CINXE.COM

Affine space - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Affine space - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"73ecc5a9-1ca4-4810-8138-2df0e23fc2ba","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Affine_space","wgTitle":"Affine space","wgCurRevisionId":1251420333,"wgRevisionId":1251420333,"wgArticleId":298834,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: date and year","Articles with short description","Short description is different from Wikidata","Affine geometry","Linear algebra","Space (mathematics)"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Affine_space","wgRelevantArticleId":298834,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q382698","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Affine_space_R3.png/1200px-Affine_space_R3.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="830"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Affine_space_R3.png/800px-Affine_space_R3.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="553"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Affine_space_R3.png/640px-Affine_space_R3.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="443"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Affine space - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Affine_space"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Affine_space&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Affine_space"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Affine_space rootpage-Affine_space skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Affine+space" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Affine+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Affine+space" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Affine+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Informal_description" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Informal_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Informal description</span> </div> </a> <ul id="toc-Informal_description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Subtraction_and_Weyl&#039;s_axioms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subtraction_and_Weyl&#039;s_axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Subtraction and Weyl's axioms</span> </div> </a> <ul id="toc-Subtraction_and_Weyl&#039;s_axioms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Affine_subspaces_and_parallelism" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Affine_subspaces_and_parallelism"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Affine subspaces and parallelism</span> </div> </a> <ul id="toc-Affine_subspaces_and_parallelism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_map" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Affine_map"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Affine map</span> </div> </a> <button aria-controls="toc-Affine_map-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Affine map subsection</span> </button> <ul id="toc-Affine_map-sublist" class="vector-toc-list"> <li id="toc-Endomorphisms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Endomorphisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Endomorphisms</span> </div> </a> <ul id="toc-Endomorphisms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Vector_spaces_as_affine_spaces" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Vector_spaces_as_affine_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Vector spaces as affine spaces</span> </div> </a> <ul id="toc-Vector_spaces_as_affine_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_Euclidean_spaces" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Relation_to_Euclidean_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Relation to Euclidean spaces</span> </div> </a> <button aria-controls="toc-Relation_to_Euclidean_spaces-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relation to Euclidean spaces subsection</span> </button> <ul id="toc-Relation_to_Euclidean_spaces-sublist" class="vector-toc-list"> <li id="toc-Definition_of_Euclidean_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definition_of_Euclidean_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Definition of Euclidean spaces</span> </div> </a> <ul id="toc-Definition_of_Euclidean_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Affine_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Affine properties</span> </div> </a> <ul id="toc-Affine_properties-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Affine_combinations_and_barycenter" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Affine_combinations_and_barycenter"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Affine combinations and barycenter</span> </div> </a> <ul id="toc-Affine_combinations_and_barycenter-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_span_and_bases" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Affine_span_and_bases"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Affine span and bases</span> </div> </a> <ul id="toc-Affine_span_and_bases-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coordinates" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Coordinates</span> </div> </a> <button aria-controls="toc-Coordinates-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Coordinates subsection</span> </button> <ul id="toc-Coordinates-sublist" class="vector-toc-list"> <li id="toc-Barycentric_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Barycentric_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Barycentric coordinates</span> </div> </a> <ul id="toc-Barycentric_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Affine_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Affine coordinates</span> </div> </a> <ul id="toc-Affine_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relationship_between_barycentric_and_affine_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relationship_between_barycentric_and_affine_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Relationship between barycentric and affine coordinates</span> </div> </a> <ul id="toc-Relationship_between_barycentric_and_affine_coordinates-sublist" class="vector-toc-list"> <li id="toc-Example_of_the_triangle" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example_of_the_triangle"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3.1</span> <span>Example of the triangle</span> </div> </a> <ul id="toc-Example_of_the_triangle-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Change_of_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Change_of_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.4</span> <span>Change of coordinates</span> </div> </a> <ul id="toc-Change_of_coordinates-sublist" class="vector-toc-list"> <li id="toc-Case_of_barycentric_coordinates" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Case_of_barycentric_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.4.1</span> <span>Case of barycentric coordinates</span> </div> </a> <ul id="toc-Case_of_barycentric_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Case_of_affine_coordinates" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Case_of_affine_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.4.2</span> <span>Case of affine coordinates</span> </div> </a> <ul id="toc-Case_of_affine_coordinates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Properties_of_affine_homomorphisms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties_of_affine_homomorphisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Properties of affine homomorphisms</span> </div> </a> <button aria-controls="toc-Properties_of_affine_homomorphisms-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties of affine homomorphisms subsection</span> </button> <ul id="toc-Properties_of_affine_homomorphisms-sublist" class="vector-toc-list"> <li id="toc-Matrix_representation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matrix_representation"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Matrix representation</span> </div> </a> <ul id="toc-Matrix_representation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Image_and_fibers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Image_and_fibers"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Image and fibers</span> </div> </a> <ul id="toc-Image_and_fibers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Projection" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Projection"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.3</span> <span>Projection</span> </div> </a> <ul id="toc-Projection-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quotient_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quotient_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.4</span> <span>Quotient space</span> </div> </a> <ul id="toc-Quotient_space-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Axioms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Axioms</span> </div> </a> <ul id="toc-Axioms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_projective_spaces" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Relation_to_projective_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Relation to projective spaces</span> </div> </a> <ul id="toc-Relation_to_projective_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_algebraic_geometry" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Affine_algebraic_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Affine algebraic geometry</span> </div> </a> <button aria-controls="toc-Affine_algebraic_geometry-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Affine algebraic geometry subsection</span> </button> <ul id="toc-Affine_algebraic_geometry-sublist" class="vector-toc-list"> <li id="toc-Ring_of_polynomial_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ring_of_polynomial_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.1</span> <span>Ring of polynomial functions</span> </div> </a> <ul id="toc-Ring_of_polynomial_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zariski_topology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Zariski_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.2</span> <span>Zariski topology</span> </div> </a> <ul id="toc-Zariski_topology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cohomology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cohomology"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.3</span> <span>Cohomology</span> </div> </a> <ul id="toc-Cohomology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Affine space</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 28 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-28" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">28 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%A1_%D8%AA%D8%A2%D9%84%D9%81%D9%8A" title="فضاء تآلفي – Arabic" lang="ar" hreflang="ar" data-title="فضاء تآلفي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%90%D1%84%D0%B8%D0%BD%D0%BD%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Афинно пространство – Bulgarian" lang="bg" hreflang="bg" data-title="Афинно пространство" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espai_af%C3%AD" title="Espai afí – Catalan" lang="ca" hreflang="ca" data-title="Espai afí" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%90%D1%84%D1%84%D0%B8%D0%BD%D0%BB%D0%B0_%D1%83%C3%A7%D0%BB%C4%83%D1%85" title="Аффинла уçлăх – Chuvash" lang="cv" hreflang="cv" data-title="Аффинла уçлăх" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Afinn%C3%AD_prostor" title="Afinní prostor – Czech" lang="cs" hreflang="cs" data-title="Afinní prostor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Gofod_affin" title="Gofod affin – Welsh" lang="cy" hreflang="cy" data-title="Gofod affin" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Affiner_Raum" title="Affiner Raum – German" lang="de" hreflang="de" data-title="Affiner Raum" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Afiinne_ruum" title="Afiinne ruum – Estonian" lang="et" hreflang="et" data-title="Afiinne ruum" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CF%86%CE%B9%CE%BD%CE%B9%CE%BA%CF%8C%CF%82_%CF%87%CF%8E%CF%81%CE%BF%CF%82" title="Αφινικός χώρος – Greek" lang="el" hreflang="el" data-title="Αφινικός χώρος" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacio_af%C3%ADn" title="Espacio afín – Spanish" lang="es" hreflang="es" data-title="Espacio afín" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%DB%8C_%D8%A2%D9%81%DB%8C%D9%86" title="فضای آفین – Persian" lang="fa" hreflang="fa" data-title="فضای آفین" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace_affine" title="Espace affine – French" lang="fr" hreflang="fr" data-title="Espace affine" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%95%84%ED%95%80_%EA%B3%B5%EA%B0%84" title="아핀 공간 – Korean" lang="ko" hreflang="ko" data-title="아핀 공간" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spazio_affine" title="Spazio affine – Italian" lang="it" hreflang="it" data-title="Spazio affine" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91_%D7%90%D7%A4%D7%99%D7%A0%D7%99" title="מרחב אפיני – Hebrew" lang="he" hreflang="he" data-title="מרחב אפיני" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%90%D1%84%D0%B8%D0%BD_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Афин простор – Macedonian" lang="mk" hreflang="mk" data-title="Афин простор" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Affiene_ruimte" title="Affiene ruimte – Dutch" lang="nl" hreflang="nl" data-title="Affiene ruimte" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%95%E3%82%A3%E3%83%B3%E7%A9%BA%E9%96%93" title="アフィン空間 – Japanese" lang="ja" hreflang="ja" data-title="アフィン空間" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Affint_rom" title="Affint rom – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Affint rom" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%85%E0%A9%B1%E0%A8%AB%E0%A8%BE%E0%A8%88%E0%A8%A8_%E0%A8%B8%E0%A8%AA%E0%A9%87%E0%A8%B8" title="ਅੱਫਾਈਨ ਸਪੇਸ – Punjabi" lang="pa" hreflang="pa" data-title="ਅੱਫਾਈਨ ਸਪੇਸ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przestrze%C5%84_afiniczna" title="Przestrzeń afiniczna – Polish" lang="pl" hreflang="pl" data-title="Przestrzeń afiniczna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o_afim" title="Espaço afim – Portuguese" lang="pt" hreflang="pt" data-title="Espaço afim" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Spa%C8%9Biu_afin" title="Spațiu afin – Romanian" lang="ro" hreflang="ro" data-title="Spațiu afin" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D1%84%D1%84%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Аффинное пространство – Russian" lang="ru" hreflang="ru" data-title="Аффинное пространство" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Afinn%C3%BD_priestor" title="Afinný priestor – Slovak" lang="sk" hreflang="sk" data-title="Afinný priestor" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%90%D1%84%D1%96%D0%BD%D0%BD%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80" title="Афінний простір – Ukrainian" lang="uk" hreflang="uk" data-title="Афінний простір" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kh%C3%B4ng_gian_afin" title="Không gian afin – Vietnamese" lang="vi" hreflang="vi" data-title="Không gian afin" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%BB%BF%E5%B0%84%E7%A9%BA%E9%97%B4" title="仿射空间 – Chinese" lang="zh" hreflang="zh" data-title="仿射空间" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q382698#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Affine_space" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Affine_space" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Affine_space"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Affine_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Affine_space&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Affine_space"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Affine_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Affine_space&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Affine_space" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Affine_space" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Affine_space&amp;oldid=1251420333" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Affine_space&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Affine_space&amp;id=1251420333&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAffine_space"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAffine_space"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Affine_space&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Affine_space&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q382698" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Euclidean space without distance and angles</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Affinity_space" title="Affinity space">affinity space</a>.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Affine_space_R3.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Affine_space_R3.png/220px-Affine_space_R3.png" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Affine_space_R3.png/330px-Affine_space_R3.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Affine_space_R3.png/440px-Affine_space_R3.png 2x" data-file-width="1562" data-file-height="1080" /></a><figcaption>In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deb17c1074c77de2cf88d45bcd6d7a795b0f5d44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.379ex; height:3.009ex;" alt="{\displaystyle \mathbb {R} ^{3},}"></span> the upper plane (in blue)<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87858df7457aa93caaef5a316db87a7240cc8c29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{2}}"></span> is not a vector subspace, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {0} \notin P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>&#x2209;<!-- ∉ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {0} \notin P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f64184fd648e060dddad8ca72363f6fc4caafb43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.724ex; height:2.676ex;" alt="{\displaystyle \mathbf {0} \notin P_{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} +\mathbf {b} \notin P_{2};}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2209;<!-- ∉ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} +\mathbf {b} \notin P_{2};}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e539792d8680b622dee7936cbe7550805c7d0e8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.659ex; height:2.676ex;" alt="{\displaystyle \mathbf {a} +\mathbf {b} \notin P_{2};}"></span> it is an <i>affine subspace</i>. Its <i>direction</i> (the linear subspace associated with this affine subspace) is the lower (green) plane <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a8639b829aa80303b1521a943af1ee608b7f6ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.193ex; height:2.509ex;" alt="{\displaystyle P_{1},}"></span>, which is a vector subspace. Although <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a957216653a9ee0d0133dcefd13fb75e36b8b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.299ex; height:1.676ex;" alt="{\displaystyle \mathbf {a} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13ebf4628a1adf07133a6009e4a78bdd990c6eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {b} }"></span> are in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1d38d26ef607b31d8cde52681503bfae5ebf30f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.193ex; height:2.509ex;" alt="{\displaystyle P_{2},}"></span> their difference is a <i>displacement vector</i>, which does not belong to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1d38d26ef607b31d8cde52681503bfae5ebf30f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.193ex; height:2.509ex;" alt="{\displaystyle P_{2},}"></span> but belongs to vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9310acf4e6f71225656b55944fb17d646a567b2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.193ex; height:2.509ex;" alt="{\displaystyle P_{1}.