demonstrated that inhibition of NF-kappaB has similar impact on cell proliferation in the ALL cell lines, suggesting that TWITST2 may induce cell proliferation arrest through inhibition of NF-kappaB. Conclusion: The results of this study suggest that epigenetic inactivation of TWIST2 in primary ALL leads to increased proliferation, potentially by altering the regulation of NF-kappaB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leukaemia" title="leukaemia">leukaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20lymphoblastic%20leukaemia" title=" acute lymphoblastic leukaemia"> acute lymphoblastic leukaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-kappaB" title=" NF-kappaB"> NF-kappaB</a>, <a href="https://publications.waset.org/abstracts/search?q=TWIST2" title=" TWIST2"> TWIST2</a>, <a href="https://publications.waset.org/abstracts/search?q=lentivirus" title=" lentivirus"> lentivirus</a> </p> <a href="https://publications.waset.org/abstracts/32720/twist2-is-a-key-regulator-of-cell-proliferation-in-acute-lymphoblastic-leukaemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=8" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=8">8</a></li> <li class="page-item active"><span class="page-link">9</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=12">12</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=156">156</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=157">157</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20death&page=10" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>