}"></span></figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an <b>affine space</b> is a <a href="/wiki/Geometry" title="Geometry">geometric</a> <a href="/wiki/Structure_(mathematics)" class="mw-redirect" title="Structure (mathematics)">structure</a> that generalizes some of the properties of <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean spaces</a> in such a way that these are independent of the concepts of <a href="/wiki/Distance_(mathematics)" class="mw-redirect" title="Distance (mathematics)">distance</a> and measure of <a href="/wiki/Angle" title="Angle">angles</a>, keeping only the properties related to <a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">parallelism</a> and <a href="/wiki/Ratio" title="Ratio">ratio</a> of lengths for parallel <a href="/wiki/Line_segment" title="Line segment">line segments</a>. Affine space is the setting for <a href="/wiki/Affine_geometry" title="Affine geometry">affine geometry</a>. </p><p>As in Euclidean space, the fundamental objects in an affine space are called <i><a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a></i>, which can be thought of as locations in the space without any size or shape: zero-<a href="/wiki/Dimension" title="Dimension">dimensional</a>. Through any pair of points an infinite <a href="/wiki/Straight_line" class="mw-redirect" title="Straight line">straight line</a> can be drawn, a one-dimensional set of points; through any three points that are not collinear, a two-dimensional <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">plane</a> can be drawn; and, in general, through <span class="texhtml"><i>k</i>&#8201;+&#8202;1</span> points in general position, a <span class="texhtml mvar" style="font-style:italic;">k</span>-dimensional <a href="/wiki/Flat_(geometry)" title="Flat (geometry)">flat</a> or affine subspace can be drawn. Affine space is characterized by a notion of pairs of parallel lines that lie within the same plane but never meet each-other (non-parallel lines within the same plane <a href="/wiki/Intersection_(geometry)" title="Intersection (geometry)">intersect</a> in a point). Given any line, a line parallel to it can be drawn through any point in the space, and the <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence class</a> of parallel lines are said to share a <i>direction</i>. </p><p>Unlike for vectors in a <a href="/wiki/Vector_space" title="Vector space">vector space</a>, in an affine space there is no distinguished point that serves as an <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a>. There is no predefined concept of adding or multiplying points together, or multiplying a point by a scalar number. However, for any affine space, an associated vector space can be constructed from the differences between start and end points, which are called <i><a href="/wiki/Free_vector" class="mw-redirect" title="Free vector">free vectors</a></i>, <i><a href="/wiki/Displacement_vector" class="mw-redirect" title="Displacement vector">displacement vectors</a></i>, <i><a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translation</a> vectors</i> or simply <i>translations</i>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Likewise, it makes sense to add a displacement vector to a point of an affine space, resulting in a new point translated from the starting point by that vector. While points cannot be arbitrarily added together, it is meaningful to take <a href="/wiki/Affine_combination" title="Affine combination">affine combinations</a> of points: weighted sums with numerical coefficients summing to 1, resulting in another point. These coefficients define a <a href="/wiki/Barycentric_coordinate_system" title="Barycentric coordinate system">barycentric coordinate system</a> for the flat through the points. </p><p>Any <a href="/wiki/Vector_space" title="Vector space">vector space</a> may be viewed as an affine space; this amounts to "forgetting" the special role played by the <a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">zero vector</a>. In this case, elements of the vector space may be viewed either as <i>points</i> of the affine space or as <i>displacement vectors</i> or <i>translations</i>. When considered as a point, the zero vector is called the <i>origin</i>. Adding a fixed vector to the elements of a <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> (vector subspace) of a <a href="/wiki/Vector_space" title="Vector space">vector space</a> produces an <i>affine subspace</i> of the vector space. One commonly says that this affine subspace has been obtained by translating (away from the origin) the linear subspace by the translation vector (the vector added to all the elements of the linear space). In finite dimensions, such an <i>affine subspace</i> is the solution set of an <a href="/wiki/System_of_linear_equations#Homogeneous_systems" title="System of linear equations">inhomogeneous</a> linear system. The displacement vectors for that affine space are the solutions of the corresponding <i>homogeneous</i> linear system, which is a linear subspace. Linear subspaces, in contrast, always contain the origin of the vector space. </p><p>The <i>dimension</i> of an affine space is defined as the <a href="/wiki/Dimension_(vector_space)" title="Dimension (vector space)">dimension of the vector space</a> of its translations. An affine space of dimension one is an <b>affine line</b>. An affine space of dimension 2 is an <i><a href="/wiki/Affine_plane" title="Affine plane">affine plane</a></i>. An affine subspace of dimension <span class="texhtml"><i>n</i> – 1</span> in an affine space or a vector space of dimension <span class="texhtml"><i>n</i></span> is an <a href="/wiki/Affine_hyperplane" class="mw-redirect" title="Affine hyperplane">affine hyperplane</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Informal_description">Informal description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=1" title="Edit section: Informal description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Affine_origin.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Affine_origin.png/290px-Affine_origin.png" decoding="async" width="290" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/f/ff/Affine_origin.png 1.5x" data-file-width="421" data-file-height="276" /></a><figcaption>Origins from Alice's and Bob's perspectives. Vector computation from Alice's perspective is in red, whereas that from Bob's is in blue.</figcaption></figure> <p>The following <a href="/wiki/Characterization_(mathematics)" title="Characterization (mathematics)">characterization</a> may be easier to understand than the usual formal definition: an affine space is what is left of a <a href="/wiki/Vector_space" title="Vector space">vector space</a> after one has forgotten which point is the origin (or, in the words of the French mathematician <a href="/wiki/Marcel_Berger" title="Marcel Berger">Marcel Berger</a>, "An affine space is nothing more than a vector space whose origin we try to forget about, by adding <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translations</a> to the linear maps"<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>). Imagine that Alice knows that a certain point is the actual origin, but Bob believes that another point—call it <span class="texhtml"><b>p</b></span>—is the origin. Two vectors, <span class="texhtml"><b>a</b></span> and <span class="texhtml"><b>b</b></span>, are to be added. Bob draws an arrow from point <span class="texhtml"><b>p</b></span> to point <span class="texhtml"><b>a</b></span> and another arrow from point <span class="texhtml"><b>p</b></span> to point <span class="texhtml"><b>b</b></span>, and completes the parallelogram to find what Bob thinks is <span class="texhtml"><b>a</b> + <b>b</b></span>, but Alice knows that he has actually computed </p> <dl><dd><span class="texhtml texhtml-big" style="font-size:120%;"><b>p</b> + (<b>a</b> − <b>p</b>) + (<b>b</b> − <b>p</b>)</span>.</dd></dl> <p>Similarly, <a href="/wiki/Alice_and_Bob" title="Alice and Bob">Alice and Bob</a> may evaluate any <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of <span class="texhtml"><b>a</b></span> and <span class="texhtml"><b>b</b></span>, or of any finite set of vectors, and will generally get different answers. However, if the sum of the coefficients in a linear combination is 1, then Alice and Bob will arrive at the same answer. </p><p>If Alice travels to </p> <dl><dd><span class="texhtml texhtml-big" style="font-size:120%;">λ<b>a</b> + (1 − λ)<b>b</b></span></dd></dl> <p>then Bob can similarly travel to </p> <dl><dd><span class="texhtml texhtml-big" style="font-size:120%;"><b>p</b> + λ(<b>a</b> − <b>p</b>) + (1 − λ)(<b>b</b> − <b>p</b>) = λ<b>a</b> + (1 − λ)<b>b</b></span>.</dd></dl> <p>Under this condition, for all coefficients <span class="texhtml">λ + (1 − λ) = 1</span>, Alice and Bob describe the same point with the same linear combination, despite using different origins. </p><p>While only Alice knows the "linear structure", both Alice and Bob know the "affine structure"—i.e. the values of <a href="/wiki/Affine_combination" title="Affine combination">affine combinations</a>, defined as linear combinations in which the sum of the coefficients is 1. A set with an affine structure is an affine space. </p> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=2" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While affine space can be defined axiomatically (see <a href="#Axioms">§&#160;Axioms</a> below), analogously to the definition of Euclidean space implied by <a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Euclid's <i>Elements</i></a>, for convenience most modern sources define affine spaces in terms of the well developed vector space theory. </p><p>An <i>affine space</i> is a set <span class="texhtml"><i>A</i></span> together with a <a href="/wiki/Vector_space" title="Vector space">vector space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span>, and a transitive and free <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">action</a> of the <a href="/wiki/Additive_group" title="Additive group">additive group</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span> on the set <span class="texhtml"><i>A</i></span>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The elements of the affine space <span class="texhtml"><i>A</i></span> are called <i>points</i>. The vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span> is said to be <i>associated</i> to the affine space, and its elements are called <i>vectors</i>, <i>translations</i>, or sometimes <i><a href="/wiki/Free_vector" class="mw-redirect" title="Free vector">free vectors</a></i>. </p><p>Explicitly, the definition above means that the action is a mapping, generally denoted as an addition, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}A\times {\overrightarrow {A}}&amp;\to A\\(a,v)\;&amp;\mapsto a+v,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>A</mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>a</mi> <mo>+</mo> <mi>v</mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}A\times {\overrightarrow {A}}&amp;\to A\\(a,v)\;&amp;\mapsto a+v,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02f8aed9158a31e5ca4c74e142bbf8911d4bbd6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.44ex; height:7.176ex;" alt="{\displaystyle {\begin{aligned}A\times {\overrightarrow {A}}&amp;\to A\\(a,v)\;&amp;\mapsto a+v,\end{aligned}}}"></span></dd></dl> <p>that has the following properties.<sup id="cite_ref-Berger1987_4-0" class="reference"><a href="#cite_note-Berger1987-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li><a href="/wiki/Right_identity" class="mw-redirect" title="Right identity">Right identity</a>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall a\in A,\;a+0=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall a\in A,\;a+0=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb70fd09bcf3008f5296884b6788d7f61f49b2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.346ex; height:2.509ex;" alt="{\displaystyle \forall a\in A,\;a+0=a}"></span>, where <span class="texhtml">0</span> is the zero vector in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span></dd></dl></li> <li><a href="/wiki/Associativity" class="mw-redirect" title="Associativity">Associativity</a>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall v,w\in {\overrightarrow {A}},\forall a\in A,\;(a+v)+w=a+(v+w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>w</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>v</mi> <mo>+</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall v,w\in {\overrightarrow {A}},\forall a\in A,\;(a+v)+w=a+(v+w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea1f3c8ae46c9de65576544b3054b22ae5033b6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.546ex; height:4.176ex;" alt="{\displaystyle \forall v,w\in {\overrightarrow {A}},\forall a\in A,\;(a+v)+w=a+(v+w)}"></span> (here the last <span class="texhtml">+</span> is the addition in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span>)</dd></dl></li> <li><a href="/wiki/Free_action" class="mw-redirect" title="Free action">Free</a> and <a href="/wiki/Transitive_action" class="mw-redirect" title="Transitive action">transitive action</a>: <dl><dd>For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a97387981adb5d65f74518e20b6785a284d7abd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.814ex; height:2.176ex;" alt="{\displaystyle a\in A}"></span>, the mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}\to A\colon v\mapsto a+v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> <mo>&#x003A;<!-- : --></mo> <mi>v</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>a</mi> <mo>+</mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}\to A\colon v\mapsto a+v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/263fcca7383f4d2b57a93470c989f4f6a4aaf5c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.977ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {A}}\to A\colon v\mapsto a+v}"></span> is a <a href="/wiki/Bijection" title="Bijection">bijection</a>.</dd></dl></li></ol> <p>The first two properties are simply defining properties of a (right) group action. The third property characterizes free and transitive actions, the <a href="/wiki/Onto" class="mw-redirect" title="Onto">onto</a> character coming from transitivity, and then the <a href="/wiki/Injective_function" title="Injective function">injective</a> character follows from the action being free. There is a fourth property that follows from 1, 2 above: </p> <ol><li class="mw-empty-elt"></li><li value="4">Existence of one-to-one <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translations</a></li> <dl><dd>For all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\in {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\in {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e55de186a95de885889df10b81e1d347aa1058f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.615ex; height:3.676ex;" alt="{\displaystyle v\in {\overrightarrow {A}}}"></span>, the mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\to A\colon a\mapsto a+v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> <mo>&#x003A;<!-- : --></mo> <mi>a</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>a</mi> <mo>+</mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\to A\colon a\mapsto a+v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de5b5b16c1a28c1b35e443cdd58be9904302d54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.176ex; height:2.343ex;" alt="{\displaystyle A\to A\colon a\mapsto a+v}"></span> is a bijection.</dd></dl></ol> <p>Property 3 is often used in the following equivalent form (the 5th property). </p> <ol><li class="mw-empty-elt"></li><li value="5">Subtraction:</li> <dl><dd>For every <span class="texhtml"><i>a</i>, <i>b</i></span> in <span class="texhtml mvar" style="font-style:italic;">A</span>, there exists a unique <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\in {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\in {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e55de186a95de885889df10b81e1d347aa1058f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.615ex; height:3.676ex;" alt="{\displaystyle v\in {\overrightarrow {A}}}"></span>, denoted <span class="texhtml"><i>b</i> – <i>a</i></span>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=a+v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=a+v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0100ae48c18e183bef56cb0607d005c0f5b820b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.294ex; height:2.343ex;" alt="{\displaystyle b=a+v}"></span>.</dd></dl></ol> <p>Another way to express the definition is that an affine space is a <a href="/wiki/Principal_homogeneous_space" title="Principal homogeneous space">principal homogeneous space</a> for the action of the <a href="/wiki/Additive_group" title="Additive group">additive group</a> of a vector space. Homogeneous spaces are, by definition, endowed with a transitive group action, and for a principal homogeneous space, such a transitive action is, by definition, free. </p> <div class="mw-heading mw-heading3"><h3 id="Subtraction_and_Weyl's_axioms"><span id="Subtraction_and_Weyl.27s_axioms"></span>Subtraction and Weyl's axioms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=3" title="Edit section: Subtraction and Weyl&#039;s axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The properties of the group action allows for the definition of subtraction for any given ordered pair <span class="texhtml">(<i>b</i>, <i>a</i>)</span> of points in <span class="texhtml mvar" style="font-style:italic;">A</span>, producing a vector of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span>. This vector, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b-a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b-a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecca61f9c918fe1deb227ed79d4979d70c443ea4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle b-a}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {ab}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {ab}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d9f5228fc1782efa416fdce3110c0200ef7bcc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {ab}}}"></span>, is defined to be the unique vector in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+(b-a)=b.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>b</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+(b-a)=b.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d9b6fe8a03360c586b36ebff369555e40822d90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.69ex; height:2.843ex;" alt="{\displaystyle a+(b-a)=b.}"></span></dd></dl> <p>Existence follows from the transitivity of the action, and uniqueness follows because the action is free. </p><p>This subtraction has the two following properties, called <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a>'s axioms:<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall a\in A,\;\forall v\in {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall a\in A,\;\forall v\in {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85a01a67376d7f7bfcde79ff7deb526a17ca11db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.693ex; height:4.009ex;" alt="{\displaystyle \forall a\in A,\;\forall v\in {\overrightarrow {A}}}"></span>, there is a unique point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26329067b4b3630a2bb6f7e6b3ee367b70918371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.581ex; height:2.176ex;" alt="{\displaystyle b\in A}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b-a=v.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>=</mo> <mi>v</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b-a=v.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a24264b1a0a5d4c764f65b84ed6549d5628b0e9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.941ex; height:2.343ex;" alt="{\displaystyle b-a=v.}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall a,b,c\in A,\;(c-b)+(b-a)=c-a.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall a,b,c\in A,\;(c-b)+(b-a)=c-a.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4ad4d9df1277d289d27d3a1a762b62deec9fcb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.051ex; height:2.843ex;" alt="{\displaystyle \forall a,b,c\in A,\;(c-b)+(b-a)=c-a.}"></span></li></ol> <p>The <a href="/wiki/Equipollence_(geometry)#Parallelogram_property" title="Equipollence (geometry)">parallelogram property</a> is satisfied in affine spaces, where it is expressed as: given four points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c,d,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c,d,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec57da23813418a4c16caa6046dc2bf2f47806f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.199ex; height:2.509ex;" alt="{\displaystyle a,b,c,d,}"></span> the equalities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b-a=d-c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>=</mo> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b-a=d-c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a8ee54905a3968f6835ea87dc1d2f4463774f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.229ex; height:2.343ex;" alt="{\displaystyle b-a=d-c}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c-a=d-b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>=</mo> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c-a=d-b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8eb4e4074fe07023e2c8457b80a823600577657" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.229ex; height:2.343ex;" alt="{\displaystyle c-a=d-b}"></span> are equivalent. This results from the second Weyl's axiom, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d-a=(d-b)+(b-a)=(d-c)+(c-a).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d-a=(d-b)+(b-a)=(d-c)+(c-a).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80277e7579caa6ad091db837c4bed15673819f89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.31ex; height:2.843ex;" alt="{\displaystyle d-a=(d-b)+(b-a)=(d-c)+(c-a).}"></span> </p><p>Affine spaces can be equivalently defined as a point set <span class="texhtml"><i>A</i></span>, together with a vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span>, and a subtraction satisfying Weyl's axioms. In this case, the addition of a vector to a point is defined from the first of Weyl's axioms. </p> <div class="mw-heading mw-heading2"><h2 id="Affine_subspaces_and_parallelism">Affine subspaces and parallelism</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=4" title="Edit section: Affine subspaces and parallelism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <b>affine subspace</b> (also called, in some contexts, a <i>linear variety</i>, a <a href="/wiki/Flat_(geometry)" title="Flat (geometry)"><i>flat</i></a>, or, over the <a href="/wiki/Real_number" title="Real number">real numbers</a>, a <i>linear manifold</i>) <span class="texhtml"><i>B</i></span> of an affine space <span class="texhtml"><i>A</i></span> is a <a href="/wiki/Subset" title="Subset">subset</a> of <span class="texhtml"><i>A</i></span> such that, given a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/739c140e9ae7f2a90119c5b40507d1ad2bc3396b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.834ex; height:2.176ex;" alt="{\displaystyle a\in B}"></span>, the set of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {B}}=\{b-a\mid b\in B\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {B}}=\{b-a\mid b\in B\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fbc5b3170b8fe3e0ef2081944e07481aada02cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.548ex; height:4.176ex;" alt="{\displaystyle {\overrightarrow {B}}=\{b-a\mid b\in B\}}"></span> is a <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span>. This property, which does not depend on the choice of <span class="texhtml"><i>a</i></span>, implies that <span class="texhtml"><i>B</i></span> is an affine space, which has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31fb3faaa4a9e6eb6abcef4a41c4bbeb84cc3c90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.517ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {B}}}"></span> as its associated vector space. </p><p>The affine subspaces of <span class="texhtml"><i>A</i></span> are the subsets of <span class="texhtml"><i>A</i></span> of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+V=\{a+w:w\in V\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>V</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>+</mo> <mi>w</mi> <mo>:</mo> <mi>w</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+V=\{a+w:w\in V\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e19c7ed4cbcabb6fe6b34c19717dae4ad0efadc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.891ex; height:2.843ex;" alt="{\displaystyle a+V=\{a+w:w\in V\},}"></span></dd></dl> <p>where <span class="texhtml"><i>a</i></span> is a point of <span class="texhtml"><i>A</i></span>, and <span class="texhtml"><i>V</i></span> a linear subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span>. </p><p>The linear subspace associated with an affine subspace is often called its <i><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="direction"></span><span class="vanchor-text">direction</span></span></i>, and two subspaces that share the same direction are said to be <i>parallel</i>. </p><p>This implies the following generalization of <a href="/wiki/Playfair%27s_axiom" title="Playfair&#39;s axiom">Playfair's axiom</a>: Given a direction <span class="texhtml"><i>V</i></span>, for any point <span class="texhtml"><i>a</i></span> of <span class="texhtml"><i>A</i></span> there is one and only one affine subspace of direction <span class="texhtml"><i>V</i></span>, which passes through <span class="texhtml"><i>a</i></span>, namely the subspace <span class="texhtml"><i>a</i> + <i>V</i></span>. </p><p>Every translation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\to A:a\mapsto a+v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> <mo>:</mo> <mi>a</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>a</mi> <mo>+</mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\to A:a\mapsto a+v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a75490bd2c00651d0ad38f687eb5c3378382b8ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.079ex; height:2.343ex;" alt="{\displaystyle A\to A:a\mapsto a+v}"></span> maps any affine subspace to a parallel subspace. </p><p>The term <i>parallel</i> is also used for two affine subspaces such that the direction of one is included in the direction of the other. </p> <div class="mw-heading mw-heading2"><h2 id="Affine_map">Affine map</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=5" title="Edit section: Affine map"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given two affine spaces <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> whose associated vector spaces are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31fb3faaa4a9e6eb6abcef4a41c4bbeb84cc3c90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.517ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {B}}}"></span>, an <i><a href="/wiki/Affine_map" class="mw-redirect" title="Affine map">affine map</a></i> or <i>affine homomorphism</i> from <span class="texhtml"><i>A</i></span> to <span class="texhtml"><i>B</i></span> is a map </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:A\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:A\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20040a52d9391f2fe271f0aaa300bf7887a0c7b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.337ex; height:2.509ex;" alt="{\displaystyle f:A\to B}"></span></dd></dl> <p>such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\overrightarrow {f}}:{\overrightarrow {A}}&amp;\to {\overrightarrow {B}}\\b-a&amp;\mapsto f(b)-f(a)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\overrightarrow {f}}:{\overrightarrow {A}}&amp;\to {\overrightarrow {B}}\\b-a&amp;\mapsto f(b)-f(a)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7bc34f1be10b1d537bfb94c48f7aa7c6187eb69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.995ex; height:7.176ex;" alt="{\displaystyle {\begin{aligned}{\overrightarrow {f}}:{\overrightarrow {A}}&amp;\to {\overrightarrow {B}}\\b-a&amp;\mapsto f(b)-f(a)\end{aligned}}}"></span></dd></dl> <p>is a <a href="/wiki/Well_defined" class="mw-redirect" title="Well defined">well defined</a> linear map. By <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> being well defined is meant that <span class="texhtml"><i>b</i> – <i>a</i> = <i>d</i> – <i>c</i></span> implies <span class="texhtml"><i>f</i>(<i>b</i>) – <i>f</i>(<i>a</i>) = <i>f</i>(<i>d</i>) – <i>f</i>(<i>c</i>)</span>. </p><p>This implies that, for a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a97387981adb5d65f74518e20b6785a284d7abd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.814ex; height:2.176ex;" alt="{\displaystyle a\in A}"></span> and a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\in {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\in {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e55de186a95de885889df10b81e1d347aa1058f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.615ex; height:3.676ex;" alt="{\displaystyle v\in {\overrightarrow {A}}}"></span>, one has </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a+v)=f(a)+{\overrightarrow {f}}(v).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a+v)=f(a)+{\overrightarrow {f}}(v).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/629be545e80a2dd87495904921cbb96fe9436de6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.928ex; height:4.176ex;" alt="{\displaystyle f(a+v)=f(a)+{\overrightarrow {f}}(v).}"></span></dd></dl> <p>Therefore, since for any given <span class="texhtml mvar" style="font-style:italic;">b</span> in <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml"><i>b</i> = <i>a</i> + <i>v</i></span> for a unique <span class="texhtml mvar" style="font-style:italic;">v</span>, <span class="texhtml"><i>f</i></span> is completely defined by its value on a single point and the associated linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfa88ab873934603aafa809d533b4c49fc16adda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.802ex; height:4.009ex;" alt="{\displaystyle {\overrightarrow {f}}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Endomorphisms">Endomorphisms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=6" title="Edit section: Endomorphisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Affine_transformation" title="Affine transformation">Affine transformation</a> and <a href="/wiki/Affine_group" title="Affine group">Affine group</a></div> <p>An <i>affine transformation</i> or <i><a href="/wiki/Endomorphism" title="Endomorphism">endomorphism</a></i> of an affine space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is an affine map from that space to itself. One important <a href="/wiki/Family_of_sets" title="Family of sets">family</a> of examples is the translations: given a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdbb1a68c861cbd0cfda4f71510f67eed27c7cb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.388ex; height:3.009ex;" alt="{\displaystyle {\overrightarrow {v}}}"></span>, the translation map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\overrightarrow {v}}:A\rightarrow A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </msub> <mo>:</mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\overrightarrow {v}}:A\rightarrow A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ebeca4fbe60527653f977b904f92b489d43e3aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:12.335ex; height:3.343ex;" alt="{\displaystyle T_{\overrightarrow {v}}:A\rightarrow A}"></span> that sends <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\mapsto a+{\overrightarrow {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\mapsto a+{\overrightarrow {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c26f8b6adca71bbe522d3f9eb81e16ed0ee33b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.302ex; height:3.176ex;" alt="{\displaystyle a\mapsto a+{\overrightarrow {v}}}"></span> for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is an affine map. Another important family of examples are the linear maps centred at an origin: given a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> and a linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, one may define an affine map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{M,b}:A\rightarrow A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <mo>:</mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{M,b}:A\rightarrow A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad196ea8e4e01e4016de27e2a97775f1dc820ab5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.742ex; height:2.843ex;" alt="{\displaystyle L_{M,b}:A\rightarrow A}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{M,b}(a)=b+M(a-b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{M,b}(a)=b+M(a-b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a729b56b1e43dfe0281b42b5fc4644f671a87948" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24ex; height:3.009ex;" alt="{\displaystyle L_{M,b}(a)=b+M(a-b)}"></span> for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. </p><p>After making a choice of origin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>, any affine map may be written uniquely as a combination of a translation and a linear map centred at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Vector_spaces_as_affine_spaces">Vector spaces as affine spaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=7" title="Edit section: Vector spaces as affine spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Every vector space <span class="texhtml"><i>V</i></span> may be considered as an affine space over itself. This means that every element of <span class="texhtml"><i>V</i></span> may be considered either as a point or as a vector. This affine space is sometimes denoted <span class="texhtml">(<i>V</i>, <i>V</i>)</span> for emphasizing the double role of the elements of <span class="texhtml"><i>V</i></span>. When considered as a point, the <a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">zero vector</a> is commonly denoted <span class="texhtml"><i>o</i></span> (or <span class="texhtml"><i>O</i></span>, when upper-case letters are used for points) and called the <i>origin</i>. </p><p>If <span class="texhtml"><i>A</i></span> is another affine space over the same vector space (that is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V={\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V={\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a59e4ac6e1149d31ede7eaf0a7ec295f0f6480bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.532ex; height:3.676ex;" alt="{\displaystyle V={\overrightarrow {A}}}"></span>) the choice of any point <span class="texhtml"><i>a</i></span> in <span class="texhtml"><i>A</i></span> defines a unique affine isomorphism, which is the identity of <span class="texhtml"><i>V</i></span> and maps <span class="texhtml"><i>a</i></span> to <span class="texhtml"><i>o</i></span>. In other words, the choice of an origin <span class="texhtml"><i>a</i></span> in <span class="texhtml"><i>A</i></span> allows us to identify <span class="texhtml"><i>A</i></span> and <span class="texhtml">(<i>V</i>, <i>V</i>)</span> <a href="/wiki/Up_to" title="Up to">up to</a> a <a href="/wiki/Canonical_isomorphism" class="mw-redirect" title="Canonical isomorphism">canonical isomorphism</a>. The counterpart of this property is that the affine space <span class="texhtml"><i>A</i></span> may be identified with the vector space <span class="texhtml"><i>V</i></span> in which "the place of the origin has been forgotten". </p> <div class="mw-heading mw-heading2"><h2 id="Relation_to_Euclidean_spaces">Relation to Euclidean spaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=8" title="Edit section: Relation to Euclidean spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Definition_of_Euclidean_spaces">Definition of Euclidean spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=9" title="Edit section: Definition of Euclidean spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Euclidean_spaces" class="mw-redirect" title="Euclidean spaces">Euclidean spaces</a> (including the one-dimensional line, two-dimensional plane, and three-dimensional space commonly studied in elementary geometry, as well as higher-dimensional analogues) are affine spaces. </p><p>Indeed, in most modern definitions, a Euclidean space is defined to be an affine space, such that the associated vector space is a real <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a> of finite dimension, that is a vector space over the reals with a <a href="/wiki/Positive-definite_quadratic_form" class="mw-redirect" title="Positive-definite quadratic form">positive-definite quadratic form</a> <span class="texhtml"><i>q</i>(<i>x</i>)</span>. The inner product of two vectors <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> is the value of the <a href="/wiki/Symmetric_bilinear_form" title="Symmetric bilinear form">symmetric bilinear form</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot y={\frac {1}{2}}(q(x+y)-q(x)-q(y)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot y={\frac {1}{2}}(q(x+y)-q(x)-q(y)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baa3faeb3da613de6bd56dde869bae11ec7c831f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:33.846ex; height:5.176ex;" alt="{\displaystyle x\cdot y={\frac {1}{2}}(q(x+y)-q(x)-q(y)).}"></span></dd></dl> <p>The usual <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a> between two points <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)={\sqrt {q(B-A)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>q</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(A,B)={\sqrt {q(B-A)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0bc59fc12a8f94498ce0eb52326f37fd6bff2b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.862ex; height:4.843ex;" alt="{\displaystyle d(A,B)={\sqrt {q(B-A)}}.}"></span></dd></dl> <p>In older definition of Euclidean spaces through <a href="/wiki/Synthetic_geometry" title="Synthetic geometry">synthetic geometry</a>, vectors are defined as <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence classes</a> of <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pairs</a> of points under <a href="/wiki/Equipollence_(geometry)" title="Equipollence (geometry)">equipollence</a> (the pairs <span class="texhtml">(<i>A</i>, <i>B</i>)</span> and <span class="texhtml">(<i>C</i>, <i>D</i>)</span> are <i>equipollent</i> if the points <span class="texhtml"><i>A</i>, <i>B</i>, <i>D</i>, <i>C</i></span> (in this order) form a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a>). It is straightforward to verify that the vectors form a vector space, the square of the <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a> is a quadratic form on the space of vectors, and the two definitions of Euclidean spaces are equivalent. </p> <div class="mw-heading mw-heading3"><h3 id="Affine_properties">Affine properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=10" title="Edit section: Affine properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>, the common phrase "<b>affine property</b>" refers to a property that can be proved in affine spaces, that is, it can be proved without using the quadratic form and its associated inner product. In other words, an affine property is a property that does not involve lengths and angles. Typical examples are <a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">parallelism</a>, and the definition of a <a href="/wiki/Tangent" title="Tangent">tangent</a>. A non-example is the definition of a <a href="/wiki/Normal_(geometry)" title="Normal (geometry)">normal</a>. </p><p>Equivalently, an affine property is a property that is invariant under <a href="/wiki/Affine_transformation" title="Affine transformation">affine transformations</a> of the Euclidean space. </p> <div class="mw-heading mw-heading2"><h2 id="Affine_combinations_and_barycenter">Affine combinations and barycenter</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=11" title="Edit section: Affine combinations and barycenter"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>a</i><sub>1</sub>, ..., <i>a</i><sub><i>n</i></sub></span> be a collection of <span class="texhtml"><i>n</i></span> points in an affine space, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1},\dots ,\lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1},\dots ,\lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0980b08cb9c0fae51d9109a1c6319b22807e0eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.161ex; height:2.509ex;" alt="{\displaystyle \lambda _{1},\dots ,\lambda _{n}}"></span> be <span class="texhtml"><i>n</i></span> elements of the <a href="/wiki/Ground_field" title="Ground field">ground field</a>. </p><p>Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1}+\dots +\lambda _{n}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1}+\dots +\lambda _{n}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cbd693cec3ff50642341afcdec0b6164d025772" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.648ex; height:2.509ex;" alt="{\displaystyle \lambda _{1}+\dots +\lambda _{n}=0}"></span>. For any two points <span class="texhtml"><i>o</i></span> and <span class="texhtml"><i>o' </i></span> one has </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1}{\overrightarrow {oa_{1}}}+\dots +\lambda _{n}{\overrightarrow {oa_{n}}}=\lambda _{1}{\overrightarrow {o'a_{1}}}+\dots +\lambda _{n}{\overrightarrow {o'a_{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>o</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>o</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msup> <mi>o</mi> <mo>&#x2032;</mo> </msup> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msup> <mi>o</mi> <mo>&#x2032;</mo> </msup> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1}{\overrightarrow {oa_{1}}}+\dots +\lambda _{n}{\overrightarrow {oa_{n}}}=\lambda _{1}{\overrightarrow {o'a_{1}}}+\dots +\lambda _{n}{\overrightarrow {o'a_{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3bc06cbbf080f47ee95cdae92f80f353f374efc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-top: -0.491ex; width:46.385ex; height:4.509ex;" alt="{\displaystyle \lambda _{1}{\overrightarrow {oa_{1}}}+\dots +\lambda _{n}{\overrightarrow {oa_{n}}}=\lambda _{1}{\overrightarrow {o&#039;a_{1}}}+\dots +\lambda _{n}{\overrightarrow {o&#039;a_{n}}}.}"></span></dd></dl> <p>Thus, this sum is independent of the choice of the origin, and the resulting vector may be denoted </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1}a_{1}+\dots +\lambda _{n}a_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1}a_{1}+\dots +\lambda _{n}a_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b24e4266b1eef98014cc1082858c4dfda0cb3e48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.766ex; height:2.509ex;" alt="{\displaystyle \lambda _{1}a_{1}+\dots +\lambda _{n}a_{n}.}"></span></dd></dl> <p>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2,\lambda _{1}=1,\lambda _{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2,\lambda _{1}=1,\lambda _{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6338317c67bb6db345ce2f5932f0440110f543e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.872ex; height:2.509ex;" alt="{\displaystyle n=2,\lambda _{1}=1,\lambda _{2}=-1}"></span>, one retrieves the definition of the subtraction of points. </p><p>Now suppose instead that the <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> elements satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1}+\dots +\lambda _{n}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1}+\dots +\lambda _{n}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9645ebdd7fbf5f93058a0c9df6f238c9a86ee8a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.648ex; height:2.509ex;" alt="{\displaystyle \lambda _{1}+\dots +\lambda _{n}=1}"></span>. For some choice of an origin <span class="texhtml"><i>o</i></span>, denote by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> the unique point such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1}{\overrightarrow {oa_{1}}}+\dots +\lambda _{n}{\overrightarrow {oa_{n}}}={\overrightarrow {og}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>o</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>o</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>o</mi> <mi>g</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1}{\overrightarrow {oa_{1}}}+\dots +\lambda _{n}{\overrightarrow {oa_{n}}}={\overrightarrow {og}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d47689c3c5a1232cd16482a3fbfef325148197e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-top: -0.342ex; width:26.709ex; height:3.509ex;" alt="{\displaystyle \lambda _{1}{\overrightarrow {oa_{1}}}+\dots +\lambda _{n}{\overrightarrow {oa_{n}}}={\overrightarrow {og}}.}"></span></dd></dl> <p>One can show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is independent from the choice of <span class="texhtml"><i>o</i></span>. Therefore, if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1}+\dots +\lambda _{n}=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1}+\dots +\lambda _{n}=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb7694543f0ac5b30a262746c049323873b149b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.295ex; height:2.509ex;" alt="{\displaystyle \lambda _{1}+\dots +\lambda _{n}=1,}"></span></dd></dl> <p>one may write </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=\lambda _{1}a_{1}+\dots +\lambda _{n}a_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=\lambda _{1}a_{1}+\dots +\lambda _{n}a_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab52f0ade1d1db4cd27e40baa6caab3c9b6a96e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.981ex; height:2.509ex;" alt="{\displaystyle g=\lambda _{1}a_{1}+\dots +\lambda _{n}a_{n}.}"></span></dd></dl> <p>The point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is called the <b><a href="/wiki/Centroid" title="Centroid">barycenter</a></b> of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bc77764b2e74e64a63341054fa90f3e07db275f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.029ex; height:2.009ex;" alt="{\displaystyle a_{i}}"></span> for the weights <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72fde940918edf84caf3d406cc7d31949166820f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle \lambda _{i}}"></span>. One says also that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is an <b><a href="/wiki/Affine_combination" title="Affine combination">affine combination</a></b> of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bc77764b2e74e64a63341054fa90f3e07db275f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.029ex; height:2.009ex;" alt="{\displaystyle a_{i}}"></span> with <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72fde940918edf84caf3d406cc7d31949166820f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle \lambda _{i}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=12" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>When children find the answers to sums such as <span class="texhtml">4 + 3</span> or <span class="texhtml">4 − 2</span> by counting right or left on a <a href="/wiki/Number_line" title="Number line">number line</a>, they are treating the number line as a one-dimensional affine space.</li> <li><a href="/wiki/Time" title="Time">Time</a> can be modelled as a one-dimensional affine space. Specific points in time (such as a date on the calendar) are points in the affine space, while durations (such as a number of days) are displacements.</li> <li>The space of energies is an affine space for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, since it is often not meaningful to talk about absolute energy, but it is meaningful to talk about energy differences. The <a href="/wiki/Vacuum_energy" title="Vacuum energy">vacuum energy</a> when it is defined picks out a canonical origin.</li> <li><a href="/wiki/Physical_space" class="mw-redirect" title="Physical space">Physical space</a> is often modelled as an affine space for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> in non-relativistic settings and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{1,3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{1,3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97bbc96ea97da9adfb87ac79a78c8e604c97cd7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.012ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{1,3}}"></span> in the relativistic setting. To distinguish them from the vector space these are sometimes called <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean spaces</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{E}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{E}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b12266f999d95c9a711e3f5a00692bfb66f6ab6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle {\text{E}}(3)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{E}}(1,3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>E</mtext> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{E}}(1,3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6762e6aed67f62945a586c7e5a8b2894d2f56765" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.751ex; height:2.843ex;" alt="{\displaystyle {\text{E}}(1,3)}"></span>.</li> <li>Any <a href="/wiki/Coset" title="Coset">coset</a> of a subspace <span class="texhtml mvar" style="font-style:italic;">V</span> of a vector space is an affine space over that subspace.</li> <li>In particular, a line in the plane that doesn't pass through the origin is an affine space that is not a vector space relative to the operations it inherits from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>, although it can be given a canonical vector space structure by picking the point closest to the origin as the zero vector; likewise in higher dimensions and for any normed vector space</li> <li>If <span class="texhtml mvar" style="font-style:italic;">T</span> is a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> and <span class="texhtml"><b>b</b></span> lies in its <a href="/wiki/Column_space" class="mw-redirect" title="Column space">column space</a>, the set of solutions of the equation <span class="texhtml"><i>T</i><b>x</b> = <b>b</b></span> is an affine space over the subspace of solutions of <span class="texhtml"><i>T</i><b>x</b> = 0</span>.</li> <li>The solutions of an inhomogeneous <a href="/wiki/Linear_differential_equation" title="Linear differential equation">linear differential equation</a> form an affine space over the solutions of the corresponding homogeneous linear equation.</li> <li>Generalizing all of the above, if <span class="texhtml"><i>T</i> : <i>V</i> → <i>W</i></span> is a linear map and <span class="texhtml"><b>y</b></span> lies in its <a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a>, the set of solutions <span class="texhtml"><b>x</b> ∈ <i>V</i></span> to the equation <span class="texhtml"><i>T</i><b>x</b> = <b>y</b></span> is a coset of the kernel of <span class="texhtml mvar" style="font-style:italic;">T </span>, and is therefore an affine space over <span class="texhtml">Ker <i>T</i> </span>.</li> <li>The space of (linear) <a href="/wiki/Complementary_subspaces" class="mw-redirect" title="Complementary subspaces">complementary subspaces</a> of a vector subspace <span class="texhtml"><i>V</i></span> in a vector space <span class="texhtml"><i>W</i></span> is an affine space, over <span class="texhtml">Hom(<i>W</i>/<i>V</i>, <i>V</i>)</span>. That is, if <span class="texhtml">0 → <i>V</i> → <i>W</i> → <i>X</i> → 0</span> is a <a href="/wiki/Short_exact_sequence" class="mw-redirect" title="Short exact sequence">short exact sequence</a> of vector spaces, then the space of all <a href="/wiki/Split_exact_sequence" title="Split exact sequence">splittings</a> of the exact sequence naturally carries the structure of an affine space over <span class="texhtml">Hom(<i>X</i>, <i>V</i>)</span>.</li> <li>The space of <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connections</a> (viewed from the <a href="/wiki/Vector_bundle" title="Vector bundle">vector bundle</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\xrightarrow {\pi } M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mi>&#x03C0;<!-- π --></mi> </mpadded> </mover> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\xrightarrow {\pi } M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f4fbd0716bcabdbbce17a99087bc4478bb4096a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.409ex; width:7.832ex; height:3.343ex;" alt="{\displaystyle E\xrightarrow {\pi } M}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is a <a href="/wiki/Smooth_manifold" class="mw-redirect" title="Smooth manifold">smooth manifold</a>) is an affine space for the vector space of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{End}}(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>End</mtext> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{End}}(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3440279a0745bee2ce96088e2e39bd04d59bb581" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.753ex; height:2.843ex;" alt="{\displaystyle {\text{End}}(E)}"></span> valued <a href="/wiki/1-forms" class="mw-redirect" title="1-forms">1-forms</a>. The space of connections (viewed from the <a href="/wiki/Principal_bundle" title="Principal bundle">principal bundle</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\xrightarrow {\pi } M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mi>&#x03C0;<!-- π --></mi> </mpadded> </mover> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\xrightarrow {\pi } M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e293f6c88af4af28d5737387bfaa158d3873650" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.409ex; width:7.802ex; height:3.343ex;" alt="{\displaystyle P\xrightarrow {\pi } M}"></span>) is an affine space for the vector space of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{ad}}(P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>ad</mtext> </mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{ad}}(P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19e76680c5beccb807dc345bad4747ad0fb48349" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.01ex; height:2.843ex;" alt="{\displaystyle {\text{ad}}(P)}"></span>-valued 1-forms, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{ad}}(P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>ad</mtext> </mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{ad}}(P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19e76680c5beccb807dc345bad4747ad0fb48349" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.01ex; height:2.843ex;" alt="{\displaystyle {\text{ad}}(P)}"></span> is the <a href="/wiki/Associated_vector_bundle" class="mw-redirect" title="Associated vector bundle">associated</a> <a href="/wiki/Adjoint_bundle" title="Adjoint bundle">adjoint bundle</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Affine_span_and_bases">Affine span and bases</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=13" title="Edit section: Affine span and bases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any non-empty subset <span class="texhtml"><i>X</i></span> of an affine space <span class="texhtml"><i>A</i></span>, there is a smallest affine subspace that contains it, called the <b>affine span</b> of <span class="texhtml"><i>X</i></span>. It is the intersection of all affine subspaces containing <span class="texhtml"><i>X</i></span>, and its direction is the intersection of the directions of the affine subspaces that contain <span class="texhtml"><i>X</i></span>. </p><p>The affine span of <span class="texhtml"><i>X</i></span> is the set of all (finite) affine combinations of points of <span class="texhtml"><i>X</i></span>, and its direction is the <a href="/wiki/Linear_span" title="Linear span">linear span</a> of the <span class="texhtml"><i>x</i> − <i>y</i></span> for <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> in <span class="texhtml"><i>X</i></span>. If one chooses a particular point <span class="texhtml"><i>x</i><sub>0</sub></span>, the direction of the affine span of <span class="texhtml"><i>X</i></span> is also the linear span of the <span class="texhtml"><i>x</i> – <i>x</i><sub>0</sub></span> for <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span>. </p><p>One says also that the affine span of <span class="texhtml"><i>X</i></span> is <b>generated</b> by <span class="texhtml"><i>X</i></span> and that <span class="texhtml"><i>X</i></span> is a <b>generating set</b> of its affine span. </p><p>A set <span class="texhtml"><i>X</i></span> of points of an affine space is said to be <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="affinely_independent"></span><span class="vanchor-text">affinely independent</span></span></b> or, simply, <b>independent</b>, if the affine span of any <a href="/wiki/Strict_subset" class="mw-redirect" title="Strict subset">strict subset</a> of <span class="texhtml"><i>X</i></span> is a strict subset of the affine span of <span class="texhtml"><i>X</i></span>. An <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="affine_basis"></span><span class="vanchor-text">affine basis</span></span></b> or <b>barycentric frame</b> (see <a href="#Barycentric_coordinates">§&#160;Barycentric coordinates</a>, below) of an affine space is a generating set that is also independent (that is a <a href="/wiki/Minimal_generating_set" class="mw-redirect" title="Minimal generating set">minimal generating set</a>). </p><p>Recall that the <i>dimension</i> of an affine space is the dimension of its associated vector space. The bases of an affine space of finite dimension <span class="texhtml"><i>n</i></span> are the independent subsets of <span class="texhtml"><i>n</i> + 1</span> elements, or, equivalently, the generating subsets of <span class="texhtml"><i>n</i> + 1</span> elements. Equivalently, <span class="texhtml">{<i>x</i><sub>0</sub>, ..., <i>x</i><sub><i>n</i></sub></span>} is an affine basis of an affine space <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="texhtml">{<i>x</i><sub>1</sub> − <i>x</i><sub>0</sub>, ..., <i>x</i><sub><i>n</i></sub> − <i>x</i><sub>0</sub></span>} is a <a href="/wiki/Linear_basis" class="mw-redirect" title="Linear basis">linear basis</a> of the associated vector space. </p> <div class="mw-heading mw-heading2"><h2 id="Coordinates">Coordinates</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=14" title="Edit section: Coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are two strongly related kinds of <a href="/wiki/Coordinate_system" title="Coordinate system">coordinate systems</a> that may be defined on affine spaces. </p> <div class="mw-heading mw-heading3"><h3 id="Barycentric_coordinates">Barycentric coordinates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=15" title="Edit section: Barycentric coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Barycentric_coordinate_system" title="Barycentric coordinate system">Barycentric coordinate system</a></div> <p>Let <span class="texhtml"><i>A</i></span> be an affine space of dimension <span class="texhtml"><i>n</i></span> over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml"><i>k</i></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x_{0},\dots ,x_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x_{0},\dots ,x_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/007e042ff4cda39d85d58e1876cda96a1e0658c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.435ex; height:2.843ex;" alt="{\displaystyle \{x_{0},\dots ,x_{n}\}}"></span> be an affine basis of <span class="texhtml"><i>A</i></span>. The properties of an affine basis imply that for every <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>A</i></span> there is a unique <span class="texhtml">(<i>n</i> + 1)</span>-<a href="/wiki/Tuple" title="Tuple">tuple</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\lambda _{0},\dots ,\lambda _{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\lambda _{0},\dots ,\lambda _{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fa2b2dfbd78a8dda94fe7d019b04dc72cac1985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.971ex; height:2.843ex;" alt="{\displaystyle (\lambda _{0},\dots ,\lambda _{n})}"></span> of elements of <span class="texhtml"><i>k</i></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{0}+\dots +\lambda _{n}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{0}+\dots +\lambda _{n}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff4410120f23a1e884b11a16847ccdbfd6ecb505" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.648ex; height:2.509ex;" alt="{\displaystyle \lambda _{0}+\dots +\lambda _{n}=1}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\lambda _{0}x_{0}+\dots +\lambda _{n}x_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\lambda _{0}x_{0}+\dots +\lambda _{n}x_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c30ca97ef4b3771539ab3ed62bbe40c45e36851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.394ex; height:2.509ex;" alt="{\displaystyle x=\lambda _{0}x_{0}+\dots +\lambda _{n}x_{n}.}"></span></dd></dl> <p>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72fde940918edf84caf3d406cc7d31949166820f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle \lambda _{i}}"></span> are called the <b>barycentric coordinates</b> of <span class="texhtml"><i>x</i></span> over the affine basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x_{0},\dots ,x_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x_{0},\dots ,x_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/007e042ff4cda39d85d58e1876cda96a1e0658c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.435ex; height:2.843ex;" alt="{\displaystyle \{x_{0},\dots ,x_{n}\}}"></span>. If the <span class="texhtml"><i>x<sub>i</sub></i></span> are viewed as bodies that have weights (or masses) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72fde940918edf84caf3d406cc7d31949166820f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle \lambda _{i}}"></span>, the point <span class="texhtml"><i>x</i></span> is thus the <a href="/wiki/Centroid" title="Centroid">barycenter</a> of the <span class="texhtml"><i>x<sub>i</sub></i></span>, and this explains the origin of the term <i>barycentric coordinates</i>. </p><p>The barycentric coordinates define an affine isomorphism between the affine space <span class="texhtml"><i>A</i></span> and the affine subspace of <span class="texhtml"><i>k</i><sup><i>n</i> + 1</sup></span> defined by the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{0}+\dots +\lambda _{n}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{0}+\dots +\lambda _{n}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff4410120f23a1e884b11a16847ccdbfd6ecb505" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.648ex; height:2.509ex;" alt="{\displaystyle \lambda _{0}+\dots +\lambda _{n}=1}"></span>. </p><p>For affine spaces of infinite dimension, the same definition applies, using only finite sums. This means that for each point, only a finite number of coordinates are non-zero. </p> <div class="mw-heading mw-heading3"><h3 id="Affine_coordinates">Affine coordinates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=16" title="Edit section: Affine coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <b>affine frame</b> is a <a href="/wiki/Coordinate_frame" class="mw-redirect" title="Coordinate frame">coordinate frame</a> of an affine space, consisting of a point, called the <i><a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a></i>, and a <a href="/wiki/Linear_basis" class="mw-redirect" title="Linear basis">linear basis</a> of the associated vector space. More precisely, for an affine space <span class="texhtml"><i>A</i></span> with associated vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span>, the origin <span class="texhtml"><i>o</i></span> belongs to <span class="texhtml"><i>A</i></span>, and the linear basis is a basis <span class="texhtml">(<i>v</i><sub>1</sub>, ..., <i>v</i><sub><i>n</i></sub>)</span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63d1d5ad20924a9e908d0f805f2b16e745dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.647ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {A}}}"></span> (for simplicity of the notation, we consider only the case of finite dimension, the general case is similar). </p><p>For each point <span class="texhtml"><i>p</i></span> of <span class="texhtml"><i>A</i></span>, there is a unique sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1},\dots ,\lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1},\dots ,\lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0980b08cb9c0fae51d9109a1c6319b22807e0eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.161ex; height:2.509ex;" alt="{\displaystyle \lambda _{1},\dots ,\lambda _{n}}"></span> of elements of the ground field such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=o+\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>o</mi> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=o+\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a241f4da37377a89d62ab447d54cd108ae6abc5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:26.887ex; height:2.509ex;" alt="{\displaystyle p=o+\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n},}"></span></dd></dl> <p>or equivalently </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {op}}=\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>o</mi> <mi>p</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {op}}=\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73ab04c0b95b682d852ba8321591ee77e56c31a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.984ex; height:3.343ex;" alt="{\displaystyle {\overrightarrow {op}}=\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n}.}"></span></dd></dl> <p>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72fde940918edf84caf3d406cc7d31949166820f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle \lambda _{i}}"></span> are called the <b>affine coordinates</b> of <span class="texhtml"><i>p</i></span> over the affine frame <span class="texhtml">(<i>o</i>, <i>v</i><sub>1</sub>, ..., <i>v</i><sub><i>n</i></sub>)</span>. </p><p><b>Example:</b> In <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>, <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> are affine coordinates relative to an <i><a href="/wiki/Orthonormal_frame_(Euclidean_geometry)" class="mw-redirect" title="Orthonormal frame (Euclidean geometry)">orthonormal frame</a></i>, that is an affine frame <span class="texhtml">(<i>o</i>, <i>v</i><sub>1</sub>, ..., <i>v</i><sub><i>n</i></sub>)</span> such that <span class="texhtml">(<i>v</i><sub>1</sub>, ..., <i>v</i><sub><i>n</i></sub>)</span> is an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Relationship_between_barycentric_and_affine_coordinates">Relationship between barycentric and affine coordinates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=17" title="Edit section: Relationship between barycentric and affine coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Barycentric coordinates and affine coordinates are strongly related, and may be considered as equivalent. </p><p>In fact, given a barycentric frame </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},\dots ,x_{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},\dots ,x_{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe79334b26a058149d8c84b726460377475e8bc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.566ex; height:2.843ex;" alt="{\displaystyle (x_{0},\dots ,x_{n}),}"></span></dd></dl> <p>one deduces immediately the affine frame </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},{\overrightarrow {x_{0}x_{1}}},\dots ,{\overrightarrow {x_{0}x_{n}}})=\left(x_{0},x_{1}-x_{0},\dots ,x_{n}-x_{0}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},{\overrightarrow {x_{0}x_{1}}},\dots ,{\overrightarrow {x_{0}x_{n}}})=\left(x_{0},x_{1}-x_{0},\dots ,x_{n}-x_{0}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feb68180edc027a8c75c523530b68873e3140b6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-top: -0.342ex; width:50.284ex; height:3.676ex;" alt="{\displaystyle (x_{0},{\overrightarrow {x_{0}x_{1}}},\dots ,{\overrightarrow {x_{0}x_{n}}})=\left(x_{0},x_{1}-x_{0},\dots ,x_{n}-x_{0}\right),}"></span></dd></dl> <p>and, if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\lambda _{0},\lambda _{1},\dots ,\lambda _{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\lambda _{0},\lambda _{1},\dots ,\lambda _{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e976f8d679c43f97c3b6652c83e9686d4735d70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.414ex; height:2.843ex;" alt="{\displaystyle \left(\lambda _{0},\lambda _{1},\dots ,\lambda _{n}\right)}"></span></dd></dl> <p>are the barycentric coordinates of a point over the barycentric frame, then the affine coordinates of the same point over the affine frame are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\lambda _{1},\dots ,\lambda _{n}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\lambda _{1},\dots ,\lambda _{n}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c5d8b5824a7f53bea98c66039b126a5f1ea00a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.005ex; height:2.843ex;" alt="{\displaystyle \left(\lambda _{1},\dots ,\lambda _{n}\right).}"></span></dd></dl> <p>Conversely, if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(o,v_{1},\dots ,v_{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>o</mi> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(o,v_{1},\dots ,v_{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16b48eb98647af912da0588284ecbf32ba23de4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.677ex; height:2.843ex;" alt="{\displaystyle \left(o,v_{1},\dots ,v_{n}\right)}"></span></dd></dl> <p>is an affine frame, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(o,o+v_{1},\dots ,o+v_{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>o</mi> <mo>,</mo> <mi>o</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>o</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(o,o+v_{1},\dots ,o+v_{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed716e47f7868a9cc9ef023561bfc06c0b8a4e8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.613ex; height:2.843ex;" alt="{\displaystyle \left(o,o+v_{1},\dots ,o+v_{n}\right)}"></span></dd></dl> <p>is a barycentric frame. If </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\lambda _{1},\dots ,\lambda _{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\lambda _{1},\dots ,\lambda _{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56f7742a9f00ba87be1ef8a42c1af60f4b6b8fb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.971ex; height:2.843ex;" alt="{\displaystyle \left(\lambda _{1},\dots ,\lambda _{n}\right)}"></span></dd></dl> <p>are the affine coordinates of a point over the affine frame, then its barycentric coordinates over the barycentric frame are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(1-\lambda _{1}-\dots -\lambda _{n},\lambda _{1},\dots ,\lambda _{n}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(1-\lambda _{1}-\dots -\lambda _{n},\lambda _{1},\dots ,\lambda _{n}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98f638ab4ee7de5cbd47586cacc4b4362d23507" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.429ex; height:2.843ex;" alt="{\displaystyle \left(1-\lambda _{1}-\dots -\lambda _{n},\lambda _{1},\dots ,\lambda _{n}\right).}"></span></dd></dl> <p>Therefore, barycentric and affine coordinates are almost equivalent. In most applications, affine coordinates are preferred, as involving less coordinates that are independent. However, in the situations where the important points of the studied problem are affinely independent, barycentric coordinates may lead to simpler computation, as in the following example. </p> <div class="mw-heading mw-heading4"><h4 id="Example_of_the_triangle">Example of the triangle</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=18" title="Edit section: Example of the triangle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The vertices of a non-flat <a href="/wiki/Triangle" title="Triangle">triangle</a> form an affine basis of the <a href="/wiki/Euclidean_plane" title="Euclidean plane">Euclidean plane</a>. The barycentric coordinates allows easy characterization of the elements of the triangle that do not involve angles or distances: </p><p>The vertices are the points of barycentric coordinates <span class="texhtml">(1, 0, 0)</span>, <span class="texhtml">(0, 1, 0)</span> and <span class="texhtml">(0, 0, 1)</span>. The lines supporting the <a href="/wiki/Edge_(geometry)" title="Edge (geometry)">edges</a> are the points that have a zero coordinate. The edges themselves are the points that have one zero coordinate and two nonnegative coordinates. The <a href="/wiki/Interior_(mathematics)" class="mw-redirect" title="Interior (mathematics)">interior</a> of the triangle are the points whose coordinates are all positive. The <a href="/wiki/Median_(geometry)" title="Median (geometry)">medians</a> are the points that have two equal coordinates, and the <a href="/wiki/Centroid" title="Centroid">centroid</a> is the point of coordinates <span class="texhtml">(<style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>&#8288;</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>&#8288;</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>&#8288;</span>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Change_of_coordinates">Change of coordinates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=19" title="Edit section: Change of coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Case_of_barycentric_coordinates">Case of barycentric coordinates</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=20" title="Edit section: Case of barycentric coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Barycentric coordinates are readily changed from one basis to another. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x_{0},\dots ,x_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x_{0},\dots ,x_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/007e042ff4cda39d85d58e1876cda96a1e0658c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.435ex; height:2.843ex;" alt="{\displaystyle \{x_{0},\dots ,x_{n}\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x'_{0},\dots ,x'_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x'_{0},\dots ,x'_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2de731d0e287456709c7aa37233389adcb07695a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.435ex; height:3.009ex;" alt="{\displaystyle \{x&#039;_{0},\dots ,x&#039;_{n}\}}"></span> be affine bases of <span class="texhtml"><i>A</i></span>. For every <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>A</i></span> there is some tuple <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\lambda _{0},\dots ,\lambda _{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\lambda _{0},\dots ,\lambda _{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37257cd716b800f1eb19c821cbbea5110fc322a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.486ex; height:2.843ex;" alt="{\displaystyle \{\lambda _{0},\dots ,\lambda _{n}\}}"></span> for which </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\lambda _{0}x_{0}+\dots +\lambda _{n}x_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\lambda _{0}x_{0}+\dots +\lambda _{n}x_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c30ca97ef4b3771539ab3ed62bbe40c45e36851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.394ex; height:2.509ex;" alt="{\displaystyle x=\lambda _{0}x_{0}+\dots +\lambda _{n}x_{n}.}"></span></dd></dl> <p>Similarly, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}\in \{x_{0},\dots ,x_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}\in \{x_{0},\dots ,x_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea22665da1292f62caa3b6a80050f01bb161069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.405ex; height:2.843ex;" alt="{\displaystyle x_{i}\in \{x_{0},\dots ,x_{n}\}}"></span> from the first basis, we now have in the second basis </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}=\lambda _{i,0}x'_{0}+\dots +\lambda _{i,j}x'_{j}+\dots +\lambda _{i,n}x'_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}=\lambda _{i,0}x'_{0}+\dots +\lambda _{i,j}x'_{j}+\dots +\lambda _{i,n}x'_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/442ca185265086def20bd500494932469b296088" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:39.53ex; height:3.176ex;" alt="{\displaystyle x_{i}=\lambda _{i,0}x&#039;_{0}+\dots +\lambda _{i,j}x&#039;_{j}+\dots +\lambda _{i,n}x&#039;_{n}}"></span></dd></dl> <p>for some tuple <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\lambda _{i,0},\dots ,\lambda _{i,n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\lambda _{i,0},\dots ,\lambda _{i,n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dde36be9985cdfc1e2b604446d3cd42f8f6c17a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.536ex; height:3.009ex;" alt="{\displaystyle \{\lambda _{i,0},\dots ,\lambda _{i,n}\}}"></span>. Now we can rewrite our expression in the first basis as one in the second with </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,x=\sum _{i=0}^{n}\lambda _{i}x_{i}=\sum _{i=0}^{n}\lambda _{i}\sum _{j=0}^{n}\lambda _{i,j}x'_{j}=\sum _{j=0}^{n}{\biggl (}\sum _{i=0}^{n}\lambda _{i}\lambda _{i,j}{\biggr )}x'_{j}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>x</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,x=\sum _{i=0}^{n}\lambda _{i}x_{i}=\sum _{i=0}^{n}\lambda _{i}\sum _{j=0}^{n}\lambda _{i,j}x'_{j}=\sum _{j=0}^{n}{\biggl (}\sum _{i=0}^{n}\lambda _{i}\lambda _{i,j}{\biggr )}x'_{j}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d139fc3ec1de4f87b482712c2dac75c4506e4ec9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:54.604ex; height:7.176ex;" alt="{\displaystyle \,x=\sum _{i=0}^{n}\lambda _{i}x_{i}=\sum _{i=0}^{n}\lambda _{i}\sum _{j=0}^{n}\lambda _{i,j}x&#039;_{j}=\sum _{j=0}^{n}{\biggl (}\sum _{i=0}^{n}\lambda _{i}\lambda _{i,j}{\biggr )}x&#039;_{j}\,,}"></span></dd></dl> <p>giving us coordinates in the second basis as the tuple <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\bigl \{}\sum _{i}\lambda _{i}\lambda _{i,0},\,\dots ,\,{}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">{</mo> </mrow> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\bigl \{}\sum _{i}\lambda _{i}\lambda _{i,0},\,\dots ,\,{}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34bab639046458c08c1c0e80b9e8eb638d3cee8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.925ex; height:3.176ex;" alt="{\textstyle {\bigl \{}\sum _{i}\lambda _{i}\lambda _{i,0},\,\dots ,\,{}}"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{i}\lambda _{i}\lambda _{i,n}{\bigr \}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">}</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{i}\lambda _{i}\lambda _{i,n}{\bigr \}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db94f5bb12d3a9c598f585d27c7481f35069c2c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.749ex; height:3.176ex;" alt="{\textstyle \sum _{i}\lambda _{i}\lambda _{i,n}{\bigr \}}}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Case_of_affine_coordinates">Case of affine coordinates</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=21" title="Edit section: Case of affine coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Affine coordinates are also readily changed from one basis to another. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>o</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1031f61947aa3d1cf3a70ec3e4904df2c3675d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle o}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{v_{1},\dots ,v_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{v_{1},\dots ,v_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/112d2b712aeabf675d8dbc9a3c02e547fd4a6759" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.031ex; height:2.843ex;" alt="{\displaystyle \{v_{1},\dots ,v_{n}\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>o</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/865c57d97def04339892a4ce7dc385b428e6d914" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.812ex; height:2.509ex;" alt="{\displaystyle o&#039;}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{v'_{1},\dots ,v'_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{v'_{1},\dots ,v'_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c50561a3278c84f102d11197ea23eb1a8806c15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.031ex; height:3.009ex;" alt="{\displaystyle \{v&#039;_{1},\dots ,v&#039;_{n}\}}"></span> be affine frames of <span class="texhtml"><i>A</i></span>. For each point <span class="texhtml"><i>p</i></span> of <span class="texhtml"><i>A</i></span>, there is a unique sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1},\dots ,\lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1},\dots ,\lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0980b08cb9c0fae51d9109a1c6319b22807e0eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.161ex; height:2.509ex;" alt="{\displaystyle \lambda _{1},\dots ,\lambda _{n}}"></span> of elements of the ground field such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=o+\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>o</mi> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=o+\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a241f4da37377a89d62ab447d54cd108ae6abc5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:26.887ex; height:2.509ex;" alt="{\displaystyle p=o+\lambda _{1}v_{1}+\dots +\lambda _{n}v_{n},}"></span></dd></dl> <p>and similarly, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{i}\in \{v_{1},\dots ,v_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{i}\in \{v_{1},\dots ,v_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fedfdca0e248165559f96037a9c4d0093143bd09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.799ex; height:2.843ex;" alt="{\displaystyle v_{i}\in \{v_{1},\dots ,v_{n}\}}"></span> from the first basis, we now have in the second basis </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o=o'+\lambda _{o,1}v'_{1}+\dots +\lambda _{o,j}v'_{j}+\dots +\lambda _{o,n}v'_{n}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>o</mi> <mo>=</mo> <msup> <mi>o</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o=o'+\lambda _{o,1}v'_{1}+\dots +\lambda _{o,j}v'_{j}+\dots +\lambda _{o,n}v'_{n}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e7609d671426ae1c3f033c9db108c478e17600b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:43.652ex; height:3.509ex;" alt="{\displaystyle o=o&#039;+\lambda _{o,1}v&#039;_{1}+\dots +\lambda _{o,j}v&#039;_{j}+\dots +\lambda _{o,n}v&#039;_{n}\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{i}=\lambda _{i,1}v'_{1}+\dots +\lambda _{i,j}v'_{j}+\dots +\lambda _{i,n}v'_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{i}=\lambda _{i,1}v'_{1}+\dots +\lambda _{i,j}v'_{j}+\dots +\lambda _{i,n}v'_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3af6cfe0b15bd30424c6d33d3e198fdcdac2646f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:38.722ex; height:3.176ex;" alt="{\displaystyle v_{i}=\lambda _{i,1}v&#039;_{1}+\dots +\lambda _{i,j}v&#039;_{j}+\dots +\lambda _{i,n}v&#039;_{n}}"></span></dd></dl> <p>for tuple <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\lambda _{o,1},\dots ,\lambda _{o,n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\lambda _{o,1},\dots ,\lambda _{o,n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87ccf42a708bfe172ad8e752d0dd66863921e0f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.996ex; height:3.009ex;" alt="{\displaystyle \{\lambda _{o,1},\dots ,\lambda _{o,n}\}}"></span> and tuples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\lambda _{i,1},\dots ,\lambda _{i,n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\lambda _{i,1},\dots ,\lambda _{i,n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69a04a57d0e79f79458dd96a84ae009c3c590516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.536ex; height:3.009ex;" alt="{\displaystyle \{\lambda _{i,1},\dots ,\lambda _{i,n}\}}"></span>. Now we can rewrite our expression in the first basis as one in the second with </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\,p&amp;=o+\sum _{i=1}^{n}\lambda _{i}v_{i}={\biggl (}o'+\sum _{j=1}^{n}\lambda _{o,j}v'_{j}{\biggr )}+\sum _{i=1}^{n}\lambda _{i}\sum _{j=1}^{n}\lambda _{i,j}v'_{j}\\&amp;=o'+\sum _{j=1}^{n}{\biggl (}\lambda _{o,j}+\sum _{i=1}^{n}\lambda _{i}\lambda _{i,j}{\biggr )}v'_{j}\,,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mspace width="thinmathspace" /> <mi>p</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>o</mi> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msup> <mi>o</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>o</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mspace width="thinmathspace" /> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\,p&amp;=o+\sum _{i=1}^{n}\lambda _{i}v_{i}={\biggl (}o'+\sum _{j=1}^{n}\lambda _{o,j}v'_{j}{\biggr )}+\sum _{i=1}^{n}\lambda _{i}\sum _{j=1}^{n}\lambda _{i,j}v'_{j}\\&amp;=o'+\sum _{j=1}^{n}{\biggl (}\lambda _{o,j}+\sum _{i=1}^{n}\lambda _{i}\lambda _{i,j}{\biggr )}v'_{j}\,,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/655d3c33c028b611572d71d27fecdc3714e379d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:55.864ex; height:14.676ex;" alt="{\displaystyle {\begin{aligned}\,p&amp;=o+\sum _{i=1}^{n}\lambda _{i}v_{i}={\biggl (}o&#039;+\sum _{j=1}^{n}\lambda _{o,j}v&#039;_{j}{\biggr )}+\sum _{i=1}^{n}\lambda _{i}\sum _{j=1}^{n}\lambda _{i,j}v&#039;_{j}\\&amp;=o&#039;+\sum _{j=1}^{n}{\biggl (}\lambda _{o,j}+\sum _{i=1}^{n}\lambda _{i}\lambda _{i,j}{\biggr )}v&#039;_{j}\,,\end{aligned}}}"></span></dd></dl> <p>giving us coordinates in the second basis as the tuple <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\bigl \{}\lambda _{o,1}+\sum _{i}\lambda _{i}\lambda _{i,1},\,\dots ,\,{}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">{</mo> </mrow> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\bigl \{}\lambda _{o,1}+\sum _{i}\lambda _{i}\lambda _{i,1},\,\dots ,\,{}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/799a1aa75481a5efc7221fd0d5403f62f6d2364c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.042ex; height:3.176ex;" alt="{\textstyle {\bigl \{}\lambda _{o,1}+\sum _{i}\lambda _{i}\lambda _{i,1},\,\dots ,\,{}}"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{o,n}+\sum _{i}\lambda _{i}\lambda _{i,n}{\bigr \}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">}</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{o,n}+\sum _{i}\lambda _{i}\lambda _{i,n}{\bigr \}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d3abc0acdecd2471b72cb56216b876b0948f8df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.418ex; height:3.176ex;" alt="{\textstyle \lambda _{o,n}+\sum _{i}\lambda _{i}\lambda _{i,n}{\bigr \}}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Properties_of_affine_homomorphisms">Properties of affine homomorphisms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=22" title="Edit section: Properties of affine homomorphisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Matrix_representation">Matrix representation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=23" title="Edit section: Matrix representation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An affine transformation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is executed on a projective space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fb80175bc622b3936c7a0438fc690b2ec410b4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.475ex; height:2.676ex;" alt="{\displaystyle \mathbb {P} ^{3}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, by a 4 by 4 matrix with a special<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> fourth column: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\begin{bmatrix}a_{11}&amp;a_{12}&amp;a_{13}&amp;0\\a_{21}&amp;a_{22}&amp;a_{23}&amp;0\\a_{31}&amp;a_{32}&amp;a_{33}&amp;0\\a_{41}&amp;a_{42}&amp;a_{43}&amp;1\end{bmatrix}}={\begin{bmatrix}T(1,0,0)&amp;0\\T(0,1,0)&amp;0\\T(0,0,1)&amp;0\\T(0,0,0)&amp;1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>41</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>42</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>43</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>T</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>T</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>T</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>T</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\begin{bmatrix}a_{11}&amp;a_{12}&amp;a_{13}&amp;0\\a_{21}&amp;a_{22}&amp;a_{23}&amp;0\\a_{31}&amp;a_{32}&amp;a_{33}&amp;0\\a_{41}&amp;a_{42}&amp;a_{43}&amp;1\end{bmatrix}}={\begin{bmatrix}T(1,0,0)&amp;0\\T(0,1,0)&amp;0\\T(0,0,1)&amp;0\\T(0,0,0)&amp;1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ba97b2892cb59be096579c1f25f2ea2ecf199a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:45.578ex; height:13.176ex;" alt="{\displaystyle A={\begin{bmatrix}a_{11}&amp;a_{12}&amp;a_{13}&amp;0\\a_{21}&amp;a_{22}&amp;a_{23}&amp;0\\a_{31}&amp;a_{32}&amp;a_{33}&amp;0\\a_{41}&amp;a_{42}&amp;a_{43}&amp;1\end{bmatrix}}={\begin{bmatrix}T(1,0,0)&amp;0\\T(0,1,0)&amp;0\\T(0,0,1)&amp;0\\T(0,0,0)&amp;1\end{bmatrix}}}"></span> </p><p>The transformation is affine instead of linear due to the inclusion of point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c6fd55d5621fd95ca93549660fbb355fd9bd22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (0,0,0)}"></span>, the transformed output of which reveals the affine shift. </p> <div class="mw-heading mw-heading3"><h3 id="Image_and_fibers">Image and fibers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=24" title="Edit section: Image and fibers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon E\to F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon E\to F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65e588635af63181c20287f8ea6f18389b5eaec2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.443ex; height:2.509ex;" alt="{\displaystyle f\colon E\to F}"></span></dd></dl> <p>be an affine homomorphism, with </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {f}}\colon {\overrightarrow {E}}\to {\overrightarrow {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {f}}\colon {\overrightarrow {E}}\to {\overrightarrow {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6627766bc0f5b60d7580e2debdad939ba6445953" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.684ex; height:4.009ex;" alt="{\displaystyle {\overrightarrow {f}}\colon {\overrightarrow {E}}\to {\overrightarrow {F}}}"></span></dd></dl> <p>its associated linear map. The <b>image</b> of <span class="texhtml"><i>f</i></span> is the affine subspace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(E)=\{f(a)\mid a\in E\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(E)=\{f(a)\mid a\in E\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16483836fc5c9ce4bfe3d15fdb161a2733e032fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.388ex; height:2.843ex;" alt="{\displaystyle f(E)=\{f(a)\mid a\in E\}}"></span> of <span class="texhtml mvar" style="font-style:italic;">F</span>, which has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {f}}({\overrightarrow {E}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {f}}({\overrightarrow {E}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1498630d8ac79ab2081477c30721835073e156c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.168ex; height:4.176ex;" alt="{\displaystyle {\overrightarrow {f}}({\overrightarrow {E}})}"></span> as associated vector space. As an affine space does not have a <a href="/wiki/Zero_element" title="Zero element">zero element</a>, an affine homomorphism does not have a <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a>. However, the linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfa88ab873934603aafa809d533b4c49fc16adda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.802ex; height:4.009ex;" alt="{\displaystyle {\overrightarrow {f}}}"></span> does, and if we denote by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\{v\in {\overrightarrow {E}}\mid {\overrightarrow {f}}(v)=0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\{v\in {\overrightarrow {E}}\mid {\overrightarrow {f}}(v)=0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aac122210a6f603ca4e9135006cb555ecd44cae0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.951ex; height:4.176ex;" alt="{\displaystyle K=\{v\in {\overrightarrow {E}}\mid {\overrightarrow {f}}(v)=0\}}"></span> its kernel, then for any point <span class="texhtml"><i>x</i></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3465496148d29e6543003de4cdbac8e9ce6beda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.864ex; height:2.843ex;" alt="{\displaystyle f(E)}"></span>, the <a href="/wiki/Inverse_image" class="mw-redirect" title="Inverse image">inverse image</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46a543a3462cbb9effd5d0c514529426172c7d7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.792ex; height:3.176ex;" alt="{\displaystyle f^{-1}(x)}"></span> of <span class="texhtml mvar" style="font-style:italic;">x</span> is an affine subspace of <span class="texhtml"><i>E</i></span> whose direction is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. This affine subspace is called the <a href="/wiki/Fiber_(mathematics)" title="Fiber (mathematics)"><b>fiber</b></a> of <span class="texhtml"><i>x</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Projection">Projection</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=25" title="Edit section: Projection"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Projection_(mathematics)" title="Projection (mathematics)">Projection (mathematics)</a></div> <p>An important example is the projection parallel to some direction onto an affine subspace. The importance of this example lies in the fact that <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean spaces</a> are affine spaces, and that these kinds of projections are fundamental in <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>. </p><p>More precisely, given an affine space <span class="texhtml"><i>E</i></span> with associated vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d664d9d5a70d17f42f3b274eb2e79037cf3bcae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {E}}}"></span>, let <span class="texhtml"><i>F</i></span> be an affine subspace of direction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac2b5875f3997034668b7b97ed82ae892697ba9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.677ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {F}}}"></span>, and <span class="texhtml"><i>D</i></span> be a <a href="/wiki/Complementary_subspace" class="mw-redirect" title="Complementary subspace">complementary subspace</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac2b5875f3997034668b7b97ed82ae892697ba9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.677ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {F}}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d664d9d5a70d17f42f3b274eb2e79037cf3bcae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {E}}}"></span> (this means that every vector of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d664d9d5a70d17f42f3b274eb2e79037cf3bcae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {E}}}"></span> may be decomposed in a unique way as the sum of an element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac2b5875f3997034668b7b97ed82ae892697ba9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.677ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {F}}}"></span> and an element of <span class="texhtml"><i>D</i></span>). For every point <span class="texhtml"><i>x</i></span> of <span class="texhtml"><i>E</i></span>, its <b>projection</b> to <span class="texhtml"><i>F</i></span> parallel to <span class="texhtml"><i>D</i></span> is the unique point <span class="texhtml"><i>p</i>(<i>x</i>)</span> in <span class="texhtml"><i>F</i></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(x)-x\in D.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(x)-x\in D.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53313df4053989e8d98b5b439ed6e49b0012c9a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:13.98ex; height:2.843ex;" alt="{\displaystyle p(x)-x\in D.}"></span></dd></dl> <p>This is an affine homomorphism whose associated linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a48508462cc610fbb2c91ca441740f6b4c5478e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.517ex; height:3.343ex;" alt="{\displaystyle {\overrightarrow {p}}}"></span> is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {p}}(x-y)=p(x)-p(y),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {p}}(x-y)=p(x)-p(y),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/916e0b4c9df896231f026b58028771e7ddf9bba8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.68ex; height:3.509ex;" alt="{\displaystyle {\overrightarrow {p}}(x-y)=p(x)-p(y),}"></span></dd></dl> <p>for <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> in <span class="texhtml mvar" style="font-style:italic;">E</span>. </p><p>The image of this projection is <span class="texhtml"><i>F</i></span>, and its fibers are the subspaces of direction <span class="texhtml"><i>D</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Quotient_space">Quotient space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=26" title="Edit section: Quotient space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although kernels are not defined for affine spaces, <a href="/wiki/Quotient_space_(linear_algebra)" title="Quotient space (linear algebra)">quotient spaces</a> are defined. This results from the fact that "belonging to the same fiber of an affine homomorphism" is an equivalence relation. </p><p>Let <span class="texhtml"><i>E</i></span> be an affine space, and <span class="texhtml"><i>D</i></span> be a <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> of the associated vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d664d9d5a70d17f42f3b274eb2e79037cf3bcae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {E}}}"></span>. The <b>quotient</b> <span class="texhtml"><i>E</i>/<i>D</i></span> of <span class="texhtml"><i>E</i></span> by <span class="texhtml"><i>D</i></span> is the <a href="/wiki/Quotient_by_an_equivalence_relation" title="Quotient by an equivalence relation">quotient</a> of <span class="texhtml"><i>E</i></span> by the <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> such that <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> are equivalent if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-y\in D.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-y\in D.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59a75d3c0914bc464c0dfcc8f5705af69b6eb2f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.737ex; height:2.509ex;" alt="{\displaystyle x-y\in D.}"></span></dd></dl> <p>This quotient is an affine space, which has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {E}}/D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {E}}/D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce5db3f473ca606ea10bbe524def85ed268a0bd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.643ex; height:4.176ex;" alt="{\displaystyle {\overrightarrow {E}}/D}"></span> as associated vector space. </p><p>For every affine homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\to F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\to F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84d9e3dcf392a3538226db6bda1b7e2dd73c32e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.13ex; height:2.176ex;" alt="{\displaystyle E\to F}"></span>, the image is isomorphic to the quotient of <span class="texhtml"><i>E</i></span> by the kernel of the associated linear map. This is the <a href="/wiki/First_isomorphism_theorem" class="mw-redirect" title="First isomorphism theorem">first isomorphism theorem</a> for affine spaces. </p> <div class="mw-heading mw-heading2"><h2 id="Axioms">Axioms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=27" title="Edit section: Axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Affine spaces are usually studied by <a href="/wiki/Analytic_geometry" title="Analytic geometry">analytic geometry</a> using coordinates, or equivalently vector spaces. They can also be studied as <a href="/wiki/Synthetic_geometry" title="Synthetic geometry">synthetic geometry</a> by writing down axioms, though this approach is much less common. There are several different systems of axioms for affine space. </p><p><a href="#CITEREFCoxeter1969">Coxeter (1969</a>, p.&#160;192) axiomatizes the special case of <a href="/wiki/Affine_geometry" title="Affine geometry">affine geometry</a> over the reals as <a href="/wiki/Ordered_geometry" title="Ordered geometry">ordered geometry</a> together with an affine form of <a href="/wiki/Desargues%27s_theorem" title="Desargues&#39;s theorem">Desargues's theorem</a> and an axiom stating that in a plane there is at most one line through a given point not meeting a given line. </p><p>Affine planes satisfy the following axioms (<a href="#CITEREFCameron1991">Cameron 1991</a>, chapter 2): (in which two lines are called parallel if they are equal or disjoint): </p> <ul><li>Any two distinct points lie on a unique line.</li> <li>Given a point and line there is a unique line that contains the point and is parallel to the line</li> <li>There exist three non-collinear points.</li></ul> <p>As well as affine planes over fields (or <a href="/wiki/Division_ring" title="Division ring">division rings</a>), there are also many <a href="/wiki/Non-Desarguesian_plane" title="Non-Desarguesian plane">non-Desarguesian planes</a> satisfying these axioms. (<a href="#CITEREFCameron1991">Cameron 1991</a>, chapter 3) gives axioms for higher-dimensional affine spaces. </p><p>Purely axiomatic affine geometry is more general than affine spaces and is treated in a <a href="/wiki/Affine_geometry" title="Affine geometry">separate article</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Relation_to_projective_spaces">Relation to projective spaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=28" title="Edit section: Relation to projective spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Affine_space,_projective_space,_vector_space.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Affine_space%2C_projective_space%2C_vector_space.svg/220px-Affine_space%2C_projective_space%2C_vector_space.svg.png" decoding="async" width="220" height="137" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Affine_space%2C_projective_space%2C_vector_space.svg/330px-Affine_space%2C_projective_space%2C_vector_space.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Affine_space%2C_projective_space%2C_vector_space.svg/440px-Affine_space%2C_projective_space%2C_vector_space.svg.png 2x" data-file-width="183" data-file-height="114" /></a><figcaption>An affine space is a subspace of a projective space, which is in turn the quotient of a vector space by an equivalence relation (not by a linear subspace)</figcaption></figure> <p>Affine spaces are contained in <a href="/wiki/Projective_space" title="Projective space">projective spaces</a>. For example, an affine plane can be obtained from any <a href="/wiki/Projective_plane" title="Projective plane">projective plane</a> by removing one line and all the points on it, and conversely any affine plane can be used to construct a projective plane as a <a href="/wiki/Closure_(mathematics)" title="Closure (mathematics)">closure</a> by adding a <a href="/wiki/Line_at_infinity" title="Line at infinity">line at infinity</a> whose points correspond to equivalence classes of <a href="/wiki/Parallel_lines" class="mw-redirect" title="Parallel lines">parallel lines</a>. Similar constructions hold in higher dimensions. </p><p>Further, transformations of projective space that preserve affine space (equivalently, that leave the <a href="/wiki/Hyperplane_at_infinity" title="Hyperplane at infinity">hyperplane at infinity</a> <a href="/wiki/Invariant_(mathematics)#Invariant_set" title="Invariant (mathematics)">invariant as a set</a>) yield transformations of affine space. Conversely, any affine linear transformation extends uniquely to a <a href="/wiki/Projective_linear_transformation" class="mw-redirect" title="Projective linear transformation">projective linear transformation</a>, so the <a href="/wiki/Affine_group" title="Affine group">affine group</a> is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of the <a href="/wiki/Projective_group" class="mw-redirect" title="Projective group">projective group</a>. For instance, <a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">Möbius transformations</a> (transformations of the <a href="/wiki/Complex_projective_line" class="mw-redirect" title="Complex projective line">complex projective line</a>, or <a href="/wiki/Riemann_sphere" title="Riemann sphere">Riemann sphere</a>) are affine (transformations of the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>) if and only if they fix the <a href="/wiki/Point_at_infinity" title="Point at infinity">point at infinity</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Affine_algebraic_geometry">Affine algebraic geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=29" title="Edit section: Affine algebraic geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>, an <a href="/wiki/Affine_variety" title="Affine variety">affine variety</a> (or, more generally, an <a href="/wiki/Affine_algebraic_set" class="mw-redirect" title="Affine algebraic set">affine algebraic set</a>) is defined as the subset of an affine space that is the set of the common zeros of a set of so-called <i>polynomial functions over the affine space</i>. For defining a <i>polynomial function over the affine space</i>, one has to choose an <a href="/wiki/Affine_frame" class="mw-redirect" title="Affine frame">affine frame</a>. Then, a polynomial function is a function such that the image of any point is the value of some multivariate <a href="/wiki/Polynomial_function" class="mw-redirect" title="Polynomial function">polynomial function</a> of the coordinates of the point. As a change of affine coordinates may be expressed by <a href="/wiki/Linear_function" title="Linear function">linear functions</a> (more precisely affine functions) of the coordinates, this definition is independent of a particular choice of coordinates. </p><p>The choice of a system of affine coordinates for an affine space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} _{k}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} _{k}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0579559af277736057f7672ec4b75f9027f17dd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.897ex; height:2.843ex;" alt="{\displaystyle \mathbb {A} _{k}^{n}}"></span> of dimension <span class="texhtml"><i>n</i></span> over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml"><i>k</i></span> induces an affine <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a> between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} _{k}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} _{k}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0579559af277736057f7672ec4b75f9027f17dd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.897ex; height:2.843ex;" alt="{\displaystyle \mathbb {A} _{k}^{n}}"></span> and the affine <a href="/wiki/Coordinate_space" class="mw-redirect" title="Coordinate space">coordinate space</a> <span class="texhtml"><i>k</i><sup><i>n</i></sup></span>. This explains why, for simplification, many textbooks write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} _{k}^{n}=k^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} _{k}^{n}=k^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b160394398931357ea654102a3f7352dd65321cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.425ex; height:2.843ex;" alt="{\displaystyle \mathbb {A} _{k}^{n}=k^{n}}"></span>, and introduce affine <a href="/wiki/Algebraic_varieties" class="mw-redirect" title="Algebraic varieties">algebraic varieties</a> as the common zeros of polynomial functions over <span class="texhtml"><i>k</i><sup><i>n</i></sup></span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>As the whole affine space is the set of the common zeros of the <a href="/wiki/Zero_polynomial" class="mw-redirect" title="Zero polynomial">zero polynomial</a>, affine spaces are affine algebraic varieties. </p> <div class="mw-heading mw-heading3"><h3 id="Ring_of_polynomial_functions">Ring of polynomial functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=30" title="Edit section: Ring of polynomial functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By the definition above, the choice of an affine frame of an affine space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} _{k}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} _{k}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0579559af277736057f7672ec4b75f9027f17dd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.897ex; height:2.843ex;" alt="{\displaystyle \mathbb {A} _{k}^{n}}"></span> allows one to identify the polynomial functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} _{k}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} _{k}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0579559af277736057f7672ec4b75f9027f17dd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.897ex; height:2.843ex;" alt="{\displaystyle \mathbb {A} _{k}^{n}}"></span> with polynomials in <span class="texhtml"><i>n</i></span> variables, the <i>i</i>th variable representing the function that maps a point to its <span class="texhtml"><i>i</i></span>th coordinate. It follows that the set of polynomial functions over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {A} _{k}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {A} _{k}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0579559af277736057f7672ec4b75f9027f17dd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.897ex; height:2.843ex;" alt="{\displaystyle \mathbb {A} _{k}^{n}}"></span> is a <a href="/wiki/Algebra_over_a_field" title="Algebra over a field"><span class="texhtml"><i>k</i></span>-algebra</a>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow> <mo>[</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfc1e918756dde70dfb45492c3b82ae11b349a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.789ex; height:2.843ex;" alt="{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}"></span>, which is isomorphic to the <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\left[X_{1},\dots ,X_{n}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow> <mo>[</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\left[X_{1},\dots ,X_{n}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41000e80982a7309e905469c64ee71a87ea2c1af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.191ex; height:2.843ex;" alt="{\displaystyle k\left[X_{1},\dots ,X_{n}\right]}"></span>. </p><p>When one changes coordinates, the isomorphism between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow> <mo>[</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfc1e918756dde70dfb45492c3b82ae11b349a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.789ex; height:2.843ex;" alt="{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k[X_{1},\dots ,X_{n}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k[X_{1},\dots ,X_{n}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b80417d281d3fa33df1c998af00fcb9a84702804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.804ex; height:2.843ex;" alt="{\displaystyle k[X_{1},\dots ,X_{n}]}"></span> changes accordingly, and this induces an automorphism of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\left[X_{1},\dots ,X_{n}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow> <mo>[</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\left[X_{1},\dots ,X_{n}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41000e80982a7309e905469c64ee71a87ea2c1af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.191ex; height:2.843ex;" alt="{\displaystyle k\left[X_{1},\dots ,X_{n}\right]}"></span>, which maps each indeterminate to a polynomial of degree one. It follows that the <a href="/wiki/Total_degree" class="mw-redirect" title="Total degree">total degree</a> defines a <a href="/wiki/Filtration_(mathematics)" title="Filtration (mathematics)">filtration</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow> <mo>[</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfc1e918756dde70dfb45492c3b82ae11b349a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.789ex; height:2.843ex;" alt="{\displaystyle k\left[\mathbb {A} _{k}^{n}\right]}"></span>, which is independent from the choice of coordinates. The total degree defines also a <a href="/wiki/Graded_ring" title="Graded ring">graduation</a>, but it depends on the choice of coordinates, as a change of affine coordinates may map indeterminates on non-<a href="/wiki/Homogeneous_polynomial" title="Homogeneous polynomial">homogeneous polynomials</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Zariski_topology">Zariski topology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=31" title="Edit section: Zariski topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Zariski_topology" title="Zariski topology">Zariski topology</a></div> <p>Affine spaces over <a href="/wiki/Topological_field" class="mw-redirect" title="Topological field">topological fields</a>, such as the real or the complex numbers, have a natural <a href="/wiki/Topology_(structure)" class="mw-redirect" title="Topology (structure)">topology</a>. The Zariski topology, which is defined for affine spaces over any field, allows use of topological methods in any case. Zariski topology is the unique topology on an affine space whose <a href="/wiki/Closed_set" title="Closed set">closed sets</a> are <a href="/wiki/Affine_algebraic_set" class="mw-redirect" title="Affine algebraic set">affine algebraic sets</a> (that is sets of the common zeros of polynomial functions over the affine set). As, over a topological field, polynomial functions are continuous, every Zariski closed set is closed for the usual topology, if any. In other words, over a topological field, Zariski topology is <a href="/wiki/Coarser_topology" class="mw-redirect" title="Coarser topology">coarser</a> than the natural topology. </p><p>There is a natural injective function from an affine space into the set of <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideals</a> (that is the <a href="/wiki/Spectrum_of_a_ring" title="Spectrum of a ring">spectrum</a>) of its ring of polynomial functions. When affine coordinates have been chosen, this function maps the point of coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a_{1},\dots ,a_{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a_{1},\dots ,a_{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/852e439cb0c52c41773d190712883d61ed0b242d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.72ex; height:2.843ex;" alt="{\displaystyle \left(a_{1},\dots ,a_{n}\right)}"></span> to the <a href="/wiki/Maximal_ideal" title="Maximal ideal">maximal ideal</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle X_{1}-a_{1},\dots ,X_{n}-a_{n}\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle X_{1}-a_{1},\dots ,X_{n}-a_{n}\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b143e2a1ac80f23993099727654a4557803e5fff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.522ex; height:2.843ex;" alt="{\displaystyle \left\langle X_{1}-a_{1},\dots ,X_{n}-a_{n}\right\rangle }"></span>. This function is a <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphism</a> (for the Zariski topology of the affine space and of the spectrum of the ring of polynomial functions) of the affine space onto the image of the function. </p><p>The case of an <a href="/wiki/Algebraically_closed_field" title="Algebraically closed field">algebraically closed ground field</a> is especially important in algebraic geometry, because, in this case, the homeomorphism above is a map between the affine space and the set of all maximal ideals of the ring of functions (this is <a href="/wiki/Hilbert%27s_Nullstellensatz" title="Hilbert&#39;s Nullstellensatz">Hilbert's Nullstellensatz</a>). </p><p>This is the starting idea of <a href="/wiki/Scheme_theory" class="mw-redirect" title="Scheme theory">scheme theory</a> of <a href="/wiki/Grothendieck" class="mw-redirect" title="Grothendieck">Grothendieck</a>, which consists, for studying algebraic varieties, of considering as "points", not only the points of the affine space, but also all the prime ideals of the spectrum. This allows <a href="/wiki/Gluing_(topology)" class="mw-redirect" title="Gluing (topology)">gluing</a> together algebraic varieties in a similar way as, for <a href="/wiki/Manifold" title="Manifold">manifolds</a>, <a href="/wiki/Chart_(topology)" class="mw-redirect" title="Chart (topology)">charts</a> are glued together for building a manifold. </p> <div class="mw-heading mw-heading3"><h3 id="Cohomology">Cohomology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=32" title="Edit section: Cohomology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Like all affine varieties, local data on an affine space can always be patched together globally: the <a href="/wiki/Cohomology" title="Cohomology">cohomology</a> of affine space is trivial. More precisely, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{i}\left(\mathbb {A} _{k}^{n},\mathbf {F} \right)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{i}\left(\mathbb {A} _{k}^{n},\mathbf {F} \right)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b7c43b6719672ab32d34c6b3f07f2960b0ffa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.974ex; height:3.176ex;" alt="{\displaystyle H^{i}\left(\mathbb {A} _{k}^{n},\mathbf {F} \right)=0}"></span> for all <a href="/wiki/Coherent_sheaves" class="mw-redirect" title="Coherent sheaves">coherent sheaves</a> <b>F</b>, and <a href="/wiki/Integer" title="Integer">integers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f49f2878fd68a89c3da37eb537198e887cf0293" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.063ex; height:2.176ex;" alt="{\displaystyle i&gt;0}"></span>. This property is also enjoyed by all other <a href="/wiki/Affine_variety" title="Affine variety">affine varieties</a>. But also all of the <a href="/wiki/%C3%89tale_cohomology" title="Étale cohomology">étale cohomology</a> groups on affine space are trivial. In particular, every <a href="/wiki/Line_bundle" title="Line bundle">line bundle</a> is trivial. More generally, the <a href="/wiki/Quillen%E2%80%93Suslin_theorem" title="Quillen–Suslin theorem">Quillen–Suslin theorem</a> implies that <i>every</i> algebraic <a href="/wiki/Vector_bundle" title="Vector bundle">vector bundle</a> over an affine space is trivial. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=33" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Affine_hull" title="Affine hull">Affine hull</a>&#160;– Smallest affine subspace that contains a subset</li> <li><a href="/wiki/Complex_affine_space" title="Complex affine space">Complex affine space</a>&#160;– Affine space over the complex numbers</li> <li><a href="/wiki/Dimensional_analysis#Geometry:_position_vs._displacement" title="Dimensional analysis">Dimensional analysis §&#160;Geometry: position vs. displacement</a></li> <li><a href="/wiki/Exotic_affine_space" title="Exotic affine space">Exotic affine space</a>&#160;– Real affine space of even dimension that is not isomorphic to a complex affine space</li> <li><a href="/wiki/Space_(mathematics)" title="Space (mathematics)">Space (mathematics)</a>&#160;– Mathematical set with some added structure</li> <li><a href="/wiki/Barycentric_coordinate_system" title="Barycentric coordinate system">Barycentric coordinate system</a>&#160;– Coordinate system that is defined by points instead of vectors</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=34" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">The word <i>translation</i> is generally preferred to <i>displacement vector</i>, which may be confusing, as <a href="/wiki/Displacement_(mathematics)" class="mw-redirect" title="Displacement (mathematics)">displacements</a> include also <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFBerger1987">Berger 1987</a>, p.&#160;32</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBerger,_Marcel1984" class="citation cs2">Berger, Marcel (1984), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VXRppKJwpaAC&amp;pg=PA11">"Affine spaces"</a>, <i>Problems in Geometry</i>, Springer, p.&#160;11, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780387909714" title="Special:BookSources/9780387909714"><bdi>9780387909714</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Affine+spaces&amp;rft.btitle=Problems+in+Geometry&amp;rft.pages=11&amp;rft.pub=Springer&amp;rft.date=1984&amp;rft.isbn=9780387909714&amp;rft.au=Berger%2C+Marcel&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVXRppKJwpaAC%26pg%3DPA11&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></span> </li> <li id="cite_note-Berger1987-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Berger1987_4-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBerger1987">Berger 1987</a>, p.&#160;33</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnapperTroyer1989" class="citation cs2">Snapper, Ernst; Troyer, Robert J. (1989), <i>Metric Affine Geometry</i>, p.&#160;6</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Metric+Affine+Geometry&amp;rft.pages=6&amp;rft.date=1989&amp;rft.aulast=Snapper&amp;rft.aufirst=Ernst&amp;rft.au=Troyer%2C+Robert+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTarrida,_Agusti_R.2011" class="citation cs2">Tarrida, Agusti R. (2011), "Affine spaces", <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UZvxUBzraGAC&amp;pg=PA1"><i>Affine Maps, Euclidean Motions and Quadrics</i></a>, Springer, pp.&#160;1–2, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780857297105" title="Special:BookSources/9780857297105"><bdi>9780857297105</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Affine+spaces&amp;rft.btitle=Affine+Maps%2C+Euclidean+Motions+and+Quadrics&amp;rft.pages=1-2&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft.isbn=9780857297105&amp;rft.au=Tarrida%2C+Agusti+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUZvxUBzraGAC%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFNomizuSasaki1994">Nomizu &amp; Sasaki 1994</a>, p.&#160;7</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrang2009" class="citation book cs1">Strang, Gilbert (2009). <i>Introduction to Linear Algebra</i> (4th&#160;ed.). Wellesley: Wellesley-Cambridge Press. p.&#160;460. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-9802327-1-4" title="Special:BookSources/978-0-9802327-1-4"><bdi>978-0-9802327-1-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Linear+Algebra&amp;rft.place=Wellesley&amp;rft.pages=460&amp;rft.edition=4th&amp;rft.pub=Wellesley-Cambridge+Press&amp;rft.date=2009&amp;rft.isbn=978-0-9802327-1-4&amp;rft.aulast=Strang&amp;rft.aufirst=Gilbert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: date and year (<a href="/wiki/Category:CS1_maint:_date_and_year" title="Category:CS1 maint: date and year">link</a>)</span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="#CITEREFHartshorne1977">Hartshorne 1977</a>, Ch. I, § 1.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Affine_space&amp;action=edit&amp;section=35" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerger,_Marcel1984" class="citation cs2">Berger, Marcel (1984), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VXRppKJwpaAC&amp;pg=PA11">"Affine spaces"</a>, <i>Problems in Geometry</i>, Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90971-4" title="Special:BookSources/978-0-387-90971-4"><bdi>978-0-387-90971-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Affine+spaces&amp;rft.btitle=Problems+in+Geometry&amp;rft.pub=Springer-Verlag&amp;rft.date=1984&amp;rft.isbn=978-0-387-90971-4&amp;rft.au=Berger%2C+Marcel&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVXRppKJwpaAC%26pg%3DPA11&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerger1987" class="citation cs2"><a href="/wiki/Marcel_Berger" title="Marcel Berger">Berger, Marcel</a> (1987), <i>Geometry I</i>, Berlin: Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-11658-3" title="Special:BookSources/3-540-11658-3"><bdi>3-540-11658-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry+I&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=1987&amp;rft.isbn=3-540-11658-3&amp;rft.aulast=Berger&amp;rft.aufirst=Marcel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCameron1991" class="citation cs2"><a href="/wiki/Peter_Cameron_(mathematician)" title="Peter Cameron (mathematician)">Cameron, Peter J.</a> (1991), <a rel="nofollow" class="external text" href="http://www.maths.qmul.ac.uk/~pjc/pps/"><i>Projective and polar spaces</i></a>, QMW Maths Notes, vol.&#160;13, London: Queen Mary and Westfield College School of Mathematical Sciences, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1153019">1153019</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Projective+and+polar+spaces&amp;rft.place=London&amp;rft.series=QMW+Maths+Notes&amp;rft.pub=Queen+Mary+and+Westfield+College+School+of+Mathematical+Sciences&amp;rft.date=1991&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1153019%23id-name%3DMR&amp;rft.aulast=Cameron&amp;rft.aufirst=Peter+J.&amp;rft_id=http%3A%2F%2Fwww.maths.qmul.ac.uk%2F~pjc%2Fpps%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoxeter1969" class="citation cs2"><a href="/wiki/Harold_Scott_MacDonald_Coxeter" title="Harold Scott MacDonald Coxeter">Coxeter, Harold Scott MacDonald</a> (1969), <i>Introduction to Geometry</i> (2nd&#160;ed.), New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-50458-0" title="Special:BookSources/978-0-471-50458-0"><bdi>978-0-471-50458-0</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0123930">0123930</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Geometry&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1969&amp;rft.isbn=978-0-471-50458-0&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D123930%23id-name%3DMR&amp;rft.aulast=Coxeter&amp;rft.aufirst=Harold+Scott+MacDonald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDolgachevShirokov2001" class="citation cs2"><a href="/wiki/Dolgachev" class="mw-redirect" title="Dolgachev">Dolgachev, I.V.</a>; Shirokov, A.P. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Affine_space">"Affine space"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Affine+space&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Dolgachev&amp;rft.aufirst=I.V.&amp;rft.au=Shirokov%2C+A.P.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DAffine_space&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartshorne1977" class="citation book cs1"><a href="/wiki/Robin_Hartshorne" title="Robin Hartshorne">Hartshorne, Robin</a> (1977). <a href="/wiki/Algebraic_Geometry_(book)" title="Algebraic Geometry (book)"><i>Algebraic Geometry</i></a>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90244-9" title="Special:BookSources/978-0-387-90244-9"><bdi>978-0-387-90244-9</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0367.14001">0367.14001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebraic+Geometry&amp;rft.pub=Springer-Verlag&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0367.14001%23id-name%3DZbl&amp;rft.isbn=978-0-387-90244-9&amp;rft.aulast=Hartshorne&amp;rft.aufirst=Robin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNomizuSasaki1994" class="citation cs2"><a href="/wiki/Katsumi_Nomizu" title="Katsumi Nomizu">Nomizu, K.</a>; <a href="/wiki/Shigeo_Sasaki" title="Shigeo Sasaki">Sasaki, S.</a> (1994), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/affinedifferenti0000nomi"><i>Affine Differential Geometry</i></a></span> (New&#160;ed.), Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-44177-3" title="Special:BookSources/978-0-521-44177-3"><bdi>978-0-521-44177-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Affine+Differential+Geometry&amp;rft.edition=New&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1994&amp;rft.isbn=978-0-521-44177-3&amp;rft.aulast=Nomizu&amp;rft.aufirst=K.&amp;rft.au=Sasaki%2C+S.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Faffinedifferenti0000nomi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnapperTroyer1989" class="citation cs2"><a href="/wiki/Ernst_Snapper" title="Ernst Snapper">Snapper, Ernst</a>; Troyer, Robert J. (1989), <i>Metric Affine Geometry</i> (Dover edition, first published in 1989&#160;ed.), Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-66108-3" title="Special:BookSources/0-486-66108-3"><bdi>0-486-66108-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Metric+Affine+Geometry&amp;rft.edition=Dover+edition%2C+first+published+in+1989&amp;rft.pub=Dover+Publications&amp;rft.date=1989&amp;rft.isbn=0-486-66108-3&amp;rft.aulast=Snapper&amp;rft.aufirst=Ernst&amp;rft.au=Troyer%2C+Robert+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReventós_Tarrida,_Agustí2011" class="citation cs2">Reventós Tarrida, Agustí (2011), "Affine spaces", <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UZvxUBzraGAC&amp;pg=PA1"><i>Affine Maps, Euclidean Motions and Quadrics</i></a>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-85729-709-9" title="Special:BookSources/978-0-85729-709-9"><bdi>978-0-85729-709-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Affine+spaces&amp;rft.btitle=Affine+Maps%2C+Euclidean+Motions+and+Quadrics&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft.isbn=978-0-85729-709-9&amp;rft.au=Revent%C3%B3s+Tarrida%2C+Agust%C3%AD&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUZvxUBzraGAC%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAffine+space" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q382698#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="afinní prostory"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph118276&amp;CON_LNG=ENG">Czech Republic</a></span></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐744c7589dd‐j9dtp Cached time: 20241125143911 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.854 seconds Real time usage: 1.047 seconds Preprocessor visited node count: 12017/1000000 Post‐expand include size: 65072/2097152 bytes Template argument size: 15060/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 52849/5000000 bytes Lua time usage: 0.439/10.000 seconds Lua memory usage: 18850981/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 732.487 1 -total 23.70% 173.571 185 Template:Math 18.63% 136.445 5 Template:Annotated_link 15.66% 114.686 1 Template:Reflist 15.65% 114.645 10 Template:Citation 10.00% 73.246 1 Template:Authority_control 9.57% 70.085 1 Template:Short_description 6.79% 49.722 2 Template:Pagetype 5.26% 38.538 1 Template:Harvtxt 5.08% 37.246 190 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:298834-0!canonical and timestamp 20241125143911 and revision id 1251420333. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Affine_space&amp;oldid=1251420333">https://en.wikipedia.org/w/index.php?title=Affine_space&amp;oldid=1251420333</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Affine_geometry" title="Category:Affine geometry">Affine geometry</a></li><li><a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Linear algebra</a></li><li><a href="/wiki/Category:Space_(mathematics)" title="Category:Space (mathematics)">Space (mathematics)</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_date_and_year" title="Category:CS1 maint: date and year">CS1 maint: date and year</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 16 October 2024, at 01:30<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Affine_space&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-h5dm9","wgBackendResponseTime":193,"wgPageParseReport":{"limitreport":{"cputime":"0.854","walltime":"1.047","ppvisitednodes":{"value":12017,"limit":1000000},"postexpandincludesize":{"value":65072,"limit":2097152},"templateargumentsize":{"value":15060,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":52849,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 732.487 1 -total"," 23.70% 173.571 185 Template:Math"," 18.63% 136.445 5 Template:Annotated_link"," 15.66% 114.686 1 Template:Reflist"," 15.65% 114.645 10 Template:Citation"," 10.00% 73.246 1 Template:Authority_control"," 9.57% 70.085 1 Template:Short_description"," 6.79% 49.722 2 Template:Pagetype"," 5.26% 38.538 1 Template:Harvtxt"," 5.08% 37.246 190 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.439","limit":"10.000"},"limitreport-memusage":{"value":18850981,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBerger,_Marcel1984\"] = 2,\n [\"CITEREFBerger1987\"] = 1,\n [\"CITEREFCameron1991\"] = 1,\n [\"CITEREFCoxeter1969\"] = 1,\n [\"CITEREFHartshorne1977\"] = 1,\n [\"CITEREFNomizuSasaki1994\"] = 1,\n [\"CITEREFReventós_Tarrida,_Agustí2011\"] = 1,\n [\"CITEREFSnapperTroyer1989\"] = 2,\n [\"CITEREFStrang2009\"] = 1,\n [\"CITEREFTarrida,_Agusti_R.2011\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 1,\n [\"Annotated link\"] = 5,\n [\"Authority control\"] = 1,\n [\"Citation\"] = 10,\n [\"Cite book\"] = 2,\n [\"DEFAULTSORT:Affine Space\"] = 1,\n [\"Distinguish\"] = 1,\n [\"Eom\"] = 1,\n [\"Harv\"] = 2,\n [\"Harvard citation no brackets\"] = 3,\n [\"Harvnb\"] = 1,\n [\"Harvtxt\"] = 1,\n [\"Main\"] = 1,\n [\"Math\"] = 185,\n [\"Mvar\"] = 20,\n [\"Reflist\"] = 1,\n [\"Section link\"] = 1,\n [\"See also\"] = 3,\n [\"Sfrac\"] = 3,\n [\"Short description\"] = 1,\n [\"Slink\"] = 2,\n [\"Vanchor\"] = 1,\n [\"Visible anchor\"] = 2,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-ext.codfw.main-744c7589dd-j9dtp","timestamp":"20241125143911","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Affine space","url":"https:\/\/en.wikipedia.org\/wiki\/Affine_space","sameAs":"http:\/\/www.wikidata.org\/entity\/Q382698","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q382698","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-08-18T04:32:19Z","dateModified":"2024-10-16T01:30:05Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/95\/Affine_space_R3.png","headline":"geometric structure that generalizes the Euclidean space"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10